Demonstration of a unified and flexible coupling environment for nonlinear fluid-structure interaction problems

David THOMAS, Marco Lucio CERQUAGLIA, Romain BOMAN, Grigorios DIMITRIADIS, Vincent E. TERRAPON

Department of Aerospace and Mechanical Engineering, University of Liège, Belgium

Collaborative Conference on Physics Series CCPS 2018 – Fluid Dynamics
September 11-13, 2018, Barcelona, Spain
Motivations

Fluid-structure interaction
- Nonlinear behavior
- Large range of physics
- High fidelity models
- Development of a computational environment for research and design

Primary target application: aeroelasticity
Computational approach

Monolithic
- One single framework to solve the coupled problem

Partitioned
- Coupling of independent codes
- Each code is optimized for a particular physics
Computational approach

Monolithic
- One single framework to solve the coupled problem

Partitioned
- Coupling of independent codes
- Each code is optimized for a particular physics

➡️ Need an interfacing tool

flexible
performant
FSI: governing physics & formulation

\[\frac{\partial U}{\partial t} + \nabla \cdot F^c - \nabla \cdot F^v = Q \]

\[U = [\rho, \rho \mathbf{v}, E]^T \]

Governing equations

\[\mathcal{F} \leftrightarrow \text{Fluid operator} \]
\[\mathcal{S} \leftrightarrow \text{Solid operator} \]

Coupling conditions

\[d_f^\Gamma = d_s^\Gamma = d^\Gamma \]
\[t_f^\Gamma + t_s^\Gamma = 0 \]

Fixed-point formulation

\[d^\Gamma = \mathcal{S} \left(-\mathcal{F}(d^\Gamma) \right) \]

Interface loads

\[t_f^\Gamma = -p n_f + \bar{t} n_f \]
\[t_s^\Gamma = \bar{\sigma} n_s \]
Coupling simulations – strong coupling

\[U_\infty \]

\[p \]

\[\tau_w \]

FSI loop

Stresses

Structural loads

New wall BC's

Displacements/velocities

CFD - \(\mathcal{F} \)

\(S - \text{CSD} \)
Multi-codes coupling technology: CUPyDO

- **Multi-languages**
 - C++ for computationally intensive tasks
 - Python for high-level management

Diagram:
- Utility
 - OpenMPI
 - PETSc
- Core
 - CUPyDO C++ kernel
 - MPI functions
 - Interface data
 - Interface matrix
 - Linear solver
- Interface
 - Manager
 - Interpolator
 - Algorithm
 - Generic fluid
 - Generic solid
 - Fluid solver interface
 - Solid solver interface
 - FLUID SOLVER
 - SOLID SOLVER

• Utility
• Core
• Interface
Examples of coupled solver

Fluid solvers
- SU2 – FV unstructured (Stanford)
- PFEM – particle FE (ULiège)

Structural solvers
- Metafor – NLFEM (ULiège)
- GetDP – LFEM (ULiège)
- RBM integrator (ULiège)

- Ready-to-use interfaces
- No technical restriction for coupling other software, even commercial packages
Isogai wing section

- Determine flutter conditions as a function of M_∞
- Transonic dip is captured
- S-shape curve is well recovered
- Inviscid fluid

$V^* = \frac{U_\infty}{b\omega_\alpha\sqrt{\mu}}$

“K. Isogai. AIAA Journal, 17, 1979”
Isogai wing section

- Moving shock interacting with the motion of the airfoil
- Existence of a LCO due to nonlinear aerodynamics
Stall flutter of a flat plate

- Airfoil motion rapidly turns into stall flutter
- Induced by dynamic flow separation
- Nonlinearities lead to LCO

"X. Amandolese et al., Journal of Fluids and Structures, 43, 2013."
VIV of a flexible cantilever

- Solid motion is generated by vortex shedding
- Large displacement amplitude (nonlinear)
- Laminar flow at Re = 333

“C. Habchi et al., Computer & Fluids, 71, 2013.”
VIV of a flexible cantilever

- From dense to light material
- Low mass ratios = numerical coupling instabilities \(\Rightarrow\) relaxation needed in coupling
- Number of coupling iterations per time step increases

\[
\frac{\rho_s}{\rho_f} \approx 100 \\
\frac{\rho_s}{\rho_f} \approx 10 \\
\frac{\rho_s}{\rho_f} \approx 1
\]

\(\bar{N}_{FSI} = 2.7\) \(f = 3.14\) Hz

\(\bar{N}_{FSI} = 6.9\) \(f = 7.26\) Hz

\(\bar{N}_{FSI} = 31.9\) \(f = 6.2 - 9.8\) Hz

\[\|U\| \text{[m/s]}: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8\]
• Determine flutter conditions at $M_\infty = 0.96$
• Consider inviscid fluid
• Literature: $V_f^* = 0.243 - 0.327$
• Computed: $V_f^* = 0.281$

\[V^* = \frac{U_\infty}{b_\tau \omega_2 \sqrt{\mu}} \]
AGARD 445.6 wing

- Post-critical conditions at $M_\infty = 0.96$ and $V^* = 0.300$
- Significant motion of the supersonic region

Bending of a flat plate submitted to cross flow

- Inspired from drag reconfiguration of aquatics plants
- Laminar flow at Re = 1600
- Relatively soft and light solid material:
 \[\frac{\rho_s}{\rho_f} = 0.678 \]
 ➞ transient response is numerically unstable

“F-B. Tian et al., J. of Computational Physics, 258, 2014.”
Cantilever flat wing

- Material: aluminium | Fluid: air
- High aspect ratio plate with very small thickness
- Very flexible structure

- Two perturbation amplitudes
- Two distinct limit cycles

\[
U_\infty = 17.1 \text{ m/s} \\
T^* = 0.01 \text{ s} \\
f = 6.2 \text{ Hz}
\]

\[
U_\infty = 17.1 \text{ m/s} \\
T^* = 0.1 \text{ s} \\
f = 9.8 \text{ Hz}
\]
Cantilever swept flat wing

\[||V|| \text{ [m/s]}: 0.3 \quad 0.6 \quad 0.9 \quad 1.2 \quad 1.5 \quad 1.8 \quad 2.1 \quad 2.4 \quad 2.7 \quad 3 \]

\[U_\infty = 15 \text{ m/s} \]
\[t^* = 0.01 \text{ s} \]
\[f = 4.1 \text{ Hz} \]

Wind tunnel test under the same conditions
Dam break with flexible obstacle

- Incompressible free-surface flow computed with PFEM
- Large structural displacement
Conclusions

• Developed for research and design

• Interfacing tool for strong coupling of independent solvers

• High fidelity models for nonlinear FSI

• Flexible partitioned tool for large range of physics

• Validated on typical benchmarks
Acknowledgements