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Materials with rationally controlled properties play important parts in the development of 

new and advanced technologies. Thermoelectrics, which convert waste heat into electricity, 

rely on the interplay on thermal and electric conductivity1; phase-change materials (PCMs) 

for emerging neuromorphic2 or photonic3 applications exhibit an electrical and optical prop-

erty contrast between amorphous and crystalline phases. All these properties can be traced 

back, to a significant extent, to the nature of interatomic bonding in materials. However, 

the physics and materials-science communities have largely approached this question in a 

phenomenological way. Here we show how this paradigm can be overcome by developing 

a two-dimensional map based on a quantum-topological description of electron sharing and 

electron transfer. This map intuitively identifies the fundamental nature of ionic, metallic, 

and covalent bonding in a range of elements and binary materials. Furthermore, it high-

lights a distinct region for a mechanism recently termed “metavalent” bonding. Extending 

this map into the third dimension by including physical properties of application interest, 

we provide evidence that metavalent bonding cannot be described by any combination of 

https://doi.org/10.1002/adma.201806280


– 2 – 

 

the three “textbook” mechanisms—it therefore constitutes a fourth fundamental bonding 

mechanism by accepted definitions. Our work opens up a conceptually new avenue for de-

signing materials: by searching for desired properties in a 3D space and then mapping this 

back onto the 2D plane of bonding, allowing scientists to navigate structural and composi-

tion spaces and to identify promising target materials. 

Phenomenological descriptions of bonding in solids have been useful for centuries. Even to 

the non-scientist, the term “metal” implies reflective, ductile, electrically conducting solids; a 

“semiconductor” has a narrow band gap across which electrons can be excited by light; all 

this is based on measurable, macroscopic properties. A portfolio of physical properties—ex-

ceptionally large optical and bond polarizability, lattice anharmonicity, and a hitherto unseen 

bond-breaking mechanism—was recently used to define a concept termed “metavalent” 

bonding (MVB)4,5. Metavalent solids are between the covalent and metallic regimes, but dis-

tinctly different from both4. This led to a revision of the “resonant bonding” model previously 

used to describe the bonding in PCMs6–8, by showing that the response properties of PCMs 

are fundamentally different from those of resonantly bonded benzene and graphite 4. 

To make the next, necessary step beyond such phenomenological models, one needs to un-

derstand the quantum-mechanical origins of bonding. Computational methods are widely 

used to (approximatively) solve Schrödinger’s equation and describe the electronic wavefunc-

tion with increasingly high confidence, both in gas-phase molecules and in extended systems9. 

Once this wavefunction is known, it allows to determine spatial distribution, localization, ki-

netic energy, and other properties of the electron—thereby providing numerical tools to 

quantify the bonding10–14. Relationships of such descriptors with the empirical but powerful 

concepts of (operative) chemistry have been discussed and successfully exploited15–17. 

In this Letter, we now combine the property-based and the quantum-mechanically based per-

spective to derive a holistic view of bonding in solids, and then show how this directly leads 

to novel design rules for materials with interesting properties. We analyse a range of elements 

and compounds: first, with a standard density-functional theory (DFT) approach to bring the 

Kohn–Sham wavefunctions to self-consistency; then, with a Hartree–Fock (HF) like expression 

to compute the electron pair density, which describes the correlated motion of electrons 

(Methods section). The electronic density in the simulation cell is partitioned into so-called 
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domains or basins Ωi around the individual nuclei in the Domain Overlap Matrix (DOM) 

method. DOM analyses have been routinely done for gas-phase molecules, but only very re-

cently extended to the realm of plane-wave DFT and periodic systems18,19. We note at the 

outset that DFT tends to over-delocalise electrons, whereas HF behaves in the opposite way, 

but this does not qualitatively affect our conclusions.  

 

Fig. 1 | A two-dimensional map of electronic interactions and bonding in materials. The 
amount of electrons transferred (x-axis) and shared between neighbouring basins (y-axis) are 
computed using quantum-topological methods; they serve as quantitative measures for the 
ionic and covalent character, respectively. We here consider elemental and binary phases of 
main-group elements, adding examples of transition metals, intermetallics, and ternary 
phases (Table S1); however, the concept is applicable to any solid that can be treated with 
our computational tools. Symbols indicate structure types: “sp3”- (tetrahedrally) bonded sol-
ids are shown as triangles, distorted and ideal rocksalt-type (octahedrally coordinated) struc-
tures as diamonds, body-centred ones as squares; close-packed metal structures as circles. 
Filled symbols denote thermodynamically stable phases (at zero temperature); open symbols 
denote metastable phases. For GeTe, SnTe, PbTe, and PbSe, additional structural intermedi-
ates have been generated along the Peierls distortion (PD) coordinate (grey lines as guides to 
the eye). The sketch in the inset summarises the qualitative conclusions drawn from this map: 
we consider 2δ(Ω1,Ω2) = 2 to correspond to the sharing of a full electron pair, and therefore 
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label this as “100%”. Resonantly bonded graphite sheets exhibit more than this one electron 
pair shared between the atoms; metavalent materials have distinctly less. 

The DOM analysis yields a pair of simple descriptors which make it possible to classify or fin-

gerprint any given solid-state material. First, we compute the net charge of an atom, Qi, by 

integrating over its basin Ωi and comparing to the free reference atom: this allows us to assess 

electron transfer, which is expected to be large in ionic solids (idealised example: Na+ and Cl– 

in table salt) but small otherwise. Second, we compute the delocalisation index for a pair of 

atoms, δ(Ωi,Ωj), which yields the number of electron pairs exchanged or shared between 

them. Thus, δ(Ωi,Ωj) provides a physical measure of a property that classical models associate 

with covalency, and it is amenable to comparison with formal bond orders. A full pair of elec-

trons shared between neighbouring atoms corresponds to the Lewis picture of a single cova-

lent bond. (Our y-axis is defined such that it gives the number of electrons; note that some 

authors prefer to directly report δ(Ωi,Ωj) and thus the number of electron pairs.) 

We now use these descriptors as coordinates to draw a two-dimensional materials map, 

which is shown in Fig. 1. To appreciate its explanatory power, we first discuss archetypes of 

textbook bonding mechanisms and their location in this map. At the bottom and to the right, 

NaCl and MgO are generic examples of ionic bonding; the computed degree of electron trans-

fer (0.87 and 1.71 e, respectively) approaches the formal picture of Na+ and Mg2+ ions. Looking 

at covalent solids, we find 1.83 electrons shared for diamond, approximating the Lewis elec-

tron-pair bond picture. In all cases, these limits are not reached completely: there is a very 

small covalent contribution even in NaCl, and there is some valence electron localised on each 

atom in diamond (albeit no transfer, due to symmetry). The latter aspect becomes more ob-

vious when moving down the fourth main group: diamond-type Si, Ge, and Sn show gradually 

less electron sharing, concomitant with their increasingly metallic nature. Binary compounds 

do exhibit electron transfer, but its extent is small in covalent systems and intermetallics, say 

TiAl. Clear chemical relationships can be observed in the map: e.g., the homologous III–V sem-

iconductors, AlN, AlP, and AlAs, are close to one another; the largest change occurs between 

the first and second long period (going from AlN to AlP), due to the different size of the va-

lence p-orbital in N and P, as discussed by Burdett20. The map also recovers the conventional 

wisdom that the transition between covalent and ionic bonding is gradual: this is best seen 

for the isovalent III–V compounds such as GaN and AlSb, where ≈ 1.5 e (roughly half of the 

“cation” valence electrons) are transferred, concomitant with gradually decreasing covalency 
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(y-axis). Finally, we can locate textbook examples of metallic bonding in the map: for example, 

Na shares only 0.2 e (that is, it shows very little yet nonzero covalency), as is characteristic for 

bonding via delocalised electrons15. In short, the map in Fig. 1 identifies the archetypes of 

ionic, covalent, and metallic bonding in distinctly different and physically meaningful regions.  

 

Fig. 2 | Three-dimensional maps defining design rules for materials with desired properties. 
The base plane is defined as in the 2D map (Fig. 1) and quantifies electrons transferred and 
shared, respectively. Extending this map in the third dimension (as sketched in panel a , we 
quantify (b) Born effective charges, Z*, (c) dielectric constants, ε∞, and (d) absolute transverse 
optical (TO) mode Grüneisen parameters, |γTO|, for binary compounds. Ionic materials in 
black, covalent in red, metavalent in green (with structural intermediates as semi-transparent 
bars; see Methods section for details). Metavalent bonding is characterised by unusually high 
values of all three indicators (green bars), and the 3D plots presented here allow to identify 
these trends across all of composition space. To design thermoelectrics, for example, one will 
navigate the base plane to regions of large lattice anharmonicity (panel c). 

Previous “materials maps” date back to the iconic van Arkel triangle,21–23 which is widely 

found in textbooks, and to empirical structure maps for semiconductors based on tabulated 
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orbital radii24,25. We note in passing a recently introduced 2D map that analyses bonding in 

molecular systems28. Perhaps the most closely related to the present work is an electronic-

density based study by Mori-Sánchez et al., using “density flatness” (a measure for metallic-

ity), charge transfer (ionicity, similar to the present x-axis), and the molecular character as 

descriptors for the fundamental bonding mechanisms29. The use of a “map” has been sug‐

gested in 2008 to identify candidate PCMs26, but has been severely limited to a qualitative 

(and dichotomic “PCM” / “no PCM”) classification of materials, and again based on tabulated 

orbital radii from which heuristic proxies are constructed for “hybridisation” and ionicity26. 

This concept was later extended using DFT-based descriptors, which are sensitive to atomic 

structure27. However, in all these studies, a crucial aspect has been missing: namely, a rigor-

ous link to physical properties that would enable not only to classify bonding in materials, but 

to exploit the quantitative bonding information for materials design. 

To create this link, let us look more closely at the central region of the map in Fig. 1—which 

lies in between the three archetypical mechanisms, without clearly belonging to one of them, 

and is populated by materials as well (green symbols in Fig. 1). One obvious explanation would 

be that the bonding nature in these materials is a superposition of existing archetypes. For 

example, hydrogen bonding may have van der Waals, ionic, and covalent contributions, 

strongly dependent on the distance and nature of the acceptor atom30; still, the associated 

physical properties (e.g., the O–H stretch frequency) change gradually and continuously be-

tween the respective limits. In sharp contrast, the MVB materials studied here show a rapid 

change and anomalously large values for three independent properties. To visualise and ana-

lyse this, we now extend the concept of our map into a third dimension, thereby including in 

the picture numerical values not just for bonding but also for properties (Fig. 2). This plot 

clearly reveals that such simultaneously and anomalously large properties are not found any-

where else within the space of our 2D map. Combining previous phenomenological, property-

based evidence4,5 and the present quantum-topological study, it seems to emerge that MVB 

is a fourth bonding mechanism beyond the “big three” (ionic, covalent and metallic). 

Interest in MVB materials stems from their diverse technological applications, which are di-

rectly enabled by properties31,32. Beyond its fundamental nature, Fig. 2 therefore suggests a 

blueprint to tailor properties. For example, it was suggested that bonding in chalcogenides is 

closely interwoven with a lattice instability, leading to large Grüneisen parameters33. Our 3D 

plot (Fig. 2d) now shows that this anomaly is uniquely linked to MVB—more specifically, to 
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the border between MVB and metallic bonding. This provides a recipe to identify candidate 

thermoelectrics34: move to MVB materials that border on metals, at around ≈ 0.8 electrons 

shared. While our map currently contains elements and binary compounds, its extension to 

ternaries is anticipated to reveal more candidate materials, given that a way can be found to 

localise the various contacts between different species within the 2D map. To illustrate this, 

we included in Fig. 1–2 selected ternaries such as AgSbTe2 (Table S1), where we obtained the 

2D coordinates by numerically averaging over values for Ag–Te and Sb–Te bonds. 

All three z-axis quantities in Fig. 2b–d are so-called response properties: they do not relate to 

conventional bond characteristics (such as the localization and delocalization of electrons), 

but rather to the unconventional way in which the bonds respond to external stimuli. In this 

light, it is interesting to mention recent studies on the electron organization of many-electron 

systems in the context of linear response theory35. They highlight the profound connection 

between variances in local electronic position and the momentum operators and the optical 

conductivity tensor—that is, between electron (de)localization in real and momentum space 

on the one hand, and the experimentally observable spectroscopic and conductivity proper-

ties on the other hand. Our study emphasises the dramatic role such connections may play in 

a peculiar case of bonding, namely, MVB.  

 

Fig. 3 | Mechanism of the Peierls distortion in materials as described by quantum-based 
indicators. We analyse a series of GeTe structures, gradually distorted along [111]. We quan-
tify the degree of Peierls distortion (which is largest on the left-hand side) through the ratio 
of shorter and longer interatomic distances; both become equal in the limit of the ideal, un-
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distorted rocksalt type (“cubic limit”). Left: (a, b) the number of electrons shared and trans-
ferred (corresponding to the y- and x-coordinates in Fig. 1, respectively). The Peierls distortion 
does not affect the amount of electrons transferred (i.e., the ionicity; panel b), but it does 
affect the distribution of electrons shared (panel a). Sketches indicate the evolution of elec-
tron sharing and structural variation with the gradual variation of the Peierls distortion. Right: 
from top to bottom, we present different bonding indicators and how they are affected by 
the Peierls distortion: (c) the Born effective charges, providing a measurable indicator for the 
onset of MVB, given as average (filled symbols) and projected on the [111] direction where 
the effect of distortion is most relevant (open symbols); (d) the effective coordination number 
(ECoN), quantifying the gradual departure from the 8–N rule; (e) the energy cost associated 
with the distortion, relative to α -GeTe, which is very small overall.  

The bonding descriptors used here shed new light on a long-standing issue in the structural 

study of chalcogenide materials. Many MVB materials crystallise in the rocksalt type but 

some, prominently GeTe, show a small distortion that gives rise to three moderately shorter 

and three moderately longer bonds. This is referred to as a Peierls distortion. We analyse 

several structures with gradually varied degree of distortion, including stable α-GeTe and its 

undistorted cubic form. This allows us to mechanistically understand the transition between 

covalent (left-hand side) and metavalent (right-hand side) regimes. The progressive Peierls 

distortion induces a re-distribution of electrons between short Ge–Te and long Ge—Te bonds, 

which become stronger and weaker, respectively (Fig. 3a). However, the total amount of elec-

trons shared is almost invariant; in other words, the total number of electrons forming bonds 

in crystalline GeTe is unaffected by the Peierls distortion. In the ideal cubic phase, ≈ 1 electron 

is shared between each of the six neighbours (which is half an electron pair, thus half the 

covalent limit, and typical of MVB; Fig. 1). Still, even in the most strongly distorted structures 

(at low Rshort / Rlong) there remains non-negligible sharing in the longer bonds. This suggests 

the absence of any bond/no bond dichotomy: shorter and longer Ge–Te interactions are both 

associated with “true” bonds and are parts of the same body, with only the repartitioning of 

electron pairs varying. The number of electrons transferred (Fig. 3b) is unaffected by the Pei-

erls distortion and small overall, dismissing the possibility for substantial ionic contributions 

to the bonding in this case. Turning to properties once more, the Peierls distortion is concom-

itant with an electronic instability of which the chemical bond polarisability is indicative (Fig. 

3c). The competition between localisation and delocalisation is reflected in a gradually chang-

ing, non-integer ECoN (Fig. 3d), and hence the Peierls distortion appears to be decisive in 
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achieving this delicate balance, especially as its energetic cost is very small (Fig. 3e). Accord-

ingly, small Peierls distortions are frequently encountered in MVB systems. 

The data in Figure 3 suggest a route towards property design if one achieves control over the 

Peierls distortion. This could be done by strain, alloying, creating defects, or nanostructuring 

(moving along the horizontal axis in Fig. 3, and modifying the ECoN as plotted in Fig. 3d), and 

this directly allows to tune the properties—increasing thermoelectric efficiency, for example. 

It also explains how the amorphous phases of PCMs, in which the Peierls distortion becomes 

extremely large and directionally blurred36, lose these anomalous properties, creating the 

electronic and optical property contrast that is exploited in device applications.   
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Supplementary Materials 

Methods 

The optimised structures of all compounds were first studied the ABINIT Density Functional Theory 

code37, using the PBE exchange-correlation functional38 and projector augmented-wave (PAW) poten-

tials39–41. Wavefunctions for relaxed structures were then used to determine Bader’s basins and delo‐

calization/localization indices (DIs/LIs) among/within such basins. Central to the evaluation of DIs and 

LIs is the calculation of the so-called Domain Overlap Matrices (DOM) over Bader’s basins. This task is 

routinely performed for systems in vacuo described by localised basis sets, but only very recently has 

it been extended also to the realm of plane-wave based methods and periodic systems. In particular, 

we adopted the efficient algorithm  for calculating the DOM elements implemented by Golub and 

Baranov for PAW method as a general purpose module of the program DGRID interfaced to the output 

of ABINIT code19. Bader’s basins were obtained by a discrete-grid technique42,43. 

The DOM represent key ingredients for integration of the non-classical part of the electron pair density 

over atoms basins. Integration of such density over a single atomic basin  yields the localization in-

dex, LI() measuring the quantity of electrons which are fully localised in the atomic basin, in general 

almost all of the core electrons and, depending on the atom type and of its specific chemical environ-

ment, a small or larger fraction of the valence electrons. On the other hand, when the exchange-cor-

relation density is integrated over a pair of atomic basins (denoted 1 and 2), one obtains the 

delocalization index (1,2), measuring the number of electron pairs being shared between the two 

atoms. Twice (1,2) therefore corresponds to the absolute number of electrons shared (ES), and 

this quantity forms the y-axis of the map in Fig. 1.  

Integration of the non-classical exchange-(correlation) part of the electron pair density function satis-

fies the sum rule,  

 
𝑁(Ω) = 𝐿𝐼(Ω) +

1

2
∑ 𝛿(Ω′, Ω),

Ω′≠Ω
 

 

(1) 

i.e., the sum of the localization and half of the delocalization indices of an atom  with all other basins 

’ equals the electron population of each atom , N(). The difference between the number of elec-

trons of the bare atom (or, equivalently, of its nuclear charge) and the electron population N() yields 
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the atomic charge of . For binary compounds and for those having only one unique crystallographic 

position per atom, this quantity may be denoted as “electrons transferred” (ET; the x-axis in Fig. 1).  

DI values may slightly differ from what would be expected from classical bonding views. For instance, 

if silicon is taken as an example of a perfectly covalently bonded crystal, one would expect sharing of 

a full electron pair between each pair of first neighbours and no electron charge transferred, that is 

ES=2 (formal bond order of one) and ET=0, respectively.  However, this would be the result one would 

obtain for a fictitious perfectly covalently bonded crystal in the absence of coulomb correlation treat-

ment, like, rigorously, for the Hartree–Fock mono-determinantal approach and partly for the DFT 

Kohn-Sham approach. When such correlation is instead explicitly introduced, the effect of ,  corre-

lation on bonding is that of decreasing the delocalization ability of opposite spin electrons, thereby 

leading to a general decrease of ES relative to the value that would be expected from the formal bond 

order. In real systems, electron pair sharing is often significantly below that anticipated from the for-

mal bond order,  as illustrated for Si, Ge, and Sn in Fig. 1, and the number of electrons entirely localised 

on the atom, LI(), is consequently greater than the difference between its electron population and 

the ES value associated to the formal bond order multiplied by the number of bonds it forms (Eq. 1).  

The data plotted in Fig. 2 (Z*, ε∞ and mode Grüneisen parameters) are partly taken from Ref. 4 and 

partly computed here. Note that Z* and ε∞ values given here are averaged over atoms (absolute val-

ues) and directions, respectively. These data were obtained with the ABINIT code, using linear re-

sponse and including LO–TO splitting for ionic systems44. Norm-conserving pseudopotentials of the 

Vanderbilt type45 were used, including semicore states for elements such as Bi, Ge, Ga, In, Se and Sn, 

and spin–orbit coupling in the case of PbTe. Convergence on energies and forces upon plane-wave 

cutoff energies and k-point grid was tested, in particular regarding the absence of imaginary frequency 

phonons at Γ. The Born effective charges plotted are the average of the absolute values. The mode 

Grüneisen parameters are computed by varying the cell volume by 0.3% and relaxing the structure 

when needed. 

For the out-of-equilibrium structures, such as the cubic GeTe phase, or phases with variable Peierls 

distortion, the cell was relaxed with imposed symmetry (cubic) or imposed Peierls distortion ratio (via 

the R3m fractional atomic position parameter). 

 

Table S1: Materials computationally characterised in this work, as described in the Methods section 
above; numerical data for structural, bonding, and physical properties are listed here. 

 
Structure Bonding 

mechanism 
Electrons 

trans-
ferred 

Electrons 
shared 

Z* γTO ε∞ 

 
Elements: 
Al 𝐹𝑚3̅𝑚 metallic 0 0.514 - - - 
Ag 𝐹𝑚3̅𝑚 metallic 0 0.486 - - - 
Snα 𝐹𝑑3̅𝑚 covalent 0 1.508 - - 24.0 
Pb 𝐹𝑚3̅𝑚 metallic 0 0.452 - - - 
Si 𝐹𝑑3̅𝑚 covalent 0 1.680 - 1.0 13.0 
Ge 𝐹𝑑3̅𝑚 covalent 0 1.568 - 1.1 16.0 
Na 𝐼𝑚3̅𝑚 metallic 0 0.200 - - - 
Mg 𝑃63/𝑚𝑚𝑐 metallic 0 0.398 - - - 
Ca* 𝑃63/𝑚𝑚𝑐 metallic 0 0.408 - - - 
Cdiamond 𝐹𝑑3̅𝑚 covalent 0 1.826 - - 5.8 
Cgraphite 𝑃63/𝑚𝑚𝑐 resonant 0 2.400 - - - 
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Table S1 (continued). 
  

Structure Bonding 
mechanism 

Electrons 
trans-
ferred 

Electrons 
shared 

Z* γTO ε∞ 

 
Intermetallics: 
NiAl 𝑃𝑚3̅𝑚 metallic 0.49 0.548 - 2.0 - 
TiAl 𝑃4/𝑚𝑚𝑚 metallic 0.38 0.624 - 1.8 - 
 
 
IIIA-VA compounds: 
AlN 𝑃63𝑚𝑐 ionic 2.40 0.512 2.55 1.1 4.5 
AlP 𝐹4̅3𝑚 ionic 2.02 0.768 2.25 1.2 8.2 
AlAs 𝐹4̅3𝑚 ionic 1.91 0.836 2.15 1.1 9.8 
AlSb 𝐹4̅3𝑚 ionic 1.68 0.944 1.89 1.1 12.7 
AlBi 𝐹4̅3𝑚 ionic 1.59 0.992 1.87 1.5 22.2 
GaN 𝑃63𝑚𝑐 covalent 1.56 1.200 2.69 1.6 6.0 
GaP 𝐹4̅3𝑚 covalent 0.81 1.424 2.20 1.2 11.1 
GaAs 𝐹4̅3𝑚 covalent 0.68 1.400 2.20 1.2 14.5 
GaSb 𝐹4̅3𝑚 covalent 0.30 1.436 1.91 1.2 23.2 
InN* 𝐹4̅3𝑚 covalent 1.43 1.276 - 1.6 - 
InP 𝐹4̅3𝑚 covalent 0.88 1.416 2.60 1.3 12.7 
InAs 𝐹4̅3𝑚 covalent 0.72 1.400 2.74 1.3 16.3 
InSb 𝐹4̅3𝑚 covalent 0.55 1.388 2.50 1.4 21.3 
 
IIA-VIA compounds: 
BeO 𝑃63𝑚𝑐 ionic 1.73 0.278 1.80 1.7 3.1 
BeS 𝐹4̅3𝑚 ionic 1.60 0.386 1.61 1.6 5.3 
BeSe 𝐹4̅3𝑚 ionic 1.54 0.404 1.56 0.3 6.0 
BeTe 𝐹4̅3𝑚 ionic 1.45 0.508 1.34 1.8 7.4 
MgO 𝐹𝑚3̅𝑚 ionic 1.70 0.244 2.00 2.5 3.2 
MgS 𝐹𝑚3̅𝑚 ionic 1.67 0.236 2.35 3.1 5.4 
MgSe* 𝐹4̅3𝑚 ionic 1.59 0.408 1.91 1.5 4.7 
MgTe 𝐹4̅3𝑚 ionic 1.55 0.432 1.95 1.5 5.6 
CaO 𝐹𝑚3̅𝑚 ionic 1.48 0.468 2.35 3.0 3.8 
CaS 𝐹𝑚3̅𝑚 ionic 1.46 0.428 2.37 2.5 5.0 
CaSe 𝐹𝑚3̅𝑚 ionic 1.45 0.424 2.38 2.2 5.6 
CaTe 𝐹𝑚3̅𝑚 ionic 1.42 0.420 2.42 1.9 6.6 
SrO 𝐹𝑚3̅𝑚 ionic 1.48 0.500 2.43 3.3 3.8 
SrS 𝐹𝑚3̅𝑚 ionic 1.47 0.460 2.40 2.3 4.6 
SrSe 𝐹𝑚3̅𝑚 ionic 1.45 0.460 2.40 2.3 5.1 
SrTe 𝐹𝑚3̅𝑚 ionic 1.43 0.448 2.43 2.4 5.9 
BaS 𝐹𝑚3̅𝑚 ionic 1.43 0.536 2.60 2.6 4.8 
BaSe 𝐹𝑚3̅𝑚 ionic 1.39 0.536 2.59 2.5 5.3 
BaTe 𝐹𝑚3̅𝑚 ionic 1.37 0.538 2.59 2.4 5.9 
 
IIB-VIA compounds: 
ZnO* 𝐹4̅3𝑚 covalent 1.22 0.984 - - - 
ZnS 𝐹4̅3𝑚 covalent 0.88 1.168 2.00 1.8 5.8 
ZnSWurtzite* 𝑃63𝑚𝑐 covalent 0.91 1.116 - - - 
ZnSe 𝐹4̅3𝑚 covalent 0.67 1.172 2.09 1.8 7.3 
ZnTe 𝐹4̅3𝑚 covalent 0.43 1.232 2.08 1.8 9.0 
CdS 𝐹4̅3𝑚 covalent 0.85 1.156 2.24 1.9 6.4 
CdSe 𝐹4̅3𝑚 covalent 0.72 1.164 2.33 1.9 7.4 
CdTe 𝐹4̅3𝑚 covalent 0.52 1.220 2.33 1.9 8.9 
HgS 𝐹4̅3𝑚 covalent 0.55 1.336 3.15 3.3 24.6 
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Table S1 (continued). 
  

Structure Bonding 
mechanism 

Electrons 
trans-
ferred 

Electrons 
shared 

Z* γTO ε∞ 

        
HgSe 𝐹4̅3𝑚 covalent 0.40 1.324 3.38 2.6 19.9 
HgTe 𝐹4̅3𝑚 covalent 0.10 1.368 3.30 2.0 20.2 
 
IA-VIIA compounds: 
NaCl 𝐹𝑚3̅𝑚 ionic 0.87 0.140 1.10 2.4 2.5 
NaF 𝐹𝑚3̅𝑚 ionic 0.88 0.150 1.02 2.5 1.9 
KF 𝐹𝑚3̅𝑚 ionic 0.86 0.228 1.13 2.7 2.0 
KCl 𝐹𝑚3̅𝑚 ionic 0.84 0.208 1.16 2.8 2.3 
KBr 𝐹𝑚3̅𝑚 ionic 0.83 0.220 1.14 3.0 2.5 
KI 𝐹𝑚3̅𝑚 ionic 0.82 0.196 1.16 2.8 2.8 
RbCl 𝐹𝑚3̅𝑚 ionic 0.85 0.234 1.17 2.7 2.3 
RbBr 𝐹𝑚3̅𝑚 ionic 0.84 0.230 1.16 2.7 2.5 
RbBrPm3̅m* 𝑃𝑚3̅𝑚 ionic 0.83 0.166 1.24 - 2.8 
CsF 𝐹𝑚3̅𝑚 ionic 0.88 0.274 1.30 3.6 2.3 
CsFPm3̅m* 𝑃𝑚3̅𝑚 ionic 0.87 0.182 1.34 - 2.6 
 
IVA-VIA compounds: 
GeSe 𝑃𝑛𝑚𝑎 covalent 0.65 1.376 2.96 1.4 16.7 
GeTe220u* 𝑅3𝑚, dist. covalent 0.34 1.608 2.70 - 19.2 
GeTe221u* 𝑅3𝑚, dist. covalent 0.33 1.572 2.97 - 21.6 
GeTe224u* 𝑅3𝑚, dist. covalent 0.35 1.500 3.50 - 20.3 
GeTe227u* 𝑅3𝑚, dist. covalent 0.34 1.444 3.95 - 29.2 
GeTeortho* 𝑃𝑛𝑚𝑎 covalent 0.37 1.424 3.50 - 27.9 
GeTe230u* 𝑅3𝑚, dist. covalent 0.36 1.384 4.43 - 32.3 
GeTe233u* 𝑅3𝑚, dist. covalent 0.36 1.324 5.01 - 36.0 
GeTeR3m 𝑅3𝑚 metavalent 0.34 1.240 5.98 - 44.1 
GeTe239u* 𝑅3𝑚, dist. metavalent 0.35 1.184 6.53 - 49.3 
GeTe242u* 𝑅3𝑚, dist. metavalent 0.36 1.112 7.39 - 60.8 
GeTe245u* 𝑅3𝑚, dist. metavalent 0.37 1.028 8.48 - 75.2 
GeTecub* 𝐹𝑚3̅𝑚 metavalent 0.35 0.900 9.42 - 91.5 
SnO 𝑃4/𝑛𝑚𝑚 covalent 1.27 0.888 2.96 5.7 7.3 
SnS 𝑃𝑛𝑚𝑎 covalent 0.97 1.120 3.39 1.3 14.1 
SnSe 𝑃𝑛𝑚𝑎 covalent 0.83 1.244 3.49 2.0 17.1 
SnTe 𝐹𝑚3̅𝑚, dist. metavalent 0.63 0.940 6.65 5.8 77.0 

SnTecub* 𝐹𝑚3̅𝑚 metavalent 0.63 0.848 - - - 
PbO 𝑃4/𝑛𝑚𝑚 covalent 1.17 0.944 2.76 1.0 6.1 
PbSeu2300* 𝐹𝑚3̅𝑚, dist. covalent 0.85 1.144 3.65 - 15.0 

PbSeu2400* 𝐹𝑚3̅𝑚, dist. metavalent 0.87 0.968 4.42 - 18.4 

PbSeu2440* 𝐹𝑚3̅𝑚, dist. metavalent 0.87 0.884 4.68 - 19.6 

PbSeu2464* 𝐹𝑚3̅𝑚, dist. metavalent 0.87 0.840 4.72 - 20.2 

PbSeu2482* 𝐹𝑚3̅𝑚, dist. metavalent 0.875 0.804 4.75 - 20.5 

PbSe 𝐹𝑚3̅𝑚 metavalent 0.86 0.764 4.81 15.0 20.4 
PbTeu2300* 𝐹𝑚3̅𝑚, dist. covalent 0.64 1.232 3.87 - 19.4 

PbTeu2400* 𝐹𝑚3̅𝑚, dist. metavalent 0.67 1.040 4.96 - 23.2 

PbTeu2440* 𝐹𝑚3̅𝑚, dist. metavalent 0.68 0.948 5.44 - 25.4 

PbTeu2464* 𝐹𝑚3̅𝑚, dist. metavalent 0.685 0.888 5.61 - 26.2 

PbTeu2482* 𝐹𝑚3̅𝑚, dist. metavalent 0.68 0.848 5.70 - 26.6 

PbTe 𝐹𝑚3̅𝑚 metavalent 0.68 0.804 5.70 15.6 27.3 

* indicates metastable phases; the label “dist.” signifies gradual Peierls distortions (cf. Fig. 3). 
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Table S1 (continued). 
  

Structure Bonding 
mechanism 

Electrons 
trans-
ferred 

Electrons 
shared 

Z* γTO ε∞ 

        
Ternary compounds: 
AgBiSe2 𝑅3̅𝑚 metavalent 0.64 0.860 3.97 6.6 24.3 
AgBiTe2 𝑅3̅𝑚 metavalent 0.36 0.91 4.25 6.8 57.6 
AgSbTe2 𝑅3̅𝑚 metavalent 0.28 0.934 4.30 3.0 39.2 
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