

Methodology for the design of climate responsive houses for optimized thermal comfort in Quetta, Pakistan Authors: Waqas Ahmed MAHAR E-mail: wamahar@student.uliege.be

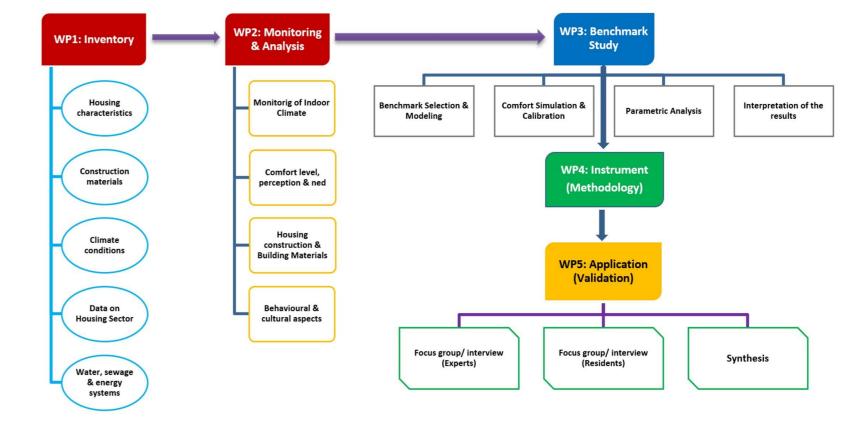
Supervisor: Prof. Dr. Shady ATTIA

Address: Sustainable Building Design (SBD) Lab Quartier Polytech 1, Allee de la Decouverte 9, 4000 Liege, Belgium. www.sbd.ulg.ac.be Tel: +32 43.66.91.55 Fax: +32 43.66.29.09

ABSTRACT

A building must be energy-efficient and provide comfortable indoor environment to the residents. The Building Energy Code of Pakistan (BECP) only focuses on commercial buildings [1]. In today's scenario a standard must include the context and climate considerations. The aim of this study is to improve indoor thermal comfort of free-running houses in Quetta, Pakistan and raise the awareness of builders about climate sensitivity.

KEYWORDS


Thermal comfort, Decision support, Energy simulation, Resource efficiency, Design strategies, Design intervention, Fuel poverty

PROBLEM

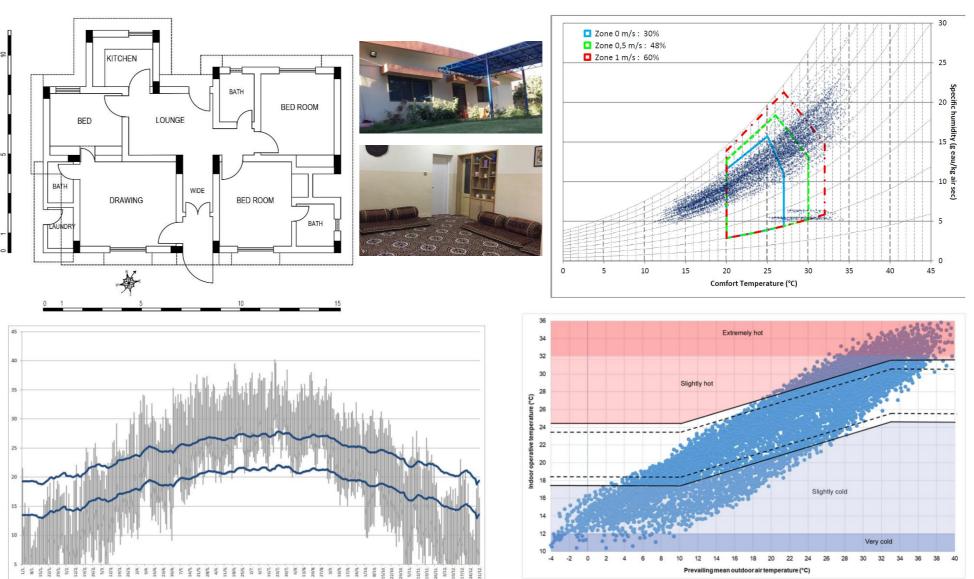
Pakistan is facing serious energy crisis. Housing sector is the largest consumer by using more than 51% of the total electricity [2]. There are diverse climatic zones in the country ranging from very cold in the north to very hot in the south. The city of Quetta has dry, semi-arid climate with substantial temperature differences between summer and winter. The urban population of Quetta is more than 1 million which increased to more than double in last 20 years [3]. The houses are poorly designed, and the residents suffer due to uncomfortable indoor environment.

METHODOLOGY

- 1. Housing survey for inventory and characteristics.
- 2. Monitoring of indoor and outdoor climate and comfort survey.
- 3. Benchmark selection, calibration of model and parametric analysis using simulation for optimized indoor thermal comfort
- 4. Conclusion based on the results of 1-3, and development of design strategies
- 5. Validation with experts and the future residents

OBJECTIVE/ HYPOTHESIS

- Characterization of the existing housing stock (inventory)
- Monitoring and analysis of common housing type
- Development of a representative benchmark in order to test it through parametric analysis using different comfort models
- Development of design strategies to improve the indoor thermal comfort
- Testing and application


AUDIENCE

Architects, designers, building/ construction engineers, contractors, researchers and resident builders

RESEARCH QUESTION(S)

- What are the characteristics of existing houses in Quetta?
- What is the comfort situation and comfort perception of the residents?
- How design strategies can help to improve the indoor thermal comfort and construct climate responsive houses?

RESULTS

CONCLUSION

- Housing in Quetta can be divided into 3 types, reinforced cement concrete (RCC), brick masonry and sundried brick houses. RCC is the most common housing type, i.e. 64% [4].
- Extreme indoor temperatures were recorded in both seasons which creates discomfort for the residents [5].
- Existing houses are poorly designed and don't provide optimal thermal comfort to the residents [6].

ORIGINALITY

- There is wide knowledge gap on housing and thermal comfort in Pakistan
- The study will provide unique guidance towards indoor thermal comfort in housing
- Quetta has extreme weather conditions which requires context and climate based design
- The study will investigate and apply several comfort models
- With design interventions and application of alternative materials, indoor thermal comfort can be improved.

RESOURCES

- Mahar et al. (2018)a. Building energy efficiency policies and practices in Pakistan: A literature review. 5th International Conference on Energy, Environment and Sustainable Development (EESD) 2018. Mehran UET Jamshoro, Pakistan.
- 2. ESP. (2018). Economic Survey of Pakistan 2017-18. Ministry of Finance, Government of Pakistan.
- 3. PBS. (2017). Population & Housing Census 2017. Pakistan Bureau of Statistics (PBS), Government of Pakistan
- 4. Mahar et al. (2017). *Methodology to determine housing characteristics in less developed areas in developing countries: A case study of Quetta, Pakistan.* European Network for Housing Research (ENHR) Conference 2017. Tirana, Albania.
- 5. Mahar, W., A. & Attia, S. (2018). An overview of housing conditions, characteristics and existing infrastructure of energy, water & waste systems in Quetta, Pakistan. SBD Lab, University of Liège, ISBN 978-2-930909-11-0.
- 6. Mahar et al. (2018)b. Indoor thermal comfort assessment of residential building stock in Quetta, Pakistan. European Network for Housing Research (ENHR) Conference 2018. Uppsala, Sweden.

