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Abstract
Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to
model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects
that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by
stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation
frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic
model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the
fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of
physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is
greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is
less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type
of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs
initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards
understanding mechanisms of electrical stimulation therapies.
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1 Introduction

Studying the effects of electrical stimulation on the mam-
malian nerve fiber has been of prime interest due to its
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applications in treating various diseases. Stimulation of
peripheral and dorsal column fibers is used to alleviate
acute and chronic pain (Shealy et al. 1967; Wall and Sweet
1967; Stidd et al. 2012; Shechter et al. 2013); stimula-
tion of muscle fibers is used to restore sensory or motor
function loss caused by nerve injury or diseases such as
multiple sclerosis and cerebral palsy (Kralj and Bajd 1989;
Pfurtscheller et al. 2003; Peckham and Kilgore 2013); and
stimulation of the vagus nerve has been effective in treating
epilepsy, depression, and anxiety (Groves and Brown 2005).
In many cases, these nerve fibers have underlying physi-
ological activity that interacts with the exogenous activity
generated by the external current stimulus.

There are three main interactions that occur (Sacré
et al. 2015): (i) collisions between antidromic APs from
stimulation and orthodromic APs from underlying physio-
logical activity, (ii) inter-signal loss of excitability of the
fiber to an AP generated by physiological activity due to
a recent AP generated by stimulus (physiological–stimulus
refractory period), and vice versa (stimulus–physiological
refractory period), and (iii) intra-signal loss of excitability
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of the fiber to an AP generated by stimulus due to a recent
stimulus AP (stimulus–stimulus refractory period) and to an
AP generated by physiological activity due to a recent AP
generated by physiological activity (physiological–physiolog-
ical refractory period). In order to better understand and
optimally design stimulation therapies for diseases, it is
necessary to understand when and how each of these inter-
actions occur under different stimulation protocols.

A few experimental studies have investigated and/or
exploited interactions between APs generated by stimulus
and underlying physiological activity. Collision block was
used by Iggo in cats as a technique to isolate a single
unmyelinated nerve fiber from vagal afferent fibers (Iggo
1958). Iggo stimulated the fiber at both ends and studied
collisions between antidromic activation at one end of the
fiber with orthodromic activation from the other end. Colli-
sion block was also exploited to artificially block unwanted
physiological activity in the sciatic nerve (van den Hon-
ert and Mortimer 1981). A periodic train of unidirectional
antidromic APs was used to block underlying orthodromic
activity. These studies considered only collisions and were
limited to deterministic inputs (single pulse or periodic train
of impulses).

There have also been computational efforts to study the
effects of stimulation on a mammalian nerve fiber. In partic-
ular, biophysical conductance-based models of nerve fibers
have been developed to study their excitability properties
(McIntyre et al., 1989; Reilly, 1999; Wesselink et al., 2002,
to name a few). These studies characterize the effects of
stimulation on the fiber, such as activation threshold and con-
duction velocity, by modeling different nerve geometries
(single cable or double cable), different extracellular medium
compositions, and different electrode configurations, but do
not study interactions between APs generated by stimulus
with underlying physiological activity in the fiber.

A more recent study developed a simple computational
model based on the speed of conduction and refractory
periods to capture these interactions (Crago and Makowski
2014). Two inputs were applied to different sites along
the fiber: (i) the physiological activity was modeled as
a spike train whose mean firing rate is generated by
a normal distribution and (ii) the external stimulus was
modeled as a periodic train of APs. Collision block
and inter-signal loss of excitability were studied as a
function of the mean firing rate of APs generated by
physiological activity. To our knowledge, this functional
model is the first to investigate interactions rigorously but
cannot identify nonlinear effects like relative refractory
periods that may arise in the biophysical fiber model.
Furthermore, underlying physiological activity may not be
well characterized by a normally distributed firing pattern
(Jänig et al. 2009). Variable patterns (bursts, Poisson,
etc.) of stimulus are more realistic characterizations of

physiological response processes (Bruns et al. 2009). In
our recent study (Sadashivaiah et al. in press(a)), we
constructed a similar functional model and compared the
conduction properties of the fiber to a high dimensional
mechanistic model. In this study, we aimed to further
investigate the interactions between APs generated by
stimulus with underlying physiological activity in the fiber
using a mechanistic model.

Specifically, we constructed a mechanistic model of an
unbranched, myelinated nerve fiber based on biophysical
principles. This fiber receives two inputs: the underlying
physiological activity initiated at the terminal end of the
fiber and the external stimulus applied to the middle of the
fiber (see Fig. 1). We observed and characterized all three
types of interactions between antidromic APs generated by
a deterministic periodic external stimulus and orthodromic
physiological APs generated by a stochastic Poisson process.
We computed conduction reliability, defined as the ratio of
the number of physiological APs that make it to the somatic
end of the fiber over the total number of physiological
APs entering nerve fiber. We analyzed conduction reliability
using a mechanistic model of relay neurons in the thalamus
in a previous study (Agarwal and Sarma 2012).

We varied the frequency of the input signals and com-
puted conduction reliability for different fiber diameters.
Our results demonstrate that the conduction reliability
strongly depends on both physiological and stimulus input
frequencies and weakly depends on the diameter of the
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Fig. 1 Mechanistic model of nerve fiber. Our model of extracellular
electrical stimulation of myelinated nerve fibers includes the underlying
physiological activity as a current source, Iphys at terminal end of the
nerve fiber
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nerve fiber. For low input frequencies, more than 95%
of physiological APs reach the somatic end of the nerve
fiber. As input frequencies increase, conduction reliability
decreases. We show that the fraction of APs that make it to
the somatic end of the fiber due to stimulus and physiologi-
cal sources are uniformly distributed when the ratio of their
frequencies is unity. The number and type of interactions
vary highly with both input frequencies and fiber diame-
ter. Physiological – stimulus loss of excitability occurs most
frequently and collisions occur least frequently.

This study demonstrates that complex interactions occur
between physiological and stimulus-induced APs along a
nerve fiber and that it is useful to characterize these
interactions to better understand the mechanisms of action
of electrical stimulation used to treat diseases of the nervous
system.

2Methods

2.1 Mechanistic model of a nerve fiber

Methods used in this study are derived from (Sadashivaiah
et al. 2017). Here, we describe our model of a myelinated
nerve fiber that incorporates extracellular electrical stimula-
tion and underlying physiological activity (see Fig. 1). This
axonal model is relatively simple in comparison to other
higher order approximations of mammalian nerve fibers
(McIntyre et al. 2002), as our main interest is to study the
effect of interactions between APs generated by stimulation
with underlying activity.

2.1.1 Myelinated nerve fiber

A myelinated nerve fiber is a cylindrical active membrane
(axon), tightly wrapped in an insulating myelin sheath.
This myelin sheath is interrupted periodically, leaving short
gaps where the axonal membrane is exposed. Following
McNeal’s model (McNeal 1976), we represent a myelinated
nerve fiber by a series of compartment elements linked by
intracellular conductances. The dynamics of the membrane
potential Vi = V int

i −V ext
i at node i (where V int

i and V ext
i are

the intracellular and extracellular potentials) read as follows

Cm V̇i +
∑

k∈K
Ii,k = ga (Vi−1 − 2Vi + Vi+1)

+ ga
(
V ext

i−1 − 2V ext
i + V ext

i+1

)
,

where Cm is the membrane capacitance and ga is the
internodal conductance. Ionic currents Ii,k at node i include
a sodium, a fast potassium, and a slow potassium ion chan-
nel, as well as a leakage current across the membrane based
on the Frankenhaeuser–Huxley model (Frankenhaeuser and

Huxley 1964), adjusted to experimental data of human sen-
sory fibers at 37 ◦C (Schwarz et al. 1995; Wesselink et al.
1999). A complete description of the fiber model and its
parameters is presented in the Appendix.

2.1.2 Electrical field potential generated by stimulation

The extracellular medium surrounding a nerve fiber is
composed of different regions (epidural fat, cerebrospinal
fluid, white matter, grey matter), which have different
conduction properties (Struijk et al. 1991). In addition, the
electrode can also take various shapes (single contact or
array of contact) and various configurations (monopolar,
bipolar, or other) (Medtronic Neuromodulation 2007). We
assume that the extracellular medium is infinite, isotropic
and ohmic with the electrode represented by point sources
at the center �xc

j of each contact. Therefore, the electrical
potential field at time t and position �x is given by

ϕ(t, x) =
∑

j∈C

1

4π σm ‖�x − �xc
j‖2

I stimj (t) ,

where I stimj is the current of point source j and σm is
the extracellular medium conductivity. The extracellular
potential at node i is given by V ext

i (t) = ϕ(t, �xi), where �xi

is the position of node i.

2.1.3 Underlying physiological activity

The underlying physiological activity in fibers spans a broad
frequency range and exhibits various patterns (Kajander and
Bennett 1992): regular spike discharge, regular discharge of
doublet spikes, bursting patterns, sporadic activity with no
regular or predictable firing pattern, etc.

We represent underlying activity generated at the
terminal end of the nerve fiber by replacing a ‘sealed-
end’ boundary condition by a current source. Therefore, the
dynamics of the first node (from bottom) becomes

Cm V̇1 +
∑

k∈K
I1,k = ga (V2 − V1)

+ga
(
V ext
2 − V ext

1

) + I phys(t) ,

where the input I phys(t) represents the activation current.

2.2 Stimulation protocols

The stimulation current (I stim(t)) had a constant frequency
(f stim) of symmetrical biphasic pulses with an amplitude
ranging from 1.8–2.5mA (that is, 150% of the activation
threshold, see Table 1) a duration of 350 μs (Mortimer and
Bhadra 2004). We consider stimulation frequencies ranging
from 1–51 Hz with a step size of 4 Hz (Simulations in
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Table 1 Amplitude of physiological and stimulus inputs for mechanis-
tic model simulations

Fiber diameter (μm)

6 9 12

Physiological input amplitude (nA) 5.0 6.0 7.0

Stimulus input amplitude (mA) –2.5 –2.0 –1.8

supplementary section have stimulation frequencies ranging
1–200 Hz with a step size of 10 Hz).

As a first step, we modeled the underlying physiological
activity (I phys(t)) as a Poisson train of square pulses with
an amplitude of 5–7 nA (that is, 150% of the activation
threshold) and a duration of 1 ms. Therefore, the instanta-
neous firing rate (λphys) is assumed constant, ranging from
1–51 s−1 with a step size of 4 s−1, a typical range for motor
and sensory firing activity (Katz 1950; De Luca et al. 1982).
(Simulations in supplementary section have instantaneous
firing rate λphys ranging 1–200 s−1 with a step size of 10 s−1).

Several studies have successfully used random process
models to generate the statistics of spike trains. Troy and
Robson (1992) found that the interval statistics of spike
trains recorded from retinal ganglion cells was well fit by
gamma-distributed intervals. Similarly, the inter-spike inter-
val distributions computed from visual area (V5/middle tem-
poral) was well fit by a Poisson process (Bair et al. 1994).

2.3 Interactions between stimulation induced
and underlying physiological activity

We identified different types of interactions occurring
between simulation-evoked activity and underlying physio-
logical activity. In Fig. 2, each panel represents a typical line

plot for each interaction type. In these panels, a dot is an AP
at node position �z along the fiber and at time t (see zoomed-
in section of panel 1). The stimulation input triggers the
orthodromic and antidromic propagations of an AP wave
(green dots) from the stimulation position at the fiber center
toward the end points. The physiological input triggers the
orthodromic propagation of an AP wave (red dots) from ter-
minal end to the somatic end of the fiber. Gray dots indicate
the fiber response of each input in the absence of the other,
that is, artificially without interaction (e.g., if no collision
occurs and the APs just cross each other). The interaction
type depends on the timing of both inputs generating these
activities.

1. A collision occurs when the orthodromic physiological
AP wave and the antidromic stimulation-evoked AP
wave meet and cancel each other. This happens if a
physiological pulse is triggered slightly before or after a
stimulation pulse, that is, tphysj ∈ [t stimi − t ic, t stimi + t ic).

2. A phys–stim loss of excitability occurs when the
stimulation input doesn’t excite the nerve fiber due to
the recent passage of the orthodromic physiological AP
wave. This happens if a physiological pulse is triggered
before a stimulation pulse, that is, tphysj ∈ [t stimi − t ic −
�t I, t stimi − t ic).

3. A stim–phys loss of excitability occurs when the
physiological input doesn’t excite the nerve fiber due
to the recent passage of the antidromic stimulation-
evoked AP wave. This happens if a physiological pulse
is triggered after a stimulation pulse, that is, t

phys
j ∈

[t stimi + t ic, t stimi + t ic + �t II).

Here, t ic is the conduction time between the physiological
AP generator and the stimulus location, �t I is the

Fig. 2 Different interactions between stimulation-evoked activity and
physiological activity are illustrated by their line plots (horizontal
axis is time, vertical axis is position along the nerve fiber). Each
dot corresponds to an AP at a given time t and position �z along the
fiber. Red and green dots indicate the fiber response to physiologi-
cal and stimulation inputs, respectively. Physiological AP waves travel
orthodromically from terminal end to the somatic end of the fiber;

stimulation-evoked AP waves travel orthodromically and antidromi-
cally from the center to the extremities of the fiber. Gray dots indicate
the fiber response in the absence of interactions (collision or loss of
excitability), that is, the AP wave that would be produced by the cor-
responding input if it was not perturbed by the activity induced by
another input
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physiological–stimulus refractory period and �t II is the
stimulus–physiological refractory period. In addition to
these interactions, we also identify ‘self-interactions’ or
‘intra-signal’ loss of excitability, that is, interactions
between activities generated by the same input.

1. A stim–stim loss of excitability occurs when the stim-
ulation input doesn’t excite the nerve fiber due to the
recent stimulation of the fiber. This happens if the fre-
quency of stimulation is too high, that is, tstimj+1 ∈ [t stimj +
�t III).

2. A phys–phys loss of excitability occurs when a phys-
iological input doesn’t excite the nerve fiber due to a
recent physiological input. This happens if two consec-
utive Poisson pulses are initiated too close to each other,
that is, tphysj+1 ∈ [tphysj + �t IV).

Here, �t III is the stimulus – stimulus refractory period and
�t IV is the physiological–physiological refractory period.

2.4 Conduction reliability

When stimulation is applied to a nerve fiber, it ultimately
is interfering with the underlying physiological activity that
travels from one end of the fiber to the other. To succinctly
quantify the effects of stimulation on the fiber activity,
we wanted to capture how the stimulation influences the
physiologically generated APs that make it to the somatic
end of the fiber. To quantify the effects of stimulation on the
nerve fiber, we define the following conduction reliability
metric:

Rphys(λ
phys, f stim) = # of conducted phys APs

total # of phys APs
,

where conducted APs are underlying physiological inputs
that travel from somatic end to the terminal end of the
fiber. This metric captures the effect that the stimulation
has on the underlying physiological activity. If Rphys =
1, then the stimulation has no effect; and if Rphys = 0,
then the stimulation blocks all physiological activity from
transmitting to the brain.

We may also be interested in understanding the
stimulation induced orthodromic APs that make it to the
somatic end of the fiber (Rstim),

Rstim(λphys, f stim) = # of conducted stim APs

total # of stim APs
.

Finally, we also look at the overall conduction of APs,

Rall(λ
phys, f stim) = # of conducted (phys + stim) APs

total # of (phys + stim) APs
.

We keep track of APs in both space and time as
shown in Fig. 2, which was generated via simulations.
Specifically, consider the leftmost panel in Fig. 2, which
denotes a collision interaction. The red line is discretized (as
shown in the zoomed-in panel), where each point represents
the position of the AP generated by the physiological
input at the terminal end of the fiber. The green line is
also discretized and represents the APs (orthodromic and
antidromic) generated by stimulation. In this case, the two
inputs occur at the same time, thus right after they are
applied there are 3 APs on the fiber. The physiological AP
is traveling up the fiber, until it collides with the antidromic
AP traveling down the fiber. The grey line is the trajectory
that the physiological AP would have taken if there was no
collision. However, after the time point when the collision
occurs, the only action potential that exists is close to the
somatic end of the fiber, which is the orthodromic AP from
the stimulation input. Based on the spatiotemporal shape
of the AP trajectory along the fiber, transmitted APs were
classified as either of stimulus or physiological origin.

2.5 Simulation protocols

For this study, we consider a monopolar electrode placed
3.5 mm from the center of a 10 cm-long nerve fiber.
We consider three different diameters of nerve fibers in
our simulations (6, 9 and 12 μm). Model parameters are
listed for each diameter in Table 2. These values are
derived by stimulating the mechanistic model with one
physiological and one stimulus AP. Results presented in
the next section are drawn from 50 simulations for each

Table 2 High-dimensional
mechanistic model parameters
for a 10cm long myelinated
nerve fiber

Fiber diameter (μm)

6 9 12

speed of AP conduction (m s−1) 41.66 66.67 90.91

physiological–stimulus refractory period – �t I (ms) 9.5 7.8 7.7

stimulus–physiological refractory period – �t II (ms) 4.3 3.9 4.3

stimulus–stimulus refractory period – �t III (ms) 8.5 7.0 6.2

physiological–physiological refractory period – �t IV (ms) 3.2 3.5 4.0
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[physiological rate, stimulus frequency] pair. These results
are generated by running Monte Carlo simulations, that is,
running the same simulation multiple times for different
realizations of the stochastic input and computing statistics
(mean and standard deviation) of conduction reliability. All
the mechanistic model simulations were performed in the
NEURON simulation environment (Hines and Carnevale
1997). Analysis of data was performed using MATLAB,
MathWorks. Individuals interested in reproducing the
results of this study or using these models in their own work
can find the source-files on github (Sadashivaiah 2018).

3 Results

3.1 Conduction reliability

First, we simulated a range of stimulus frequencies (f stim

= 1–51 Hz) and physiological rates (λphys = 1–51 s−1) and
computed conduction reliability. Results are displayed in the
form of “conduction maps”.

3.1.1 Conduction map of all APs

APs, irrespective of the source (stimulus vs physiological),
can have similar firing patterns at the supra-spinal centers.
In order to quantify this, we plot the overall conduction, that
is, the ratio of APs reaching the somatic end of the nerve
fiber over the APs entering the terminal end of the nerve
fiber (see Fig. 3).

Conduction maps indicate that the reliability value depends
on both the frequency of stimulation and rate of physiological
activity, and also varies with the fiber diameter. At low

physiological rates (λphys < 10 Hz), reliability is high
(Rall > 0.9) and doesn’t change with respect to the stimulus
frequency. As the physiological rate increases, reliability
value decreases. Increasing the fiber diameter increases the
reliability at each frequency-rate pair (f stim, λphys). The
standard deviation of conduction reliability is small (0.01
- 0.02) and doesn’t seem to depend on either stimulus
frequency, physiological rate or fiber diameter. To study the
influence of stimulus on underlying physiological activity,
we consider the conduction of physiological APs and
stimulus generated APs separately.

3.1.2 Conduction map of underlying physiological APs

Underlying physiological activity interacts with the stimu-
lus APs before reaching the somatic end of nerve fiber. Due
to it’s stochastic nature, the overall conduction is modu-
lated by underlying physiological activity. An AP generated
by the physiological source may collide with an antidromic
stimulus AP, or fail to elicit and AP on the fiber due to
stimulus–physiological loss of excitability, or fail to elicit an
AP on the fiber due to physiological–physiological loss of
excitability. The conduction reliability map for physiologi-
cal APs, Rphys is shown in Fig. 4.

For a low stimulus frequency and low physiological rate
(f stim < 10 Hz, λphys < 10 s−1), reliability values are close
to 1 (100%). Increasing either the stimulus frequency or the
physiological rate, reduces reliability. Increasing the fiber
diameter decreases reliability at each frequency pairs.
Specifically, the relay of physiological APs reduces by an
order of 15% at higher fiber diameters (see Fig. 4c). The
standard deviation of physiological conduction reliability
increases with increasing λphys.

Fig. 3 Conduction maps of all APs for 6, 9 and 12 μm diameters (d).
Contour representation of reliability values for a range (λphys = 1–51
s−1) of physiological rate (Y-axis) and (f stim = 1–51 Hz) stimulus

frequency (X-axis). Black dots represent the data points. Color gradi-
ent represents the mean of reliability values (μ(Rall) = [0.5–1]). Size
of the dot represents the standard deviation (σ(Rall)) of reliability values
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Fig. 4 Conduction maps of physiological APs for 6, 9 and 12 μm
diameters (d). Contour representation of reliability values for a range
(λphys = 1–51 s−1) of physiological rate (Y-axis) and (f stim = 1–51
Hz) stimulus frequency (X-axis). Black dots represent the data points.

Color gradient represents the mean of reliability values (μ(Rphys) =
[0.5–1]). Size of the dot represents the standard deviation (σ(Rphys))
of reliability values

In order to quantify the effects of high frequency stimulus
and high physiological rate on conduction, we ran a
simulation for f stim = 1–200 Hz, λphys = 1–200 s−1 (see
supplementary Fig. S1). We observe a band of stimulation
frequencies spanning 5–10 Hz, where conduction reliability
approaches zero (for example, in Fig. S1(c), this band is
around 150 Hz).

3.1.3 Conduction map of orthodromic stimulus APs

A current pulse from an external stimulus can elicit two
APs, one traveling orthodromically and the other antidromi-
cally. Although APs from physiological source interact with
antidromic stimulus APs, it is important to characterize
orthodromic stimulus APs. These are the APs that reach the
somatic end of the nerve fiber in addition to physiological
APs. An orthodromic AP from the stimulus source elicits
a refractory period on the nerve fiber causing a stimulus–
physiological loss of excitability or a stimulus–stimulus loss
of excitability. We compute conduction reliability for APs
induced by the stimulus, Rstim and illustrate the conduction
map in Fig. 5.

We see that conduction reliability values vary linearly
with respect to λphys. For low physiological frequencies
(λphys < 10 Hz), reliability values are close to 1 (100%).
Increasing the physiological rate reduces reliability. Reli-
ability of stimulus APs is not significantly affected by
stimulus frequency, however, increasing the fiber diame-
ter increases reliability. Specifically, the relay of stimulus
APs increases by an order of 15% for larger fiber diameters
(see Fig. 5c). The standard deviation of stimulus conduction
reliability increases with increasing f stim.

3.2 Interaction statistics

The mechanisms of interactions between APs generated
by stimulus and physiological inputs can be disparate
(see Fig. 2). They depend mainly on the frequency of
both the stimulus and physiological sources, biophysical
properties of the nerve fiber, and the geometry of nerve
fiber. Conduction maps give a basic representation of our
reliability metric but do not quantify the various interactions
occurring in the nerve fiber. To address this, we consider 5
different regions on the conduction map and examine the
interactions statistics in each of these locations. Specifically,
we consider the

1. low stimulus frequency (5 Hz) and low physiological
rate (5 s−1),

2. low stimulus frequency(5 Hz) and high physiological
rate(45 s−1),

3. medium stimulus frequency(25 Hz) and medium
physiological rate (25 s−1),

4. high stimulus frequency(45 Hz) and low physiological
rate(5 s−1), and

5. high stimulus frequency(45 Hz) and high physiological
rate (45 s−1) regions represented in Fig. 6a.

We also compute the fraction of APs reaching the somatic
end of nerve fiber due to the stimulus versus the physiological
source. In order to test the difference between means of
interaction counts in 6, 9 and 12 μm diameter fibers, we
conducted a 3 group one-way ANOVA. Statistical signif-
icance is presented using asterisk (*) in Fig. 6c-f. p val-
ues corresponding to these asterisks are, (*) p < 0.05,
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Fig. 5 Conduction maps of stimulus APs for 6, 9 and 12 μms diame-
ters (d). Contour representation of reliability values for a range (λphys

= 1–51 s−1) of physiological rate (Y-axis) and (f stim = 1–51 Hz) stim-
ulus frequency (X-axis). Black dots represent the data points. Color

gradient represents the mean of reliability values (μ(Rstim) = [0.5–
1]). Size of the dot represents the standard deviation (σ(Rstim)) of
reliability values

(**) p < 1E−2, (***) p < 1E−3. Further details includ-
ing F scores and p values are listed in Supplementary
Materials (see Table S1).

We summarize our observations next.

1. When the physiological rate and stimulus frequency are
equal, that is, f stim/λphys = 1 (regions 1, 3 & 5), the
fraction of endpoint APs is constant and relatively close
to 0.5. Increasing the physiological rate (or stimulus
frequency), that is, f stim/λphys < 1, region 2 (or
f stim/λphys > 1, region 4) increases the fraction of
somatic APs due to physiological (or stimulus) source.
Increasing the fiber diameter increases the fraction of
somatic APs due to stimulus.

2. Collisions occur less frequently when compared to all
other types of interactions (see Fig. 6). For regions 1, 3
& 5, the number of collisions increases gradually with
respect to f stim and λphys. Both regions 2 and 4, have
similar collision counts. Interestingly, the number of
collisions increase for the 9 μm fiber but then decreases
for the 12 μm fiber.

3. Physiological–physiological loss of excitability interac-
tion increases with respect to f stim and λphys for regions
1,3 & 5. Both regions 2 and 5 have high physiological–
physiological loss of excitability relative to the other
regions and increasing the fiber diameter increases the
number of these interactions.

4. Physiological–stimulus loss of excitability occurs most
frequently. For regions 1, 3 & 5, the number of
interactions significantly increases with respect to f stim

and λphys. Both regions 2 and 4 have low physiological–
stimulus loss of excitability relative to the other regions,
and increasing the fiber diameter decreases the number
of these interactions.

5. Stimulus–physiological loss of excitability significantly
increases for regions 1, 3 & 5. Regions 2 and 4 have
low stimulus–physiological loss of excitability relative
to the other regions, and increasing the diameter of fiber
increases the number of interactions, but only slightly.

To get a sense of interaction distributions across map
regions, we identify the dominant interaction at any given
point on the reliability maps for 6, 9 and 12 μm diameters
(see Fig. S3). We see that the physiological – stimulus loss
of excitability is the dominating interaction type, covering
more than 50% of the map. Collisions occur the least at
each [frequency, rate] pair, and increasing the diameter
increases the region which is dominated by physiological–
physiological loss of excitability.

4 Discussion

In this study, we investigated the interactions between APs
traveling along a mammalian nerve fiber induced by both
electrical stimulation and physiological activity. To our
knowledge, this is the first mechanistic modeling effort
to quantify these interactions. We found that the con-
duction reliability of APs depends on the frequency of
stimulation and the rate of the physiological activity. Specif-
ically, overall conduction reliability Rall is modulated by
the rate of physiological activity. This is also supported
by the dominant occurrence of physiological–stimulus loss
of excitability interactions. Conduction reliability of phys-
iological APs, Rphys is high for low stimulus frequencies
and low physiological rates and decreases with an increase
of either stimulus frequency or physiological rate. On the
other hand, conduction reliability of stimulus APs, Rstim is
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Fig. 6 Interaction statistics at various regions of conduction map for
6, 9 and 12 μm diameters. a. An example conduction map representing
regions of interest (ROI) labelled 1 through 5. b. Fraction of somatic
APs due to stimulus and physiological sources for labels 1-5. Lower
region represents the fraction due to stimulus (black outline) and the
higher represents the fraction due to physiological (red outline). Each
group of 3 bars represent the fractions for 6, 9 and 12 μm diameters. c-f.

Interaction count at labels 1-5 for collision, physiological–physiological
loss of excitability, physiological–stimulus loss of excitability and
stimulus–physiological loss of excitability respectively. Each bar in
a group (of 3) represents the count for 6 μm (dark green), 9 μm
(green), 12μm (yellow) diameters. Significance testing was performed
at each ROI for 6, 9 and 12 μm diameters using one-way ANOVA (*
p < 0.05, ** p < 1E−2, *** p < 1E−3)
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only modulated by physiological rate. Increasing the fiber
diameter decreases Rphys but increases Rstim at all [stim-
ulus frequency, physiological rate] pairs. The fraction of
somatic APs from the stimulus and physiological sources
remain constant when f stim = λphys, but the individual
interaction counts vary. Overall, collisions occur least fre-
quently and physiological–stimulus losses of excitability
occur most frequently.

4.1 Conduction reliability of APs

Various modeling studies use different metrics to capture the
effects of electrical stimulation on a mammalian nerve fiber,
but the most prominent measure studied is output firing
rate (the number of APs at somatic end of nerve fiber per
unit time). In our study, we use a novel metric, conduction
reliability, which captures the ratio of the number of APs
reaching the somatic end of a fiber over the total number of
APs generated in the nerve fiber. This essentially captures
loss of information on the fiber due to AP interactions. Our
metric is particularly useful in that it isolates the effect of
stimulation on underlying physiological activity.

As expected, we found that the conduction reliability
is high for low physiological rates and/or stimulus fre-
quencies, because fewer interactions occur between activity
evoked by simulation and underlying physiological activity.
As the frequency of the stimulus and/or rate of the physio-
logical input increases, conduction reliability decreases (see
Figs. 3, 4 and 5). Specifically, the conduction of physio-
logical APs is highly regulated by both stimulus frequency
and physiological rate. In our model, for a given nerve fiber
of length l, a physiological AP travels twice the length
(l) compared to a stimulus AP (l/2) to reach the somatic
end of the nerve fiber. Hence the former is susceptible to
more interactions. Conduction reliability of stimulus APs
is independent of stimulus frequency since the only inter-
action influencing this value are physiological–stimulus
loss of excitability interactions (which depends on the
physiological rate).

Increasing the fiber diameter essentially translates to
faster conduction speed (Hursh 1939). Therefore bigger
fibers require higher stimulus frequencies to achieve the
relay properties observed for lower stimulus frequencies in
smaller fibers. As the conduction speed of APs increase, the
time window for interactions decreases. This explains the
increase in overall conduction reliability at each [stimulus
frequency, physiological rate] pair for larger diameter fibers
(see Fig. 3). We see a similar pattern with conduction
reliability of stimulus APs (see Fig. 5), but the effect is
more pronounced due to the fact that stimulus APs travel a
shorter length (l/2) to the somatic end of the fiber. On the
other hand, the conduction reliability of physiological APs

decreases at each [stimulus frequency, physiological rate]
pair for larger fiber diameters (see Fig. 4). We speculate
that this is due to an increase in stimulus–physiological
refractory period (�t II) and physiological–physiological
refractory period (�t IV) (see Table 2).

The patterns seen in the standard deviations of physio-
logical AP conduction map may be explained as follows.
The physiological APs are generated from a Poisson process
with rate λphys. Each physiological AP event has a prob-
ability of p to not have an interaction as it travels up the
fiber. This probability decreases as the stimulus frequency
increases. Since the stimulus source is independent of the
physiological source, the physiological APs that make it to
the top of the fiber also generate a Poisson process with rate
pλphys, which has a variance of pλphys. Thus, on the phys-
iological AP conduction map, we should see (i) an increase
in standard deviation with increasing λphys, (ii) decreasing
standard deviation with increasing f stim, and (iii) somewhat
comparable standard deviation along diagonals. Indeed, this
is what is observed in Fig. 4.

The patterns seen in the standard deviations in the
stimulus AP conduction map are less straightforward. The
only way a stimulus AP does not make it to the somatic
end of the fiber is through loss of excitability in the middle
of the fiber, which we compute statistics for in Fig. 6. Let
the probability of loss of excitability in the middle of the
fiber be 1 − p. Then, since the stimulus is deterministic,
the process of stimulus APs making it to the somatic end
of the fiber can be seen as a sequence of Bernoulli trials,
with conduction probability being p. For values of p away
from 0.5, the standard deviation (

√
p(1 − p)) is small and

increases as p approaches 0.5. From Fig. 6, p increases
towards 0.5 with increasing f stim, more dramatically at low
λphys (moving from region 1 to 4), which increases the
standard deviation as seen in the stimulus AP conduction
map. Similarly, there is the least loss of excitability in
the middle of the fiber for regions 1 and 2 (see Fig. 6),
which means that p is close to 0 and thus the standard
deviation as seen in the stimulus AP conduction map is
also small in these regions. Looking at the physiological
AP map and stimulus AP map, the standard deviations have
opposite trends, and appear to “cancel” each other out in the
conduction map computed for all APs (Fig. 3).

Finally, a nerve fiber can be saturated if the frequency
of stimulation is too high. The zero band in supplemen-
tary simulations (Fig. S1) is significant as the nerve fiber
no longer responds to the stimulation and underlying phys-
iological activity. We found that the large inward sodium
current opposes the outward potassium current resulting in
a net depolarization which makes the stimulus node un-
excitable. The system remains in this state due to repetitive
stimulation causing a prolonged blockage.
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4.2 Interactions along the nerve fiber

There have been experimental and computational efforts
to demonstrate different interactions occuring on the nerve
fiber (Iggo 1958; van den Honert and Mortimer 1981;
Crago and Makowski 2014). In this study, we quantify
a few of these interactions using a mechanistic model of
myelinated nerve fiber. We find that the fraction of somatic
APs from physiological and stimulus sources is constant
(around 50%) for f stim/λphys = 1. This is in agreement with
results from (Crago and Makowski 2014). However, upon
further examination of individual interaction counts (see
Fig. 6c-f), we see that the pattern varies highly. Increasing
the diameter increases Rstim but decreases Rphys, which
explains the increase in the fraction of end point APs due to
the stimulus source.

Collision counts depend on the length of nerve fiber.
As the length increases, the number of collisions increases
since the conduction time for APs is longer. The low
incidence of collisions in this simulation is due to the
relatively short distance (and therefore short conduction
time) between the physiological source and the stimulation
site. Studies have shown this effect by varying the length of
the nerve fiber or changing the location of stimulus (Crago
and Makowski 2014). Interestingly, a 9 μm nerve fiber has a
higher collision count compared to 6μm fiber. We speculate
that the relative difference in refractory periods (see Table 2)
may cause this effect. For example, the physiological to
stimulus refractory period decreases from 6 μm fiber to 9
μm fiber (9.5 ms to 7.8 ms), which increases the probability
of collision for an upcoming physiological AP.

The physiological–physiological loss of excitability is
very high in regions 2 and 5 (see Fig. 6d) on the conduction
map. This is expected since the physiological rate is high.
Since the physiological – physiological refractory period
(�t IV) is increasing with respect to fiber diameter, we
expect to see higher interactions for larger fibers. Similarly,
the pattern is seen in stimulus – physiological loss of
excitability as well. On the other hand, the physiological –
stimulus refractory period is decreasing with respect to fiber
diameter. This leads to a decrease in the physiological –
stimulus interaction count. From Table 2, it is evident that
physiological – stimulus refractory period is long and leads
to the dominance of physiological – stimulus interactions.
Refractory loss occurs with the least probability in Crago
and Makowski (2014). This is contrary to our results
because (Crago and Makowski 2014) uses a shorter
refractory period in their study (1.5 ms) and they do not
consider relative refractory period effects which occur in
nerve fibers.

4.3 Implications of the study

Optimizing electrical stimulation to treat neurophysiologi-
cal disorders has gained popularity in the field of neuro-
modulation. This problem can be approached on multiple
fronts including electrode design, stimulation parameter
optimization (e.g., frequency, amplitude), stimulation site,
open versus closed system design etc. Multiple studies have
looked into electrode design and stimulus location (Grill
and Mortimer 1998; Tarler and Mortimer 2004; Crago and
Makowski 2014). Few computational efforts have been
made to optimize the stimulation parameters (McIntyre and
Grill 1999; Foutz and McIntyre 2010). Even fewer compu-
tational efforts have been made in the design of closed-loop
(Ehrens et al. 2015), partly due to the poor understanding of
underlying interactions that must be captured in any model
used for control design.

Most neurostimulation systems operate in an open-loop
manner where the stimulation settings, like frequency,
amplitude, and pattern, are preprogrammed. There is
no feedback mechanism to dynamically update these
parameters based on any physiological output. While the
open-loop mechanism is simpler and provides short-term
therapeutic benefits, it has suboptimal efficacy over long-
term use. For example, open-loop spinal cord stimulation
is used to treat chronic and acute pain. These systems may
provide too much or too little strength of therapy since
the stimulation parameters are not based on a patient’s
body position (Barolat et al. 1991; Olin et al. 1998). On
the other hand, closed-loop neurostimulation systems can
adjust their stimulation parameters in real-time and thereby
provide effective and efficient therapies while also reducing
the side effects of stimulation. Computational models used
to design these systems can be fairly complex and thus
affect real-time performance. This calls for reduced order
models that can capture salient information as in higher-
order mechanistic models but are computationally less
complex.

In our previous study (Sadashivaiah et al. in press(a)),
we built a reduced functional model based on the refractory
periods, activation threshold and speed of conduction of
a nerve fiber (similar to Crago and Makowski (2014)).
Overall conduction reliability for the reduced model and
mechanistic model (from this study) are very similar (see
Fig. S4). The reduced model captures many conduction
properties that the mechanistic model captures, but with
significantly less time and less computation power. This
is because the mechanistic model involves solving multi-
dimensional differential equations at each fiber node to
compute signal transmission. In contrast, the reduced model
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uses the activation threshold, the speed of conduction, and
refractory periods to compute conduction statistics.

This study was motivated to model the pain pathways
in the mammalian nociceptive network. Under normal
conditions, both pain and sensory pathways mediate
information in a relatively independent fashion. However,
under pathological conditions, sensory pathways may pick
up pain signals. Studies have shown that, under a sensitized
condition (that is, injury), A-fiber mechano-receptors gain
abnormal access to the nociceptive pathway and can induce
pain (Baron 2009; Song et al. 2012). This suggests that both
innocuous and noxious stimuli may travel along the same
fibers up to the brain. An effective stimulation system must
block the propagation of noxious stimuli while allowing the
innocuous information to reach the brain. We can define
a selective reliability parameter, Rselective = Rinnocuous ×
(1 − Rnoxious) to optimize this system using the conduction
reliability parameters defined in this study. We analyze the
selective reliability metric in a recent preliminary study
(Sadashivaiah et al. in press(b)).

4.4 Scope of study

In our study, we constructed the underlying physiological
activity as a Poisson process, with a mean firing rate of
1–50 s−1 (1–200 s−1 for simulations in supplementary
information). Although a Poisson process is a good
representation of AP arrivals, the same mean firing rate
can be obtained from infinitely-many different spike train
patterns. Variable patterns (like bursts, etc.) may be
more realistic characterizations of physiological response
processes (Bruns et al. 2009). Similarly, stimulation with
variable patterns may perform better in some applications.
Refractory periods used in this study can vary depending
upon the amplitude of stimulus and physiological inputs,
biophysical properties of nerve fiber etc.

Phase resetting is an important type of interaction. This
occurs in physiological AP generators when an antidromic
AP reaches the physiological AP generation site before
the next physiological AP would normally occur. With
phase resetting, the voltage-dependent channels go to a state
where another AP cycle cannot be generated. Hence, the
next physiological AP will be generated after a regular
wait time (interspike interval). Adding phase resetting to
a homogeneous Poisson process does not change its firing
properties. A homogeneous Poisson process assumes that
the underlying instantaneous firing rate is constant over
time, and the probability density function of the wait time or
the interspike interval for a Poisson process is exponentially
distributed and memoryless. A phase reset would just bring
back the system to the same state of instantaneous firing.
This assumption typically fails when the physiological input
is drawn from other distributions.

This study was geared towards understanding the interac-
tions between stimulus generated APs and underlying phys-
iological activity generated APs. As a first step, we study
interactions with a simple model of unbranched, multi-
compartmental nerve fiber. However, there are higher-order
approximations of mammalian nerve fiber involving double
cable architecture with discrete representations of intern-
odal and paranodal sections (McIntyre et al. 2002). Using a
different model of a nerve fiber will influence the reported
results. More complex models and additional effects related
to the fiber structure will be the subject of future studies.
Stimulating electrodes can also take various shapes and con-
figurations (Medtronic Neuromodulation 2007). There are
numerous efforts to study the stimulation effects of these
configurations (Yoshida and Horch 1993; Tyler and Durand
2002), and including different configurations is also future
work.
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Appendix

The fiber model and its parameters at 37◦C

Fiber geometry

axon diameter, d = 6–12 μm (step size of 3 μm)
ratio of axon to fiber diameter, rdD = 1
fiber diameter, D = d × rdD
ratio of li to fiber diameter, rliD = 100
internodal length, li = D × rliD
fiber length, L = 10 cm
nodal length, l = 2.5 μm
number of nodes, n = �1 + L

l+li
�

Parameters

αmA = 1.86, αmB = 65.6, αmC = 10.3
αhA = 0.0336, αhB = −27, αhC = 11.0
αnA = 0.00789, αnB = −9.2, αnC = 1.10
αsA = 0.00122, αsB = 71.5, αsC = 23.6
βmA = 0.0860, βmB = 61.3, βmC = 9.16
βhA = 2.30, βhB = 55.2, βhC = 13.4
βnA = 0.0142, βnB = 8, βnC = 10.5
βsA = 0.000739, βsB = 3.9, βsC = 21.8
gating coefficients α∗A, β∗A in ms−1
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gating coefficients α∗B, β∗B, α∗C, β∗C in mV
sodium permeability, PNa = 7.04 × 10−3 cm/s
potassium conductance (fast), gKf = 0.015 S/cm2

potassium conductance (slow), gKf = 0.030 S/cm2

leakage conductance, gL = 60 × 10−3 S/cm2

sodium concentration outside, [Na]o = 154 mM
sodium concentration inside, [Na]i = 35 mM
potassium concentration outside, [K]o = 5.6 mM
potassium concentration inside, [K]i = 155 mM
sodium equilibrium potential, VNa = −84 mV
potassium equilibrium potential, VK = +60 mV
resting membrane potential, Vr = −84 mV
Faraday constant, F = 96485 C/mol
gas constant, R = 8.3144 J/Kmol
absolute temperature, T = 310.15 K
membrane potential, V mV

Membrane currents

sodium current, INa mA/cm2

potassium current (fast), IKf mA/cm2

potassium current (slow), IKs mA/cm2

leakage current, IL mA/cm2

INa = m3hPNa
V F 2

RT
([Na]o−[Na]ieV F/RT )

(1−eV F/RT )

IKf = n4gKf(V − VK)

IKs = sgKs(V − VK)

IL = gL(V − VL)

Simulation parameters

simulation duration, tstop = 30 s
simulation step size, tstep = 0.001 ms
simulation repeats, nrep = 50
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