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1. Introduction 
 
 
 

In the past fifteen years, research on Interior Point Methods (IPM) and their 
applications were very extensive. Both IPM theory and computational 
implementations evolved very fast. IPM variants are being extended to solve all kind 
of programs: from linear to nonlinear and from convex to non-convex, and they are 
being applied to solve many practical problems, including engineering optimization 
problems. The first known IPM method is Frisch’s (1955) [1] logarithmic barrier 
method that was later extensively studied by Fiacco and McCormick [2]. The modern 
era of IPM started with Karmarkar’s paper [3] and his IPM for Linear Programming 
(LP) where solution time up to 50 times faster than simplex method were reported. 
The name “interior point” comes from LP notation. Namely, IPM methods move 
through the interior of the feasible region towards the optimal solution. This is in 
contrast to the simplex algorithm, which follows a sequence of adjacent extreme 
points to the optimal solution. Because of this strong link to the LP almost every 
tutorial survey of IPM methods starts with IPM for LP and then extends it to the non-
linear programming problems. This is the case with this report. IPM are usually 
classified into three main categories: Projective methods, affine-scaling methods, and 
primal-dual methods. Among the different IPMs the primal-dual (including primal-
dual algorithms that incorporate predictor and corrector) algorithms have gained a 
reputation for being the most efficient. The main steps in every IPM method are [4]: 
transforming an inequality constrained optimization problem to equality constrained 
one, formulate Lagrange function using logarithmic barrier functions, set the first-
order optimality conditions, and apply Newton’s method to the set of equations 
coming from the first-order optimality conditions. This report is organized in such a 
way to reflect these main steps. For the first the equality constrained nonlinear 
optimization problem is considered. Since the main breakthrough in IPM methods has 
been made in Karmarkar’s paper [3] within the context of linear programming, the LP 
is then considered. The approach is then extended to nonlinear problems. A survey of 
IPM methods applications in solving different electric power system optimization 
problems is given. Some research opportunities are identified and shortly discussed in 
the report. The review of available software computational engines is given. Finally, a 
small NLP example is included in the paper and a NLP solver, built around 
SPOOLES (SParse Object-Oriented Linear Equations Solver) [5] as a linear algebra 
kernel, is applied to solve the problem. 
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2. Interior Point Methods: A tutorial survey [6,7] 

 
2.1.Equality constrained nonlinear optimization problem 

 
An equality constrained nonlinear optimization problem has the form, 
 
Minimize )(xF  
Subject to 0xg =)(   (1) 
 
Where RRF n →:  and mn RRg →:  are general smooth functions. The optimality 
conditions to (1) can be formulated using Lagrange function, 
 

)()(),( xgyxFyxL T−=   (2) 
 

y  are known as Lagrange multipliers. Now, the first order optimality conditions to 
(1) are, 
 

0xgyxL
0yxgxFyxL

y

T
x

=−=∇
=∇−∇=∇

)(),(
)()(),(

  (3) 

 
The optimality conditions (3) are in general only necessary for optimality. Hence, an 
optimal solution to (1) must satisfy (3), but a solution to (3) is not necessary an 
optimal solution to (1). If the objective function is convex and the constraints are 
convex, then the first order optimality conditions (3) are also sufficient. 
In summary, in this section it has been shown how a nonlinear programming problem 
can be reduced to a set of nonlinear equations. Therefore, a solution method for the 
nonlinear programming problem (1) is to compute a solution to the first order 
optimality conditions. Thus, a method for solution of nonlinear equations is needed. 
 
 2.1.1. Newton’s method 
 
The method of choice, in most applications, for solving system of nonlinear equations 
is Newton’s method. Assume nn RRf →:  is general smooth nonlinear function and 
a solution to the system 
 

0xf =)( ,   (4) 
 
is required. It follows from Taylor’s theorem that, 
 

x
00

x
0 xfxfxf ∆∇+≈∆+ )()()( ,  (5) 
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where n
x

0 Rx ∈∆, . If 0x  is an initial guess for the solution to (4), then x∆  is to be 

computed such that 0xf x
0 =∆+ )( . In general this is impossible, but in view of (5) 

an approximation can be obtained from, 
 

0xfxf x
00 =∆∇+ )()( .   (6) 

 
The system (6) defines a set of linear equations in the variables x∆ , which can be 

easily solved. Indeed, it is assumed that )( 0xf∇  is nonsingular, then x∆  is given by, 
 

)()( 010
x xfxf −−∇=∆ . 

 

x∆  defines  search direction and a new point 1x  is obtained from, 
 

x
01 xx ∆⋅+= α , 

 
where α  is a step size scalar. The plain Newton’s method chooses 1=α . 
Unfortunately, this does not secure convergence and therefore α  has to be chosen in 
the interval ],( 10 . One possible choice of α  is given by, 
 

x
0

10 xf ∆⋅+= ∈ αα α (minarg ],(
* .  (7) 

 
Clearly this leads to an iterative method for solution of a set of nonlinear equations, 
which is terminated when 0xf ≈)( . The Newton’s method is known to have good 
local convergence properties, i.e. the initial guess is close to the solution. 
This method can be applied to the first order optimality conditions (3). Let ),( 00 yx  
be an initial guess for the solution. Then the Newton search direction to the first 
optimality conditions is defined by, 
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 (8) 

 
The new point is given by, 
 



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
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y
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y
x α   (9) 

 
for a suitable chosen step size α . In general, Newton’s method is considered as very 
powerful for nonlinear programming problems, but should be carefully applied and 
special care is to be given to: the choice of efficient solver for linear equations, the 
choice of initial guesses. In addition, to be able to apply this powerful method for 
optimization problems the problem of handling inequality constraints is to be 
resolved. 
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2.2. Interior Point Methods for LP 

 
This section is concerned with a method for handling inequalities within Newton’s 
method in order to be able to apply it in solving primal or dual LP problems. 
 

2.2.1. Linear Programming (LP) problem 
 
An LP is defined as minimizing or maximizing a linear function subject to linear 
constraints. The standard for of LP problem is as follows, 
 
Minimize xcT  
Subject to bAx = ,    (10) 

         0x ≥  . 
 
where, 
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and, 
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

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2.2.2. The primal approach 

 
Assume that an LP problem is to be solved. One way to get rid of the inequalities is as 
follows, 
 

Minimize ∑−
=

n

1i
i

T xxc )ln(µ  

Subject to bAx = ,    (11) 
         0x >  . 

 
where µ  is a positive parameter. Recall, 
 

−∞=
→

)ln(lim i0x
x

i

  (12) 

 
Therefore, the logarithmic term in the objective function acts as a barrier which 
penalizes nonpositive solutions. This implies any optimal solution to (11) will satisfy 
the inequalities 0x ≥  strictly, because of minimization in (11). Using this 
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observation, the 0x >  inequalities in (11) may be dropped and an equality 
constrained nonlinear optimization problem is obtained. An optimal solution to (11) 
for a sufficiently small µ  is a good approximate solution to LP problem. This can be 
proved from the optimality conditions to (11). First define the Lagrange function, 
 

∑ −−−=
=

n

1i

T
i

T bAxyxxcyxL )()ln(),( µ , 

 
where mRy ∈  are Lagrange multipliers corresponding to the equality constraints in 
(10). Now differentiation gives, 
 

xAb
y
LandyAxc
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L
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:: −=
∂
∂−⋅−=

∂
∂ −µ  

 
In vector notation, 
 

0x0AxbyxL
0yAeXcyxL

y

T1
x

>=−=∇
=−−=∇ −

,),(
),( µ

   (13) 

 
In the notation used, the iA:  and :jA  are the i-th column and the j-th row of  A , 

respectively. Moreover, T11e ),...,(:=  and 
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First order optimality conditions (13) can be rewritten by introducing the vector 

eXs 1−= µ  leading to, 
 

eXs
0x0Axb

0yAsc

1

T

−=
>=−

=−−

µ
,,

,
  (15) 

 
If both sides of the last equality of (15) are multiplied by X  and using a minor 
reordering the result is, 
 

.
,,

,

eXs
0xbAx

csyAT

⋅=
>=

=+

µ
   (16) 
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The first set of equalities in (16) enforces dual feasibility, the second set enforces 
primal feasibility, and the last set is the complementarity condition perturbed by µ . 
Let ))(),(),(( µµµ syx  be a solution to (16) for some 0>µ . Then )(µx  is primal 
feasible. Furthermore, 
 

,)()()()( 0eXsandcsyA 1T >==+ −µµµµµ  
 
which shows ))(),(( µµ sy  is dual feasible. In other words ))(),(),(( µµµ syx  is a 
primal-dual feasible pair. Therefore, the duality gap can be computed as follows, 
 

neeeesXesxybxc TTTTT ⋅=⋅=⋅===− µµµµµµµµµ )()()()()()()(  
 
Any solution that satisfies (16), and is optimal solution to (11), defines a primal-dual 
feasible pair. 
An important question is whether the objective function in (11) is convex, because in 
this case the optimality conditions are sufficient. This question leads to study the 
barrier function, 
 

∑ ∑ −=−=
= =

n

1j

n

1j
jjjj

T
x xxcxxcB )).ln(()ln(:)( µµµ  

 
The function )ln(x  is concave, which implies )ln(xµ−  is convex. Therefore, the 
barrier function is a positive sum of convex functions, which implies that the barrier 
function is convex. 
 

2.2.3. Duality 
 
An important question when LP problem is solved is: How optimality of the 
computed solution is verified? One way of proving optimality is to generate a lower 
bound on the objective value. By definition, a valid lower bound z  must satisfy 
condition, 
 

., XxzxcT ∈∀≥  
 
If solution Xx ∈*  has been generated such that, 
 

zxcT =* , 
 
then *x  is optimal solution due to the fact z  is lower bound on the optimal objective 
value. A method to generate valid lower bounds is through the definition of so-called 
dual problem. To each LP problem (10), also called primal problem, there is 
corresponding dual problem in the form, 
 
Maximize ybT  

Subject to ,csyAT =+  
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  .0s ≥    (17) 
The pair ),( sy  is a dual feasible solution if it satisfies the constraints in (17). Also, 

),,( syx  is said to be primal and dual feasible if x  and ),( sy  is primal and dual 
feasible, respectively. Such a pair is called a primal-dual feasible pair. 
The difference, 
 

ybxc TT −    (18) 
 
is called duality gap and, 
 

sxT  ,  (19) 
 
is called complementary gap. Some useful definitions in regard to primal-dual 
approach are: 
 
Primal feasibility: 0xbAx ≥= ** , , 
Dual feasibility: 0scsyAT ≥=+ *** , , 
Optimality: 0ybxc TT =− ** . 
 
Hence, in practice the optimality of a computed solution can always be verified by 
checking primal and dual feasibility and that the dual gap is zero. 
 

2.2.4. A dual approach 
 
The barrier term can be introduced to the dual problem as follows, 
 

Maximize ∑+
=

n

1j
j

T syb )ln(µ  

Subject to ,csyAT =+  
  .0s >   

 
Let x  denote the Lagrange multipliers then the Lagrange function is given by, 
 

∑ −+−+=
=

n

1j

TT
j

T csyAxsybsyxL ).()ln(),,( µ  (20) 

 
The optimality conditions are, 
 

.),,(

,),,(
,,),,(

0xeSsyxL

0AxbsyxL
0s0yAscsyxL

1
s

y

T
x

=−⋅=∇

=−=∇
>=−−=∇

−µ

  (21) 

 
This equation is equivalent to, 
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.
,

,,

eXs
bAx

0scsyAT

⋅=
=

>=+

µ
   (22) 

 
These equations are essentially the same as in the primal case. 
 

2.2.5. The primal-dual approach 
 
In both, primal and dual, cases a set of first order optimality conditions to the barrier 
problem were obtained. Combining these two sets of optimality conditions gives, 
 

.
,,

,,

eXs
0scsyA

0xbAx
T

⋅=
>=+

>=

µ
   (23) 

 
These conditions are called the perturbed Karush-Kuhn-Tucker (KKT) conditions, 
because they are identical to the KKT conditions to original LP problem, except the 
complementary conditions have been perturbed by µ . Therefore, a solution to (23) 
for a sufficiently small µ  is a good approximation to the optimal solution. 
The system (23) defines a set of nonlinear equations which can be solved using 
Newton’s method. This is exactly the main of the so-called primal-dual algorithm. Let 
define the nonlinear function, 
 

















⋅⋅−
−+

−
=

eXs
csyA

bAx
syxF T

µγ
γ :),,(( , 

 
where nsxT /:=µ  and 0≥γ . Here, µ  is not parameter and γ  is introduced instead. 
In addition, µ  is defined to be the average complementary product.  
Assume ),,( syx  is given such that 0x >  and 0s > , then one iteration of Newton’s 
method applied to the system, 
 

0syxF =),,(γ  
 
is identical to, 
 

).,,(),,( syxFsyxF

s

y

x

γγ −=

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


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



∆
∆
∆

∇  

 
Using the fact, 
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can be obtained, 
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where  
 

,: xAbrP −=      (25) 
 
and 
 

.: syAcr T
D −−=     (26) 

 
are the primal and dual residuals, respectively. If the residual vectors are zero, then 
the current point ),,( syx  is primal and dual feasible, respectively. 
The first step of the primal dual algorithm consists of solving (24), and then a new 
point, 
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is obtained for a suitable choice of α . The goal is to compute a solution such that the 
primal and dual residuals and the complementary gap )( sxT  all are zero. The new 
primal residuals are given by, 
 

PPPxx
kk

P r1rrAxAbxAbAxbr ⋅−=⋅−=∆⋅−−=∆⋅+−=−= )()( αααα     (27) 
 
This shows that the new residuals are identical to the old residuals multiplied by the 
factor )( α−1 . If ],( 10∈α , then the residuals are reduced. In particular, if 1=α  then 

0r k
P =  showing the new point kx  satisfies the primal equality constraints exactly. In 

this respect the a large step size is beneficial. In similar way it can be shown that the 
dual residuals ))(( D

k
D r1r ⋅−= α  are also reduced. The new duality gap is identical to, 

 

s
T
x

2T
s

T
x

k1k sx11sxsx ∆∆+−⋅−=∆⋅+∆⋅+=+ αγααα ))(()()(   (28) 
 
For ],( 10∈γ  and a sufficiently small α  the complementary gap is reduced. The 
smaller γ  is the larger is the decrease in the gap. However, it should be noted that the 
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search direction ),,( syx ∆∆∆  is a function of γ  and the step size α  is implicitly a 
function of γ . In conclusion, by an appropriate choice of the step size the algorithm 
should converge. 
 

2.2.6. Update of the variables 
 
A large step size α  implies a large reduction in the primal and dual residuals. Also, 
the reduction in the complementary gap tends to be proportional to the step size. 
However, the step size cannot be chosen arbitrarily large because the new point must 
satisfy the conditions 0x k >  and 0s k > . Therefore, the step size has to be strictly 
less than maxα  defined by, 
 

.maxarg:max
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s

x
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This value is the maximum possible step size until one of the primal or dual variables 
hits its lower bound exactly. Therefore, a possible choice of α  is, 
 

),,min( maxαθα ⋅= 1  
 
where ),( 10∈θ .  
 
This choice of the step size does not guarantee convergence, but it usually works well 
in practice. In practice maxα  is computed as follows. First let, 
 

{ }0jxjxjjP x <∆∆−= )(:)/(minmaxα  

 
and 
 

{ }0jsjsjjD s <∆∆−= )(:)/(minmaxα  

 
then 
 

).,min( maxmaxmax
DP ααα =  

 
2.2.7. A termination criterion 

 
The primal-dual algorithm is terminated if, 
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,
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G
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P
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where DP εε ,  and Gε  are small positive constants. 
 

2.2.8. Comparison with the simplex algorithm 
 
The success of primal-dual algorithm and its variants, as well as IPM in general, 
comes (or at least was triggered) from its superiority with respect to simplex 
algorithm. The primal-dual algorithm has a set of advantages with respect to simplex 
algorithm, but also disadvantages that fortunately can be handled within the 
algorithm. Some of the advantages and disadvantages are enumerated below. 
Advantages of primal-dual algorithm: 
 
• The algorithm does not has any problems with degeneracies and the number of 

iterations is not related to the number of vertices in the feasible region. 
• For large LP problems the algorithm uses significantly fewer iterations than 

simplex algorithm. 
• Most implementations of the algorithm usually solve a LP problem in less than 

100 iterations even though the problem may contain millions of variables. 
 
Disadvantages of primal-dual algorithm: 
 
• The algorithm cannot detect a possible infeasible or unbounded status of the 

problem, and in some sense the primal-dual algorithm is not complete. 
Fortunately, this problem can be handled using homogenous model [4,7]. 

• Each iteration of the primal-dual algorithm is computationally much more 
expensive than one iteration of the simplex algorithm. However, the total work 
performed to solve a LP problem is a product of the number of iterations and the 
work performed in each iteration. For a large LP problem (say more than 100 
variables) the primal-dual algorithms outperforms the simplex algorithm, and the 
bigger the problem size is this is the more pronounced. 

 
2.3. Direct nonlinear IPM 

 
A typical nonlinear programming problem can be mathematically expressed as, 
 
Minimize )(xF  
Subject to 0xg =)(  
     ul hxhh ≤≤ )(    (29) 
     ul xxx ≤≤        
 The same ideas, as in the case of LP problem, are applied. The first problem to solved 
is to transform the inequalities constrained problem to an equality constrained by 
introducing slack variables, 
 
Minimize )(xF  
Subject to 0xg =)(  
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The next step is to treat nonnegativity conditions in (30) by appending the logarithmic 
barrier functions to the objective function, and the resulting primal barrier problem is 
defined as follows, 
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= == =
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where the barrier parameter µ  is a positive number. The Lagrangian function is, 
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where shh yyy ,,  and xy  are Lagrangian multipliers. The first order optimality 
conditions are, 
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where [ ]T11e ,...,= , ),...,( n1 xxdiagX = , ),...,( hn1hh ssdiagS = , 

),...,( shm1sh ssdiagSsh = , ),...,( n1 xxdiagX = , ),...,( xm1xx yydiagY = , 
),...,( shm1shsh xydiagY = , ),...,( hn1hh yydiagY = , and ),...,( xm1xx ssdiagS = . 
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The nonlinear equations (33) are then to be solved by some iterative method 
(Newton’s or predictor-corrector) to obtain a search direction. The search direction is 
obtained from the next equations, 
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Along the search direction, a step size α  is chosen to preserve the non-negativity 
conditions. The new primal and dual variables are computed from, 
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The iteration procedures are terminated as the relative complementary gap and the 
mismatches of first order optimality conditions are sufficiently small, 
 

1ObjDual1
gap ε≤

+ _
,    (36) 

2KKTofmismatchestl ε≤___arg   (37) 
 
where, 
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The outline of the method is as the following, 
 

1. Initialization. Choose a proper starting point such that the non-negativity 
conditions are satisfied. 

2. Compute the barrier parameter µ . 
3. Solve the system of equations (34). 
4. Determine the step size α  and update the solution. 
5. Convergence test. If the solution meets the convergence criterion, optimal 

solution is found, otherwise go back to step 2. 
 

2.3.1. The predictor-corrector primal-dual IPM 
 
In this algorithm rather than applying the Newton’s method to KKT conditions to 
generate correction terms to the current estimate, the new point is directly substituted 
into KKT, yielding, 
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The following symmetrical system is obtained, 
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          (39) 
 
The major difference between (34) and (39) is the presence of the nonlinear terms 

eYSeYYSZeX xxshhh ∆∆∆+∆∆∆∆ ,)(,  and shsh YS ∆∆  in the right hand side of (39). 
These nonlinear terms cannot be determined in advance, therefore (39) only can be 
solved approximately. In order to estimate these nonlinear terms, Mehrotra [8] 
suggests first solving the defining equations for the primal-dual affine directions, 
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The values shhshhx yyzssyx ~,~,~,~,~,~,~ ∆∆∆∆∆∆∆  are then used to approximate the 
nonlinear terms in the right hand side of (39), and to dynamically estimate µ . Once 
the estimates of nonlinear terms in the right-hand side of (39) and µ  are determined, 
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the actual new search directions ( shhshhx yyzssyx ∆∆∆∆∆∆∆ ,,,,,, ) is obtained by 
(39). The outline of this algorithm can be stated as follows, 
 

1. Initialization. Choose a proper starting point such that the non-negativity 
conditions are satisfied. 

2. Solve the system of equations (40). 
3. Compute the barrier parameter µ  and the estimated nonlinear terms. 
4. Solve the system of equations (39). 
5. Determine the step size α  and update the solution. 
6. Convergence test. If the solution meets the convergence criterion, optimal 

solution is found, otherwise go back to step 2. 
 

2.3.2. Sparsity techniques 
 
In the described algorithms, the major computational effort is solving the large, sparse 
linear systems of the form, 
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Therefore, it is essential to consider efficient methods for their solution, which can be 
either direct or iterative methods [4,9]. Usually, for IPM the linear systems (41) are 
solved using direct factorizations and most of the methods considered are based on 
Rothberg’a [10] factorization method or sparse Cholesky factorization [11], etc. The 
reason that direct methods are usually applied is in difficulties in choosing a good and 
computationally cheap preconditioning algorithm for iterative methods [6,7] and they 
are not competitive, in general, with direct ones. 
 

2.3.3. Some implementation issues 
 
The implementation issues considered in this section include: the adjustment of the 
barrier parameter, the determination of the Newton’s step size, accuracy, and the 
choice of the starting point (initialization).  
 
The adjustment of barrier parameter. Discussion follows largely that from [4,12]. 
Based on Fiaco and McCormick’s theorem [2], the barrier parameter µ  must 
approach zero as the iterations progress. The primal-dual method itself suggests how 
µ  should be reduced from step to step. For LP problems [7], the value of µ  is made 
proportional to the duality gap. The duality gap of a nonlinear problem is defined as, 
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TT xxzxxyhhyxhhyxgygap −+−+−+−+=  (42) 
 
The gap is positive if the primal and dual variables meet all the primal and dual 
constraints and is zero at the optimum point. However, due to the fact that the primal 
and dual variables are not feasible, the value of the gap may not be positive. 
Therefore, the complementary gap can be used to approximate duality gap, 
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and following the results of [12] it can be chosen, 
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for the pure primal-dual IPM. For the predictor-corrector primal-dual IPM, 
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where, 
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for those, 
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The Newton’s step size, α , is determined as, 
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where, 
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for those, 
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The constant 0.9995 is chosen to prevent nonnegative variables from being zero. 
Because of this, the logarithmic barrier functions are continuous and differentiable. 
 
The choice of starting point (initialization). Although a strictly feasible initial point is 
not mandatory for the algorithms, the initial point still needs to meet nonnegativity 
condition. One possibility in choosing initial point can be to choose initial state 
vector, x , as the middle point between the upper and lower bounds, while the initial 
values of the slack variables can be chosen arbitrary within their bounds. To 
determine the initial values of the dual variables Mehrotra’s method [8] can be 
applied. According to that method, first it is necessary to define, 
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where •  is the 1l  norm. Then for each n1j ,...,=  
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3. Interior Point Codes: a survey 

 
Answering the question “What algorithm to use?” when one is faced with the 
optimization problem in [13] Boyd and Vandenberghe provided a simple relation that 
can roughly answer the question. The relation is: 
 

)_tan#_(__ timeruncesinstimecodeanswertoTime ×+=  
 
Code_time is the time spent to code the algorithm. IPMs are well known as hard to 
code, debug, and maintain. Instances is the number of the problem instances to be 
solved. Certainly, if one is allowed to start from already available software for an IPM 
the time to code it is becoming virtually zero and good run-time performances of the 
algorithms becoming more pronounced.  
 

3.1. The codes 
 
Several public domain, optimized, software codes are currently available on the 
Internet [4,7,9,14,15]. Some restrictions for the free use of these packages may apply. 
Also, there is a number of commercial software packages [9,14]. Below is a listing of 
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public domain IPM software codes, followed by a short description of their key 
features. 
 
• PCx (http://www.mcs.anl.gov/home/otc/Library/PCx/): This is IPM solver for LP, 

developed by the researchers at Argonne National Laboratory. The software is 
based on Mehrotra’s predictor-corrector algorithm. Other features of the code 
include: standard MPS and callable subroutine input, pre-solving, and sparse 
Cholesky factorization of the normal equations by using Ng and Peyton code [11] 
with multiple minimum-degree ordering code of Liu [16] to reduce fill ins. PCx is 
available for Linux, UNIX, Windows 95, and Windows NT operating systems and 
makes use of both C and FORTRAN programming languages. 

• HOPDM (http://ecoluinfo.unige.ch/~logilab/software/hopdm.html): An IPM 
solver for LP based on Mehrotra’s predictor-corrector algorithm with (if 
requested) Gondzio’s multiple corrections technique [17]. The main features of 
the code include: standard MPS and callable subroutine input, pre-solving (if 
requested), Cholesky factorization of the normal equations, minimum-degree 
ordering heuristic to reduce fill ins, handling of dense columns with a Schur’s 
complement approach. The language is FOTRAN. QHOPDM is a version of 
HOPDM to solve quadratic programming problems. The version of the code for 
NLP is also developed and the code is available in C and FORTRAN 
programming languages. 

• BPMPD (http://www.sztaki.hu/~meszaros/bpmpd/): BPMPD is based on 
Mehrotra’s predictor-corrector algorithm and Gondzio’s multiple corrections 
technique. Other features of the code are: standard MPS input, advanced pre-
solver to reduce problem size, to eliminate features that could lead to numerical 
difficulties, and to make the matrix sparser, advanced heuristic to make decision 
between the normal equations and the augmented system forms, scaling of the 
problem for better numerical properties, advanced symbolic ordering for the 
normal equations, left-looking supernodal Cholesky factorization with loop 
unrolling, and increased numerical robustness (iterative refinement, etc.). The 
language is FORTRAN. 

• LIPSOL (http://www.caam.rice.edu/~zhang/lipsol/): This is a Matlab-based 
software and is also based on Mehrotra’s predictor-corrector algorithm. Lipsol 
uses Matlab’s sparse matrix data structure, and MEX external interface facility to 
take advantage of existing efficient FORTRAN codes. It calls the sparse Cholesky 
solver of Ng and Peyton and multiple minimum degree ordering code of Liu. 

 
Some of commercially available software tools, that are referred in the literature 
[9,14], are: CPLEX (http://www.cplex.com), OSL 
(http://www.research.ibm.com/osl/), and Xpress-MP (http://www.dash.co.uk/). 
 

3.2. IPM sites on the Internet 
 
Many Internet sites are devoted to IPM with a wealth of information on IPM theory, 
algorithm implementations, available software codes, and on practical applications of 
IPM. This fact might be confusing for a new-comer in the field. Instead to enumerate 
some of the many, here we propose two sites as excellent starting point (but nit just as 
the starting point, because for many of those interested in the field the sites provide 
enough information). 

http://www.mcs.anl.gov/home/otc/Library/PCx/
http://ecoluinfo.unige.ch/~logilab/software/hopdm.html
http://www.sztaki.hu/~meszaros/bpmpd/
http://www.caam.rice.edu/~zhang/lipsol/
http://www.cplex.com/
http://www.research.ibm.com/osl/
http://www.dash.co.uk/
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• (http://www.mcs.anl.gov/home/otc/InteriorPoint). Contains pointers to people and 
places where work on IPM is done. An extensive bibliography of IPM is 
assessable. 

• (http://plato.la.asu.edu/guide.html). Decision tree for Optimization Software. This 
web page includes links to all the IPM software (most of them are freeware). 

 
4. Interior point methods applications in power systems: a 
short survey 

 
IPM have proven computationally to be viable alternative for the solution of several 
power engineering optimization problems. A variety of IPM has been applied to a 
number of power system problems, including:  
 
• State estimation [18],  
• Optimal power flow in general [9,12,19,20],  
• Hydro-thermal coordination [14,21],  
• Voltage collapse and reliability evaluation [22,23],  
• Multi-reservoir management [see 9], and  
• Fuel planning [32, also see 9]. 
 
The solution procedures considered in the applications include IPM applied to: 
  
• A sequence of LP problems [25],  
• A sequence of quadratic programming problems [26], and  
• Directly applied to NLP problems [12]. 
  
A variety of IPM has been considered:  
 
• A dual affine-scaling method [see 9],  
• A number of plain primal-dual logarithmic barrier variants for NLP [see 9], and  
• A number of predictor-corrector primal-dual logarithmic barrier variants for LP 

[see 9] and NLP [see 9]. 
 
The outstanding performances of the applications described in [4,9,14] are responsible 
for the growing interest in IPM for solving large, nonlinear power system problems. 
Computational results based on power networks ranging in size from 9-2423 buses 
[14] and 1832 and 3467 buses [14] show that the number of iterations required by the 
primal-dual logarithmic barrier IPM is not very sensitive to problem size, and the 
method is numerically robust. Some highly nonlinear problems such as unsolvable 
power flow (minimum load shedding) [22] and maximum loadability [23] problems, 
have been solved successfully. 
 

5. Some research opportunities 
 
This section discusses some advancements in IPM that are not widely exploited in 
engineering community (at least, such research activities were not reported). The 
advancements include: “hot start”, “warm start” [27], and combining IPM with global 
optimization techniques. Just a few publications reported on consideration of the 

http://www.mcs.anl.gov/home/otc/InteriorPoint
http://plato.la.asu.edu/guide.html
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above advancements [21,28,29]. In [28] the “hot start” and “warm start” were 
considered while in [21] the possibility of combining IPM with genetic algorithms is 
reported. The “hot start” and “warm start” refers to the idea of using some of the 
previous solutions to the optimization problem when one is facing the problem of 
solving multiple instance (perturbed) of the same problem. 
 

5.1. Hot start 
 
This approach refers to the idea of using the optimal solution of the original problem 
as the starting point for solving perturbed instance of the problem. The difficult 
associated with hot start in IPM is that the optimal solution of the original problem 
satisfies the complementary condition for a convergence tolerance parameter ε , but 
unless it is optimal to the perturbed problem as well, it is either primal or dual 
infeasible, or both [27,28]. Therefore, when restarting an IPM from this solution, a 
small initial value of µ  will be chosen because the solution is close to a 
neighborhood of a minimizer for the original problem, making the matrix system in 
(34) or (40) ill-conditioned. Thus, it is important to improve the condition number as 
well as the initial value of µ  to use the solution of the original problem as the initial 
point to the perturbed one. Due to the fact that the large condition number and small 
initial value of µ  are caused by some variables at bounds, it is necessary to move 
these variables away from the boundary. A shift strategy, proposed in [28], is as 
follows (the shift is imposed on those variables close to the boundary), 
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  (52) 

 
where k  is suggested to be set to 0.001 [28]. The new shifted point then is used as the 
initial point for perturbed problem. It is found in [28] (for the optimal power flow 
problem) that with hot start the perturbed problem can be solved with much fewer 
iterations and CPU times than ordinary (“cold”) start. The percentage of time savings 
is about 40-50%. 
 

5.2. Warm start 
 
The warm start strategy does not use the optimal solution of the original problem. 
Because the solution point near the boundary causes ill-conditioning problem, it is 
possible to define alternative starting point that is close to optimality, yet is 
sufficiently far from the boundary of the feasible region. Thus, one of the intermediate 
solutions of the original problem is chosen as the starting point for the perturbed 
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problem. The most important question is “how to pick up such a point in optimization 
process?”. In [28] the relative complementary slackness is used as the index for 
choosing the warm start point. An intermediate solution that satisfies, 
 

τ≤
+ objd1

gap
_

*

   (53) 

 
where τ  is predefined threshold, is stored as the solution for warm start. 
 

5.3. Combining IPM with global optimization methods 
 
Many engineering optimization problems are nonlinear with both continuous and 
discrete variables and different linear and nonlinear, time invariant and time varying, 
and equality and inequality constraints, and are nonconvex. Global optimization 
methods such as Genetic Algorithms (GA), simulated annealing, tabu search etc. have 
been considered and applied to solve the problem. It is already pointed out that IPM 
methods have been also applied to solve hard engineering optimization problems. 
Experience in using GA has shown that these methods have a deficiency that comes 
from GA’s weakness in local search. On the other hand, although successful 
applications in solving large-scale problems have been reported, IPMs have limited 
capabilities particularly in handling discrete variables. The combination of these two 
optimization techniques, and in general combination of global and local optimizers, 
comes quite naturally.  
This has been recognized and some research efforts were undertaken in solving power 
system optimization problems [21,24,29]. One possibility is to combine the two 
techniques in such a way that GA deals with integer and discrete variables while local 
optimizer (IPM) deals with continuous variables and constraints. This approach have 
been considered in [24] for solving optimal reactive power dispatch problem and in 
[21] for solving short-term hydro-thermal coordination problem. Some other 
possibilities for combining global and local solvers have been considered in [29]. 
Since all available research reports on this topic can be regarded as recent seems that 
there is some space for improvement with the aim to find the best strategy on how to 
combine GA and IPM. Also, the use of Benders decomposition [30,31] in 
combination with both GA and IPM could be a challenging research topic. An 
application of Benders decomposition in solving power system optimization problems 
has been considered in [31]. 
 

6. A nonlinear example 
 
The main purpose of a small example considered in this section is to demonstrate how 
the solution to the problem can be obtained using a NLP IPM. The program 
developed around sparse object-oriented library SPOOLES is employed as the direct 
nonlinear solver. The computational effort of each IPM algorithm is dominated by the 
solution of large, sparse linear system. Therefore, the performance of any IPM code is 
highly dependent on the linear algebra kernel. SPOOLES kernel, to best of our 
knowledge is not widely used but the reason it is chosen to be considered here are 
cited (see Netlib web-site: www.netlib.org) excellent performance of this linear 
algebra kernel. 

http://www.netlib.org/
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6.1 . The problem statement 

 
Consider the following NLP problem with quadratic objective and constraint 
functions, 
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The problem is graphically illustrated in Figure 1. The feasible region of this problem 
is the line joining the pairs of points (B,C) and (D,E). 
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Figure 1. Nonlinear programming problem in two variables 
 

6.2 . Application of a direct NLP solver 
 
For the particular problem considered we have, 
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where nn
x RRf →∇ :  is the gradient of )(xf  (a column vector), nmn

g RRJ ×→:  is 

the Jacobian of )(xg , and npn
h RRJ ×→: is the Jacobian of )(xh .  

In addition to the Jacobians for direct solution the next information are also necessary, 
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The procedure implemented in wrapper file follows that of section 2.3. The iteration 
procedure is terminated when: 
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The results of experimentation are summarized in Table I. The solution found in each 
considered case is  
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Initial point Status Positivity No. of 

iterations 
x1 x2 s z π v λ    
1.5 1.5 1.64 2.36 0.04444 0.08889 0 -* + 8 
5.0 4.0 1.64 2.36 0.04444 0.08889 0 - + 7 
2.75 0.032 1.64 2.36 0.04444 0.08889 0 + + 9 
2.75 1.968 1.64 2.36 0.04444 0.08889 0 + + 6 
1.5 1.5 2.25 0.75 0.04444 0.08889 0 -* + 9 
5.0 4.0 2.25 0.75 0.04444 0.08889 0 - + 8 
2.75 0.032 2.25 0.75 0.04444 0.08889 0 + + 11 
2.75 1.968 2.25 0.75 0.04444 0.08889 0 + + 6 
 
Table I. (Note: -* infeasible but satisfies inequality constraints, - infeasible, + feasible, 
for positivity: + satisfied, - not satisfied) 
 
The feasibility of starting point is not necessary for the algorithm but some 
initialization heuristics is recommended (observe in presented results that the number 
of iterations is the smallest if point C indicated in Figure 1 is used as starting point). 
The heuristics depends on the practical problem considered. For recommended 
heuristics in solving optimal power flow problem see reference [9]. 
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7. Conclusions 
 
In this report an attempt has been made to present interior point methods for solving 
engineering optimization problems. The approach adopted is to put more emphasis on 
IPM essentials in such a way that the material be readable even for the readers not 
familiar with numeric optimization techniques. In addition, a short survey of the 
methods applications in solving power system optimization problems is included. A 
comprehensive list of relevant publications gives good starting points “what to read” 
and survey of freely available codes and the Internet sites devoted to the methods give 
good starting point for interested readers in future considerations (the fact is that there 
are a lot of publications and Internet sources, and for a new comer it is advantageous 
to have good starting points). A small nonlinear optimization problem is considered 
just for illustration purposes. A C++ wrapper for solving the problem )see the 
Appendix) has been developed around SPOOLES linear algebra kernel (SPOOLES 
library is freely available and can be downloaded from : 
http://www.netlib.org/linalg/spooles/spooles.2.2.html. The SPOOLES is just one of 
the available libraries. For those interested in developing own IPM software it is a 
suggestion to try some other available libraries (good starting point on the Internet is: 
http://www.netlib.org). References [33-41] are not referred throughout of the text but 
are provided here as useful material for further reading. 
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Appendix:  

 
C++ wrapper file to solve example considered (this can be used as guide 

to implement solver for large-scale problems) 
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#include <math.h> 
#include <stdio.h> 
#include <iostream> 
#include <string> 
#include "ipm_nlp.h" 
 
int main ()  
{ 
 bool radi = true; 
 int row[18], col[18]; 
 double entr[18]; 
 Bridge *bridge; 
 FILE *inpFile; 
 memset(row, 0, 18* sizeof(int)); 
 memset(col, 0, 18* sizeof(int)); 
 memset(entr, 0, 18* sizeof(double)); 
 inpFile=fopen("input","r"); 
 
// Read values of initial parameters and solution 
 
 fscanf(inpFile,"  %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f\n", 
  s,z,p,v,x1,x2,lambda); 
 fclose(inpFile); 
 
 Check validity 
 
 if ((s < 0.) && (z<0.){ 
  fprintf(stdout,"Initial parameters are not valid") 
   return(0); 
 } 
 
 
 mi=0.1*(s*p+z*(p+v)); 
 int iterac = 0; 
 df.initVec(2); 
 Jg.initVec(2); 
 Jh.initVec(2);   
 
 dense1D b(7); 
 
 bridge = Bridge_new() ; 
 
 int permuteflag = 1 ; 
 int error; 
 
 
 Matrix A(7, 18, row, col, entr); 
  
 bool setUp = false; 
 int rc; 
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 int symmetryflag = SPOOLES_NONSYMMETRIC; 
 dense1D dx(7); 
 do 
 { 
  computeTests(A, b); 
  A.goFirst(); 
  A.show(stdout); 
 
  //For MATLAB if preferred 
  //A.showMatlab(forMatlab, "Ab"); 
  //InpMtx_changeStorageMode(A.getMatrixPtr(), 
INPMTX_BY_VECTORS); 
  //A.show(stdout); 
  //b.show(stdout); 
  if (!setUp) 
  { 
 
//  Create Brisdge object 
 
   Bridge_setMatrixParams(bridge, 7, SPOOLES_REAL, 
symmetryflag) ; 
 
   if (bridge->symmetryflag != SPOOLES_NONSYMMETRIC) 
    printf("Bridge is symetric!\n"); 
 
   bridge->pivotingflag = SPOOLES_PIVOTING; 
 
   rc = Bridge_setup(bridge, A.getMatrixPtr()) ; 
   setUp = true; 
 
   if ( rc != 1 )  
   {   
    printf("Bridge Setup error...\n"); 
    return 0 ; 
   } 
  } 
 
  rc = Bridge_factor(bridge, A.getMatrixPtr(), permuteflag, &error) ; 
   
  if ( rc != 1 )  
  { 
   printf("Factorization error!!!\n"); 
   return 0; 
  }   
 
  rc = Bridge_solve(bridge, permuteflag, dx.getMatrixPtr(), 
b.getMatrixPtr()) ; 
 
  if ( rc != 1 )  
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  { 
   printf("Solving error..\n"); 
   return 0; 
  } 
  ro = s*p+z*(v+p); 
 
  mi = delta * ro / 2; 
 
  x1p = x1; 
  x2p = x2; 
 
  //Newton direction 
 
  alfa = 1; 
  if (dx[0] < 0)    
   alfa = __min (-gama *s/dx[0], alfa);    
 
  if (dx[1] < 0) 
   alfa = __min(-gama *z/dx[1], alfa); 
 
  if (dx[2] < 0) 
   alfa = __min(-gama *p/dx[2], alfa); 
 
  if (dx[2]+dx[3] < 0) 
  { 
   alfa = __min (-gama *(v+p)/(dx[2]+dx[3]), alfa); 
  } 
   
  s += alfa * dx[0]; 
  z += alfa * dx[1]; 
  p += alfa * dx[2]; 
  v += alfa * dx[3]; 
  x1 += alfa * dx[4]; 
  x2 += alfa * dx[5]; 
  lambda += alfa * dx[6];   
 
  ro = s*p+z*(v+p); 
 
  mi = 0.1 * ro; 
 
  e1 = v1(); 
  e2 = v2(); 
  e3 = v3(); 
  e4 = v4(); 
 
  //Initialization of vectors 
 
  df.setInit(); 
  Jg.setInit(); 
  Jh.setInit(); 
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  // Additional information can be printed here (if necessary) 
 
  //cout.width(8); 
  //cout.precision(4); 
  //cout << "Iter "<< iterac << " Alfa: "<< alfa << " Mi: " << mi << " 
Tol: " << e1   
  // <<" "<< e2 << " "<< e3 <<" "<< e4 << endl; 
  //cout.width(8); 
  //cout.precision(4); 
  //cout << "x= " << s <<" "<< z<<" " << p<<" " << v<<" " << x1<<" " 
<< x2<<" " << lambda<< endl; 
 
  iterac=iterac+1; 
//  cout << "-------------"<<endl<<"Solution found in " << iterac << " 
iteration"<<endl; 
 
  if ((mi < epsmi) && (e1 < eps1) && (e2 < eps1) && (e3 < eps2) && 
(e4 < eps2)) 
  { 
//   cout << "-------------"<<endl<<"Solution found in " << iterac 
<< " iteration"<<endl; 
   radi = false; 
  } 
  A.getMatrixPtr()->coordType   = INPMTX_BY_ROWS  ; 
        A.getMatrixPtr()->storageMode = INPMTX_RAW_DATA ; 
  //A.show(stdout); 
  //A.showMatlab(forMatlab, "Af"); 
  //b.show(stdout); 
 
 } while (radi && iterac < 20); 
 //cout.width(12); 
 cout.precision(8); 
 cout << endl<<"x1 =" << x1 << endl; 
 cout << "x2 =" << x2 << endl;  
 Bridge_free(bridge); 
  cout << "-------------"<<endl<<"Solution found in " << iterac << " 
iterations"<<endl; 
 string str; 
 cout << "IP finished! Type something and then <ENTER>" ; 
 cin >> str; 
 //fclose(forMatlab); 
 
 return 0; 
} 
 
C++ header file to solve example considered (this can be used as guide to 

implement solver for large-scale problems) 
 
extern "C"{ 
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#include "../Bridge.h" 
} 
#define __max(a,b)  (((a) > (b)) ? (a) : (b)) 
#define __min(a,b)  (((a) < (b)) ? (a) : (b)) 
//using namespace std; 
 
//class dense1D is one-dimensional vector for 1D real SPOOLES vector 
 
class dense1D 
{ 
 bool init; 
 DenseMtx * m_dense; 
 int m_dimension; 
public: 
 dense1D (int dimension):m_dimension(dimension), init(true) 
 { 
  m_dense = DenseMtx_new(); 
  DenseMtx_init(m_dense, SPOOLES_REAL, 0, 0, dimension, 1, 1, 
dimension) ; 
  
 }; 
 
 dense1D ():m_dimension(0),init(false) 
 { 
  m_dense = 0;   
 }; 
 
 ~dense1D () 
 { 
  if (m_dense) 
   DenseMtx_free(m_dense); 
 }; 
 
 void initVec(int dimension) 
 { 
  m_dense = DenseMtx_new(); 
  DenseMtx_init(m_dense, SPOOLES_REAL, 0, 0, dimension, 1, 1, 
dimension) ; 
 }; 
 
 double &operator() (int i) 
 { 
  if (!init) 
   DenseMtx_setRealEntry(m_dense, i, 0, 0.0) ; 
  return m_dense->entries[i]; 
 }; 
 
 double &operator[] (int i) 
 { 
  if (!init) 
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   DenseMtx_setRealEntry(m_dense, i, 0, 0.0) ; 
  return m_dense->entries[i]; 
 }; 
 
 void setInit() 
 { 
  init = true; 
 } 
 
 DenseMtx * getMatrixPtr() {return m_dense;}; 
 
 double two_norm() 
 { 
  double norm; 
  A2 a2; 
  A2_setDefaultFields(&a2) ; 
  DenseMtx_setA2(m_dense, &a2); 
  norm = A2_twoNormOfColumn(&a2, 0) ; 
  return norm; 
 }; 
 
 void show(FILE *fp) 
 { 
  DenseMtx_writeForHumanEye(m_dense, fp) ;   
 } 
 
 
}; 
 
//class Matrix is OO wrapper for 2D real SPOOLES C matrix 
 
class Matrix 
{  
private: 
 bool init; 
 InpMtx * mtx; 
 double *m_pVal; 
 DV *m_pEntries; 
 IV *m_pRows; 
 IV *m_pCols; 
 int pos; 
 
public: 
 Matrix(int dimension, int nonZeros, int rows[], int cols[], double entries [] )
 : 
   init(true), 
    pos(0) 
   { 
    mtx = InpMtx_new() ; 
    InpMtx_init(mtx, INPMTX_BY_ROWS, SPOOLES_REAL, 0, 0); 
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    m_pEntries =  &mtx->dvecDV; 
    m_pEntries->vec = entries; 
    m_pEntries->owned = 0; 
    m_pEntries->size = m_pEntries->maxsize = nonZeros; 
 
    m_pRows = &mtx->ivec1IV; 
    m_pRows->owned = 0; 
    m_pRows->size = m_pRows->maxsize =  nonZeros; 
    m_pRows->vec = rows; 
 
    m_pCols = &mtx->ivec2IV; 
    m_pCols->owned = 0; 
    m_pCols->size = m_pCols->maxsize =  nonZeros; 
    m_pCols->vec = cols; 
 
    mtx->maxnent = mtx->nent = nonZeros; 
    mtx->resizeMultiple = 1.25; 
    mtx->maxnvector = dimension; 
 
   }; 
 
   Matrix (int dimension, int nonZeros) 
    : init (false), 
    pos(0) 
   { 
    mtx = InpMtx_new() ; 
    InpMtx_init(mtx, INPMTX_BY_ROWS, SPOOLES_REAL, 
nonZeros, dimension) ; 
    m_pEntries =  &mtx->dvecDV; 
    m_pRows = &mtx->ivec1IV; 
    m_pCols = &mtx->ivec2IV; 
   } 
 
   Matrix (InpMtx * pMtx): init(true), mtx(pMtx), pos(0){}; 
   ~Matrix () 
   { 
    if (mtx) 
     InpMtx_free(mtx); 
   }; 
 
   void addEntry(int i, int j, double val) 
   { 
    InpMtx_inputRealEntry(mtx, i, j, val) ; 
   } 
 
   void show(FILE *fp) 
   { 
    InpMtx_writeForHumanEye(mtx, fp) ; 
    printf("Size: %d nvector: %d\n", m_pEntries->size, mtx->nvector); 
   }; 
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   void showMatlab(FILE *fp, char *matrixName) 
   { 
    InpMtx_writeForMatlab(mtx, matrixName, fp) ; 
   }; 
 
   double& operator() (int i, int j) 
   {   
    if (!init) 
    { 
     InpMtx_inputRealEntry ( mtx, i, j, 0.0) ; 
     m_pVal= & (m_pEntries->vec[pos]); 
    } 
    else 
    { 
     m_pVal= & (m_pEntries->vec[pos]); 
     m_pRows->vec[pos] = i; 
     m_pCols->vec[pos] = j; 
    }   
    pos++; 
    return *m_pVal; 
   }; 
 
   void setInit() 
   { 
    init = true; 
   }; 
 
   void goFirst() 
   { 
    pos = 0; 
   }; 
 
   InpMtx * getMatrixPtr() 
   { 
    return mtx; 
   }; 
}; 
 
typedef double Type; 
 
//Global variables 
 
dense1D    df, Jg, Jh ; 
double p,s,v,vk,z,x1,x2, x1p =0, x2p=0, lambda,mi, delta = 0.2, ro, gama=0.9995, 
alfap, alfad, alfa; 
double e1, e2, e3, e4; 
double eps1 = 1e-5; 
double eps2 = 1e-5; 
double epsmi = 1e-5; 
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double hmin = 1; 
double hmax = 4; 
 
void computeTests(Matrix& A, dense1D& b) 
{ 
 A(0,0) = p; 
 A(0,2) = s; 
 A(1,1) = v+p; 
 A(1,2) = z; 
 A(1,3) = z; 
 A(2,0) = 1; 
 A(2,1) = 1; 
 A(3,1) = 1; 
 A(3,4) = 2*x1-6; 
 A(3,5) = 2*x2-2; 
 A(4,3) = 2*x1-6; 
 A(4,4) = 2-2*lambda+2*v; 
 A(4,6) = 2-2*x1; 
 A(5,3) = 2*x2-2; 
 A(5,5) = 2-2*lambda+2*v; 
 A(5,6) = 2-2*x2; 
 A(6,4) = 2-2*x1; 
 A(6,5) = 2-2*x2; 
 
 double hx = x1*x1 + x2*x2 - 6*x1  - 2*x2 + 10; 
 double gx = x1*x1 + x2*x2 - 2*x1 - 2*x2 - 2; 
 
 b[0] = mi - s*p;  
 b[1] = mi - z*(v+p); 
 b[2] = -s - z + hmax - hmin; 
 b[3] = - hx  - z + hmax; 
 b[4] = -(2*x1 - 4) + lambda *(2*x1 - 2) - v*(2*x1 - 6); 
 b[5] = -(2*x2 - 8) + lambda *(2*x2 - 2) - v*(2*x2 - 2); 
 b[6] = gx; 
}; 
 
//Objective function 
 
double fx(double x1, double x2) 
{ 
 return  x1*x1+x2*x2-4*x1-8*x2+20; 
}; 
 
//Constraints 
 
double v1() 
{  
 double hx = x1*x1 + x2*x2 - 6*x1  - 2*x2 + 10; 
 double gx = x1*x1 + x2*x2 - 2*x1  - 2*x2 - 2; 
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 return __max( __max(hmin - hx, hx-hmax), fabs(gx)); 
}; 
 
//Convergence test 
 
double v2() 
{ 
 double norm2x = sqrt(x1*x1 + x2*x2); 
 double norm2lambda = fabs(lambda); 
 double norm2v = fabs(v); 
 df[0] = 2*x1-4; 
 df[1] = 2*x2 -8; 
 Jg[0] = 2*x1-2; 
 Jg[1] = 2*x2-2; 
 Jh[0] = 2*x1-6; 
 Jh[1] = 2*x2-2; 
 
 return __max(fabs(df[0] - Jg[0]*lambda + Jh[0]*v), fabs(df[1] - Jg[1]*lambda 
+ Jh[1]*v) ) 
  /(1+norm2x+norm2lambda+norm2v); 
}; 
 
double v3() 
{  
 double norm2x = sqrt(x1*x1 + x2*x2); 
 return ro/(1+norm2x); 
}; 
 
double v4() 
{ 
 return fabs(fx(x1,x2) - fx(x1p, x2p))/(1+fabs(fx(x1,x2))); 
}; 


