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Introduction



Wind Energy — the fastest growing energy source

e Less environmental impact
e Fast installation

e Fast development!
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Levelized Cost of Electricity
High LCoE

(lifetime costs per unit of electricity — MWh)
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Levelized Cost of Electricity

Cost

High LCoE
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Levelized Cost of Electricity
High LCoE 0O&M Cost Risk-based Inspection

— Maintenance costs
Expected failure costs
Total costs

Expected costs

Optimal strategy

Maintenance effort




Levelized Cost of Electricity
High LCoE 0O&M Cost Risk-based Inspection

High Decommissioning Cost

-270 000 to 540 000 €/MW (=1/2 investment cost)
- Yttre Stengrund (Sweden, Nov 2015)




Levelized Cost of Electricity

High LCoE 0&M Cost Risk-based Inspection
High Decommissioning Cost

Want to live
forever?




Levelized Cost of Electricity
High LCoE 0&M Cost Risk-based Inspection

High Decommissioning Cost

Majority of reported offshore failures are fatigue failures!

= Update Failure Probability in Fatigue Failure Mode!



Message Objective

Using Failure Assessment Diagram and Occurence of

Weather Conditions in the Limit State Function improves the
accuracy of the Updated Failure Probability.
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Fatigue Assessment



Fatigue Assessment
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Fatigue Assessment: Miner's Rule

Fatigue Damage: Safety condition: D < A, or
P Limit State Function:
n;
D = —
I_Z:; N; g=A—-D>0
SN-Curve Damage Tally

D4=n,/N,=2/6 = .33
D,=n,/N,=3/4 = .75
N-f N ™ | De=Di*D

N (# cyetes to raiure) Dy = .33 +.75=1.08
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Fatigue Assessment: Miner's Rule

A<t As1 A<t Limit State Function:

Stress

g=A—-D

Sequence effects, Dowling (1971)

Test results Mean

— — Characteristic

Stress range S
(Logarithmic scale)
&

el

Number of cycles to failure N
(Logarithmic scale)
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Fatigue Assessment: Paris’ Law
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Fatigue Assessment: Paris’ Law

Limit State Functions:
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Fatigue Assessment: Failure Assessment Diagram

Limit State Function:

Assessing acceptability of cracks g1 = Kieap — K,
or.
g=R-r

Kymaay = 1.0 | Brittle Fracture

Assessment Point

K
Km at

Fracture + Plastic

Plastic
SAFE ‘ Collapse
Lr _ Oref 1.0Lr(m(w) _ oy + oy

Oy 20’y 15
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Failure Probability



Failure Probability

Safety margin (Limit State Function):

M=R-S

L Probability Density
<
w
)




Failure Probability

L Probability Density
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Background

Updating Principle



Updating Principle

P (A, B)
P(B)

Bayes Theorem: P (A|B) =

18



Updating Principle

P (A B
Bayes Theorem: P (A|B) = PE(’B))
Event updating Variable updating
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Updating Principle

W=r-|S

Event updating Variable updating

18



Updating Principle

Crack inspection:

P (I <o) -

P(M<0n/)

W=r-|S

Load Monitoring data:

20 fsp (sll) = C- P (I]s) fs (s)

18



Updating Principle

=R-|S
Cfack inspection: Load Monitoring data:
P(M<onl
p (M < oy/) (/)) fsp (s|l)| = C - P(/]s) s (s)
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Updating Principle

Crack inspection:

P (I <o) -

P(M<0n/)

WM=r-|S

Load Monitoring data:

20 fsp (sll) = C- P (I]s) fs (s)

18



FAD in Updating Considering
Inspection
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FAD in Updating Considering
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Motivation & Literature Review



LSF1:. g=a.—a
ac: critical crack size
a: crack size



LSF1:. g=a.—a
ac: critical crack size = ambiguous, for ships & pipelines!
a: crack size



Motivation

LSF1:. g=a.—a
ac: critical crack size = ambiguous, for ships & pipelines!

a: crack size

g1 = dac—a

LSF 2:
82 Kmat - Krnax

Kmat: fracture toughness
Kimax: maximum stress intensity factor
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Motivation

LSF1:. g=a.—a
ac: critical crack size = ambiguous, for ships & pipelines!
a: crack size

1 = dc—a . .
& i = fracture+plastic deformation?
&2 Kmat - Krnax

LSF 2:

Kmat: fracture toughness
Kimax: maximum stress intensity factor

Ky (mary = 1.0 B”‘”l‘lf,"i“,‘[‘!‘fl,,,,,,,,,,,,,,,,,,,,,,””””””,_‘

da
N

log

Stage I | Stagell |/ Stage Il

Fracture + Plastic

i Plastic
Collapse

L _ O Lo, "ot AKo  AK log AK
= i = 75 19



Literature Review

Evolution of updating considering crack inspection data:
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Literature Review

Gap:

Advantages and disadvantages of using Failure Assessment
Diagram in updating failure probability considering crack
inspection data for existing OWT support structures?

21



FAD in Updating Considering
Inspection

FAD Gives Higher Failure Probability
Values
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Limit State Functions to Compare
LSF 3:

LSF 1: LSF 2:
g=ac—a g1 = dc—a4 g = Kirap — Ki
8 = Kmat — Kmax or:
g=R-—r

Considered Uncertainties: C, ag, ag/co, and FAD
FAD uncertainty: from Offshore Technology Report (HSE, 2000)

10 Brittle Fracture
s Kirap
0
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Method to Calculate Failure Probabilities

e Monte Carlo Simulation: 10° samples of crack propagations
e Crack depth and crack length are coupled
e Constant amplitude stress history

e Failure Probability:

j=1

0 ifg>0
I'g] = _

1 ifg<o

23



Results & Discussions: LSF-2 vs. LSF-1
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Results & Discussions: LSF-2 vs. LSF-1
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Results & Discussions: LSF-3 vs. LSF-2

Reliability index
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Results & Discussions: LSF-3 vs. LSF-2
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Results & Discussions: LSF-3 vs. LSF-2
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Results & Discussions: LSF-3 vs. LSF-2
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Results & Discussions: FAD Uncertainty
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Results & Discussions: FAD Uncertainty
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FAD in Updating Considering
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FAD in Updating
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The Updating Problems

Safety Margin using FAD: g = Kipap — K,

32



The Updating Problems

Safety Margin using FAD: g = Kipap — K,
Crack Detection Event: ly=c—cy

c: crack length,

cq: detectable length

32



The Updating Problems

Safety Margin using FAD: g = Kipap — K,
Crack Detection Event: ly=c—cy .
Probability of Detection: P(cg)=1-
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The Updating Problems

Safety Margin using FAD: g = Kipap — K,
Crack Detection Event: ly=c—cy .
Probability of Detection: P(cg)=1-

Update Pr when No crack is detected:

Plg <0|ly < 0] =?

32



The Updating Problems

Safety Margin using FAD: g = Kipap — K,
Crack Detection Event: ly=c—cy .
Probability of Detection: P(cg)=1-

Update Pr when No crack is detected:

Plg <0|ly < 0] =?

Update Pr when Crack is detected and repaired imperfectly:

Plg <0|ly ZoﬂRim} =7
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The Updating Problems

Safety Margin using FAD: g = Kipap — K,
Crack Detection Event: ly=c—cy

1
Probability of Detection: P(cg)=1-

Update Pr when No crack is detected:

Plg <0|ly < 0] =?

Update Pr when Crack is detected and repaired imperfectly:

P [g <0|ly > oﬂR,-m} —7

Update Pr when Crack is detected and repaired perfectly:

P[ggoy/dzoﬂRp} =7 Y



Method to Solve: Procedure

Limit State Function }7

l

(o (oo

~— POD
Crack Growth Simulation Up(lj;flted
~—{ Decisions
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Method to Solve: Procedure

Limit State Function }7

l

—{_rop_ ]
Crack Growth Simulation Up(li;fm:ed
9 T T T T T T T T T
constant amplitude
during 1 month! =1 y ([
E ‘ L
=5t : i
2 _J Fl— Y
. [ y A
. 7
fir: I
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Method to Solve: Updating

Crack length C

Life time
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Method to Solve: Updating

Crack length C

Inspection i Life time
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Method to Solve: Updating

Crack length C

Inspection i

Life time
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Results & Discussions

Convergence of the MCS solution
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Results & Discussions

%1073 Annual Failure Probability
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Results & Discussions

Probability
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Results & Discussions
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Results & Discussions

Probability
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Conclusion on FAD

Gap:

Advantages and disadvantages of using Failure Assessment
Diagram in updating failure probability considering crack
inspection data for existing OWT support structures?

38



Conclusion on FAD

| |
Disadvantages Advantages
e Time consuming. e Releases the assumption
e Fails to find very small about ac
failure probability such as e more conservative Pg
‘detected & not repaired’ results = better for

inspection planning!

39



Occurence of Weather Conditions
in Updating Considering
Monitoring




Road Map

Occurence of Weather Conditions in Updating Considering
Monitoring

Motivation & Literature Review
Methodology
Application



Occurence of Weather Conditions
in Updating Considering
Monitoring

Motivation & Literature Review



What to do with
Load monitoring data?

40



Motivation

Stress-Range
Distribution

Probability

Stress-range

Measure strain Calculate stress
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Motivation

Stress-Range
Distribution

Probability

Stress-range

Measure strain: Calculate stress
not everywhere!

long-term!
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Motivation

Stress-Range
Distribution

Probability

Stress-range

Measure strain: Calculate stress:
not everywhere! time consuming]!
long-term! too much uncertainties!

41



Motivation: Uncertainties in FEM

Wind profile

m Blade passing g Windload
% frequency (3P} s
\\ \ : \/\/\/\
\\,"\ z —
N — E [tirra]
— % Wave load:
2
8
E
% [time]
2
i
S
Sea level T
= | Sources of Uncertainties:
Wave profile 4: / " Type 1: load calculation
mdati level| H
Samdeilonjesel Type 2: calibrated FEM
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Motivation: The Idea

Use measured data: = No load calculation
Use FEM to extrapolate stress: = No need to measure everywhere
Use Occurence of Weather Conditions in LSF:

= Wind & Wave instead of strain

43



Motivation: The Idea

Use measured data: = No load calculation
Use FEM to extrapolate stress: = No need to measure everywhere
Use Occurence of Weather Conditions in LSF:

= Wind & Wave instead of strain
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Motivation: The Idea

Use measured data: = No load calculation
Use FEM to extrapolate stress: = No need to measure everywhere
Use Occurence of Weather Conditions in LSF:

= Wind & Wave instead of strain

Mean Fatigue Damage per 10-minute

Damage

g = A — Dtotal
n
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n
et T ‘ =A=' Pbin. - Diom,bin. - M10m,yr

Probability of each bin
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Literature Review

Gap:

How to perform reliability assessment of existing offshore wind
turbine support structures using directly the Occurence of
Weather Conditions (wind and wave)?
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Occurence of Weather Conditions
in Updating Considering
Monitoring

Methodology



Methodology

n
g =24 =3 c 1 Pin. - Dmod,bine

Motivation: The Idea

N
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Methodology

g=A- Zgzl Pbine *Dmod,bin.
~——

P (Uio, Hs, Tp) = [ [ [ f (U0, Hs, Tp) du dh dt
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Methodology

g=A- 22:1 Pbine *Dmod,bin.
~——

P(U107H57Tp):ffff<££o/,l‘/5, Tp> du dh dt

|L1kchg:>ila l/Pmr | fKW (kW | le)

Baye% Theorem
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Methodology

chyc,bine * Neye, bine

* N10min,total
N10min, bine

n / N
&= A— Ze:l 'Dbine : Dmod,bine
~—~—

P(U107H57Tp):ffff<gio/,l‘/5, Tp> du dh dt

wa(kW | lA‘W)

Probability Density
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Methodology

(Ck . Xm . Xsc,:)m m r m 1
K s,bine Ao p +
A s,bine

Dl cyc,bine * ncyc, bine

* M0Omin,total
N10min, bine

n / N
&= A— Ze:l 'Dbine : Dmod,bine
~—~—

P(U107H57Tp):ffff<££o/,l‘/5, Tp> du dh dt

wa(kW | kW)

Number of cycles

N
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Methodology: Limit State Function

T MUy NHs NTp

g=a- DY Sy e ()

A .
i1 j—1 k=1 /=1 s.jkl
Ne jki

P (U10,j7 Hs,ka Tp,/’kwﬂ')

N
m.jkl
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Update Wind Speed Distribution

Given three years (or more) of measured wind speed, how to update
the design wind speed distribution?

fn (kwlp, o)
1 1 [ ky —p\?
oV 2T p( 2( o ))

The predictive density function of k, given measured data becomes
a Student’s t-distribution.

fic, (kwlp, o)
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Methodology: Update Wind Speed Distribution

Keep the ‘design’ shape parameter:

Year 1 Year 2 Year 3
2 2
3 2
S S
~ ~
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Wind speed [m/s] Wind speed [m/s] Wind speed [m/s]
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Methodology: Update Wind Speed Distribution

Keep the ‘design’ shape parameter:

Year 1 Year 2 Year 3
o z2 2
g g 2
~ [ ~
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Wind speed [m/s] Wind speed [m/s] Wind speed [m/s]

k, =[10.005 9.993 8.176] m/s
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Methodology: Update Wind Speed Distribution

0.25 \
— — —Prior U,
02kl — Updated U10

2015
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g 01
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Occurence of Weather Conditions
in Updating Considering
Monitoring

Application



Application

e 3 MW offshore wind turbine

North
\Q
™
g %D% Fast
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Application

e 3 MW offshore wind turbine North

, B
e Monopile, diameter of 5.2 m /f\\\\\
G0 !

FEast
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Application

e 3 MW offshore wind turbine
e Monopile, diameter of 5.2 m

e Optical strain sensors

North

FEast
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Application

3 MW offshore wind turbine
Monopile, diameter of 5.2 m
Optical strain sensors

Before construction: 15
years of wind data

North

FEast
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Application

e 3 MW offshore wind turbine North
>
/ S
e Monopile, diameter of 5.2 m , <
e Optical strain sensors Bu

e Before construction: 15

years of wind data East

e After construction: 3 years
of wind and wave data + 1

year strain data

(concurrently measured with
the wind)
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Application

e 3 MW offshore wind turbine North
>
/ S
e Monopile, diameter of 5.2 m , <
e Optical strain sensors Bu

e Before construction: 15

years of wind data East

e After construction: 3 years
of wind and wave data + 1

year strain data

(concurrently measured with
the wind)

e The design wind speed
distribution
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Application

3 MW offshore wind turbine
Monopile, diameter of 5.2 m
Optical strain sensors

Before construction: 15
years of wind data

After construction: 3 years
of wind and wave data + 1
year strain data
(concurrently measured with
the wind)

The design wind speed
distribution
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Application

e 3 MW offshore wind turbine North
>
/ S
e Monopile, diameter of 5.2 m , <
e Optical strain sensors Bu

e Before construction: 15

years of wind data East

e After construction: 3 years
of wind and wave data + 1

year strain data

(concurrently measured with
the wind)

e The design wind speed
distribution
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Application: Estimating Remaining Fatigue Life
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Application: Results & Discussion
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Application: Results & Discussion

N+1.2

N+1.0]

The current weather is foreseen!
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Application: Results & Discussion
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Application: Results & Discussion
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Application: Results & Discussion
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Application: Results & Discussion
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Application: Results & Discussion
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Conclusion on Using Occurence of Weather Conditions in LSF

Gap:

How to perform reliability assessment of existing offshore wind
turbine support structures using directly the Occurence of
Weather Conditions (wind and wave)?
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Conclusion on Using Occurence of Weather Conditions in LSF

Disadvantages

e Assumed that fatigue
damage caused by each
Weather Condition is
constant.

e Depends on the stress
extrapolation method to
derive stress for locations
that is not measured.

Advantages
e Fast

e Less uncertainty than a
time domain analysis.
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Conclusion: Future Works

e Combining two types of new information in RBI,
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Conclusion: Future Works

Combining two types of new information in RBI,

Corrosion and crack inspection in updating failure probability,

Load extrapolation for other types of OWT support structures,

Quantifying uncertainty of load extrapolation methods,

Considering the random process of the peak tensile stress in
calculating failure probability
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Message Objective

Using Failure Assessment Diagram and Occurence of

Weather Conditions in the Limit State Function improves the
accuracy of the Updated Failure Probability.

19)
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Practical Implications

P¢ results are higher when K2 is included in the LSF of a. = it
needs to consider to be conservative.
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Practical Implications

The peak tensile stress affects the safety state of any crack size =
the time when a high peak tensile stress occurs is important. This
is a first passage time problem where the random process of the
peak tensile stress first encounters a threshold.

This is a challenge of considering the fracture toughness criterion.
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Practical Implications

FAD approach predicts higher Pr values when the applied peak tensile
stress is larger than 65% the yield strength, in comparison to the LSF
using (ac, Kmat) = the use of FAD should be recommmended for
reliability assessment of existing offshore structures with high stress
(designed to the limit, corroded, damage tolerant design)
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Practical Implications

When FAD approach is utilized, the uncertainties in yield and ulti-
mate strengths are important because they define the region of plastic
collapse = they should be investigated to improve the reliability of
the structure.
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Practical Implications

The information about cracks and intervention actions helps to im-
prove our belief in the structural safety (reducing the probabilty of
failure). It is the basic to optimizing inspection plans to reduce the
O&M costs of offshore wind turbines.
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Practical Implications

An imperfect repair leads to a higher failure probability than a perfect
repair. = an imperfect repair should be considered in the decision
tree for a conservative inspection plan.
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Practical Implications

Updating using Monitoring data: the impact of the year-to-year vari-
ation of the annual mean wind speed becomes negligible after 4 years.
= it can be ignored in the LSF to reduce significantly calculation
time and give a chance to consider a finer descretized Occurence of

Weather Conditions.
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Practical Implications

The value of the predicted remaining fatigue life obtained from the
present methodology can be useful for decision making to down-rate,
curtail, or extend the lifetime of the wind turbine support structures.
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Practical Implications

To apply the proposed method for locations where strain gauges
cannot be installed, a load extrapolation method is needed, which
inturn requires a good calibrated finite element model. A model
uncertainty is also needed in the LSF.
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Practical Implications

vbox Histogram of measured strain is distorted by high frequencies
of small strain cycles, by considering the corresponding accumulated
fatigue damage during fitting process, the weighting factor of each
bin can be modified to preserve total fatigue damage.
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The use of Miner’s Rule

Fatigue damage accumulated by one load cycle is calculated as:

1 1
D = —=__§m
l Ni Kc !

For a large number of stress cycle, the expected fatigue damage

can be estimated as:

EID] = 4 > STP(S)
€0

1 [,
= Kc/o S™f (s)ds

If the stress-range is Weibull distributed (k, A), the expected

fatigue damage per cycle becomes:

E[D)] = ;Ckmr (; + 1)
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Why Link Strain with Wind and Wave?

Why not to use measured strain directly?

e You may need to measure strain for the whole lifetime.

e In offshore structures, there are locations where you cannot
install strain gauges.



Why Link Strain with Wind and Wave?

Why not to use wind and wave to get strain from a Finite Element
Model and then quantify the model uncertainty using the measured
strain?



rain with Wind and Wave?
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Why Link Strain with Wind and Wave?

Why not to use wind and wave to get strain from a Finite Element
Model and then quantify the model uncertainty using the measured
strain?

e You consider one irrelevant uncertainty more than the method
proposed in this thesis.

e You take a lot of time to perform time domain analyses.



Joint Distribution of Wind and Wave

The probability of occurence of jk/* bin which is used to link to
fatigue damage is:

P(UlOJ, Hs,kv TZ’/) = /// f(Ulo, Hs, Tz) dw dh dt

this integration need to be calculated numerically.

If only Usg is considered in the bin, the probability of j bin
becomes:

P(Uwj) = Fw(aj < Ui < bj; kw,Aw)

@ e



Joint Distribution of Wind and Wave

f(Ulo, Hs, Tz) = f(Ulo) X f(H‘Ulo) X f(TZ‘Hs UlO)

where:

f (Uio) marginal distribution of the 10-minute mean wind
speed, Weibull (ky, Aw),

f (Hs|U1o) conditional distribution of significant wave height
given Uyg, Weibull (scale = func (Uyp), shape =
func (Uno)),

f (T;|Hs Uig) conditional distribution of mean wave period given

Hs and Uqg, Lognormal (mean = func (Hs, Uo), std
= func (Hs, U1o)).



The use of Miner’s Rule

The assumption that stress-ranges follow a Weibull distribution is

not perfect!
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Figure 1: Fitting stress-range in wind class [0 to 5 m/s]



Total Fatigue Damage

T NUip NHs ”Tpa m
p =YY fkdk,r<w+1>x---

i=1 j=1 k=1 =1
Ne jki n*

P (U0, Hs ks Tp 1l kw,i)
N jkl

® Ng = Ny,, X NH, X nt, is total number of bins;

® nc i is number of stress cycles in the bin number jk/;

® N ji is number of oceanographic records in the bin number
JKI;

o nt = ZJ";’I nmj is total of observed oceanographic data per
year,;

o P (Ui, Hs ks Tp.1lkw,i) is the probability of the bin jk/ given
the scale parameter of the wind speed distribution k, ; in the

h year.



Total Fatigue Damage
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Equality vs. Inequality Events

Equality: when crack is measured a certain value. Not considered
here because it is a very small failure probability problem, MCS is
not suitable.



Importance Factors

The ‘importance factor’ of a random variable is a measure of the
sensitivity of the reliability index to randomness of that random
variable at the design point.

The ‘importance factors’ offer a way to rank the importance of the
input variables with respect to the failure event of the welded joint.

The vector of ‘importance factors' is denoted as «a,
\Y
oo VE(X) (1)
Ve (%)
where Vg (x) is the gradient vector of the limit state function at
the design point x, which is assumed to exist, as shown in Eq.(2):

ve() = (2500 . 200 ) @)




Minimum Number of Stress Cycles

e Weibull (scale = k, shape = \) of stress-range distributions in:

e Case 1: wind speeds in bin 1 (5-10 m/s): k = 1.922,

A =0.6172

e Case 2: wind speeds in bin 2 (10-15 m/s): k = 4.2385,
A=0.7793

e Case 3: wind speeds in bin 3 (20-30 m/s): k = 9.408,
A =1.0774

e SN curve: loga, = 15.606; loga; = 11.764; my =3; my =5

No. of cycles (n)  Casel Case 2 Case 3
107 5.5% 3.4% 1.4%
5 x 10° 7.3% 4.5% 1.7%
10° 19.5% 9.3% 4.3%

Table 1: Error in fatigue damage



Minimum wind measurement for design

15 years is not a long data set for design because, to estimate the
50-year return period wind speed, a minimum 20 years of data is
required (Coles et al. 2001)
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