

ICOS-France - SNO Tourbières
« The Greenhouse gases cycle: fluxes, regional balances, scenarios and instrumentation»

Tuesday 14th, November 2017
CNRS, Orléans
1- CESEC project overview

2- Material et Methods

3- Results

4- Conclusion and Perspectives
1- CESEC project overview

2- Material et Methods

3- Results

4- Conclusion and Perspectives
1- Project overview

- Context and goals
 - **CESEC project**: Déterminants des longues séries de mesures d’échanges nets de CO₂, vapeur d’Eau et rayonnementS des ECosystèmes forestiers, prairiaux et culturaux
 - **Characterization**: Temporal fluctuations of the biochemical (flux CO₂, H₂O, CH₄ and N₂O fluxes) & biophysical (ET, albedo) variables from « ICOS-Ecosystème France » experimental sites for the last 8 to 17 years.
 - **Analysis**: Influence of environmental parameters + Inter-site comparison
 - **Quantification**: impact of potential climatic drifts and extreme events on flux data
 - **Attribution**: potential evolution of fluxes due to natural and/or anthropogenic factors
 - 7 Partners:
 - EEF, INRA Nancy
 - UREP, INRA Clermont-Ferrand
 - ISPA, INRA Bordeaux
 - URP3F, INRA Poitou-Charente
 - ESE, Univ. Paris-Sud/CNRS
 - CESBIO, Univ. P. Sabatier (Toulouse)/CNRS
 - Gx Agro-Bio Tech, Univ. Liège (Belgique)

- Funding:
Working steps

- Obstacle for a comparative analysis: heterogeneity in the raw data processing of the historical eddy-covariance fluxes.

Goal: Data harmonization

- Standardized re-processing of the eddy flux computation on a half hourly basis from the high frequency data collected.
- Choice of the software: [EDDYPRO](#)
- Half hourly data selected for analyses on basis of their high quality

- Establishment of Look-up tables for CO₂ fluxes (other variables of interest in a close future) : statistical approach

- Sites Cross-comparison
1- CESEC project overview

2- Material et Methods

3- Results

4- Conclusion and Perspectives
Experimental sites already processed

ICOS France Stations Networks
- Atmospheric
- Ecosystem

4 Forests
1 Grassland
1 Cropland

November 14th, 2017
Acquisition of historical data

Availability of the data by all the partners:

- Eddy-covariance high frequency raw data
- Meteorological and soil measurements
- Above and below ground biomass measurements
- Forest/crop management and practices

<table>
<thead>
<tr>
<th>Sites</th>
<th>Ecosystems</th>
<th>Period</th>
<th>Analyzer</th>
<th>Sonic anemometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesse</td>
<td>Deciduous broadleaved</td>
<td>2000-2014</td>
<td>LI-6262</td>
<td>GILL R3</td>
</tr>
<tr>
<td>Barbeau</td>
<td>Deciduous broadleaved</td>
<td>2005-2014</td>
<td>LI-7500</td>
<td>GILL HS50</td>
</tr>
<tr>
<td>Laqueuille ext</td>
<td>Grassland</td>
<td>2004-2013</td>
<td>LI-7500</td>
<td>GILL R3</td>
</tr>
<tr>
<td>Auradé</td>
<td>Cropland</td>
<td>2004-2013</td>
<td>LI-7500</td>
<td>CSAT</td>
</tr>
<tr>
<td>Puechabon</td>
<td>Evergreen broadleaved</td>
<td>2001-2014</td>
<td>LI-6262</td>
<td>GILL R3</td>
</tr>
</tbody>
</table>

Uniform processing for making possible the cross-comparison of long term flux data

November 14th, 2017
Re-traitements uniformisés:

- Standardization of the corrections applied on fluxes
 - **Angle Of Attack Correction**: Sonic anemometer from GILL:
 - **NO CORRECTIONS CONSIDERED**: The corrections proposed are inaccurate
 - Nakai et al. 2006: Gill R2 et Gill R3 => wrong algorithm
 - Nakai et al. 2012: Gill WindMaster™ et Gill WindMaster™ Pro => wrong algorithm
 - **Spectral Corrections**:
 - Low frequencies: Moncrieff et al. 2004
 - High frequencies:
 - Open-path analyzer: Moncrieff et al. 1997 (analytical method)
 - Closed-path analyzer: Fratini et al. 2012 (tube attenuation and sensors separations considered)
 - **Density Corrections**: WPL, Sensible heat flux from the 7500 : Burba et al. 2008

- **Time lag and Axis rotation for tilt correction**
 - **Time lag**: « Automatic time lag Optimization »
 - **Rotation coefficients**: Planar fit (grasslands and forests) et rotation 2D (croplands)
Post-processing: selection of high quality half hourly data

- Test on rainfall data (open-path Li7500):
 - u^* filter: Papale et al. 2006 re-adapted

Partitioning

- Ecosystem respiration: Reco (Nighttime fluxes: Reichstein et al. 2005)
- Gross Primary Production : GPP (Daytime fluxes: NEE – Reco extrapolated)

Look Up Table approach

- Fluxes in relation to explanatory variables : half hourly time step
- Long term analysis of chronological series
1- CESEC project overview

2- Material et Methods

3- Results

4- Conclusion and Perspectives
3- Results

- Synthesis of selected data:
 - Percentage based on 17520 (365 days) and 17568 (366 days) half-hourly data

<table>
<thead>
<tr>
<th>Sites</th>
<th>Ecosystèmes</th>
<th>Période</th>
<th>H</th>
<th>LE</th>
<th>FCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesse</td>
<td>Deciduous broadleaved</td>
<td>2000-2014</td>
<td>En cours</td>
<td>En cours</td>
<td>En cours</td>
</tr>
<tr>
<td>Barbeau</td>
<td>Deciduous broadleaved</td>
<td>2005-2014</td>
<td>58%</td>
<td>41%</td>
<td>38%</td>
</tr>
<tr>
<td>Laqueuille ext</td>
<td>Grassland</td>
<td>2004-2013</td>
<td>53%</td>
<td>40%</td>
<td>41%</td>
</tr>
<tr>
<td>LeBray</td>
<td>Coniferous</td>
<td>1999-2008</td>
<td>35%</td>
<td>25%</td>
<td>29%</td>
</tr>
<tr>
<td>Aurade</td>
<td>Cropland</td>
<td>2004-2013</td>
<td>47%</td>
<td>36%</td>
<td>37%</td>
</tr>
<tr>
<td>Puechabon</td>
<td>Evergreen broadleaved</td>
<td>2001-2014</td>
<td>38%</td>
<td>22%</td>
<td>27%</td>
</tr>
</tbody>
</table>

- Higher impact of u* filtering in forests
- Higher impact of statistical test filtering for closed-path sensors (6262)
3- Results

- Homogeneous distribution over the year of the final data selected

Auradé 2006 : Winter wheat
3- Results

Auradé 2011: Rapeseed

![Graphs showing H [W m⁻²], LE [W m⁻²], and co2_flux [umol m⁻² s⁻¹] over time from 01/01/2011 to 17/12/2011.]

November 14th, 2017
- Cross-comparison of Reco and GPP in response to environmental parameters: synthesis
3- Results

Homogeneous trend of Reco in response to Tair

- Temperate deciduous forest
 - Barbeau: Reco mean per Tair and per year
 - P-value > 0.05

- Mediterranean evergreen forest
 - Puechabon: Reco mean per Tair and per year
 - P-value > 0.05

Respiration rates generally increased with increasing temperatures (Tair < 20°C)

Reco limitation at high air temperature Tair > 20°C \Leftrightarrow soil inertia

November 14th, 2017
3- Results

- Homogeneous trend of Reco in response to Tair

Temperate deciduous forest

Normality: Kolmogorov-Smirnov test: p-value << 0.05

We can regroup the years into each t° class

No general trend of Reco in any t° classes throughout 2005-2014: anova: *p-value* > 0.05

November 14th, 2017
3- Results

- Homogeneous trend of Reco in response to Tair

Mediterranean evergreen forest

Normality: Kolmogorov-Smirnov test: p-value << 0.05

No general trend of Reco throughout 2001-2014: anova: *p-value* > 0.05
3- Results

- Other sites

Extensive grassland

Laqueuille extensif: Reco mean per Tair and per year

Statistical analysis: Ta = 15.5°C

Statistical analysis: Ta = 19.95°C

November 14th, 2017
3- Results

- At the top-35cm surface: different impact of edaphic stress

Temperate deciduous forest

- No impact of soil water stress (REW) on Reco response to Tair: Wilcoxon test: \(P\text{-value} > 0.05 \) at high temperatures

Mediterranean evergreen forest

- Strong impact of soil water stress (REW) on Reco response to Tair: Wilcoxon test: \(P\text{-value} << 0.05 \) at high temperatures

November 14th, 2017
3- Results

- Look up table determination

Mediterranean evergreen forest

Model adjustments for Reco versus Tair

Puechabon, 2001–2014

- REW < 0.28: Polynomial (Richardson et al. 2006)
 - $R^2 = 0.69$
 - Residual sum-of-squares = 0.2272
 - $n = 3994$
- REW > 0.28: Polynomial (Richardson et al. 2006)
 - $R^2 = 0.982$
 - Residual sum-of-squares = 0.758
 - $n = 19266$

Two polynomial regressions for Reco extrapolation on daytime data

November 14th, 2017
3- Results

- Look up determination

Temperate deciduous forest

Model adjustments for Reco versus Tair

- $R^2 = 0.993$
- Residual sum-of-squares = 0.849
- $R^2 = 0.994$
- Residual sum-of-squares = 2.58

=> LAI impact on Reco response to Tair:
 Significant difference by Tair classes (t.test: $p\text{-value} < 0.05$)

For LAI > 0: non linear adjustment ajustement for GPP computation

November 14th, 2017
3- Results

- GPP analysis

No general trend of GPP response to PPFD throughout 2001-2014: anova: p-value > 0.05

We can regroup the years into each PPFD class
3- Results

- Environmental factors for GPP determinism

Temperate deciduous forest

Mediterranean evergreen forest

Lower slope and saturation values at high VPD

p-value \(< 0.5\) from PPFD \(= 200 \, \mu\text{mol m}^{-2} \text{s}^{-1}\)
Barbeau: Environmental factors for GPP determinism

Temperate deciduous forest

Soil drought (REW < 0.4)
No edaphic stress impact on GPP response to PPFD

Dominant impact of VPD compared to REW
3- Results

Puechabon: Environmental factors for GPP determinism

Mediterranean evergreen forest

GPP mean versus PPFD per VPD and REW classes 2001-2014

- VPD = 1.6 kPa
- VPD = 1.8 kPa
- VPD = 2.1 kPa
- VPD = 4.1 kPa

p-values $<< 0.05$

Soil drought (REW < 0.28)
Edaphic stress impact on GPP response to PPFD

Co-impact of VPD and REW on GPP response to VPD
1- CESEC project overview

2- Material et Methods

3- Results

4- Conclusion & Perspectives
- Analysis based on 40% on average of flux data for both sites.
- Homogeneous approach for statistical analysis and comparative studies
- First analysis: temperate deciduous and mediterranean evergreen forests
 - No significant long term evolution of Reco and GPP through the studied periods on both sites despite $[\text{CO}_2]$ increase.
 - Look up table:
 - Respiration limitation at high air temperature on both sites (and others)
 - LAI dependency for the temperate deciduous forest (Barbeau)
 - REW dependency for mediterranean evergreen forest (Puechabon)
 - Significant decrease of GPP response to PPFD with VPD increase:
 - Dominant effect of air vapor stress in the temperate deciduous forest
 - Co-impact of atmospheric and edaphic stresses in the mediterranean evergreen forest

- Homogeneous database « pré-ICOS »:
 - Using the standardized methodology for the other sites (Lonzée, Lamasquère, Kourou, laqueuille intensif, Grignon).
 - Similar work for the biophysical variables
 - Build the Look Up Table based on these results and assess different climate scenarii using simple relations.
Thank you
A little bit more ...
Material & Methods

Determinant variables

<table>
<thead>
<tr>
<th>Atmospheric parameters</th>
<th>Reco</th>
<th>GPP</th>
<th>ET</th>
<th>H</th>
<th>Albedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tair</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPD</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PPFD</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rg</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LWsortant</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsurf</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWCsurf</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REW</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vegetation parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAI</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Species</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical practices</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stress parameters:

- Atmospheric: Vapor Pressure Deficit : VPD: measured
- Soil: Relative Extractable Water: REW : modelled (GO+, Biljou, SIERRA): threshold REW (0.2, 0.4)

Vegetation parameters:

- LAI => vegetation index 0-1 (with or with out leaves, bare soil / cultivated soil)
Nouveau traitement (CESEC, EddyPro) versus ancien traitement (base de données IMECC)

Exemple :
Puechabon

FCO2 CESEC (µmol m⁻² s⁻¹)

FCO2 IMECC (µmol m⁻² s⁻¹)

\[y = 0.9817x - 0.1182 \]
\[R^2 = 0.9794 \]
New processing (CESEC, EddyPro) versus previous processing (IMECC database)

Example:
Puechabon

H CESEC (W m⁻²) LE CESEC (W m⁻²)

H IMECC (W m⁻²) LE IMECC (W m⁻²)

\[y = 1.0559x + 1.7777 \]
\[R^2 = 0.9944 \]

\[y = 1.018x + 3.0411 \]
\[R^2 = 0.8883 \]
<table>
<thead>
<tr>
<th>Sites</th>
<th>Ecosystèmes</th>
<th>Période</th>
<th>Quality Check 1</th>
<th>Tests statistiques 2</th>
<th>Météo</th>
<th>Ustar threshold 3 (m s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesse</td>
<td>Décidus</td>
<td>2000-2014</td>
<td>Flag 0</td>
<td>√</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Barbeau</td>
<td>Décidus</td>
<td>2005-2014</td>
<td>Flag 0</td>
<td>√</td>
<td>√</td>
<td>0.252</td>
</tr>
<tr>
<td>Laqueuille ext</td>
<td>Prairie</td>
<td>2004-2013</td>
<td>Flag 0</td>
<td>√</td>
<td>√</td>
<td>0.146</td>
</tr>
<tr>
<td>LeBray</td>
<td>Conifères</td>
<td>1999-2002 2003-2008</td>
<td>Flag 0</td>
<td>√</td>
<td>×</td>
<td>0.275</td>
</tr>
<tr>
<td>Auradé</td>
<td>Cultures</td>
<td>2004-2013</td>
<td>Flag 0</td>
<td>√</td>
<td>√</td>
<td>0.13</td>
</tr>
<tr>
<td>Puechabon</td>
<td>Feuillus persistants</td>
<td>2001-2014</td>
<td>Flag 0</td>
<td>√</td>
<td>×</td>
<td>0.232</td>
</tr>
</tbody>
</table>

1 : Mauder et Foken, 2004
2 : Vickers et Marth, 1997: Spikes, Amplitude resolution, drop-outs, absolute limits, Discontinuities, Skweness & Kurtosis (high flag uniquement)
3 : Papale et al. 2006 ré-adapté
Impact of Nakai et al. 2006 corrections (GILL R3)

Barbeau case study : with and without leaves period

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>Parameters</th>
<th>With leaves</th>
<th>Year</th>
<th>Period</th>
<th>Parameters</th>
<th>without leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>mai-juin</td>
<td>w'</td>
<td>20%</td>
<td>2006</td>
<td>février-mars</td>
<td>w'</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u*</td>
<td>9%</td>
<td></td>
<td></td>
<td>u*</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>15%</td>
<td></td>
<td></td>
<td>H</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE</td>
<td>14%</td>
<td></td>
<td></td>
<td>LE</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO₂</td>
<td>14%</td>
<td></td>
<td></td>
<td>FCO₂</td>
<td>7%</td>
</tr>
<tr>
<td>2008</td>
<td>mai-juin</td>
<td>w'</td>
<td>21%</td>
<td>2009</td>
<td>février-mars</td>
<td>w'</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u*</td>
<td>11%</td>
<td></td>
<td></td>
<td>u*</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>15%</td>
<td></td>
<td></td>
<td>H</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE</td>
<td>13%</td>
<td></td>
<td></td>
<td>LE</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO₂</td>
<td>12%</td>
<td></td>
<td></td>
<td>FCO₂</td>
<td>11%</td>
</tr>
<tr>
<td>2011</td>
<td>mai-juin</td>
<td>w'</td>
<td>21%</td>
<td>2012</td>
<td>février-mars</td>
<td>w'</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u*</td>
<td>9%</td>
<td></td>
<td></td>
<td>u*</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>16%</td>
<td></td>
<td></td>
<td>H</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE</td>
<td>12%</td>
<td></td>
<td></td>
<td>LE</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO₂</td>
<td>13%</td>
<td></td>
<td></td>
<td>FCO₂</td>
<td>9%</td>
</tr>
<tr>
<td>2014</td>
<td>aout sept</td>
<td>w'</td>
<td>21%</td>
<td>2014</td>
<td>janv-fév</td>
<td>w'</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u*</td>
<td>9%</td>
<td></td>
<td></td>
<td>u*</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>16%</td>
<td></td>
<td></td>
<td>H</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE</td>
<td>13%</td>
<td></td>
<td></td>
<td>LE</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCO₂</td>
<td>13%</td>
<td></td>
<td></td>
<td>FCO₂</td>
<td>12%</td>
</tr>
</tbody>
</table>
3- Results

- Long term evolution of environmental parameters

Temperate deciduous forest

Mediterranean evergreen forest

Results

Evolution par année et différence significative ou non?
Reco attenuation at high temperature

- Effet de la réserve en eau extractible REW de surface (0-35 cm)

Formula: \(\text{data0$Reco} \sim \text{Rref} \times \exp(\text{Eo} \times ((1/(\text{Tref} - \text{To})) - (1/(\text{data0$Ta} - \text{To})))) \)

Parameters:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|-----------|------------|---------|----------|
| Rref | 4.5017 | 0.0327 | 137.66 | <2e-16 *** |
| Eo | 159.2166 | 4.5808 | 34.76 | <2e-16 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Effet de GPP

Résidus versus GPP (Tair > 19°C)