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Supporting Information 

Supplementary Methods 

Experimental procedure 

 Hierarchical auditory oddball task (Paris 1 & 2 dataset): Task-related EEG signals were obtained from 

the ‘Local-Global’ protocol (Bekinschtein et al., 2009) designed to study unconscious and conscious auditory 

processing. Accordingly, brain responses to two types of auditory events were recorded: automatically 

processed short-time-range violations and long-time-range violations whose recognition depends on explicit 

working memory effort. For optimal cognitive performance, patients underwent recordings at least 24 hours 

after sedation discontinuation. Medication that could potentially modify the EEG, e.g., myorelaxants and anti-

epileptic drugs were not controlled. At the beginning of each recording session, EEG signal quality was 

assessed. If seizures or any other clearly identifiable abnormal activity were observed, the recording was 

stopped. EEG recordings were sampled at 250 Hz with a 256-electrode geodesic sponge sensor net (EGI) 

referenced to the vertex. Recordings were band-pass filtered (from 0.5 to 45Hz using a 6 and 8 order FFT-

based Butterworth filter). Data were then epoched from -200ms to 1336ms relative to the onset of the first 

sound. Epochs were excluded based on adaptive outlier detection as in Engemann et al. (2015). Subsequently, 

data were re-referenced using an average reference and baseline correction was applied. 

 Task-free recordings (Liege dataset): Data were chunked into 1536ms pseudo-epochs, matching the 

length of the task-based epochs, with random intervals between epochs matching the inter-trial intervals of 

the auditory task. Otherwise, the same acquisition preprocessing scheme was applied. 

Statistical Analysis 
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Statistical Inference: We extended our visualizations into hypothesis tests by employing the percentile 

bootstrap (Efron & Tibshirani, 1993). Accordingly, we generated 2000 bootstrap samples by drawing with 

uniform probability and replacement n samples from the dataset. The test-statistic of interest was then 

evaluated on each bootstrap sample. Two-sided 95% confidence intervals were obtained by querying the 2.5 

and 97.5 percentiles and the significance-level was then obtained by inversion of the confidence interval that 

excluded the value under H0. We denoted difference-statistics by D. For correlation analysis, we relied on the 

non-parametric Spearman’s Rank correlation coefficient. In the latter case, we obtained the significance level 

from analytical p-values.  

To assess out-of-sample generalization we used two complementary approaches: A conservative validation on 

independent data (new cohorts, different protocols and laboratories) and cross-validation. For cross-validation 

we used a group Monte Carlo sampling scheme with a training set size of 80 percent, a testing set size of 20 

percent and 50 iterations. The Monte Carlo procedure is known to minimize estimation variance and has been 

shown to yield low positive cross-validation bias (Varoquaux et al., 2016). The grouping consisted in exclusively 

assigning subjects to either the test or the train sets. For assessing the generalization capacity of the DOC-

Forest on new datasets we contrasted the performance against empirically estimated chance levels. These 

were obtained from comparisons against a dummy classifier that generated random predictions based on the 

observed class-probabilities. 

 Area under the Curve metric:  Univariate and multivariate discrimination performance was 

summarized with Area Under the Curve (AUC) calculated from the receiver operator characteristic (ROC). For a 

binary classification system, the ROC pits the detection probability, commonly referred to as sensitivity against 

the probability of false alarm (1 - sensitivity). These probabilities are empirically estimated by moving the 

decision cut-off along the sorted values of a continuous variable, e.g. a score, and evaluating its relation to the 

true label. In the case of traditional model-free univariate analysis, the score is the EEG-marker itself, in the 



 3 

case of univariate or multivariate machine learning it is the predicted probability of a given sample to belong 

to the target class. The AUC can then be conveniently used to summarize the performance, where a score of 

0.5 is uninformative and equals to random guessing whereas a score of 1 amounts to perfect classification and 

0 to total confusion, indicating negative correlation between the score and the label. We used the AUC in two 

different contexts, once to summarize the class-probabilities issued by our classification models, once in a 

direct fashion on single marker values without a classification model. Note that in the latter context, markers 

often show univariate AUC scores smaller than chance level (0.5) because they are conceptually related to 

absence of consciousness. To avoid confusion, we rectified the direct AUC in that case by abs(AUC – 0.5) + 0.5. 

Contrastingly, for classification models, AUC values smaller than 0.5 can indicate inconsistencies of patterns 

between training and testing data or result from low performance of the learned decision rules.  

Furthermore, note that the AUC of a clinical score regarding two groups of patients’ amounts is closely related 

to computing the Mann-Whitney-U statistic and can be directly obtained from dividing U by the product of the 

two groups sample sizes: 

𝐴𝑈𝐶 =
𝑈

𝑛&𝑛'
 

 

Multivariate Pattern Classification: We chose the Extra-Trees algorithm (Geurts, Ernst, & Wehenkel, 2006) 

because this algorithm is well-established and belongs to the most popular machine learning techniques for 

regression and classification problems, next to Random Forests (Breiman, 2001), Support Vector Machines 

(SVM) and penalized linear models. We chose this algorithm to improve the robustness of classification. 

Moreover, we found randomized classification trees to achieve, ad-hoc, without tuning hyper-parameters and 

without feature-selection a performance equivalent to an SVM with tuned regularization parameter and with 

explicit feature-selection (Engemann et al., 2015). Extra-Trees are non-parametric and robust by design and 

are not sensitive to the measurement scale of the input data. This algorithm can handle so-called wide 
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datasets in which more variables than samples are available. Moreover, Extra-Trees belong to the family of 

adaptive algorithms capable of scaling the complexity of the learned model to the amount of data available. 

The Extra-Trees algorithm achieves its efficiency by generalizing the non-linear decision tree approach. Single 

decision trees are non-parametric rule-based models that automatize variable selection and can be thought of 

as learning a “regression surface” from the data by recursive orthogonal partitioning (Efron & Hastie, 2016). In 

other words, decision trees map joint value ranges of the input variables to values of the outcome variable. 

However, decision trees poorly generalize to new data. The Extra-Trees retains all benefits of decision trees 

while mitigating their excessive variance and poor generalization capability. This is achieved by averaging over 

many randomly constructed, hence uncorrelated, decision trees, each of which is “grown” on randomly drawn 

subsets of 𝑚 input variables when looking for candidate splits at internal nodes (typically, 𝑚 = )𝑝). Unlike 

Random Forests, their historical predecessor, the Extremely Randomized Trees algorithm does not make use 

of randomization across samples via bootstrapping. It instead achieves additional randomization at the level of 

the thresholds used when constructing the trees, which can improve approximation of a fully randomizes tree 

and can facilitate its interpretation (Louppe, Wehenkel, Sutera, & Geurts, 2013). This principle, effectively, 

permits a random search through a combinatorial space of variables. Therefore, the Extra-Trees algorithm 

lends itself to exploit interactions between variables if sufficient data is available. Consequently, the ensuing 

model often consists of thousands of trees which practically renders interpretation difficult. 

To improve the interpretability of randomized classification trees, the so-called variable importance 

metric has been proposed and can be readily computed for a fitted model. Intuitively, the importance score of 

a variable can be understood as the weighted reduction of entropy of the outcome, over all the internal nodes 

where that variable has been used for making a split (Louppe et al., 2013). Variable importance can be shown 

to correspond to a weighted average of the mutual information between that variable and the outcome, 

conditionally over any possible configuration of any subset of the other variables if entropy is used as impurity 

criterion. Variable importance is of considerable interest, as its conditional (multivariate) nature complements 
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marginal (univariate) statistics. In other words, variable importance is multivariate and accordingly a variable 

can be important either because of a univariate (marginal) correlation with the outcome, or because its 

interdependencies with other variables are informative about the outcome. This potentially facilitates 

discovery of interesting variables which would be overlooked otherwise and is a welcomed remedy to the 

problem that predictive variables are not necessarily significant (Bzdok, Engemann, Grisel, Varoquaux, & 

Thirion, 2018; Lo, Chernoff, Zheng, & Lo, 2015). Some cautious interpretation is advised as masking effects can 

occur and not all necessarily influential variables are captured by the variable importance under default 

settings, especially when using Random Forests (Louppe et al., 2013). However, this effect can be mitigated by 

using only one variable for splitting (K or max_features = 1), by constraining the maximum tree depth to 3-5 

and by approximating full randomization by using Extremely Randomized Trees (Louppe, 2014). This 

approximation of full randomization has the advantage that the variable importance is only driven by relevant 

variables, not irrelevant ones and, when combined with entropy as impurity criterion, its interpretation as 

mutual information holds (Louppe et al., 2013). As performance usually stabilizes at a certain point as trees 

are added to the model a trade-off between performance and speed has to be made (Geurts, Ernst, & 

Wehenkel, 2006). Profiling suggested stable and reasonable performance after 1000-2000 trees. 

In the present study, we hence used the Extremely Randomized Trees with 2000 trees, a tree depth of 

four, entropy as impurity criterion, and a single feature for splitting. Otherwise we used default parameter 

values which have been shown to be optimal in most situations and are typically not recommended to be 

tuned to not jeopardize the computational benefits of Extra Trees over other randomized tree techniques 

(Geurts et al., 2006). For a detailed description of default values please consider the documentation of the 

Scikit-Learn software for machine learning (Pedregosa et al., 2011). 
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Case report of the cognitive motor dissociation patients 

Patient P1 This male 40 years old patient was admitted to the hospital with the diagnosis of UWS 11 

months after traumatic brain injury resulting from a car accident. The patient behaviorally assessed with the 

CRS-R five times within a week, during which he showed auditory (1/5) and oral (4/5) reflexive behavior. The 

patient showed eye opening 3 out of 5 assessments and was diagnosed as comatose the other two 

assessments. The results of the structural neuroimaging highlighted micro-hemorrhages and diffuse axonal 

injury. The ventricles were moderately enlarged and atrophy was pronounced in the midbrain and around the 

cortical sulci. Functional MRI results suggested the presence of brain activity consistent with covert response 

to command as tested with the tennis paradigm, yet, no activation of resting state networks could be 

detected.  

Patient P2 This female, 36 years old patient was admitted to the hospital with the diagnosis of UWS six 

years and two months after a post-ischemic vertebrobasilar stroke. The patient was assessed with the CRS-R 5 

times within the week of hospitalization, during which she showed motor (4/5) and oral (5/5) reflexes. The 

patient showed eye opening during all assessments. Structural MRI revealed the presence of severe ischemic 

lesions. Atrophy was most pronounced at the upper part of the cerebellum, while the frontal, parietal and 

striatum seemed relatively spared. Ventricles were enlarged. Functional MRI results suggested the presence of 

brain activity consistent with covert response to command as tested with the tennis paradigm, in addition, 

activation of the default mode resting state network could be detected.  

Supplementary Results 

Consistency of classification in diagnostic sub-groups 

In order to assess classification accuracy for sub-groups we performed cross-validation on the Paris 1 dataset 

as described in the main text based on the full EEG-configuration. In each fold we subdivided the test set 
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according to diagnostic groups and computed separately the average AUC metric across all 50 folds. We first 

considered the three largest etiological groups (anoxia, stroke and TBI). We obtained an AUC of 0.77 

(SEM=0.014) for anoxia patients (n = 34), an AUC of 0.83 (SEM = 0.024) for stroke patients (n = 47) and an AUC 

of 0.68 (SEM = 0.036) for TBI patients (n = 38). We then subdivided the dataset in acute patients (delay <= 30, 

n = 71) and chronic patients (delay > 30, n = 71). For acute patients we obtained an AUC of 0.78 (SEM = 0.023) 

and for chronic patients an AUC of 0.80 (SEM = 0.017). 

Detailed comparison between individual markers and DOC-Forest 

We assessed how each marker discriminated between UWS and MCS patients as a function of EEG-

configurations using the task-EEG dataset recorded in Pitié-Salpêtrière (Paris 1 dataset). Comparing the cross-

validated model-based AUC for each marker with the model-free AUC (Figure S1A) revealed a tight positive 

correlation (rhoSpearman = 0.94, 95% CI[0.905, 0.962], p < 0.001). This finding suggests that our univariate forest 

models performed equivalently to the previous model-free method. Subsequent analyses suggested that, on 

average, over all EEG, the DOC-Forest performance assumed at least the 98th percentile compared to other 

markers (PercentileDOC-Forest = 0.985, 95% CI[0.981, 0.989]) and its fluctuation over configurations was situated 

around the 83rd percentile (PercentileDOC-Forest = 0.832, 95% CI[0.796, 0.894 ]). 

Tracking the discrimination performance between UWS and MCS across the EEG configurations revealed 

fluctuations according to marker subtype, conceptual family (Figure S1, Figure S2) and variance induced by the 

EEG configuration itself (cf. Figure 2A and 3B in the main text). Indeed, we found a positive correlation 

between fluctuations of marker estimates and discrimination performance across EEG configurations 

(rhoSpearman = 0.46, 95% CI[0.289, 0.6], p < 0.001, suggesting that performance was more stable when the 

marker itself was stable too (Figure S1B and S2). Interestingly, evoked response markers appeared more 

severely affected than other markers. 

Supplementary Figures 
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Figure S1: Classification with univariate models. (A) Comparison between traditional model-free classification 

on the training data using the univariate AUC metric as in Sitt, King et al. 2014 and estimation of out-of-sample 

performance using univariate classifiers and cross-validation. A positive relationship between model-free in-

sample performance and univariate out-of-sample performance was observed. Markers that performed better 

as measured by traditional model-free AUC also showed higher cross-validated performance. This relationship 

was less tight at lower performance. Note that markers performing close to chance level tended to score 

below a cross-validated AUC of 0.5. The 10 best markers are indicated with labels for convenience. (B) 

Relationship between relative marker variance and performance over 36 EEG configurations displayed on 

double logarithmic scale. Markers at each configuration were standardized to the reference configuration of 

100% epochs and 256 sensors.  A non-linear positive relationship emerged, suggesting that markers whose 

values were more strongly changed by the EEG configuration also showed stronger fluctuations in 

performance. The 10 least variable markers are labeled for convenience. 
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 Figure S2: Discrimination performance of EEG-markers across experiments. The cross-validated AUC 

for all 112 EEG-markers of consciousness and the DOC-Forest across all 36 EEG configurations on the Paris 1 

dataset ordered by average performance. The marker family is indicated by the colors. The marker subtype by 

the letter suffix, e. g., mean over epochs and standard deviation over channels reads “m,s”. The boxplot 

whiskers indicate value ranges. The black notches indicate performance at the reference configuration of 

100% epochs and 256 sensors. It can be seen that some markers rather improved their performance as 

sensors and epochs were changed (e.g. θ m,m) while others rather decreased their performance (e.g., α 

m,s). Note that performance fluctuated less when markers performed higher on average. 

 

Figure S3: Distribution shifts from mismatching EEG-configuration. To ensure that using different 

combinations of sensors and epochs for training and testing induces nontrivial differences between the 

datasets, we applied the DOC-Forest to the origin of an EEG-recording instead of the diagnosis of the patient 

using 5-fold cross-validation over all combinations of EEG-configurations (A Paris 1 versus 2, B Paris versus 

Liège). It can be seen that the origin is almost perfectly decodable when EEG-configurations maximally 

diverge, suggesting that changing the number of sensors and epochs impacts the distribution of the datasets. 
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Figure S4: Cross-configuration generalization. (A) DOC-Forest generalization performance when using 

different EEG configurations for training on Paris 1 (rows) and testing on Paris 2 (columns). The 36 

combinations of sensors and epochs are ordered such that, from the left corner, epochs grow slowly (1% to 

100%) while sensors repeat (1 to 256). We observed reasonable generalization performance for majority of 

combinations of EEG-configuration. Note the horizontal and vertical stripes in the upper right part of the 

matrix, which point out peak performance with fewer sensors (8-32) and at least 25% of the epochs. (B) The 

same analysis for generalization from the combined Paris 1 & 2 dataset to the Liège dataset. Again, reasonable 

generalization performance was observed for the majority of combinations. However, the overall 

generalization pattern was markedly different, suggesting peak performance when less epochs were used on 

for training but more epochs and at least 16 sensors for testing. 
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