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Abstract 

This paper reports on preliminary results of parameter identification problems in finite element non-linear analyses such as 
metal forming simulations. Two approaches are compared. The first one is the classic Levenberg-Marquardt algorithm. The second 
one is a trust-region algorithm based on a quadratic model. The two algorithms are compared on two cases, one of them being an 
actual experiment. 
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1. Introduction 

Simulation of manufacturing processes, here metal forming, has made major progresses during the last years. The virtual 
simulation of the fabrication process being now quite well established, a natural step ahead consists in trying to find automatic 
procedures to optimize the manufacturing process. Another perspective is also to take care of the influence of the manufacturing 
constraints upon the design, which is the long term objective of the present research project. It aims at optimizing the design subject 
to both service constraints (stiffness and strength) and fabrication constraints. A preliminary stage is to be able to build high fidelity 
digital models. Complex models require more and more material parameters for behavior laws (e.g. material constitutive and friction 
laws), which have to be identified numerically from experimental data. 

In this material parameters identification process, three steps can be identified. At first, an experimental testing is carried 
out. The second step consists in building a simulation model of the experiment. Finally, the unknown model parameters are 
determined to match the experimental data. A standard identification procedure consists in minimizing a given norm (here the 
Euclidean norm) of the error between the model predictions and the experimental results. 

From many points of view the identification process is similar to a structural optimization. Even if the identification 
problem is generally quasi-unconstrained, it has the same complexity because of the highly nonlinear and implicit character of the 
functions, which is especially amplified by the large deformation simulation analysis. 

In this paper, we use an approach of elastoplastic calculation by finite elements combined with 2 optimization algorithms: a 
Levenberg-Marquardt algorithm, which is rather classical in the literature for solving identification problem (e.g. Ghouati and Gelin 
1998) and a trust-region one (see Conn et al., 2000), which is a rather novel approach at least for structural problems. The results 
obtained with these two methods are then compared and discussed on two test cases. The first application is an academic test case to 
validate the identification method. The second one, compression of a cylinder, takes into account an actual experiment. In this 
application, the material is assumed to be elasto-(visco)-plastic and described by a Norton-Hoff behaviour law and an isotropic strain 
hardening law. The parameters to be identified are three coefficients of the Norton-Hoff law.  

The outline of this paper is as follows: in section 2, the problem formulation of the inverse formulation of parametric 
optimization is presented. In section 3, the two optimization algorithms used in this paper –Levenberg-Marquardt and a trust-region 
algorithms– are described. Section 4 presents 2 numerical applications of the optimization process. Finally, conclusions and 
perspectives for future works are given in section 5. 
 
2. Problem formulation  

Identification problems can be stated as the minimization of the Euclidean norm of the weighted difference between the 
experimental data and the responses obtained with the finite elements simulation: 
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where 
• ui

EXP (i = 1…m) are the responses measured during the test 
• ui

FE (i = 1…m) are the responses predicted by the Finite Element (FE) simulation 
• x is the vector of parameters to be identified (design variables) 
• wi (i = 1…m) are positive weight factors for dimensionality and confidence in experimental points 
• m is the number of experimental points 
• n is the number of design variables 

The choice of the Euclidean norm as objective function influences the efficiency of the optimization methods and leads to a 
fast convergence process for the main optimization methods (Kleinermann, 2000).  

The problem stated by Eq.(1) is a quasi-unconstrained one i.e. it is subject to only side constraints on design variables. It’s 
a highly non linear and implicit problem with respect to the design variables, which implies several difficulties to evaluate the 
objective function and furthermore its sensitivity to the design parameters. This framework forces to use specific finite element codes  
(e.g. Lagamine, a large deformation FE codes developed in University of Liège, see H. Grober et al., 1985).  

In identification problems the number of design variables is relatively low (around 10 design variables) compared to 
problems of structural optimization, while the dimension of the response vector can be very high (up to 1000 measured data). 
Moreover, due to the experimental process, the data are polluted by some “noise”. It turns out that the residue vector in Eq.(1) can 
never be equalized to zero. Finally because of the noisy data and of the strongly non linear character of the objective function, 
attention must be paid to the many local optima of the objective function. 



3. Optimization algorithms 
The Levenberg-Marquardt algorithm is one of the most widely used method to adress identification problems given by 

Eq.(1) (e.g. Ghouati and Gélin, 1998). It will therefore be used as a reference in this paper.  
In the Levenberg-Marquardt method, global convergence towards a stationary point of the objective function is obtained 

thanks to a stabilization of the Gauss-Newton method through a regularisation term. Most other optimization algorithms rely on 
costly line search strategies to ensure convergence. In this paper, we have implemented a trust-region algorithm, which is a rather 
novel method in structural applications. 
 
3.1 Levenberg-Marquardt algorithm 

A quadratic approximation of Eq.(1) is build. At step k, the approximation can be written as follows: 
 )()(2/1)()()()( )()()()()()()( kkTkkTkkk ffm xxHxxxxxxx −−+−∇+=  (2) 
where 

• )()()( xrxJx Tf =∇  is the gradient of the objective function with the Jacobian matrix of the residue vector J defined as:  
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In the used finite element code (Lagamine, see H. Grober et al, 1985), the sensitivity is computed with a semi-analytical 
method based on a direct differentiation method (Tortorelli et al. 1994) adapted to large deformation problems by 
Kleinermann (2000). 

• H(x) is the Hessian matrix or its approximation. The exact expression of the Hessian matrix is given by: 
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Estimations of H(x) can be constructed using quasi-Newton techniques such as DFP, BFGS… But a usual approximation is 
obtained by neglecting the contribution of second order terms of the residue (Gauss-Newton approximation): 

 )()()( xJxJxH T=  (5) 
This approximation has the advantage that no additional computation is necessary. 

Using the Gauss-Newton approximation, the quadratic model can be written as: 

 
2)()()()( )()(2/1)( kkkkm xrdxJx +=  (6) 

where d(k) = x −  x(k). Optimality conditions of the minimum problem of Eq.(6) lead to the Gauss-Newton classical iteration scheme: 
 )()()()( )()()()()( kTkkkTk xrxJdxJxJ −=  (7) 
The drawback of this method is that the convergence is not guaranteed. The Levenberg-Marquardt method consists in the addition of 
a parameter λ(k) to stabilize the Gauss-Newton method in order to penalize the step size. The objective function has now the form: 

 
2)()(2)()()()( 2/)()(2/1)( kkkkkkm dxrdxJx λ++=  (8) 

and the step d(k) = x −  x(k) is given by the iterative solution of: 
 )()())()(( )()()()()()( kTkkkkTk xrxJdIxJxJ −=+ λ  (9) 
For large λ(k), the parameters variations are smaller. The stabilization of the Gauss-Newton method is then achieved with a sub-
iteration process. At each sub-iteration, Eq.(9) is solved to find a new set of design variables. Then the objective function is 
calculated and if its value is inferior to the previous one, then the sub-iteration is convergent and one proceeds to next iteration. If 
not, λ(k) is increased and a new approximation of the parameters is obtained. Then the convergence of the sub-iteration is checked. 
The procedure is repeated until convergence. 
 
3.2 Trust region algorithm 
3.2.1 Principle (see Conn et al, 2000) 

The trust-region method is an iterative procedure in which the objective function f(x) is approximated in a suitable 
neighbourhood (the trust-region of radius ∆(k)) of the current iteration point by a model m(k)(x) that is easier to handle than f(x) itself. 
In this neighbourhood, one searches for design variables increment sk that sufficiently reduces the value of the model while satisfying 
the bound ||s(k)|| ≤ ∆(k). The objective function is then computed at the resulting trial point x(k) +  s(k). This trial point is accepted as the 
new iterate if it corresponds to a reduction of the objective function. Comparison of the expected (based on the model m(k)(x)) and the 
actual (based on f(x)) reductions of the objective function provided is used to update the radius of the trust-region. If the fidelity of 
the model is good, the radius of the trust-region is increased or left unchanged. If not, the trust-region is contracted, in the hope that 
the model provides a better prediction in this smaller region. 

This algorithm is a globally convergent one, meaning that convergence to a stationary point  of the objective function is 
guaranteed. (the gradient tends to zero). 

A difficulty of this method is the choice of the shape and size of the initial trust-region especially when variables are badly 
scaled. It can be partially solved by choosing appropriate values for the characteristic variations of the design variables. So, a variable 
scaling gives the same relative weight to each direction of the design space.  
 
3.2.2 Trust region algorithm 

We define the trust region as the ball { })()()( kknkB ∆≤−ℜ∈= xxx  

The principle of the trust-region algorithm is described in the following scheme (see Walmag, 2003): 



Step 0: Initialization. An initial point x0 and an initial trust-region radius ∆(0) are chosen. Compute f(x(0)). 
Step 1: Model definition. Define a model m(k) within the trust region B(k). In the present case, the model is quadratic and has the 

form given by Eq.(2) where the Hessian matrix is approached using Eq.(5). 
Step 2: Step calculation. Compute a step s(k) that “sufficiently reduces the model” m(k) and such that x(k) +  s(k) ∈ B(k). Solve the 

minimization problem and let: 
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The restriction forces the solution to remain within the trust-region defined by the trust-region radius ∆(k). 
Step 3: Acceptance of the trial point. Compute f(x(k) +  s(k)) and define the ratio ρ that measures the discrepancy of the quadratic 

model: 
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If ρ(k) ≥ 10-2, there is at least a reduction of the objective function and x(k+1) = x(k) +  s(k) is accepted. The iteration is said to be 
successful. Otherwise, it is rejected and x(k+1) = x(k). The iteration is said to be unsuccessful. 

Step 4: Trust-region radius update. If the model has a high fidelity (resp. low fidelity), then the trust-region is expanded (resp. 
contracted) 
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Step 5: Go to next step. Increment k by one and go to Step 1. 
 

4. Numerical results 
All the numerical simulations were carried out with Lagamine, a large-deformation computer code developed at University 

of Liège (see P. Moureaux et al, 2002). Two test-cases were analysed. 
4.1 Academic test-case 
4.1.1 Description of the problem 

The first application is a very simple test-case that allows validating the two proposed optimization methods. The actual 
experiment is replaced by a numerical one from which the force-displacement curve and the pseudo experimental points are 
generated. Then the reference parameters are perturbed to generate a starting point and the identification problem is used to retrieve 
the reference force-displacement curve. 

In this benchmark the simulated material is a simple elastoplastic material with linear hardening, similar to steel at room 
temperature. The one-dimension behaviour law “σ-ε” has thus the form given by Eq.(14): 
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with E the Young’s modulus, h the hardening coefficient and σ0 the elastic limit. The elastic limit σ0 is equal to 700 MPa.  
The geometry for this test-case is represented in Fig.1. It is a plane strain triangle. Its inferior part is fixed and a horizontal 

force is applied at the upper corner. Fig.1a is the initial configuration while Fig.1b gives the Von-Mises stress J2 after deformation. A 
coarse mesh is used (11 nodes and 7 elements) in order to be able to perform fast simulation runs and to make the set up of the 
methods. The CPU time for one simulation is around 10 seconds on SGI Origin 3800-NIC. 
 

  
 

Figure 1a: initial configuration 
 

Figure 1b: Von-Mises stress 
 
4.1.2 Optimization results 

The two design variables X1 and X2  are the Young’s modulus E and the hardening coefficient h. Their optimum values are 
respectively 200,000 and 300 MPa.  

The convergence results with the Levenberg-Marquardt trust-region algorithms are presented in Tab.1a and Tab.1b. The 
histories of the objective function and of the parameters are plotted in Fig.2a and Fig.2b.  



The trust-region algorithm converges to a local minimum closer to the global one than the Levenberg method as suggested 
by Fig.2a and Fig.2b. In The value of the objective function obtained with Levenberg-Marquardt is larger than that of the trust-region 
method and the relative value of the second design variables has not converged to the reference value of 1 for the Levenberg-
Marquardt algorithm. Our explanation of the good convergence properties of trust-region algorithm are is that an adequate choice for 
the parameter variation scaling prevents the method from falling into a local optimum.  

 
Table 1a: convergence history for the Levenberg-Marquardt method 

Iteration X1 X2 Objective function 
0 185,000 250.000 0.72724 
1 194,243 259.540 0.39889 
2 196,376 272.059 0.34319 
3 196,377 272.060 0.34312 

 
Table 1b: convergence history for the trust-region method 

Iteration X1 X2 Objective function 
0 185,000 250.000 0.727240 
1 194,816 259.540 0.398894 
2 199,378 269.783 0.338630 
3 201,156 278.570 0.308183 
4 201,658 290.815 0.303525 
5 202,189 296.475 0.292012 
6 202,189 296.474 0.286654 
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Figure 2a: History of the objective function 
 

Figure 2b: History of the parameters 
 

4.2 Identification of the parameters of a Norton-Hoff model 
4.2.1 Description of the problem 

The second test-case is based on an experiment carried out at the University of Liège. It consists in a compression test at 
high temperature (800°C). The problem is represented in Fig.4a (geometry before deformation). It is a 60% compression problem of 
a cylinder. Because of symmetry only a quarter of the structure is modelled. So on the bottom line symmetry conditions are applied, 
as well as on the vertical axisymmetrical axis and the displacement of the punch on the upper part of the cylinder is such that we have 
a constant strain rate of 5s-1. An elasto-visco-plastic model is selected for the formulation. The one-dimension behaviour law “σ-ε” 
for such a material has the form given by Eq.(15) and is shown in Fig.3: 
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with E the Young’s modulus, p1…p4 the Norton-Hoff coefficients, and ε&  the strain rate. The model introduces 4 parameters to be 
determined by optimization. However it is impossible to determine p3 since a single experimental curve has been used in this 
preliminary study . Fig.4b shows the deformed configuration and the final Von-Mises stress (J2) distribution. The finite element 
model has 204 nodes and 202 elements and the CPU time for one simulation is 15 minutes on SGI Origin 3800-NIC. 

 
4.2.2 Optimization results 

The design variables X1,  X2 and X3 are the Norton-Hoff parameters p1, p2 and p4 of Eq.(15). Since the data are perturbed by 
noise, remark that finding a perfect curve fitting is impossible except in a minimization way. The results obtained the Levenberg-
Marquardt algorithm (resp. trust-region algorithm) are presented in Tab.2a (resp. Tab.2b). The evolutions of the objective function 
and of the parameters are represented in Fig.5a and Fig.5b. The fitting of the experimental curve is shown in Fig.6. 



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

ε

σ
 (

M
P

a)

 
 

Figure 3: Behaviour law of the material. 
 

  
 

Figure 4a: Initial configuration 
 

Figure 4b: Von-Mises stresses 
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Figure 5a: History of the objective function 
 

Figure 5b: History of the parameters 
 

Table 2a: convergence history for the Levenberg-Marquardt method 
Iteration X1 X2 X3 Objective function 

0 0.9100 0.7097 0.2160 1.34497 
1 0.8778 0.79488 0.2280 0.290567 
2 0.8636 0.7860 0.2232 0.272296 
3 0.8611 0.7851 0.2226 0.272292 

 
Table 2b: convergence history for the trust-region method 

Iteration X1 X2 X3 Objective function 
0 0.910000 0.709700 0.216000 1.34497 
1 0.889574 0.799966 0.230830 0.336316 
2 0.866621 0.787157 0.223757 0.306930 
3 0.866589 0.787218 0.223733 0.300467 
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Figure 6: Curve force-displacement 
 
For this problem, the convergence of both methods is very fast (convergence in 3 iterations) and the obtained values for the 

objective function and the optimal values of the parameters are very close. Remark that for both solutions, the minimization approach 
yields a nice filtering of the experimental noise.  

 

4.3 Comparison of the cost of two methods 
Tab.3 compares the costs of the two methods. The cost of a method is evaluated in terms of number of evaluations of the 

objective function, i.e. the number of finite element simulations. Most of the CPU time (more than 95%) is indeed spent in the finite 
element analysis in iterations and in sub-iterations. The extra resources requested by optimization algorithms proper are negligible. 
Tab.3 compares the number of iterations and the number of objective function evaluations. 

Tab.3 shows that the two methods have very similar costs for the second test case. However for the first case, even if the 
trust region method had a higher cost, but provided a more accurate solution. So the larger cost reflects the improvement of the 
solution (see Fig.3 and Fig.4). 

 
Table 3: comparison of the cost of the two methods 

 Levenberg-Marquardt method Trust region method 
 Test case 1 Test case 2 Test case 1 Test case 2 

Iterations 3 3 6 3 
Evaluations of the objective function 6 5 12 5 

 
5. Conclusions 

For the identification problems presented in this paper, the trust region method is superior to Levenberg-Maquardt method 
from different points of view. Firstly, by means of an adequate choice of variation scale of the design variables, the trust region 
method is less sensitive to local optima. Because of its global convergence properties, it is essentially robust method. The most 
important disadvantage with respect to use than Levenberg-Marquardt is that it needs an a priori knowledge of the problem to give 
the initial trust region adequate shape and size. Future works will be devoted to find automatic strategies for the initial trust-region 
radius to avoid unnecessary sub-iterations (and then finite element simulations). Additional work will be devoted to improve the 
trust-region adaptation strategy to explore the best region of the design space and so accelerate the convergence.  

Finally, we would like to compare the trust-region method with GBMMA solver (see Bruyneel and al, 2002) which offers 
more flexible and general approach and is very efficient for structural optimization problems. 
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