



# VALDEM PROJECT: FROM LCA OF DEMOLITION WASTE TO CIRCULAR ECONOMY OF BUILDINGS

Sylvie Groslambert (ULiège, Chemical Engineering, BE) with the cooperation of the cd2e s.groslambert@uliege.be





- □ Context
- □ VALDEM project
- ☐ Life Cycle Management
- ☐ Recycling of waste concrete blocks



#### Context:

- ☐ Building and construction sector:
  - more than 1/3 of global resource consumption
  - generation of solid waste: 40% of the total waste
     volume
  - EU: CDW = largest waste stream (1/3 of all EU waste)
- ☐ CDW (Construction & Demolition Waste): mostly not recycled
- Causes:
  - heterogeneity
  - dispersion
  - economic viability



# **VALDEM** project: objectives

VALDEM aims to improve demolition waste treatment to reach a circular economy in North of France and Wallonia (BE):

#### Identify waste flow and create new recycling sector

- optimize building EoL management: new deconstruction, sorting and recycling processes
- increase recycling
- generate high quality secondary materials (up-cycling)

Validate the approach by using Life Cycle Assessment

Demonstrate the transferability of the results to industries

Conduct a monitoring of regulations and highlight opportunities



# VALDEM project: scope

General information:

http://www.valdem-interreg.eu/ VLAANDEREN BELGIQUE/BELGIË WALLONIE **Budget: Duration:** 3 557 608.84 4 years Geographical Start: area 01.07.2016 FRANCE Co-founders: ADEME Hauts-de-France 62,000 km<sup>2</sup> 10.800.000 habitants/inwoners et de la Maltrise de l'Energie



## **VALDEM** project: partnership



Mineral Processing applied to C&DW





Valorization in materials with technical, economical, environmental validation

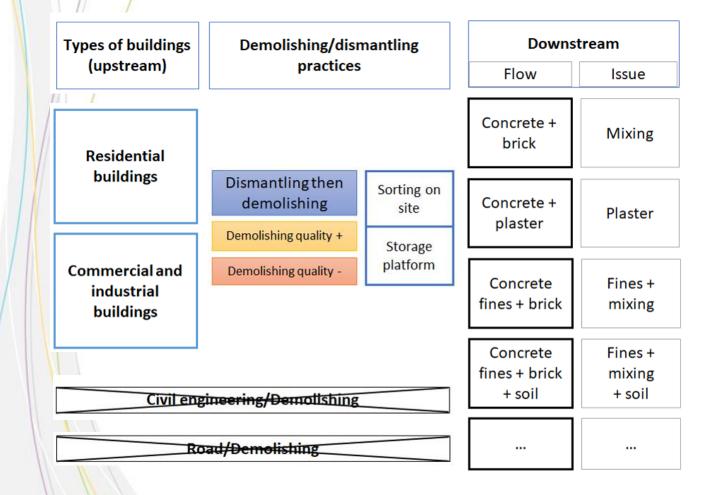






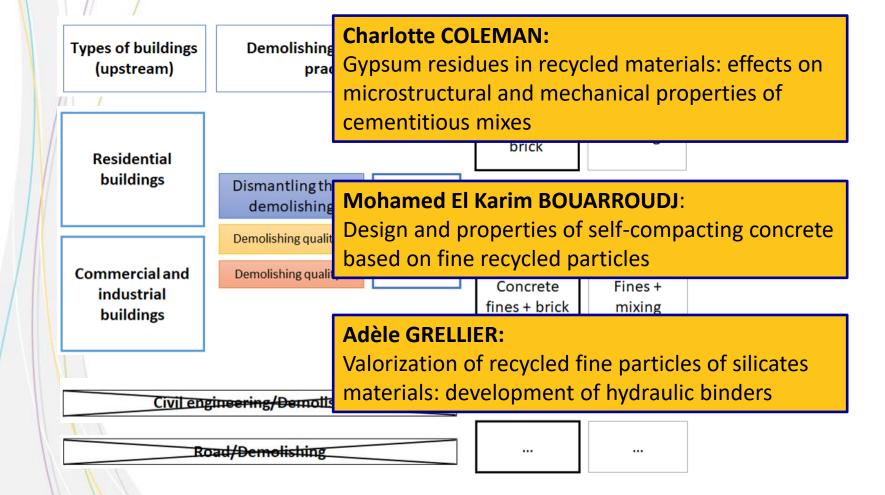


Life Cycle Assessment (MT3 – A4)








# Life Cycle Management: detailed scope





# Life Cycle Management: detailed scope





# Life Cycle Management: concrete actions

#### Identify hot spots and key aspects → meta-analysis

- waste inventory (recycling parks)
- potential waste flows (regional data)

#### Comparative LCA:

- technical information from consortium partners
- evaluation of benefits and impacts of proposed solutions
- limit impact transfer to generate the maximum value for the stakeholders

Transfer of results to the main actors (recycling operators, building contractors, product manufacturers, policy ...) in the 3 regions



# Life Cycle Management: outputs

Bring scientific and concrete elements (based on data from the ground and at macro-level)

on how recycling of CDW can improve environmental impact of buildings along their life (current and future)

and move forward to a circular economy in construction sector



# Recycling of production waste of concrete blocks CONREPAD – BEWARE fellowships



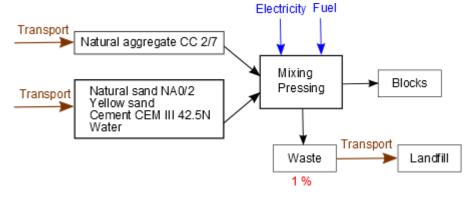
- Pr Luc Courard, Dr Ir Zengfeng Zhao (ULiège GeMMe)
- PREFER company (Flémalle/Engis, BE)
- Production of concrete blocks with recycled concrete aggregates (RCA) from production waste
- Block BD14292: 29 x 14 x 19 cm, with 2 holes
- 30% RCA: properties ok → feasibility validated
- Comparative LCA: concrete blocks without and with RCA



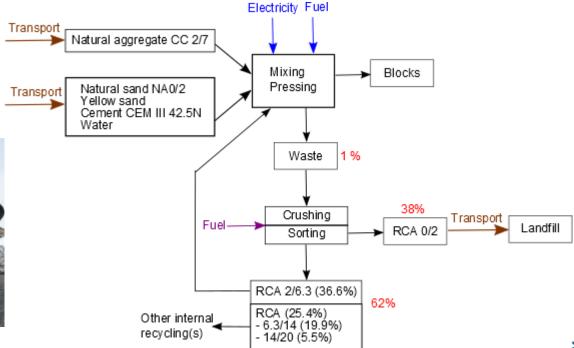
## **Goal and Scope**

#### Goal:

 To study the influence of the recycling of production waste in substitution of natural aggregates in the production of concrete blocks


#### Scope:

- Cradle-to-gate (comparative) LCA
- Substitution of 30% of natural aggregates with recycled concrete aggregates (RCA) from production waste
- FU: 1 m³ of concrete blocks, on the basis of a 1 year production


# System boundaries



Natural aggregate only (B\_RCA0)



#### 2. 30% RCA (B\_RCA30)





# Inventory



#### 1. Composition of blocks (kg for 1 m<sup>3</sup>)

|                                 | B_RCA0 (0%) | B_RCA30 (30%) |
|---------------------------------|-------------|---------------|
| Natural aggregate CC 2/7        | 1010        | 707           |
| Recycled concrete aggregate 2/7 | 0           | 282           |
| Natural river sand NA0/2        | 822         | 822           |
| Yellow sand                     | 63          | 63            |
| Cement CEM III/A                | 175         | 175           |
| Water                           | 41.3        | 55            |

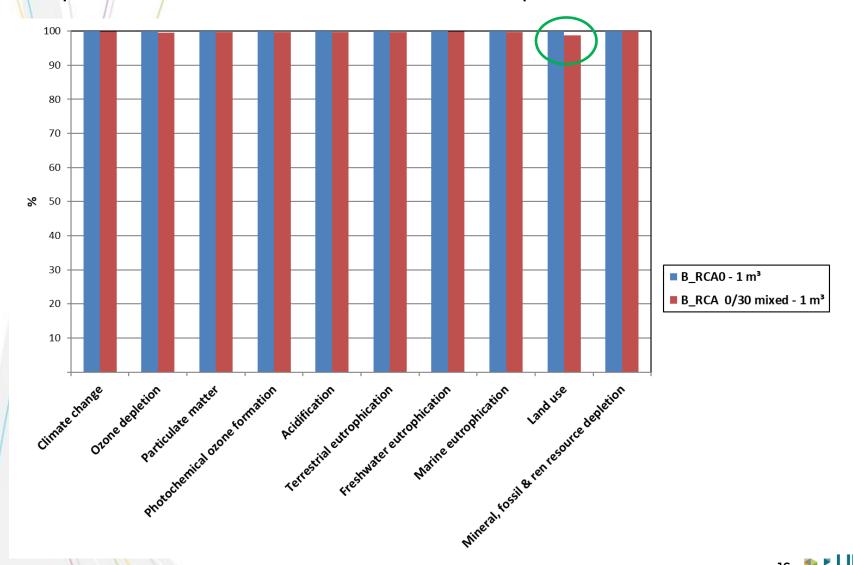
#### 2. Production

- $1 \text{ m}^3 = 2,170 \text{ kg}$
- /101,500 m³/year (total for the 2 production sites 65.5% and 34.5%)
- Waste:  $1\% \rightarrow 1,015 \text{ m}^3/\text{year} (2,202,550 \text{ kg}) \rightarrow \text{on-site storage}$ Mobile crusher Metso LT12113 (250 t/h - 115 m³/h) : 1x /year

# Inventory

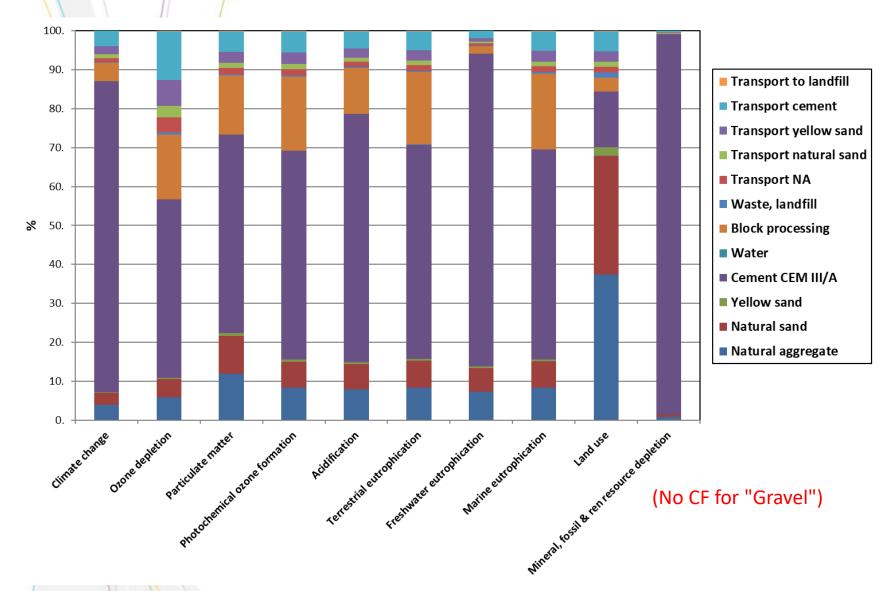


- Recycling: after crushing and sorting:
  - RCA 0/2: 38%


 $\rightarrow$  landfill

- RCA 2/6.3: 36.6%  $\rightarrow$  concrete blocks
- RCA 6.3/14 + 14/20: 25.4%  $\rightarrow$  other internal recycling (avoided burden)
- RCA 2/6.3 availability: 805,015 kg/year
  - $\Rightarrow$  2,855 m<sup>3</sup> of B RCA30
  - ~ 3 % of the annual production of blocks
- $\Rightarrow$  To be completed with B\_RCA0 (98,645 m<sup>3</sup>)
- "Mixed" production of RCA0 and RCA30
- Inventory for 1 year: B\_RCA0 vs mixed production of B RCA0 and B RCA30 (incl. mobile crusher etc.)
- Normalized by annual production to have 1 m³ (FU)

# LCA Results - B\_RCA0 vs Mixed prod.



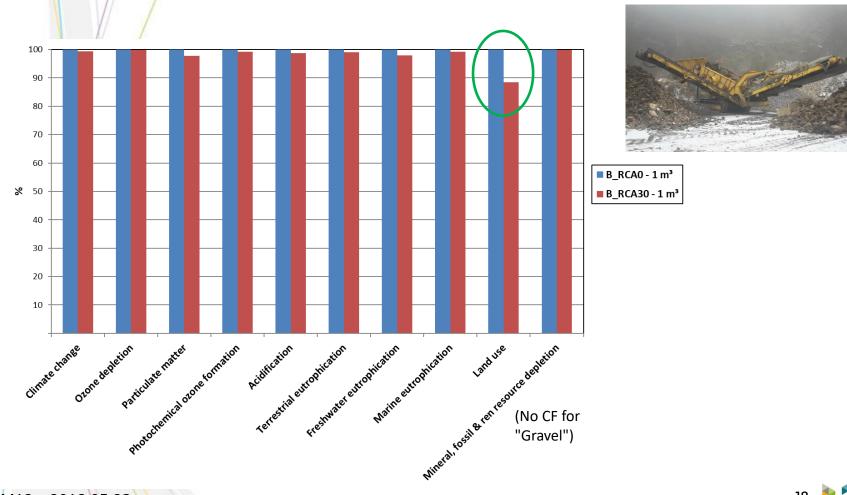

Simapro 8.5; Ecoinvent 3.4; ILCD 2011 Midpoint+ (1.10)



### LCA Results - B\_RCA0






# LCA Results - B\_RCA0 vs B\_RCA30



Vadem: valorization of CDW

Eloy Construction: CDW sorting site  $\rightarrow$  RCA

⇒ Import of RCA2/6.3 from Richopré quarry (Chanxhe, 25 km)



#### Conclusions



- Very little waste blocks (1%)  $\Rightarrow$  B\_RCA30 can represent only 3% of the annual production of PREFER
- Impacts (in all categories) due mainly to cement, not to (natural) aggregates
- ⇒ Very limited benefits (not significant) from the internal recycling of waste blocks compared to the impacts of the whole process
- But higher benefits (land use) if import of RCA from CDW sorting site (external recycling)  $\rightarrow$  B\_RCA30
- To confirm from a financial point of view

# Take home message



- Globally, and in a circular economy perspective, internal recycling of waste blocks at PREFER is a good idea!
- **Especially if internal recycling is completed with** RCA from a local external source of CDW



### **Acknowledgment:**

This work is part of the research project VALDEM (Convention n° 1.1.57 of Interreg France – Wallonie - Vlaanderen 2014-2020) partly financed by the European Regional Development Funds, and

Wallonia.



**VALDEM's Team** 

Contact:



Dr Hervé BREQUEL R&D Manager herve.brequel@ctp.be Phone: 0032.69.88.42.66

http://www.valdem-interreg.eu/

