
Tree-based learning of regulatory network
topologies and dynamics with Jump3

Vân Anh Huynh-Thu and Guido Sanguinetti

Abstract Inference of gene regulatory networks (GRNs) from time series data is
a well established field in computational systems biology. Most approaches can be
broadly divided in two families: model-based and model-free methods. These two
families are highly complementary: model-based methods seek to identify a formal
mathematical model of the system. They thus have transparent and interpretable se-
mantics, but rely on strong assumptions and are rather computationally intensive.
On the other hand, model-free methods have typically good scalability. Since they
are not based on any parametric model, they are more flexible that model-based
methods, but also less interpretable.

In this chapter, we describe Jump3 [1], a hybrid approach that bridges the gap
between model-free and model-based methods. Jump3 uses a formal stochastic dif-
ferential equation to model each gene expression, but reconstructs the GRN topol-
ogy with a non-parametric method based on decision trees. We briefly review the
theoretical and algorithmic foundations of Jump3, and then proceed to provide a
step by step tutorial of the associated software usage.

Key words: Hybrid method, decision trees, stochastic differential equations, Gaus-
sian processes

Vân Anh Huynh-Thu
Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
e-mail: vahuynh@uliege.be

Guido Sanguinetti
School of Informatics, University of Edinburgh, Edinburgh, U.K.
e-mail: gsanguin@inf.ed.ac.uk

1

2 Vân Anh Huynh-Thu and Guido Sanguinetti

1 Introduction

Many methods have been proposed for the inference of gene regulatory networks
(GRNs) from gene expression time series data. These methods can be broadly di-
vided in two families, that we will name here model-based and model-free ap-
proaches. Model-based methods first define a formal mathematical model of the
system, usually expressed with differential or difference equations. They then recon-
struct the GRN topology by learning the parameters of the mathematical model from
observed data (including discrete parameters such as network structure). Model-
based methods have several advantages: they have a transparent model, which makes
them interpretable for human experts, and once learned, this model can be used for
predicting the dynamical behaviour of the system in new experimental conditions.
However, model-based methods have also several drawbacks: they tend to be com-
putationally intensive, and by essence they make very strong assumptions about
the system dynamics (e.g. linear dependencies between genes), which are not al-
ways justified biologically. Model-free methods on the other hand infer the GRN
without defining any prior mathematical model and directly estimate the gene de-
pendencies from the data, using more or less sophisticated statistical measures or
machine learning-based analyses. These model-free methods are typically highly
scalable and can thus be used for the inference of very large networks. Since they are
not based on any parametric model, they are much more flexible than model-based
methods, but also less interpretable. Moreover, they cannot be used for prediction in
a straightforward way.

This chapter presents a hybrid approach to the network inference problem, called
Jump3 [1], that bridges the gap between model-based and model-free methods.
Jump3 uses a formal stochastic differential equation to model the dynamics of each
gene of the network, but reconstructs the GRN topology with a non-parametric
method based on decision trees (see Chapter 8 for more details about tree-based
GRN inference methods). Jump3 combines the computational efficiency of model-
free methods with a biophysically plausible and interpretable model of gene expres-
sion; its performance on benchmark tests (described in [1]) is competitive with, or
better than, the state-of-the-art, and a fully documented MATLAB implementation is
freely available at http://www.montefiore.ulg.ac.be/˜huynh-thu/
Jump3.html.

In the rest of the chapter, we start by briefly reviewing the mathematical and
algorithmic bases of Jump3, with the main aim to illustrate how the model-based
approach is embedded into a tree learning framework. We then provide a step by
step tutorial on the usage of the Jump3 software, using the synthetic data set accom-
panying the software as an example.

Tree-based learning of GRN topologies and dynamics with Jump3 3

2 The Jump3 framework

Let us assume that we observe the expression levels of G genes at T time points
following some perturbation of the system:

T S = {x̂1, x̂2, . . . , x̂G}, (1)

where x̂i is the vector containing the observed expressions of gene gi at the T time
points:

x̂i = (x̂i,1, x̂i,2, . . . , x̂i,T)
> (2)

From this time series data T S, the goal of Jump3 is to learn a weight for each pu-
tative regulatory link of the network, with higher weights assigned to links that
are true regulatory interactions. Jump3 is a semi-parametric approach: a paramet-
ric model is used for modelling the expression of each gene (Section 2.1), but a
non-parametric model is used for modelling the regulatory interactions between the
genes (Section 2.2).

2.1 The parametric part: modelling gene expression

Jump3 models the dynamics of the expression xi of each gene gi using the on/off
model of gene expression [2], which uses the following stochastic differential equa-
tion (SDE):

dxi = (aiµi(t)+bi−λixi)dt +σsysdw(t) (3)

In this model, the transcription rate of gi depends on the state µi of the promoter of
gi, which can be either active (µi = 1) or inactive (µi = 0). Θi = {ai,bi,λi} is the
set of kinetic parameters. ai represents the efficiency of the promoter in recruiting
polymerase when being in the active state, bi denotes the basal transcription rate,
and λi is the exponential decay constant of xi. The term σsysdw(t) represents a white
noise with variance σ2

sys.
Let us assume for the moment that we know the trajectory of the promoter state,

i.e. that we know the state µi(t) at any time t. In that case, the SDE (3) is linear and
it can be shown that its solution xi(t) is equivalent to a Gaussian process [3]. Gener-
ally speaking, the fact that xi(t) is a Gaussian process means that for any subset of T
time points {t1, t2, . . . , tT}, the vector (xi(t1),xi(t2), . . . ,xi(tT))> follows a multivari-
ate normal distribution with some mean mi ∈ RT and covariance Ci ∈ RT×T . In
the specific case of the on/off model, it can be shown that the mean and covariance
functions of xi(t) are:

mi(t) = xi(0)e−λit +ai

∫ t

0
e−λi(t−τ)

µi(τ)dτ +
bi

λi
(1− e−λit) (4)

Ci(t, t ′) =
σ2

sys

2λi
(e−λi|t−t ′|− e−λi(t+t ′)) (5)

4 Vân Anh Huynh-Thu and Guido Sanguinetti

Fig. 1 Example of GRN.
Circles represent the gene
expressions, and squares rep-
resent the promoter states.
Thick arrows model the pro-
moter activations and show
the network topology. Figure
reproduced from [1], by per-
mission of Oxford University
Press.

x1

x2x3

μ1

μ2

μ3

Besides the chosen on/off model, another assumption made by Jump3 is that the
gene expression xi is observed at the T time points with i.i.d. Gaussian noise:

x̂i,k = xi(tk)+ εi,k, (6)

εi,k ∼ N (0,σ2
obs,i,k),k = 1, . . . ,T, (7)

where σ2
obs,i,k is the variance of the observation noise at time point tk for gene gi.

Under this assumption, since both xi and ε i are normally distributed, the observed
expression levels x̂i also follow a multivariate normal distribution:

x̂i ∼N (mi,Ci +Di), (8)

where Di ∈ RT×T is a diagonal matrix with the values σ2
obs,i,k along the diagonal.

One can therefore derive the log-likelihood of the observations:

Li = log p(x̂i) =−
T
2

log(2π)− 1
2

log |Ci +Di|−
1
2
(x̂i−mi)

>(Ci +Di)
−1(x̂i−mi)

(9)

2.2 The non-parametric part: reconstructing the network topology

To summarise the previous section, a first key ingredient of Jump3 is to use the
on/off model for modelling the expression of each gene gi. This model allows, under
the assumption that the expressions of gi are observed with i.i.d. Gaussian noise, to
compute a likelihood value Li for any given promoter state trajectory µ i.

Now, the second key ingredient of Jump3 is to assume that the promoter state µi
is a function of the expression levels of the genes that are direct regulators of gi (see
Figure 1):

µi(t) = fi(xreg,i(t))+ξt ,∀t, (10)

where xreg,i(t) is the vector containing the expression levels at time t of the regula-
tors of gi and ξt is a random noise with zero mean.

Within this context, the goal of Jump3 is, for each target gene gi:

Tree-based learning of GRN topologies and dynamics with Jump3 5

for each

target gene gi

Learn jump tree

model predicting μi

time

e
x
p

re
ss

io
n

Fig. 2 The Jump3 framework. For each target gene gi, i = 1, . . . ,G, a function fi in the form of
an ensemble of jump trees is learned from the time series of expression data. The trajectory of the
state of the promoter of gi (µi) is predicted from the jump tree model and an importance score is
computed for each candidate regulator. The score of a candidate regulator g j is used as weight for
the regulatory link directed from g j to gi. Figure reproduced from [1], by permission of Oxford
University Press.

1. To identify the promoter state trajectory µ i over the time interval [t1, tT] that
maximises the likelihood Li;

2. To identify the regulators of gi, i.e. the genes whose expression levels are predic-
tive of the promoter state µi.

In principle, these goals could be achieved using a parametric model of promoter ac-
tivation, like in [4]; this however necessarily makes strong assumptions on the form
of the activation functions, and incurs significant computational overheads. Jump3
instead addresses both problems non-parametrically, by learning the functions fi in
the form of ensembles of decision trees (Figure 2).

2.2.1 Decision trees with a latent output variable

A decision tree is a model that allows to predict the value of an output variable given
the values of some input variables, using binary tests of the type “x j < c”, where
x j is one input variable and c is a threshold value (Figure 3). Tree-based methods

6 Vân Anh Huynh-Thu and Guido Sanguinetti

Fig. 3 Example of decision
tree. A decision tree is a
model that predicts the value
of an output variable (here the
state µ1 of the promoter of
gene g1) from the values of
some input variables (here the
expressions levels x2 and x5
of candidate regulators g2 and
g5 respectively). Each interior
node of the tree is a test on
the value of one input variable
and each terminal node (or
leaf) contains a prediction for
the output.

����

�
�
����

�
�
���	

�� �

�� �

������ ������

are currently one of the state-of-the-art approaches for GRN inference [5, 6]. They
have several appealing properties, among which their non-parametric nature (no
assumption is made about the function fi) and their scalability (they can be applied
on high-dimensional datasets).

The idea of Jump3 is thus to learn for each target gene gi a tree-based model that
predicts the promoter state µi at any time point from the expression levels of the
other genes (or a set of candidate regulators) at the same time point. Traditional tree-
based algorithms can however only be used on datasets containing observed values
for the input and output variables. In our case, the values of the input variables (i.e.
the gene expression levels) are observed at multiple time points, but not the values
of the output (i.e. the promoter state µi). We say that µi is a latent variable. Jump3
thus resorts to a new type of decision tree called jump tree, that allows to predict the
value of a latent output variable.

Algorithm 1 shows the pseudo-code for growing a jump tree predicting µi. The
idea is to split the data samples (each corresponding to a different time point) into
different subsets based on tests on the expression levels of the candidate regulators.
For each test, the promoter state µi is assumed to be equal to 0 (resp. 1) at the
time points where the test is true (resp. false). Each new split thus generates a new
promoter state trajectory, corresponding to a certain likelihood value. A jump tree
is constructed top-down using a greedy algorithm, that iteratively replaces one leaf
with a test node in a way to maximise the likelihood. More specifically, the jump tree
is initialised as a single leaf, containing all the T observation time points. At each
iteration, for each leaf N of the current jump tree and its corresponding set of time
points PN , the optimal split of PN is identified, i.e. the test sN = “x j < value” resulting
in the promoter state trajectory that yields the maximum likelihood (lines 5-9 of
Algorithm 1). The leaf N∗ with the highest maximum likelihood is then replaced
with a test node containing the optimal test sN∗ (lines 10-15). The child nodes of this
new test node are two leaves containing respectively the subsets of time points P0
and P1, obtained from PN∗ using the test sN∗ (this procedure is illustrated in Figure 4).
The algorithm stops when the likelihood can not be increased anymore.

Tree-based learning of GRN topologies and dynamics with Jump3 7

L1 = -1.39A

μ1=0

x4<0.8

μ1=1

PA PB

L1 = -0.20

C x4<0.8

μ1=1

PB
x7<1.2

μ1=1

PA1

μ1=0

PA0

PA0 PA0

PA1 PB

L1* = -0.20 L1*= -0.47
x4<0.8

μ1=1

PB

PA1PA0

PA

PA0 PA0

PA1

x4<0.8

μ1=0

PA

PB1PB0

PB

PB0

PB1

B

time

PA

PB

Fig. 4 Growing a jump tree predicting the state µ1 of the promoter of gene g1. (A) Each iteration
of the jump tree algorithm results in a new tree and a new trajectory µ1 (dashed red line) yielding
a likelihood L1. In this example, the current tree splits the set of observation time points in two
subsets PA and PB, each one corresponding to a leaf of the tree. The plot also shows the posterior
mean m1 of the expression of g1 (solid blue line), with confidence intervals (shaded area), and the
observed expression levels of g1 (black dots). (B) For each leaf of the current tree, the optimal split
of the corresponding set of time points is identified. (C) The leaf for which the optimal split yields
the highest likelihood is replaced with a test node. Figure reproduced from [1], by permission of
Oxford University Press.

Algorithm 2 shows how to choose a test at a new split node. For each possible
test, composed of a candidate regulator g j and a threshold value c (where c is set to
the expression of g j at one time point tk), a candidate promoter state trajectory µ j,k
is obtained by setting µ j,k to 0 (resp. 1) at the time points where the expression of
g j is lower (resp. higher) than c (lines 6-12). The test that is selected is then the one
that yields the trajectory µ j,k with the highest likelihood.

8 Vân Anh Huynh-Thu and Guido Sanguinetti

Algorithm 1: buildJumpTree
input : The expressions x̂i of a target gene gi at T time points t1, . . . , tT , and the expressions

X̂R of R candidate regulators at the same time points
output: A jump tree JT predicting the state µ i of the promoter of gi, from the expressions of

the R candidate regulators
1 JT ← a leaf containing the set of all the observation time points {t1, . . . , tT }
2 foreach t between t1 and tT do µ i(t)← 0
3 Li← computeLikelihood(µ i, x̂i)
4 while Li can be increased do
5 for each leaf N of JT do
6 PN ← getTimePoints(N)
7 (sN ,µ i,N)← pickOptimalSplit(x̂i, X̂R,PN ,µ i)

8 Li,N ← computeLikelihood(µ i,N , x̂i)

9 end
10 N∗← argmaxN Li,N
11 if Li,N∗ > Li then
12 µ i← µ i,N∗
13 Li←Li,N∗
14 Split PN∗ into P0 and P1 according to sN∗
15 JT ← createSplitNode(N∗,sN∗ ,P0,P1)
16 else
17 return JT
18 Exit while loop
19 end
20 end

2.2.2 Ensemble of decision trees

A single decision tree typically overfits the observed data. This means that the tree
model tends to also fit the noise that is contained in the data, leading to bad perfor-
mance when predicting unseen data. One solution to reduce overfitting is to grow an
ensemble of several trees and to average the predictions of these different trees. A
way to obtain different trees is to introduce some randomisation when learning each
of the trees. In Jump3, the Extra-Trees procedure is used [7]: at each test node, the
best test is selected among a number K of random tests, rather than all the possible
tests. Each of the K candidate tests is obtained by randomly selecting one candidate
regulator (without replacement) and one threshold value. Each tree of the ensemble
will thus have its own prediction of µi(t). This prediction is then averaged over the
different trees, yielding a probability for the promoter state to be active at time t.

2.2.3 Importance measure

Once learned, a single tree or an ensemble of trees can be used to compute a score for
each candidate regulator, that measures the importance of that candidate regulator
in the tree-based model. The idea is then to use the importance w j,i of candidate

Tree-based learning of GRN topologies and dynamics with Jump3 9

Algorithm 2: pickOptimalSplit
input : The expressions x̂i of target gene gi at T time points t1, . . . , tT , the expressions X̂R of

R candidate regulators at the same time points, a subset of time points
P⊂ {t1, . . . , tT }, and an initial promoter state trajectory µ init

output: A test in the form “x j < value” and an updated promoter state trajectory
1 for each candidate regulator g j ∈ R do
2 for each time point tk ∈ P do
3 s j,k← “x j < x̂ j(tk)” // definition of a new test
4 µ j,k← µ init
5 for each time point tk′ ∈ P do
6 if x̂ j(tk′)< x̂ j(tk) then
7 µ j,k(tk′)← 0
8 else
9 µ j,k(tk′)← 1

10 end
11 foreach t between tk′ and the next observation time point do

µ j,k(t)← µ j,k(tk′)
12 end
13 L j,k← computeLikelihood(µ j,k, x̂i)

14 end
15 end
16 (j∗,k∗) = argmax(j,k)L j,k

17 return the test s j∗,k∗ and the trajectory µ j∗,k∗

regulator g j in the model predicting µi(t) as weight for the edge of the GRN that is
directed from gene g j to gene gi.

The importance measure that is used in Jump3 is based on the likelihood gain at
each test node N, obtained during the tree learning:

I(N) = Li,N−Li, (11)

where Li and Li,N are the log-likelihoods respectively obtained before and after
splitting the data samples at node N. For a single tree, the importance score w j,i of
candidate regulator g j is then computed by summing the likelihood gains at all the
tree nodes where there is a test on that regulator:

w j,i =
n

∑
k=1

I(Nk)1Nk(g j), (12)

where n is the number of test nodes in the tree and Nk is the k-th test node. 1Nk(g j)
is a function that is equal to one if the test at node Nk uses g j, and zero otherwise.
The candidate regulators that are not used in any test node thus obtain an impor-
tance score of zero and those ones that appear in tests close to the root node of the
tree typically obtain high scores. When using an ensemble of trees, the importance
measure of each candidate regulator is simply averaged over all the different trees.

10 Vân Anh Huynh-Thu and Guido Sanguinetti

2.2.4 Regulatory link ranking

Given the definition of the importance score (12), the sum of the scores of all the
candidate regulators, for a single tree, is equal to the total likelihood gain yielded by
the tree:

∑
j 6=i

w j,i = Li−Li,0, (13)

where Li,0 is the initial log-likelihood obtained with µi(t) = 0,∀t, and Li is the
final log-likelihood obtained after the tree has been grown. Some regulatory links
of the network may therefore receive a high weight only because they are directed
towards a gene for which the overall likelihood gain is high. To avoid this bias, the
importance scores obtained from each tree are normalised, so that they sum up to
one:

w j,i←
w j,i

Li−Li,0
(14)

2.2.5 Kinetic parameters

The on/off model (3) has three kinetic parameters ai, bi and λi. Given a promoter
state trajectory µ i, the values of ai and bi are optimised in order to maximise the log-
likelihood Li (in line 8 of Algorithm 1, and once the final µ i trajectory is obtained
from the tree ensemble). Since Li is a quadratic function of ai and bi (see Equa-
tions (4) and (9)), these two parameters can be easily optimised using quadratic
programming. The value of the decay rate λi is more difficult to optimise, and is
instead directly estimated from the observed expressions of gene gi, by assuming an
exponential decay e−λit between the highest and lowest expressions of gi.

2.3 Computational complexity

Let us assume for simplicity that each tree contains S test nodes. It can then be
shown that the computational complexity of Jump3 is O(GntreesKS2T 2), where G
is the number of genes, ntrees is the number of trees per ensemble, K is the number
of randomly chosen candidate regulators at each test node, and T is the number of
observation time points. At worst, the complexity of the algorithm is thus quadratic
with respect to the number of genes (when K = G− 1) and O(T 4) with respect to
the number of observations (when S = T − 1, i.e. each tree is fully developed with
each leaf corresponding to one time point). Jump3 can thus become computationally
intensive when the number of data samples is too high, but remains scalable with
respect to the network size.

Table 1 gives an idea of the computing times, when using the MATLAB imple-
mentation of Jump3. In each case, K was set to the number of candidate regulators

Tree-based learning of GRN topologies and dynamics with Jump3 11

and ntrees was set to 100. These computing times were measured on a 8GB RAM,
1.7 GHz Intel core i7 computer.

Table 1 Running times of Jump3 for varying dataset sizes

G nT F T Running time

10 10 105 3 min
100 100 210 48 hours
1000 40 25 4 hours

G: number of genes, nT F : number of candidate regulators, T : number of observations

2.4 Jump3 performance

The ability of Jump3 to accurately reconstruct network topologies was assessed us-
ing several in silico networks (among which the networks of the DREAM4 In Silico
Network challenge [6, 8]) as well as one synthetic network (the IRMA network [9]),
for which the true topologies are known. For these networks, Jump3 always yields
competitive, and often better, performance, compared to other existing, state-of-the-
art network inference methods.

Jump3 was also applied to a real gene expression dataset related to murine
macrophages [10], in order to retrieve regulatory interactions that are involved in
the immune response. The predicted network (composed of the 500 top-ranked in-
teractions) is highly modular, with a few transcription factors acting as hub nodes,
each one regulating a large number of target genes. These hub transcription fac-
tors were found to be biologically relevant, comprising some interferon genes, one
gene known to be associated with cytomegalovirus infection and several cancer-
associated genes.

The interested reader can find additional details and all the results of these exper-
iments in the original paper [1].

3 The Jump3 code

Jump3 was implemented and tested in MATLAB. A fully documented implementa-
tion of Jump3 is available at
http://www.montefiore.ulg.ac.be/˜huynh-thu/Jump3.html

In this section, we provide a tutorial showing how to run the code using the
synthetic example data provided with the implementation; to run it on a different
data set, one simply needs to provide a new data file.

12 Vân Anh Huynh-Thu and Guido Sanguinetti

3.1 Run Jump3

First of all, add the directory ’jump3 code’ into MATLAB’s path:

path(path,'path_to_the_directory/jump3_code')

A MATLAB file ’exampleData.mat’ is provided for this tutorial.

load exampleData.mat
who

Your variables are:
##
data genes obsTimes

• data contains the (simulated) expression data of 10 genes from 5 times se-
ries. This is a toy dataset that was obtained by simulating the on/off model in
Equation (3). Noisy observations at several time points were obtained from the
simulated expression time series by adding i.i.d. Gaussian noise.

• obsTimes contains the observation time points for each time series of data.
• genes contains the names of the genes.

3.1.1 Noise parameters

Jump3 has two noise parameters. These parameters must be put in a structure array
(that we will name here noiseVar) with two fields that must be named sysNoise
and obsNoise.

• noiseVar.sysNoise is the variance of the intrinsic noise (σ2
sys); one single

value.
• noiseVar.obsNoise is the variance of the observation noise (σ2

obs,i,k); one
value for each data value.

The optimal values of the noise parameters are difficult to identify (in most cases,
trying to optimise these parameters would result in local optima). Some heuristic
should thus be used to set the values of these parameters. For example, a dynamic
noise can be used for the observation noise, assuming that the observation noise is
higher for higher expression values:

noiseVar.obsNoise = cell(1,length(data));
for k=1:length(data)

% A dynamic noise is used for the observation noise

Tree-based learning of GRN topologies and dynamics with Jump3 13

noiseVar.obsNoise{k} = (data{k}/10).ˆ2;
% Replace zero values with a small number
% to avoid numerical errors
noiseVar.obsNoise{k}(noiseVar.obsNoise{k}==0) = 1e-6;

end

The intrinsic noise can be assumed to be much smaller than the observation noise:

noiseVar.sysNoise = 1e-4;

3.1.2 Run Jump3 with its default parameters

[w,exprMean,exprVar,promState,kinParams,kinParamsVar,trees] = ...
jump3(data,obsTimes,noiseVar);

(This should take a few minutes.)

By default, all the genes are candidate regulators, the parameter K of the Extra-
Trees (i.e. the number of randomly chosen candidate regulators at each test node)
is set to the total number of candidate regulators and the number ntrees of trees per
ensemble is set to 100.

The algorithm outputs the following:

• w: weights of the regulatory links. w(i,j) is the weight of the link directed
from gene g j to gene gi.

• exprMean: posterior mean mi(t) of the expression of each gene gi in each time
series.

• exprVar: posterior variance ci(t, t) of the expression of each gene gi.
• promState: posterior state µi(t) of the promoter of each gene gi in each time

series.
• kinParams: (optimised) values of the kinetic parameters ai,bi, and λi for each

gene gi.
• kinParamsVar: variances of the kinetic parameters ai and bi.
• trees: ensemble of jump trees predicting the promoter state of each gene gi.

3.1.3 Restrict the candidate regulators to a subset of genes

To guide the network inference, the candidate regulators can be restricted to a subset
of genes (for example the genes that are known to be transcription factors).

% Indices of the genes that are used as candidate regulators
tfidx = [2 5 6 8 9];

14 Vân Anh Huynh-Thu and Guido Sanguinetti

w2 = jump3(data,obsTimes,noiseVar,tfidx);

In w2, the links that are directed from genes that are not candidate regulators
have a score equal to 0.

3.1.4 Change the settings of the Extra-Trees

It is possible to set the values of the two parameters of the Extra-Trees algorithm (K
and ntrees).

% Extra-Trees parameters
K = 3;
ntrees = 50;

% Run the method with these settings
w3 = jump3(data,obsTimes,noiseVar,1:10,K,ntrees);

3.1.5 Obtain more information

Additional information about the function jump3() can be found by typing this
command:

help jump3

3.2 Write the predictions

3.2.1 Get the predicted ranking of all the regulatory links

Given the weight matrix w returned by the function jump3(), the ranking of reg-
ulatory links (where the links are ordered by decreasing order of weight) can be
retrieved with the function getLinkList().

getLinkList(w)

The output will look like this:

G8 G6 0.886894
G3 G7 0.841794
G9 G10 0.831725
G1 G5 0.782503

Tree-based learning of GRN topologies and dynamics with Jump3 15

G1 G2 0.715546
G7 G3 0.512323
...

Each line corresponds to a regulatory link. The first column shows the regulator,
the second column shows the target gene, and the last column indicates the weight
of the link.

If the gene names are not provided, the i-th gene is named “Gi”.
Note that the ranking that is obtained will be slightly different from one run to

another. This is due to the intrinsic randomness of the Extra-Trees. The variance of
the ranking can be decreased by increasing the number of trees per ensemble.

3.2.2 Show only the links that are directed from the candidate regulators

The set of candidate regulators can be specified, to avoid displaying the links that
are directed from genes that are not candidate regulators and have hence a score of
zero.

getLinkList(w2,tfidx)

3.2.3 Show the top links only

The user can specify the number of top-ranked links to be displayed. For example,
to show only the first five links:

ntop = 5;
getLinkList(w2,tfidx,{},ntop)

3.2.4 Show the names of the genes

The ranking can be shown with the actual gene names, rather than the default names:

getLinkList(w2,tfidx,genes,5)

FAM47B RXRA 0.983707
ZNF618 RFC2 0.839112
GPX4 CYB5R4 0.808789
CYB5R4 NPY2R 0.674845
CYB5R4 GPX4 0.673964

16 Vân Anh Huynh-Thu and Guido Sanguinetti

3.2.5 Write the predicted links in a file

Instead of displaying the edge ranking in the MATLAB console, the user can choose
to write it in a file (named here “ranking.txt”):

getLinkList(w,1:10,genes,0,'ranking.txt')

3.2.6 Obtain more information

Additional information about the function getLinkList() can be found by typ-
ing this command:

help getLinkList

3.3 Plot the modelling results

The posterior mean expression of one gene in one time series, as well as the pre-
dicted promoter state trajectory, can be plotted with the function plotPosteriors().

% Plot the results for the fifth gene in the first time series
TSidx = 1;
geneidx = 5;
plotPosteriors(data,obsTimes,exprMean,exprVar,promState,...

TSidx,geneidx)

Figure 5 shows an example of plot returned by this command.

3.3.1 Obtain more information

Additional information about the function plotPosteriors() can be found by
typing this command:

help plotPosteriors

Tree-based learning of GRN topologies and dynamics with Jump3 17

Fig. 5 The top plot shows the posterior mean expression of the target gene (solid red line) with the
confidence intervals (shaded red area), as well as the observed expression of the gene (black dots).
The bottom plot shows the predicted state of the promoter of the gene.

4 Conclusion

Reconstructing GRNs from time series data is a central task in systems biology,
and several methods are currently available. In this chapter, we reviewed a recent
method, Jump3, which combines some of the advantages of model-based methods
with the speed and flexibility of non-parametric, tree-based learning methods. The
focus of this chapter is twofold: we first provide a brief introduction to the mathe-
matical aspects of the Jump3 framework, focussing on the practical aspects of ex-
tracting relevant statistics from the algorithm’s output. We then provide a step by
step tutorial on how to use the MATLAB implementation of Jump3, freely available
at http://www.montefiore.ulg.ac.be/˜huynh-thu/Jump3.html.
We hope that this chapter will enhance the usability of Jump3, reinforcing its status
as a useful tool within the GRN inference toolkit.

Acknowledgements VAHT is a Post-doctoral Fellow of the F.R.S.-FNRS. GS acknowledges sup-
port from the European Research Council under grant MLCS 306999.

18 Vân Anh Huynh-Thu and Guido Sanguinetti

References

[1] Huynh-Thu VA, Sanguinetti G (2015) Combining tree-based and dynami-
cal systems for the inference of gene regulatory networks. Bioinformatics
31(10):1614–1622

[2] Ptashne M, Gann A (2002) Genes and Signals. Cold Harbor Spring Laboratory
Press, New York

[3] Gardiner CW (1996) Handbook of Stochastic Methods. Springer, Berlin
[4] Ocone A, Millar AJ, Sanguinetti G (2013) Hybrid regulatory models: a sta-

tistically tractable approach to model regulatory network dynamics. Bioinfor-
matics 29(7):910–916

[5] Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regula-
tory networks from expression data using tree-based methods. PLoS ONE
5(9):e12,776

[6] Marbach D, Costello JC, Küffner R, Vega N, Prill RJ, Camacho DM, Al-
lison KR, the DREAM5 Consortium, Kellis M, Collins JJ, Stolovitzky G
(2012) Wisdom of crowds for robust gene network inference. Nature Meth-
ods 9(8):796–804

[7] Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Machine
Learning 36(1):3–42

[8] Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue
X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous as-
sessment of systems biology models: The DREAM3 challenges. PLoS ONE
5(2):e9202

[9] Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S,
di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network
for in vivo assessment of reverse-engineering and modeling approaches. Cell
137(1):172–181

[10] Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, Khon-
doker M, Dickinson P, Sing G, Rodrı́guez-Martı́n S, Phelan P, Forster T, Strobl
B, Müller M, Riemersma R, Osborne T, Wenk MR, Angulo A, Ghazal P
(2011) Host defense against viral infection involves interferon mediated down-
regulation of sterol biosynthesis. PLoS Biology 9(3):e1000,598

