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We study the asymptotic behavior of an incompressible viscous fluid flow in a biological
body lined by a thin biological film with a cellular microstructure, varying thickness,
and a heterogeneous viscosity regulated by a time random process. Letting the thickness
of the film tend to zero, we derive an effective biological slip boundary condition on the
boundary of the body. This law relates the tangential fluxes to the tangential velocities
via a proportional coefficient corresponding to the energy of some local problem. This
law describes the ability of the biological film to function as a lubricant reducing friction
at the wall of the body. The tangential velocities are functions of the random trajectories
of a finely concentrated biological particle.
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1. Introduction

The main purpose of this work is to study the asymptotic behavior of viscous flows
in a biological body lined by a thin heterogeneous biofilm. Biofilms have complex
structures in which cells exhibit different patterns of gene expression. Biofilms,
such as the thin fluid films that line the epithelium of the eye, respiratory, gas-
trointestinal and urogenital tracts, are subject to considerable uncertainties and
intrinsic spatial variability due to the chemical heterogeneity and the variability of
the mucus concentrations (see for instance [7, 15], and [27]). Mucus is a viscous com-
plex biogel which possesses important length-scale and shear-dependent rheological
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characteristics that enable it to function both as a lubricant at the mucosal sur-
faces and as a selective filter that limits the effective exposure of epithelial cells
to foreign pathogens and allows rapid passage of selected gases, ions, nutrients,
and many proteins (see for example [9] and [15]). Mucus is essentially composed of
water, immunoglobulins, cholesterol, lipids, inorganic salts, proteins, and the high
molecular weight glycoproteins known as mucins. The mucus layer is continuously
produced, secreted, and shed by different mechanisms of clearance [11]. The thick-
ness of mucus layer varies by location in the conducting airways; being anywhere
from 8.3µm in the trachea compared to about 1.8µm in small bronchioles [20].
Physicochemical characteristics like composition, pH, ionic strength, conformation
are important in the formation, function and rheological properties of mucus [16].
At acidic pH, mucins in gastric mucus change conformation from random coil to
extended conformation and form a gel phase in mucus [5]. Thus, mucus exhibit
a variety of rheological complexities which cannot be described even qualitatively
using the Newtonian fluid behavior. Among many other works, Smith et al. [23]
developed a mathematical model of the transport of mucus and periciliary liquid
in the airways and observed that the mucus velocity based on the Newtonian fluid
model is only slightly larger than the mucus velocity based on the non-Newtonian
fluid model. Recently, Georgiades et al. [9] showed that stomach mucin solutions
of up to 20mg/mL behave as purely viscous Newtonian liquids with increasing vis-
cosity with respect to mucin concentration, and a critical concentration is reached
at the physiologically relevant concentration of 25mg/mL, in which the solution
behaves as a complex liquid exhibiting both viscous and elastic behavior. Xu et al.
[27] examined theoretically a thin liquid biological film composed of heterogeneous
solute, having a spatial distribution with prescribed statistical features, assuming
that the film viscosity is determined by the concentration of the solute.

Fig. 1. A view of a stomach mucus film [25].
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We consider here a biological film with a spatial heterogeneity, cellular
microstructure and varying thickness ε ∈ (0, 1). We suppose, without loss of gener-
ality, that the solid surface Σ of the biofilm lies on the plane x3 = 0. We suppose
that the biological fluid in the film has Newtonian rheology where, taking into
account the microscale characteristics of the film the stress tensor τ is given by

τ = −pIdR3 + εc
(x
ε
, ξt/ε

)
Du,

Du =
1
2
(∇u+ ∇tu),

(1.1)

where IdR3 is the identity matrix on R
3, p is the pressure, ∇u is the gradient velocity

tensor, and c(x
ε , ξt/ε) is a spatially periodic viscosity regulated by a time random

process ξt/ε which can be related to the random structural evolution of the biofilm.
The cell-diffusion time t/ε describes the time scale over which a finely concentrated
particle of biological constituents will spread over a spatial microscopic periodic
cell.

The main objective of the present work is to study the asymptotic behavior,
as ε tends to zero, of the fluid in the biofilm. Using the classical asymptotic and
homogenization methods (see for instance [3]), we derive (see Theorem 2.1) the
following boundary condition, which holds almost surely on the surface Σ:

ν
∂u0

β

∂x3

∣∣∣∣∣
Σ

= 〈C〉u0
β(x′ + σ̃Wt, 0, t) on Σ × (0, T ); β = 1, 2, (1.2)

where ν is a constant parameter representing the cinematic viscosity of the New-
tonian fluid in the biological body lined by the biofilm, 〈C〉 is defined in (A.34), σ̃
is the matrix defined in (A.26)2, and Wt is the standard 2-dimensional Brownian
motion. If ξt is a diffusion process with

dξt = b(ξt)dt+ λ(ξt)dWt,

then (see Remark A.9), replacing condition (A2) by some effectively verifiable suf-
ficient condition in terms of the coefficients of the generator, we obtain the same

result. The effective slip boundary condition (1.2) relates the shear stress ν
∂u0

β

∂x3
|Σ

to the sliding speed u0
β(x′ + σ̃Wt, 0, t); β = 1, 2, through the coefficient 〈C〉 which

depends on the lubricant viscosity of the flow in the biological film via relation
(A.34). This boundary condition can be interpreted as a time random lubricant law
on the wall of the biological body. This law confirms the slip model proposed by [24]
and the study of thin film hydrodynamic lubrication models in [10]. This boundary
slippage condition is a result of the differences in the affinity of the biological fluid
with the solid surface, the viscous forces of the fluid flows, and the random tra-
jectories of the biological fluid particles. Here, the slip velocity u0

β(x′ + σ̃Wt, 0, t);
β = 1, 2, depends on the random trajectory x′ + σ̃Wt of a finely concentrated bio-
logical particle on Σ released initially from some point x′. Due to the presence of
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the Brownian motion Wt, the velocity u0
β(x′ + σ̃Wt, 0, t); β = 1, 2, is characterized

by the following Itô formula:

du0
α =

∂u0
α

∂t
+

1
2

∑
l,m=1,2
j=1,2,3

σljσmj
∂2u0

α

∂xl∂xm

 dt+ σ∇x′uα.dWt; α = 1, 2,

where σ is the square root of the matrix σ2 defined in (A.25) and σ is the matrix
defined in (A.26)1. The effects of mechanical stress on lung airway epithelia have
been studied by several authors, among which [8] and [21]. In [8], the author showed
that, during normal breathing, airflow across the surface of the airway epithelium
produces a wall shear stress with varying magnitude from the large to the small
generations of the airways. In [21], the authors studied a model airflow-related
shear stress, which depends on the velocity and viscosity of the air, during het-
erogeneous constriction and mechanical ventilation. They concluded that elevated
airflow-related shear stress on the epithelial cell layer can occur during heteroge-
neous constriction and conjecture that this may constitute a mechanism contribut-
ing to ventilator-induced lung injury. The present work can be extended to biofilms
which exhibit a viscous non-Newtonian behavior, which obey the power law:

τ = −pIdR3 + εr−1c
(x
ε
, ξt/ε

)
|Du|r−2Du, (1.3)

where τ is the Cauchy stress and r ∈ (1, 2). The parameter r may depend on the
temperature (see [1]) or on the pressure (see [19]) in the fluid flows. With slight
modifications in the auxiliary problems introduced in Sec. A.3 of the Appendix, we
can derive the following nonlinear lubricant law on Σ:

ν
∂u0

∂x3

∣∣∣∣
Σ

= Kr|u0|r−1u0(x′ + σ̃Wt, 0, t) on Σ × (0, T ), (1.4)

where u0 =
(
u0

1, u
0
2

)
and Kr is a constant depending on r.

The paper is organized as follows: in Sec. 2, we introduce necessary notations,
describe the structure of the biofilm, pose the problem to be studied, make assump-
tions on the random fields under consideration and formulate the main result of this
work. In Sec. 3, we present our conclusion. The last section, which is devoted to the
appendix, contains 3 Subsections. Appendix A.1, contains intermediate technical
results and their proofs. In Appendix A.2, we establish compactness results for the
solution of the original problem. In Appendix A.3, we study some local problems
which are crucial in constructing test-functions, which depend on the trajectory of
the process ξt after time t/ε, in order to pass to the limit in the original problem.

2. Statement of the Problem and the Main Result

Define the set

R
3− = {x = (x1, x2, x3) ∈ R

3;x3 < 0},
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and let Ω be a bounded open subset in R
3− with Lipschitz continuous boundary

∂Ω. We suppose that the set Σ = ∂Ω∩ {x3 = 0} is a smooth surface. Furthermore,
assume that the boundary ∂Ω\Σ can be represented by a smooth negative function
x′ = (x1, x2) → a(x′). Let Y = (− 1

2 ,
1
2 )2 be the 2-dimensional unit reference cell

and Z = Y × (−1, 0). For every ε ∈ (0, 1), we consider the cells:

Y ε
ij =

(
−ε

2
,
ε

2

)2

+ (iε, jε), Zε
ij = Y ε

ij × (−ε, 0) ∀ i, j ∈ Z. (2.1)

and define the set Iε ⊂ Z
2 as follows:

Iε =
{
(i, j) ∈ Z

2 |Y ε
ij ⊂ Σ

}
. (2.2)

Moreover, we define

Y ε
⋃

(i,j)∈Iε

Y ε
ij , Σε = Y ε × (−ε, 0). (2.3)

We also set

Ωε = Ω\Σε, Γε = ∂Ωε ∩ ∂Σε. (2.4)

For convenience, we suppose that for every ε ∈ (0, 1),

Ω = Ωε ∪ (Y ε × [−ε, 0)). (2.5)

Finally, we suppose that Ω is filled with a slow viscous incompressible fluid flow and
that the inertia effects are negligible in Ω in such a way that the flow is governed
by the unsteady Stokes equations:

∂uε

∂t
− ν∆uε + ∇pε = f in Ωε × (0, T ),

∂uε

∂t
− ε div

(
c
(x
ε
, ξt/ε

)
∇uε

)
+ ∇pε = f in Σε × (0, T ),

div uε = 0 in Ω,

uε(x, 0) = u(x) on Ω,

(2.6)

with the transmission and boundary conditions

[uε]Γε = 0 on Γε × (0, T ),

ν
∂uε

∂n
− εc

(x
ε
, ξt/ε

) ∂uε

∂n
= 0 on Γε × (0, T ),

uε = 0 on (∂Ω\Σ) × (0, T ),

uε
3 = 0 on Σ,

(2.7)

where f ∈ L2(Ω,R3), [uε]Γε is, for almost every t ∈ [0, T ], the jump of uε across Γε;
that is the difference of the two traces of uε on Γε, n is the outward unit normal,
ν is the constant viscosity in Ωε × (0, T ), and c(z, ς) = (cij(z, ς))i,j=1,2,3; z ∈ R

3

and ς ∈ R
d; d being a positive integer, is a measurable 3 × 3 symmetric matrix
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corresponding to the viscosity in Σε × (0, T ). The time dependence of c(x
ε , ξt/ε)

is governed by a stationary and ergodic random process ξt, which is defined on a
probability space (Π,Υ,P) with values in R

d, where Υ is a σ-algebra of subsets of
Π supplied with the probability measure P. Let (Tx)x∈R be a dynamical system on
(Π,Υ). That is, a family of operators satisfying for every x, y ∈ R,

T0 = Id(Id is the identical mapping),

Tx+y = Tx ◦ Ty,

P
(
T −1

x A
)

= P(A), ∀A ∈ Υ

(2.8)

and such that, for every A ∈ Υ, the set {(x, ω) ∈ R × Π | Txω ∈ A} is dx ⊗ dP-
measurable. We suppose that T is ergodic (or metrically transitive) in the sense
that for every set A ∈ Υ such that TxA = A, for every x ∈ R, has a probability
P(A) equal to 0 or 1. We suppose that ξt is a stationary and ergodic process, that
is, for every n ∈ N, for every t, t1, . . . , tn ∈ R, and for every B ∈ B(Rd), where
B(Rd) is the Borel σ-algebra on R

d,

P({ω | ξt+t1(ω), . . . , ξt+tn(ω) ∈ B}) = P({ω | ξt1(Ttω), . . . , ξtn(Ttω) ∈ B}) (2.9)

and (see for instance [6] and [13])

lim
L→∞

1
L

∫ L

t

ξt(ω)dt = E(ξ), (2.10)

almost surely. Let F≤t be the σ-algebra generated by ξs for all s ≤ t and F≥t be
the σ-algebra generated by ξs for all s ≥ t. The strong mixing coefficient of the
process ξs is the function

κ(s) = sup
A∈F≤t,B∈F≥t+s

|P(A)P(B) − P(A ∩B)|. (2.11)

The uniform mixing coefficient of the process ξs is defined by

φ(s) = sup
A∈F≤t,B∈F≥t+s

P (B)�=0

∣∣∣∣P(A) − P(A ∩B)
P(B)

∣∣∣∣ (2.12)

and the maximal correlation coefficient of the process ξs is defined through

ρ(s) = sup
η1∈L2(Π,F≤t,P ),η2∈L2(Π,F≥t+s,P )

∣∣∣∣∣∣E((η1 − Eη1)(η2 − Eη2))√
E
(
η2
1

)
E
(
η2
2

)
∣∣∣∣∣∣. (2.13)

We make the following assumptions:

(A1) There exists a positive constant C such that for all z ∈ R
3, ς ∈ R

d and υ ∈ R
3,

|c(z, ς)| ≤ C, νij(z, ς)υiυj ≥ C|υ|2, (2.14)

where the summation convention with respect to repeated indices is used in
the left-hand side of the second inequality.
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(A2) At least one of the following relations holds:∫ ∞

0

√
κ(s)ds <∞,

∫ ∞

0

√
φ(s)ds <∞,

∫ ∞

0

√
ρ(s)ds <∞. (2.15)

Motivation for different scaling in Ωε and Σε allows for different values of the
characteristic Fr (Froude), Eu (Euler), Re (Reynolds), and Sr (Strouhal) numbers.
The assumption that the inertia effects are negligible in Σε leads to low Froude and
Reynolds numbers and high Euler number (see for instance [22]) in Σε. We assumed
here that

Fr
Re

= ε and Fr × Eu = 1 in Σε. (2.16)

On the other hand, according to [22],

Sr + 1 = Eu +
1

Re
+

1
Fr
,

which implies, together with (2.16), that

FrSr = O(1) in Σε.

Under the assumption (A1), for any initial condition u ∈ L2(Ω,R3) with div u = 0,
and any ε ∈ (0, 1), problem (2.6)–(2.7) has almost surely a unique solution (uε, pε)
(see for example [26]) such that

uε ∈ L2(0, T,H(Ω,R3)) ∩ L∞([0, T ], L2(Ω)),
∂uε

∂t
∈ L2(0, T,H−1(Ω,R3)),

pε ∈ L2(0, T, L2(Ω,R)),

where

H(Ω,R3) = {v ∈ H1(Ω,R3) | div(v) = 0 in Ω, v = 0 on ∂Ω\Σ, v3 = 0 on Σ}.
(2.17)

We define for every (x′, x3) ∈ Ω; x′ = (x1, x2) and every (i, j) ∈ Iε,

Tε(x) =


x if x ∈ Ω\Σε,(
x′, (a(x′) + ε)

x3

a(x′)
− ε

)
if x ∈ Ω ∩ Zε

ij .
(2.18)

Observe that Tε is an invertible map from Ω into Ωε, such that, for every u ∈
H1(Ωε,R

3),

‖u ◦ Tε‖H1(Ω;R3) ≤ C‖u‖H1(Ωε,R3), (2.19)

where C is a positive constant independent on ε. Our main result in this paper
reads as follows:

Theorem 2.1. Let (uε, pε) be the solution of problem (2.6)–(2.7). Assume that
assumptions (A1)–(A2) are fulfilled. Then, for P-almost all ω,

uε ◦ T ε ⇀
ε→0

u0 in L2(0, T,H1(Ω\Σ,R3))-weak,
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uε →
ε→0

u0 in L2(Ω × (0, T ),R3)-strong,

∂uε

∂t
⇀

ε→0

∂u0

∂t in L2(0, T,H(Ω,R3)∗)-weak,

pε →
ε→0

p0 in L2(Ω × (0, T ),R3)-strong,

(2.20)

where (u0, p0) is the solution of the problem

∂u0

∂t
− ν∆u0 + ∇p0 = f in Ω × (0, T ),

div u0 = 0 in Ω,

u0
α = 0 on ∂Ω\Σ; α = 1, 2,

u0
3 = 0 on ∂Ω,

ν
∂u0

β

∂x3

∣∣∣∣∣
Σ

= 〈C〉u0
β(t) on Σ,

u0(x, 0) = u(x) for x ∈ Ω,

(2.21)

where

u0
β(t) = u0

β((x′ + σ̃Wt, 0, t)); β = 1, 2.

3. Conclusion

Biological fluid film in natural environments, such as the fluid films that line the
epithelium of the eye, respiratory, gastrointestinal and urogenital tracts, are subject
to considerable uncertainties and intrinsic spatial variability due to the biological
and chemical heterogeneity and the random evolution of the mucus concentrations.
In this paper, we considered a body lined by a thin heterogeneous biological film
with a cellular microstructure and varying thickness ε > 0. The viscous fluid in
the biological film is supposed to have Newtonian rheology but contains biologi-
cal and chemical components with spatially periodic viscosity c(x

ε , ξt/ε) regulated
by a random time process ξt/ε, which can be related, for example, to the ran-
dom structural evolution of the biofilm. Letting the thickness ε tend to zero, we
derived the following effective biological slip boundary condition on the wall of the
body:

ν
∂u0

β

∂x3

∣∣∣∣∣
Σ

= 〈C〉u0
β(x′ + σ̃Wt, 0, t) on Σ × (0, T ),

where the proportional coefficient 〈C〉 is defined in (A.34), σ̃ is the matrix defined
in (A.26)2, and Wt is the standard 2-dimensional Brownian motion. The tangential
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velocity u0
β(x′ + σ̃Wt, 0, t); β = 1, 2, is a function of the random trajectory x′ + σ̃Wt

of a finely concentrated particle on Σ released initially from some point x′.

Appendix A

A.1. Intermediate results

Let ζ(z, s) be an ergodic stationary process in s ∈ (0,∞) with values in the space
L2

per(Z) of z-periodic functions of L2(Z), such that

‖ζ‖L2(Z×(0,1)) <∞. (A.1)

An example of such process is ζ(z, s) = a(z)ξs, where a ∈ L2
per(Z) and ξ is a

Gaussian white noise with 〈ξsξs′〉 = δ(s − s′); 〈.〉 being the average over different
realizations of the random process ξ. We have the following result:

Lemma A.1. Let ζε(x, s) = ζ(x
ε ,

s
ε). Then

(1) For every ϕ ∈ C
(
[0, T ], C1

0(R3)
)
, we have, with probability 1,

lim
ε→0

1
ε

∫ t

0

∫
Σε

ϕζε(x, s)dxds = 〈ζ〉
∫ t

0

∫
Σ

ϕ(x′, 0, s)dx′ds,

where 〈ζ〉 = E(
∫

Z ζ(z, 0)dz).
(2) For every sequence (vε)ε ⊂ L2(Ω × (0, T )) such that, for every t ∈ [0, T ],

sup
ε

1
ε

∫ t

0

∫
Σε

(vε(x, s))2dxds < +∞,

there exists a subsequence of (vε)ε, still denoted in the same way, and v ∈
L2(Σ × (0, T )), such that, with probability 1,

lim
ε→0

1
ε

∫ t

0

∫
Σε

vεϕζ
εdxds = 〈ζ〉

∫ t

0

∫
Σ

v(x′, s)ϕ(x′, 0, s)dx′ds,

for every ϕ ∈ C([0, T ], C1
0 (R3)).

Proof. (1) Let ϕ ∈ C
(
[0, T ], C1

0(R3)
)

and t ∈ (0, T ]. Let N(ε) = [1/
√
ε], where [z]

denotes the floor of z. Let π = (tk)N
k=0 be a partition of [0, t], such that tk − tk−1 =√

ε, and φ = (sk)N
k=1; sk ∈ [tk−1, tk] be a selection associated to π. Then

lim
ε→0

1
ε

∫ t

0

∫
Σε

ϕζε(x, s)dxds

= lim
ε→0

1
ε

N(ε)∑
k=1

∫
Σε

ϕ(x, sk)
∫ tk

tk−1

ζε(x, s)dxds

= lim
ε→0

N(ε)∑
k=1

∑
(i,j)∈Iε

ε2ϕ(iε, jε, 0, sk)
∫ tk

tk−1

∫
Z

ζ
(
z,
s

ε

)
dzds
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= lim
ε→0

N(ε)∑
k=1

∑
(i,j)∈Iε

ε
2(tk − tk−1)ϕ(iε, jε, 0, sk)

×
∫ 1

0

∫
Z

ζ

(
z,
s(tk − tk−1)

ε
+
tk−1

ε

)
dzds



= lim
ε→0

N(ε)∑
k=1

∑
(i,j)∈Iε

ε
2√εϕ(iε, jε, 0, sk)

×
∫ 1

0

∫
Z

ζ

(
z,

s√
ε

+
tk−1

ε

)
dzds

, (A.2)

where we have introduced the change of variables s �→ s(tk−tk−1)+tk−1, z1 = x1−iε
ε ,

z2 = x2−jε
ε , and z3 = x3

ε . As ζ is a stationary ergodic process and, according to
property (2.8)3, Tx preserves the probability P, we have almost surely, using the
properties (2.9)–(2.10), that

lim
ε→0

∫ 1

0

∫
Z

ζ

(
z,

s√
ε

+
tk−1

ε
, ω

)
dzds

= lim
ε→0

√
ε

∫ 1/
√

ε

0

∫
Z

ζ

(
z, s+

tk−1

ε
, ω

)
dzds

= lim
ε→0

√
ε

∫ 1/
√

ε

0

∫
Z

ζ(z, s, Ttk−1/εω)dzds

= lim
ε→0

√
ε

∫ 1/
√

ε

0

∫
Z

ζ(z, s, ω)dzds

= 〈ζ〉,

which implies, together with (A.2), that

lim
ε→0

1
ε

∫ t

0

∫
Σε

ϕζε(x, s)dxds = 〈ζ〉
∫ t

0

∫
Σ

ϕ(x′, 0, s)dx′ds.

(2) Let us now introduce the following measure:

µ±
ε =

1Σε(x)1(0,t)(s)ζ±
(

x
ε ,

s
ε

)
dxds

ε
,

where ζ+(z, s) = max(ζ(z, s), 0), ζ−(z, s) = max(−ζ(z, s), 0), and 1A is the indi-
cator function of the set A. We deduce from the above computations that

(
µ±

ε

)
ε

converges in the weak sense of measures to the measure:

µ± = 〈ζ±〉1Σ(x′)1(0,t)(s)dx′ds,

when ε goes to 0. Observing that∫
R4

|vε|dµ±
ε ≤ ‖ζ‖L2(Z×(0,∞))

(
1
ε

∫ t

0

∫
Σε

(vε(x, s))2dxds
) 1

2

≤ C

(
1
ε

∫ t

0

∫
Σε

(vε(x, s))2dxds
) 1

2

,
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we deduce, using the hypothesis on (vε)ε, that the sequence
(
vεµ

±
ε

)
ε

converges, up
to some subsequence, to some measure χ, in the weak sense of measures. According
to Fenchel’s inequality, we have, for every ϕ ∈ C1

0 (R4),

2
∫

R4
vεϕdµ

±
ε −

∫
R4

(ϕ)2dµ±
ε ≤

∫
R4

(vε)2dµ±
ε .

Then, passing to the limit, we get the following:

2〈χ, ϕ〉 −
∫

R4
ϕ2(x′, 0, s)dµ± ≤ lim inf

ε→0

∫
R4

(vε)2dµ±
ε < +∞.

This implies that

sup
{
〈χ, ϕ〉 |ϕ ∈ C1

0 (R4),
∫

R4
ϕ2(x′, 0, s)dµ± < +∞

}
< +∞.

Thus, using Riesz’ representation Theorem, we can identify χ with vµ±, for some
v ∈ L2(Σ × (0, T )). As ζ = ζ+ − ζ−, we obtain the result.

A.2. Compactness results

Lemma A.2. Under assumption (A1), there exists almost surely a positive con-
stant C independent on ε, such that, for every t ∈ [0, T ], and every ω ∈ Π,∫ t

0

∫
Ωε

|∇uε|2dxds+ ε

∫ t

0

∫
Σε

|∇uε|2dxds ≤ C,

∫
Ω

|uε(x, t)|2dx+
∫ t

0

∫
Ωε

|uε|2dxds ≤ C,

1
ε

∫ t

0

∫
Σε

|uε|2dxds ≤ C.∥∥∥∥∂uε

∂t

∥∥∥∥
L2(0,T,H(Ω,R3)∗)

≤ C,

(A.3)

where ∇ is the gradient operator with respect to x and H(Ω,R3)∗ is the topological
dual of H(Ω,R3).

Proof. Let t ∈ [0, T ] and s ∈ (0, t). Let x′ ∈ Y ε
ij ; (i, j) ∈ Iε, we write, for x3 in

the interval (−ε, 0),

uε(x′, x3, s) = uε(x′,−ε, s) +
∫ x3

−ε

∂uε

∂x3
(x′, z, s)dz. (A.4)

Using Young’s inequality, we derive

|uε(x′, x3, s)|2 ≤ C

(
|uε(x′,−ε, s)|2 + ε

∫ 0

−ε

∣∣∣∣∂uε

∂x3

∣∣∣∣2 dz
)
, (A.5)
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from which we deduce that∫
Zε

ij

|uε(x, s)|2dx ≤ C

(
ε

∫
Y ε

ij

|uε(x′,−ε, s)|2dx′
)

+ C

(
ε2
∫

Zε
ij

|∇uε(x, s)|2dx
)

(A.6)

and, summing over Iε∫
Σε

|uε(x, s)|2dx ≤ C

ε∑
i,j

∫
Y ε

ij

|uε(x′,−ε, s)|2dx′
+ C

(
ε2
∫

Σε

|∇uε(x, s)|2dx
)
.

(A.7)

On the other hand, as uε = 0 on ∂Ωε ∩ ∂Ω, there exists a positive constant C
independent on ε such that∑

i,j

∫
Y ε

ij

|uε(x′,−ε, s)|2dx′ ≤ C

∫
Ωε

|∇uε(x, s)|2dx. (A.8)

We deduce from (A.7)–(A.8) that∫ t

0

∫
Σε

|uε(x, s)|2dxds ≤ Cε

∫ t

0

∫
Ωε

|∇uε(x, s)|2dxds+ Cε2
∫ t

0

∫
Σε

|∇uε(x, s)|2dxds.

(A.9)

Now, multiplying (2.6)1,2,3 by uε, we get, using Green’s formula, Young’s inequali-
ties, and the relation

∂uε

∂t
.uε =

1
2
∂|uε|2
∂t

,

that

1
2

∫
Ω

|uε|2(x, t)dx + ν

∫ t

0

∫
Ωε

|∇uε|2dxds+ ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇uε.∇uεdxds

=
∫ t

0

∫
Ω

f · uεdxds+
1
2

∫
Ω

|u|2(x)dx

≤ C

(∫ t

0

∫
Ωε

|uε|2dxds
)1/2

+ C

(∫ t

0

∫
Σε

|uε|2dxds
)1/2

+
1
2

∫
Ω

|u|2(x)dx.

(A.10)

Then, using Poincaré’s inequality in Ωε, assumption (A1), and (A.9), we obtain
that∫ t

0

∫
Ωε

|∇uε|2dxds+ ε

∫ t

0

∫
Σε

|∇uε|2dxds

≤ C

((∫ t

0

∫
Ωε

|∇uε|2dxds
)1/2

+
(
ε

∫ t

0

∫
Σε

|∇uε(x)|2dxds
)1/2

)
. (A.11)
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from which we deduce (A.3)1,2. On the other hand, combining (A.9), (A.10)
and (A.11) we deduce (A.3)3,4. Let v ∈ C1(0, T,H(Ω,R3)) such that v(x, 0) =
v(x, T ) = 0. Then, according to the above estimates, we have the following:∣∣∣∣∣

∫ T

0

∫
Ω

∂uε

∂t
.vdxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

∂v

∂t
.uεdxdt

∣∣∣∣∣ ≤ C‖∇v‖L2(Ω×(0,T ),R9).

This implies that, for every ε ∈ (0, 1),∥∥∥∥∂uε

∂t

∥∥∥∥
L2(0,T,H(Ω,R3)∗)

≤ C.

In order to get estimates on the pressure pε, let us first define the zero mean
value pressures:

pε = pε − 1
|Ωε|

∫
Ωε

pεdx.

Then we have the following estimate:

Lemma A.3. Under assumption (A1), there exists a positive constant C indepen-
dent on ε, such that, for every ω ∈ Π,∫ T

0

∫
Ωε

(pε)2dxdt ≤ C.

Proof. Let t ∈ [0, T ]. Let ψε
t ∈ H1

0 (Ωε,R
3) be the solution of the following

problem: {
div
(
ψε

t

)
= pε(., t) in Ωε,

ψε
t = 0 on ∂Ωε.

There exists a constant C(Ω) only depending on Ω and T such that (see for
instance [4]): ∥∥∇ψε

t

∥∥
L2(Ωε,R9)

≤ C(Ω)‖pε(., t)‖L2(Ωε).

Multiplying (2.6)1,2 by ψε
t and using Green’s formula, we obtain that

ν

∫ T

0

∫
Ωε

∇uε · ∇ψε
t dxdt

=
∫ T

0

∫
Ωε

f · ψε
t dxdt+

∫ T

0

∫
Ωε

(pε)2dxdt−
∫ T

0

∫
Ωε

∂uε

∂t
.ψε

tdxdt.

As ∣∣∣∣∣
∫ T

0

∫
Ωε

f · ψε
t dxdt

∣∣∣∣∣ ≤ C‖pε‖L2(Ωε×(0,T )),
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∫ T

0

∫
Ωε

∂uε

∂t
.ψε

t dxdt

∣∣∣∣∣ ≤ C

∥∥∥∥∂uε

∂t

∥∥∥∥
L2(0,T,H−1(Ω,R3))

‖pε‖L2(Ωε×(0,T )),

∣∣∣∣∣
∫ T

0

∫
Ωε

∇uε · ∇ψε
t dxdt

∣∣∣∣∣ ≤ C‖pε‖L2(Ωε×(0,T ))

∫ T

0

‖∇uε‖L2(Ωε,R9)dt

we get the desired estimate using Lemma A.2.

We have the following compactness result:

Proposition A.4. Let (uε, pε) be a solution of problem (2.6)–(2.7). There exists
a subsequence of (uε, pε)ε, still denoted in the same way, such that, for P-almost
all ω:

(1) The following convergences hold

uε ◦ Tε ⇀
ε→0

u0 in L2(0, T,H1(Ω,R3))-weak,

uε →
ε→0

u0 in L2(Ω × (0, T ),R3)-strong,

∂uε

∂t
⇀

ε→0

∂u0

∂t
in L2(0, T,H(Ω,R3)∗)-weak,

pε →
ε→0

p0 in L2(Ω × (0, T ),R3)-weak,

(A.12)

with u0 ∈ L2(0, T,H(Ω,R3)) ∩ L∞([0, T ], L2(Ω,R3)) and u0(x, 0) = u(x) in Ω.
(2) For every t ∈ [0, T ], every ϕ ∈ C

(
[0, T ], C1

0(R3)
)
, and every ω ∈ Π,

lim
ε→0

1
ε

∫ t

0

∫
Σε

uεϕζεdxds = 〈ζ〉
∫ t

0

∫
Σ

u∗(x′, s)ϕ(x′, 0, s)dx′ds,

where ζε(x, s) = ζ(x
ε ,

s
ε); ζ(z, s) being an ergodic stationary process verifying

(A.1), the constant 〈ζ〉 is defined in Lemma A.11, and

u∗(x′, s) = u0(x′, 0, s),

where u0(x′, 0, t) is, for almost every t ∈ [0, T ], the trace of u0 ∈ H1(Ω,R3)
on Σ.

Proof. (1) From estimates (A.3) and inequality (2.19), we deduce that the
sequence (uε ◦ Tε)ε is bounded in L2(0, T,H1(Ω; R3)). Then, up to some subse-
quence, the sequence (uε ◦ Tε)ε converges to some u0 in L2(0, T,H1(Ω,R3))-weak.
From (A.3)1,3 it follows that u0 belongs to L2(Ω × (0, T ),R3) and, up to some
subsequence,

χΩ∇(uε ◦ Tε) ⇀
ε→0

∇u0 in L2(0, T, L2(Ω,R9))-weak,

where χΩ is the characteristic function of Ω. Let us write∫ t

0

∫
Ω

|uε − u0|2dxds =
∫ t

0

∫
Ωε

−
|uε − u0|2dxds+

∫ t

0

∫
Σε

|uε − u0|2dxds.
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Using the above convergences, Sobolev embeddings and (A.3)3,4, we prove that
(uε)ε converges to u0 in L2(Ω × (0, T ),R3)-strong. Using the trace Theorem, we
have, up to some subsequence,

lim
ε→0

∫ t

0

∫
Γε

∣∣uε − u0(., 0, .) ◦ T−1
ε

∣∣dx′ds
= lim

ε→0

∫ t

0

∫
Σ

|uε ◦ Tε − u0(., 0, .)|Jac(Tε)dx′ds = 0. (A.13)

Since div uε = 0 in Ω, we have, for every ϕ ∈ C∞
c (Σ),∫ t

0

∫
Σε

div(uε)ϕdxds = −
∫ t

0

∫
Σε

uε
τ · ∇τϕdxds−

∫ t

0

∫
Γε

uεϕndx′ds = 0,

where uε
τ =

(
uε

1, u
ε
2

)
, n = e3 = (0, 0, 1)t, and ∇τϕ =

(
∂ϕ
∂x1

, ∂ϕ
∂x2

)
. Then, passing

to the limit using (A.3)3 and (A.13), we deduce that u0
3 = 0 on Σ. Now, since

div uε = 0 in Ωε, we easily obtain that div u0 = 0 in Ω. Thus, u0 belongs to
H(Ω,R3). We deduce from Lemma A.2 and from the above computations that, up
to some subsequence,

∂uε

∂t
⇀

ε→0

∂u0

∂t
in L2(0, T,H(Ω,R3)∗)-weak.

Using Lemma A.2 and inequality (2.19), we deduce that, for almost every t ∈ [0, T ],
there exists a subsequence (uεl(., t))εl

, such that∫
Ω

|∇(uεl ◦ Tε)(x, t)|2dx ≤ Ct <∞.

This implies that, up to some subsequence, (uεl(., t))l converges to u0(., t) in
H(Ω,R3)∗-strong. Let (tn)n be a dense sequence in [0, T ]\N. We have

‖uεl(., tn) − uεl(., t)‖H(Ω,R3)∗ =
∥∥∥∥∫ tn

t

∂uεl(., s)
∂s

ds

∥∥∥∥
H(Ω,R3)∗

≤ |tn − t| 12
(∫ tn

t

∥∥∥∥∂uεl

∂s

∥∥∥∥
H(Ω,R3)∗

ds

) 1
2

≤ C|tn − t| 12 ,

from which we deduce that (uεl(., t))l converges to u0(., t) in H(Ω,R3)∗-strong
uniformly in [0, T ]. Let δ > 0. Then, according to [17, Chap. 1, Lemme 12.1], there
exists a constant Cδ > 0, such that∫

Ω

|uεk(., t) − uεl(., t)|2dx ≤ δ

∫
Ω

|∇uεl(., t)|2dx+ δ

∫
Ω

|∇uεk(., t)|2dx

+Cδ‖uεk(., t) − uεl(., t)‖2
H(Ω,R3)∗ .

Thus, (uε(., t))ε is a Cauchy sequence in L∞([0, T ], L2(Ω)). We deduce from this
that u0 ∈ L∞([0, T ], L2(Ω)) and u0(x, 0) = u(x) in Ω. On the other hand, using
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inequality (2.19), we deduce that, up to some subsequence,

pε →
ε→0

p0 in L2(Ω × (0, T ),R3)-weak.

(2) We deduce from Lemmas A.24 and A.1, that there exists u∗ ∈ L2(Σ × (0, T )),
such that, for every ϕ ∈ C([0, T ], C1

0 (R3)), we have, up to some subsequence, and
with probability 1,

lim
ε→0

∫
R4
uεϕζεdµε(x, s) = 〈ζ〉

∫ t

0

∫
Σ

u∗(x′, s)ϕ(x′, 0, s)dx′ds,

where

µε(x, s) =
1Σε(x)1(0,t)(s)dxds

ε
.

Let us now define the measure µ0
ε(x, s) through

µ0
ε(x, s) = 1{x3=−ε}

1Σε(x)1(0,t)(s)dxds
ε

.

Then µ0
ε(x, s) weakly converges, as ε tends to zero, in the sense of measures to the

measure 1Σ(x′)1(0,t)(s)dx′ds, thus, using the proof of Lemma A.1, one can see that,
for every ϕ ∈ C

(
[0, T ], C1

0(R3)
)
,

lim
ε→0

∫
R4
uεϕdµ0

ε(x, s) =
∫ t

0

∫
Σ

u∗(x′, s)ϕ(x′, 0, s)dx′ds. (A.14)

Observing that

lim
ε→0

∫ t

0

∫
Γε

uεϕdx′ds = lim
ε→0

∫
R4
uεϕdµ0

ε(x, s),

we deduce, using (A.13) and (A.14), that

u∗(x′, s) = u0(x′, 0, s).

A.3. Local study

Let us introduce the following result:

Lemma A.5 ([6, Lemma 18.6]). Let qh; h ∈ N
∗, be the solution of the following

diffusion problem:
∂qh
∂s

+ div
z

(c(z, ξs)∇qh) = 0 in Z × (−∞, h); h ∈ N
∗,

qh(z, h) = q0 on Z,

qh(z, s) is 1-periodic in z,

(A.15)

where Z = Y × (−1, 0) and q0 ∈ L2
per(Z), such that∫
Z

q0(z)dz = 0.
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Then, for every s ≤ h− 1,

|qh(z, s)| ≤ C‖q0‖L2(Z) exp(C(s− h)).

If q0 ∈ L∞(Z) then, for every s ≤ h,

|qh(z, s)| ≤ C‖q0‖L∞(Z) exp(C(s− h)).

Let us now consider the sequence of auxiliary equations:

∂ϑh

∂s
+ div

z
(c(z, ξs)∇ϑh) = 0 in Z × (−∞, h); h ∈ N

∗,

ϑh|z3=0 = 1 on Y × (−∞, h),

ϑh(z, h) = 1 on Z,

ϑh(z, s) is 1-periodic in z.

(A.16)

We have the following convergence result.

Proposition A.6. The sequence (ϑh)h∈N∗ converge uniformly in compact sets of
Z × (−∞,∞), as h→ ∞, to the positive solution ϑ of the problem

∂ϑ

∂s
+ div

z
(c(z, ξs)∇ϑ) = 0 in Z × (−∞,∞),

ϑ|z3=0 = 1 on Y × (−∞,∞),

ϑ(z, s) is 1-periodic in z,

(A.17)

with ∫
Z

ϑ(z, s)dz = 1 a.s. s ∈ (−∞,∞). (A.18)

Moreover ϑ(z, s) is continuous and satisfies the estimates

‖ϑ(z, s)‖L∞(Z×(−∞,∞)) ≤ C,

sup
k∈R

‖ϑ(z, s)‖L2((k,k+1),H1(Z)) ≤ C,

ϑ(z, s) ≥ C1,

max
z∈Z,k≤s≤k+1

|ϑ(z, s) − ϑh(z, s)| ≤ C exp(C2(k − h)),

(A.19)

where C, C1 and C2 are nonrandom positive constants.

Proof. By the maximum principle (see for instance [14]), the solution ϑh(z, s)
of problem (A.16) is positive. Moreover, multiplynig equation (A.16)1 by 1 and
integrating by parts over the set Z × (s, h), we get, for all s ≤ h,∫

Z

ϑh(z, s)dz = 1. (A.20)
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Then, using the Harnack inequality, we obtain that

0 < C1 ≤ ϑh(z, s) ≤ C <∞, (A.21)

where C and C1 are nonrandom constants independent on h. Observe now that
ϑh+k − ϑh is the solution of the following problem in Z × (−∞, h):

∂(ϑh+k − ϑh)
∂s

+ div
z

(c(z, ξs)∇(ϑh+k − ϑh)) = 0,

(ϑh+k − ϑh)|z3=0 = 0,

with ∫
Z

(ϑh+k − ϑh)dz = 0, (A.22)

from which we deduce, using Lemma A.5 and the estimate (A.21), that

‖ϑh+k − ϑh‖C(Z×[s,s+1]) ≤ C1 exp(C(s− h)), (A.23)

which implies that (ϑh)h is a Cauchy sequence which uniformly converges on com-
pact sets of Z × (−∞,∞), as h → ∞, to a continuous function ϑ. Passing to the
limit in (A.21)–(A.23), as k → ∞, we obtain the estimates (A.19)1,3,4, and pass-
ing to the limit in (A.22) as k → ∞, taking into account the equality (A.20), we
obtain the equality (A.18). On the other hand, multiplying Eq. (A.16)1 by ϑh and
integrating by parts over the set Z × (s, h), we deduce that∫ h

s

∫
Z

c(z, ξs)∇ϑh.∇ϑhdzds ≤ C,

where C is a nonrandom constant independent on h. Thus, using hypothesis (A1),
we have ∫

Z×(s,s+1)

|∇ϑh|2dzds ≤ C,

uniformly with respect to ω ∈ Π and s < h. We deduce that the sequence (∇ϑh)h

weakly converges to ∇ϑ in the space L2
loc(Z × (−∞,∞)), and, as a consequence,

the estimate (A.19)2. Passing to the limit in the integral identity corresponding to
problem (A.16) and using the continuity of ϑ(z, s), we deduce that ϑ(z, s) is the
solution of problem (A.17).

We define the random process η = (ηi)i=1,2,3 through

ηi(s) =
∫

Z

∂cij(z, ξs)
∂zj

ϑ(z, s)dz. (A.24)

where (cij(z, ξs))i,j=1,2,3 = c(z, ξs). We introduce the matrix σ2 = (σ2
ij)i,j=1,2,3

σ2
ij =

∫ ∞

0

E(ηi(s)ηj(0) + ηj(s)ηi(0))ds. (A.25)

We also define the following matrices:

σ = (σαβ)α,β=1,2, σ̃ = (σαj)α=1,2,j=1,2,3, (A.26)
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σ being the square root of the matrix σ2 defined in (A.25). The following result is
crucial for the description of the limit problem (2.21):

Proposition A.7. The process η(s) satisfies the functional central limit Theorem
with covariance matrix σ2:

√
ε

∫ t/ε

0

η(s)ds L→
ε→0

σWt in C([0, T ],R3).

Proof. The proof follows the lines of the proof of [12, Lemma 3]. Let us consider
the following two auxiliary problems:

∂ϑ1

∂s
+ div

z
(c(z, ξs)∇ϑ1) = 0 in Z × (−∞, T/2),

ϑ1|z3=0 = 1/2 on Y × (−∞, T/2),

ϑ1(z, T/2) = 1 on Z,

ϑ1(z, s) is 1-periodic in z

(A.27)

and 

∂ϑ2

∂s
+ div

z
(c(z, ξs)∇ϑ2) = 0 in Z × (−∞, T/2),

ϑ2|z3=0 = 1/2 on Y × (−∞, T/2),

ϑ2(z, T/2) = ϑ(z, T/2)− 1 on Z,

ϑ2(z, s) is 1-periodic in z.

(A.28)

Then ϑ(z, s) = ϑ1(z, s) + ϑ2(z, s) on (0, T/2) and η(0) = η1(0) + η2(0), where

ηm
i (0) =

∫
Z

∂cij
∂zj

(z, ξ0)ϑm(z, 0)dz; m = 1, 2.

Since ϑm(z, 0) and η1(0) are F≤T
2
-measurable, we have, using one of the mixing

conditions (A2) (for example the last one), that

‖E(η1(0)/F≥T )‖L2(Π) ≤ ρ(T/2)‖η1(0)‖L2(Π) ≤ Cρ(T/2). (A.29)

On the other hand, using Lemma A.5, one has

|ϑ2(z, 0)| ≤ C exp(−CT/2),

from which we deduce that

‖E(η2(0)/F≥T )‖L2(Π) ≤ ‖η2(0)‖L2(Π) ≤ C exp(−CT/2). (A.30)

Combining (A.29) and (A.30), we get

‖E(η(0)/F≥T )‖L2(Π) ≤ C(exp(−CT ) + ρ(T/2)).

Then, under assumption (A2), we obtain, using the Prokhorov Theorem (see for
instance [2, Chap. 1, Sec. 5]) and the functional central limit Theorem (see for
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instance [18, Chap. 9]), that

√
ε

∫ t/ε

0

η(s)ds L→
ε→0

σWt in C([0, T ],R3).

A.4. Proof of the main result

In this subsection, we give the proof of our main result. According to Proposi-
tion A.4, there exists a subsequence of (uε, pε)ε, still denoted in the same way, which
verifies the convergences 2.20 for P-almost all ω, with u0 ∈ L2(0, T,H(Ω,R3)) ∩
L∞([0, T ], L2(Ω,R3)) and u0(x, 0) = u(x) in Ω. Let us define the sequence(
u0

ε(x, t)
)

ε
of test-functions through

u0
ε(x, t) = u0(x, s) + u0

(
Xε

1 , X
ε
2 , 0, t

)
(ϑε(x, t) − 1), (A.31)

where 

Xε
1 = x1 +

1√
ε

∫ t

0

η1

(s
ε

)
ds,

Xε
2 = x2 +

1√
ε

∫ t

0

η2

(s
ε

)
ds,

ϑε(x, t) = ϑ

(
x

ε
,
t

ε

)
,

(A.32)

ϑ being the solution of the cell problem (A.17) in Proposition A.6 of Appendix A.3,
and η = (ηi)i=1,2,3 is the random process defined in (A.24). The new variables Xε

m;
m = 1, 2, which verify the stochastic differential equations:

dXε
m(t) =

1√
ε
ηm

(
t

ε

)
dt; m = 1, 2,

Xε
m(0) = xm,

(A.33)

describe the random perturbations of the trajectory around the horizontal position
(x1, x2) of a particle fluid in the biofilm. The function u0

ε(x, t) is thus the sum
of u0 on Σ × [0, T ] and a local random perturbation described by the quantity
u0(Xε

1 , X
ε
2 , 0, t)(ϑε(x, t) − 1). Let us define the mean

〈C〉 = E
(∫

Z

c(z, ξs)∇zϑ.∇zϑ(z, s)dz
)
. (A.34)

To complete our proof, we need the following result:

Lemma A.8. Let uε be the (velocity) solution of problem (2.6)–(2.7). Assume that
assumptions (A1)–(A2) are fulfilled. Then

(1) For every ϕ ∈ C
(
[0, T ], C1

0(R3)
)
, every ω ∈ Π, and every t ∈ [0, T ],

lim
ε→0

1
ε

∫ t

0

∫
Σε

u0
εϕζ

εdxds = 〈ζ〉
∫ t

0

∫
Σ

u0(x′, 0, s)ϕ(x′, 0, s)dx′ds,
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where ζε(x, s) = ζ
(

x
ε ,

s
ε

)
; ζ(z, s) being an ergodic stationary process verifying

(A.1).
(2) There exists a subsequence of (uε)ε, still denoted in the same way, such that,

for every ω ∈ Π and every ψ ∈ C([0, T ], C1(Σ×R)) with ψ = 0 on ∂Σ×R, we
have

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

) (
∇uε −∇u0

ε

)
.∇(ψϑε)dxds = 0.

(3) For every ω ∈ Π and every ψ ∈ C([0, T ], C1(Σ × [0,∞),R3)) such that ψ = 0
on ∂Σ × [0,∞), we have

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇u0

ε.∇(ψϑε)dxds

= 〈C〉
∫ t

0

∫
Σ

u0(x′ + σ̃Wt, 0, s).ψ(x′, 0, s)ds,

where σ̃ is the matrix defined in (A.26)2.

Proof. (1) Using the construction of
(
u0

ε

)
ε
, Proposition A.4 and Lemma A.1, one

can see that

lim
ε→0

1
ε

∫ t

0

∫
Σε

u0
εϕζ

εdxds = lim
ε→0

1
ε

∫ t

0

∫
Σε

u0(x′,−ε, s)ϕζεdxds

= 〈ζ〉
∫ t

0

∫
Σ

u0(x′, 0, s)ϕ(x′, 0, s)dx′ds.

(2) Since c
(

x
ε , ξt/ε

)
is symmetric, we have the following:

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

) (
∇uε −∇u0

ε

)
.∇(ψϑε)dxds

= ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇(ψϑε).

(
∇uε −∇u0

ε

)
dxds. (A.35)

Then, using the Green formula, we have the following:

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇(ψϑε).

(
∇uε −∇u0

ε

)
dxds

= −1
ε

∫ t

0

∫
Σε

div
z

(
c
(x
ε
, ξt/ε

)
∇zϑ

ε
)
ψ.
(
uε − u0

ε

)
dxds

−
∫ t

0

∫
Σε

div
z

(
c
(x
ε
, ξt/ε

)
∇xψ

)
.ϑε
(
uε − u0

ε

)
dxds

+
∫ t

0

∫
∂Σε

c
(x
ε
, ξt/ε

)
∇zϑ

ε.nψ.
(
uε − u0

ε

)
dσ(x)ds

+ ε

∫ t

0

∫
∂Σε

c
(x
ε
, ξt/ε

)
∇xψn.ϑ

ε
(
uε − u0

ε

)
dσ(x)ds, (A.36)
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where divz is the divergence with respect to z ∈ Z, ∇z is the gradient with respect to
z, n is the outward unit normal on ∂Σε, and dσ(x) is the surfacic Lebesgue measure
on ∂Σε. Using assumption (A1), formula (A.32)3, estimate (A.3)4 in Lemma A.2,
and Lemma A.1, we have, up to some subsequence,

lim
ε→0

1
ε

∫ t

0

∫
Σε

div
z

(
c
(x
ε
, ξt/ε

)
∇zϑ

ε
)
ψ.uεdxds

=
〈
div

z
(c(z, ξs)∇zϑ)

〉∫ t

0

∫
Σ

u0(x′, 0, s).ψ(x′, 0, s)dx′ds,

where, according to Lemma A.1, 〈divz(c(z, ξs)∇zϑ)〉 is the mean of the process
divz(c(z, ξs)∇zϑ).

On the other hand, using the construction of the sequence
(
u0

ε

)
ε
and Lemma A.1,

we obtain that

lim
ε→0

1
ε

∫ t

0

∫
Σε(ω)

div
z

(
c
(x
ε
, ξt/ε

)
∇zϑ

ε
)
ψ.u0

εdxds

=
〈
div

z
(c(z, ξs)∇zϑ)

〉∫ t

0

∫
Σ

u0(x′, 0, s).ψ(x′, 0, s)dx′ds.

Hence,

lim
ε→0

1
ε

∫ t

0

∫
Σε(ω)

div
z

(
c
(x
ε
, ξt/ε

)
∇zϑ

ε
)
ψ.
(
uε − u0

ε

)
dxds = 0 (A.37)

and

lim
ε→0

∫ t

0

∫
Σε

div
z

(
c
(x
ε
, ξt/ε

)
∇xψ

)
.ϑε
(
uε − u0

ε

)
dxds = 0. (A.38)

Besides, we have the following:∫ t

0

∫
∂Σε

c
(x
ε
, ξt/ε

)
∇zϑ

ε.νψ.(uε − u0
ε)dσ(x)ds

=
∫ t

0

∫
Σ−

c
(
x′

ε
,−ε

2
, ξ s

ε

)
∇zϑ

ε.nψ.
(
uε − u0

ε

)
dx′ds

−
∫ t

0

∫
Γε

c
(
x′

ε
,
ε

2
, ξ s

ε

)
∇zϑ

ε.nψ.
(
uε − u0

ε

)
dx′ds, (A.39)

where n = e3. Thus, using assumption (A1), Proposition A.42 and formula (A.32)3
of ϑε, we get

lim
ε→0

∫ t

0

∫
∂Σε

c
(x
ε
, ξt/ε

)
∇zϑ

ε.nψ.
(
uε − u0

ε

)
dσ(x)ds

= lim
ε→0

ε

∫ t

0

∫
∂Σε

c
(x
ε
, ξt/ε

)
∇xψn.ϑ

ε
(
uε − u0

ε

)
dσ(x)ds = 0. (A.40)
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Hence, combining (A.35)–(A.40), we obtain that

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

) (
∇uε −∇u0

ε

)
.∇(ψϑε)dxds = 0.

(3) We have, using the expression (A.31), that

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇u0

ε.∇(ψϑε)dxds

= lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇ϑε.∇ϑεu0

(
Xε

1 , X
ε
2 , 0, t

)
.ψ(x, s)dxds

+ lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇ϑε.∇ψu0

(
Xε

1 , X
ε
2 , 0, t

)
ϑεdxds

+ lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇x′u0

(
Xε

1 , X
ε
2 , 0, t

)
.∇ψ(ϑε − 1)ϑεdxds

+ lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇u0(x′, 0, s).∇(ψϑε)dxds.

One has, using assumption (A1), that

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇ϑε.∇ψϑεu0

(
Xε

1 , X
ε
2 , 0, s

)
dxds

= lim
ε→0

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇zϑ

ε.∇ψϑεu0
(
Xε

1 , X
ε
2 , 0, s

)
dxds = 0

and

lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇x′u0

(
Xε

1 , X
ε
2 , 0, t

)
.∇ψ(ϑε − 1)ϑεdxds

= lim
ε→0

ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇u0(x′, 0, s).∇(ψϑε)dxds = 0.

Observe now that, for every ϕ ∈ C([0, T ],R2),∫
Σ

|u0(x′ + ϕ(s), 0, s)|2dx′ds

≤ C

(∫
Ω

|u0(x′ + ϕ(s), x3, s)|2dxds+ |ϕ(s)|
∫

Ω

|∇u0(x, s)|2dxds
)

≤ C‖ϕ‖∞
∫

Ω

|∇u0(x, s)|2dxds.

This implies that ∫ T

0

∫
Σ

|u0(x′ + ϕ(s), 0, s)|2dx′ds ≤ C‖ϕ‖∞.

1950003-23

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

01
/0

8/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

January 2, 2019 20:5 WSPC S1793-5245 242-IJB 1950003

M. El Jarroudi et al.

Consequently, the mapping Φ : C([0, T ],R2) → L2(Σ × (0, T )) defined by

Φ(ϕ)(x′, s) = u0(x′ + ϕ(s), 0, s),

is continuous. Hence, taking into account assumption (A2), Lemma A.7, and
Lemma A.1, we obtain that

lim
ε→0

∫ t

0

∫
Σε

εc
(x
ε
, ξt/ε

)
∇u0

ε.∇(ψϑε)dxds

= lim
ε→0

∫ t

0

∫
Σε

εc
(x
ε
, ξt/ε

)
∇ϑε.(∇ϑε)u0(Xε

1 , X
ε
2 , 0, t).ψ(x, s)dxds

= lim
ε→0

1
ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇zϑ

ε.(∇zϑ
ε)εu0(Xε

1 , X
ε
2 , 0, t).ψ(x, s)dxds

= 〈C〉
∫ t

0

∫
Σ

u0(x′ + σ̃Ws, 0, s).ψ(x′, 0, s)ds.

Now, we continue the proof of Theorem 2.1. Let v ∈ L2(0, T,H(Ω,R3)) ∩
L∞([0, T ];L2(Ω,R3)) and u0(x, 0) = u(x) in Ω. Since ϑε|Γε×[0,T ] = 1, we can define
its extension ϑ̃ε to the whole Ω by

ϑ̃ε =

{
ϑε in Σε × [0, T ],

1 in (Ω\Σε) × [0, T ].

Then, multiplying equations (2.6) by vϑ̃ε and integrating by parts, using (2.7), we
get∫ t

0

∫
Ω

∂uε

∂t
.vdxds +

∫ t

0

∫
Ωε

ν∇uε.∇vdxds + ε

∫ t

0

∫
Σε

c
(x
ε
, ξt/ε

)
∇uε.∇(vϑε)dxds

=
∫ t

0

∫
Ω

f.vϑεdxds. (A.41)

Then, applying Proposition A.4 and Lemma A.8 for some subsequence of (uε)ε still
denoted in the same way, we get, using (A.19)1 for ϑε in the fourth integral,∫ t

0

∫
Ω

∂u0

∂t
.vdxds +

∫ t

0

∫
Ω

ν∇u0.∇vdxds

+ 〈C〉
∫ t

0

∫
Σ

(u0(x′ + σ̃Wt, 0, s))β .vβ(x′, 0, s)dx′ds

=
∫ t

0

∫
Ω

f.vdxds
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and, using Green’s formula,∫ t

0

∫
Ω

∂u0

∂t
vdxds −

∫ t

0

∫
Ω+

ν∆u0.vdxds− ν

∫
Σ

∂u0
α

∂x3
vα(x′, 0)dx′ds

+
∫ t

0

∫
Ω

∇p0.vdxds+ 〈C〉
∫ t

0

∫
Σ

(u0(x′ + σ̃Wt, 0, s))β.vβ(x′, 0, s)dx′ds

=
∫ t

0

∫
Ω

f.vdxds,

from which we deduce that (u0, p0) is the unique solution of problem (2.21). The
uniqueness of (u0, p0) implies that the whole sequence (uε)ε verifies the conver-
gence (2.20).

Remark A.9. (The case where ξt is a diffusion process) Let us suppose that (ξt)t≥0

be a stationary ergodic diffusion process, with values in R
d, given by

dξt = b(ξt)dt+ λ(ξt)dWt,

with generator

L = qkl
∂2

∂yk∂yl
+ b(y).∇y; (qkl)k,l=1,...,d = λλ∗/2.

Let us introduce the time reverse process ζt = ξ−t with generator

L̃ = q̃kl
∂2

∂yk∂yl
+ b̃(y).∇y

and suppose that the following condition holds instead of (A2):

(A2′) The diffusion coefficients q̃kl and their first-order derivatives are uniformly
bounded,

|q̃kl(y)| + |∇y q̃kl(y)| ≤ C

and the operator L̃ is uniformly elliptic, for every υ ∈ R
d,

q̃klυkυl ≥ C|υ|2.

The vector b̃(y) admits the polynomial estimate

|b̃(y)| + |∇yb̃(y)| ≤ C(1 + |y|κ),

for some κ > 0, and there exist numbers µ > −1 and R > 0, such that, for
all y ∈ {y : |y| ≥ R},

b̃(y).y
|y| ≤ −C|y|µ.

Then (see [12, Paragraph 5]), we have

√
ε

∫ t/ε

0

η(−s)ds L→
ε→0

σWt in C([0, T ],R3)
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and, using the Prokhorov Theorem (see for instance [2, Chap. 1, Sec. 5]), the
convergence of the sequence (

√
ε
∫ t/ε

0 η(−s)ds)ε is equivalent to the conver-

gence of the sequence (
√
ε
∫ t/ε

0
η(s)ds)ε.
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