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Background: Disorders of consciousness are challenging to diagnose, with inconsistent

behavioral responses, motor and cognitive disabilities, leading to approximately 40%

misdiagnoses. Heart rate variability (HRV) reflects the complexity of the heart-brain

two-way dynamic interactions. HRV entropy analysis quantifies the unpredictability and

complexity of the heart rate beats intervals. We here investigate the complexity index

(CI), a score of HRV complexity by aggregating the non-linear multi-scale entropies over

a range of time scales, and its discriminative power in chronic patients with unresponsive

wakefulness syndrome (UWS) and minimally conscious state (MCS), and its relation to

brain functional connectivity.

Methods: We investigated the CI in short (CIs) and long (CIl) time scales in 14 UWS and

16 MCS sedated. CI for MCS and UWS groups were compared using a Mann-Whitney

exact test. Spearman’s correlation tests were conducted between the Coma Recovery

Scale-revised (CRS-R) and both CI. Discriminative power of both CI was assessed with

One-R machine learning model. Correlation between CI and brain connectivity (detected

with functional magnetic resonance imagery using seed-based and hypothesis-free

intrinsic connectivity) was investigated using a linear regression in a subgroup of 10 UWS

and 11 MCS patients with sufficient image quality.

Results: Higher CIs and CIl values were observed in MCS compared to UWS. Positive

correlations were found between CRS-R and both CI. The One-R classifier selected CIl
as the best discriminator between UWS and MCS with 90% accuracy, 7% false positive

and 13% false negative rates after a 10-fold cross-validation test. Positive correlations
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were observed between both CI and the recovery of functional connectivity of brain areas

belonging to the central autonomic networks (CAN).

Conclusion: CI of MCS compared to UWS patients has high discriminative power and

low false negative rate at one third of the estimated human assessors’ misdiagnosis,

providing an easy, inexpensive and non-invasive diagnostic tool. CI reflects functional

connectivity changes in the CAN, suggesting that CI can provide an indirect way to

screen and monitor connectivity changes in this neural system. Future studies should

assess the extent of CI’s predictive power in a larger cohort of patients and prognostic

power in acute patients.

Keywords: heart rate variability entropy (HRV), disorders of consciousness (DOC), unresponsive wakefulness

syndrome/vegetative state (UWS/VS), minimally conscious state, functional connectivity, resting-state fMRI,

machine learning

INTRODUCTION

Disorders of consciousness are a spectrum of
pathologies affecting one’s ability to interact with the external
world. They are increasingly becoming a worldwide health
concern, whether of traumatic (1, 2) or non-traumatic (3–6)
cause, with its share of ethically challenging questions including
life and death decisions (7–9). Indeed, differential diagnosis
of the clinical entities of disorders of consciousness raises
crucial ethical and medical issues, including pain treatment and
end-of-life decisions (8, 10, 11).

Despite the definition of such a unified name, these disorders
are in fact covering a broad population of very heterogeneous
pathologies with diverse etiologies, injuries and outcomes. This
heterogeneity can make them hardly distinguishable in the
clinical practice (9), leading to a reported misdiagnosis rate
between 33 and 41% for the clinical consensus (12, 13). Although
the clinical characterization of disorders of consciousness can
now be more reliably assessed using specifically designed
scales such as the Coma Recovery Scale-Revised (CRS-R) (14),
practicing them requires a specific training of the physicians
and, although lower, might still induce diagnosis errors inherent
to any behavior-based clinical assessment due to the patient’s
possible inability to respond (13). Indeed, these assessments
rely on observing the patient’s motor actions, and their absence

Abbreviations: ACC, anterior cingulate cortex; AC-PC, anterior commissure -
posterior commissure; ANOX, anoxic; ANS, autonomic nervous system; ARCA,
cardiac arrest; BOLD, blood-oxygen-level dependent; CAN, central autonomic
network; CI, complexity index; CIl, complexity index in the long term (average of
multiscale entropies from 6 to 10); CIs, complexity index in the short term (average
of multiscale entropies from 1 to 5); CNS, central nervous system; CRS-R, Coma
Recovery Scale – Revised; CSF, cerebro-spinal fluid; ECG, electrocardiogram; EPI,
echo-planar imaging; FFT, Fast Fourier Transform; fMRI, functional magnetic
resonance imagery; GM, grey matter; HEM, hemorrhagic; HRV, heart rate
variability; ICC, intrinsic connectivity contrast; LOC, Lateral Occipital Cortex;
MCS, minimally conscious state; MFG, middle Frontal Gyrus; MNI, Montreal
Neurological Institute; MPFC,Medial Prefrontal Cortex;MRI, magnetic resonance
imagery; MSE, multiscale entropy; MTG, middle Temporal Gyrus; PCC, posterior
cingulate cortex; PPG, photoplethysmographic; SE, sample entropy; SPL, Superior
Parietal Lobule; STG, Superior Temporal Gyrus; TBI, traumatic brain injury; UWS,
unresponsive wakefulness syndrome, previously persistent vegetative syndrome
(PVS); WM, white matter.

does not necessarily relate to the absence of consciousness, as
there are several other factors that might hamper the patient’s
responsiveness to the assessment (motor disabilities, language
understanding difficulties, fluctuating consciousness because of
natural awareness fluctuations or the influence of drugs side
effects, patient’s willingness to collaborate among other factors)
(13). Neuroimaging has been proposed as a complementary
tool to help in assessment and decision making for these
critical conditions (13, 15, 16). However, these techniques are
usually highly costly, complex, and time consuming. Alternative
methods, such as probing physiological signals of peripheral
organs like the heart, have been proposed to overcome these
issues (17–19).

Heart rate is defined as the numbers of heartbeats per
minute; the Heart Rate Variability (HRV) is the fluctuation
in the time intervals between adjacent heartbeats. These
fluctuations represent the output of a complex brain-heart two-
way interaction system (20–22). Indeed, HRV analysis provides
a window into the brain’s function. HRV has been observed to
rapidly and flexibly modulate response to environmental changes
and can be disrupted by neurological and non-neurological
diseases usually involving the autonomic nervous system (23–
29). The HRV recording technique is non-invasive, inexpensive
to acquire and has an excellent signal-to-noise ratio compared to
signals investigated in neuroimaging or clinical neurophysiology
(30).

HRV is analyzed in time and frequency domains and by non-
linear methods (31). In the time domain, this is quantified by
the amount of heartbeats variability observed during monitoring
periods in the range of 1min to more than 24 h. In the frequency
domain, HRV is calculated as the absolute or relative amount
of signal energy within the component bands. Fast Fourier
Transformation (FFT), Auto-regression orWavelet modeling are
used to separate the HRV into its main components: Ultra Low
Frequency (ULF), Very Low Frequency (VLF), Low Frequency
(LF), and High Frequency (HF) (31).

As the sequence of heart beats is not regular and exhibit
complex fluctuation patterns over a wide range of time scales,
HRV is better described by the mathematical chaos (32, 33),
therefore non-linear analyses are appropriate to model this type
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of time series. These analyses quantify the unpredictability and
complexity of the interbeat intervals (IBI) series. Poincare plot
(34), detrended fluctuation analysis (35), approximate entropy
(36), sample entropy (SE) (37), and multiscale entropy (MSE)
(38) are among the most commonly applied methods of non-
linear analysis used in the HRV analysis.

MSE was developed to investigate the information content in
non-linear signals at different temporal scales (coarse-graining),
using generally the SE in order to quantify the degree of
unpredictability of time series. In other words, applying MSE
on top of the HRV allows to measure the diversity of the heart
beat intervals: higher entropy indicates a more unpredictable
and diverse heart beats sequence, and conversely lower entropy
indicates a more regular and predictable heart beats. Considering
the complex brain-heart interactions system mentioned above, it
is conceivable that the HRV entropy might be a way to measure
the health status of this system, with a low value being indicative
of low reactivity to the external/internal stimulus. Indeed, MSE
on HRV was shown to be a marker of health status of biological
systems (39–41). The Complexity Index (CI) is calculated from
the MSE measures and is defined as the sum of the entropies
computed for different scales (i.e., at different levels of resolution
of the signal). The CI thus provides a scalar score, which is the
aggregation of MSE over multiple time scales, and it allows to get
insights into the integrated complexity of the measured system
(41).

Heart rate, as well as respiration rate, glands, smooth
muscles functions and biological sensors are under the control
of the Autonomic Nervous System (ANS), which is in
charge of maintaining the homeostasis without any conscious
control (42). The sympathetic (“fight or flight system”) and
parasympathetic (“rest and digest” system) branches of the
ANS have an antagonistic role and are connected to the brain
by the spinal nerves (43). By doing so, they modulate the
ANS functional status through inputs from thermoregulation,
baroreceptors, chemoreceptors, renin-angiotensin-aldosterone
balance and atrial and ventricular receptors (18, 44–46).

The Central Autonomic Network (CAN) has been proposed
as an integrative model where neural structures and heart
function are involved and functionally linked in the affective,
cognitive and autonomic regulation (47, 48). The CAN is defined
as covering the structures of the brainstem (periaqueductal
gray matter, nucleus ambiguous, and ventromedial medulla),
limbic structure (amygdala and hypothalamus), prefrontal cortex
(anterior cingulate, insula, orbitofrontal, and ventromedial
cortex) and cerebellum (22, 49, 50). Some brain regions of
the CAN (dorsolateral prefrontal cortex, mediodorsal thalamus,
hippocampus, caudate, septal nucleus and middle Temporal
Gyrus) seem to be unique to humans (51–53). The interplay
between Central Nervous System (CNS) and ANS is functionally
modeled as a setup involving the above-cited structures
connecting to the brainstem solitary tract (NTS) via feed-
forward and feedback loops. These coupled structures and their
oscillatory signals, integrated in the NTS by the efferent parts of
the vagus nerve, are coupled with organs outside the brain in a
bidirectional way. Through this two-way interaction, peripheral
oscillations, such as those in the heart, lung, immunological

system and kidney, can lead to changes in the CAN, as well as be
influenced by the CAN (54–57). HRVmeasurements are thought
to reflect heart rate interaction and ANS dynamics and, to some
extent and indirectly, higher brain functions (58–61), and thus
might be relevant for diagnostic purposes (62, 63).

In the present study, we aimed to characterize and investigate
the discriminative power of the CI in sedated patients suffering
from disorders of consciousness, more specifically diagnosed as
either unresponsive wakefulness syndrome (UWS, i.e., vegetative
state—eye opening without signs of awareness) or minimally
conscious (MCS—displaying non-reflexive behaviors) according
to the CRS-R clinical assessment. In the light of the above
mentioned studies, we hypothesized an impaired two-way brain
heart connection (due to the loss of the biological complexity
linked to physiologic mechanism) (14, 58), and consequently
lower values of CI in UWS patients on average compared toMCS.
We further expected CI values to be correlated with each patient’s
behavioral assessment as measured with the Coma Recovery
Scale Revised (CRS-R) (14). In addition, we expected the CI
measures to possess some discriminative power on the diagnosis
when used in a machine learning model such as One-R classifier,
an algorithm deriving a single association rule between the most
discriminating feature and the diagnosis classification (64).

With the aim of investigating brain regions’ involvement
in the HRV entropy, we further investigated the relationship
between the CI measures and the brain connectivity patterns,
and whether there are different patterns for UWS and MCS
that are correlated with changes in the CI values. In this
optic, we correlated, using a linear parametric regression, the
per-subject CI values with brain regions connectivity patterns
as detected by whole-brain resting-state functional magnetic
resonance imagery (fMRI). fMRI is a non-invasive technique
used to investigate the spontaneous temporal coherence in blood-
oxygen-level dependent (BOLD) signal fluctuations related to
the amount of synchronized neural activity (i.e., functional
connectivity) existing between distinct brain locations (65).
Combined with a regression of the physiological noise by
principal components analysis via aCompCor, this approach,
novel in its application to HRV studies, allows to investigate
whole brain connectivity patterns without any task and with
minimal assumptions compared to other approaches such as
cardiac gating (52, 66). Given the findings of previous studies
suggesting that CI is involved with autonomic nervous system
structures (67–69), we hypothesized that the CI values would be
correlated with brain regions belonging to the CAN, with higher
CI values being predictive of greater positive correlations in this
network.

METHODS

Participants
This study included patients diagnosed as either UWS or MCS
according to the Coma Recovery Scale - Revised (CRS-R) (14,
70) and diagnosed as either UWS or MCS who underwent
an MRI examination under Propofol sedation together with
electrocardiography (ECG) recordings. Exclusion criteria were
(i) artifacts in ECG recording (ii) ECG acquisition and
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neuroimaging examination in patients less than 2 weeks from
brain insult, (iii) large focal brain damage, i.e., >2/3 of
one hemisphere, as stated by a certified neuroradiologist, (iv)
motion parameters >3mm in translation and 3 degrees in
rotation. Additional exclusion criteria were applied for patients
included in the MRI analysis: (v) suboptimal segmentation and
normalization due to movement or metallic artifacts as stated by
a certified neuroradiologist, (vi) non gaussian-like fMRI signal
shape after denoising.

From an initial dataset of 67 sedated patients with ECG
and imaging acquisition, 37 patients were discarded because of
too many artifacts in the ECG recording. The 30 remaining
patients formed the subgroup S1 with 14 patients (7 males,
mean age 51 ± 14; 7 females, age 46 ± 18; 7 ARCA [cardiac
arrest], 2 ANOX [anoxic], 1 TBI [traumatic brain injury], 2 HEM
[hemorrhagic], 1 ANOX+TBI [anoxic and traumatic], 1 other
[metabolic, epilepsy, etc.]) being diagnosed as UWS and 16
patients (10malesmean age 44± 17; 7 females, mean age 41± 17;
all patients mean age 42± 17; 2 ARCA, 2 ANOX, 10 TBI, 1 HEM,
1 ANOX+TBI) as MCS (Table 1). For the correlation analysis
between the CI values and brain regions connectivity differences
as detected by resting-state fMRI, nine additional patients were
discarded because of movement or metallic artifact in the fMRI
data, or because of suboptimal segmentation or signal shape
during the preprocessing as stated above (additional details are
in the Supplementary Materials, Appendix B). The subgroup S2
for fMRI analysis therefore included 21 patients with 10 UWS
patients (5 males, mean age 54 ± 11; 5 females, mean age 50
± 18; 5 ARCA, 2 ANOX, 2 HEM, 1 ANOX+TBI) and 11 MCS
patients (5 males, mean age 37 ± 17; 6 females, mean age 40
± 16; all patients mean age 38 ± 16; 1 ARCA, 2 ANOX, 7 TBI,
1 HEM) (Table 1). The evolution time since the brain injury up
to the ECG/MRI assessment is described in Table 1. The patients
were matched between MCS and UWS for diagnosis, age, gender,
etiology and onset, for both subgroups.

The study was approved by the Ethics Committee of the
Faculty of Medicine of the University of Liège and written
informed consents, including for publication of data, were
obtained from the patients’ legal representatives and from the
healthy control subjects in accordance with the Declaration of
Helsinki.

Sedation Protocol
Patients were sedated to reduce the severity of movement
artifact during the fMRI data acquisition. The sedation was
obtained by Propofol infusion keeping the concentration to
a minimum [average: 1.7µg/mL, range: [1, 2.5] µg/mL]
(71). The sedation was administered through intravenous
infusion by a target-controlled infusion system [Diprifusor,
pharmacokinetic model of Marsh et al. (72), Alaris TM,
Alaris Medical Belgium B.V., Strombeek-Bever, Belgium] in
order to obtain constant plasma concentration. Propofol was
chosen for immobilization purpose for its short induction
and recovery times, and because generally it does not need
additional sedatives (73). Moreover is one of the most available
anesthetic agent with common clinical application and well-
established safety as well as being well-studied (74). There

is also preliminary evidence that Propofol has also might
not significantly reduce the residual resting-state functional
connectivity observed in UWS and MCS patients (71). During
data acquisition, the patients wore headphone and earplug. The
stability of their vital parameters was controlled by continuous
monitoring of blood pressure, ECG, respiration and pulse-
oximetry.

ECG Procedure
ECG Data Acquisition
Electrocardiographic activity was recorded during the 10min of
fMRI data acquisition using the scanner’s built-in equipment.
The cardiac cycle was monitored by a photoplethysmographic
sensor (PPG) placed on the right index finger and ECG’s
three leads positioned on the chest of the patients (leads I,
II, and III are used and acquired in parallel via the ECG
channels to display a prominent peak of the QRS ECG
complex).

ECG Data Preprocessing
The ECG signal and PPG was cleaned of noise using a
FFT filter without detrending (SigView software; http://www.
sigview.com/). The series of consecutive intervals between
heartbeats (tachogram) were extracted from ECG and PPG.
After a visual analysis for ectopic beat or missing data, the
MSE was calculated and analyzed to measure the complexity
of the nonlinearity and non-stationary properties of the
signal using the HRV Advanced Analysis software version
2.2 (75). Studies demonstrated that PPG and ECG measures
have superimposable results in the temporal and frequency
domains and in nonlinear dynamic analyses (76). The results
between ECG and PPG signals were manually compared as an
additional sanity check about the correct acquisition of the signal
(Figure 1).

ECG Data Analysis
The MSE approach (38, 41) was applied to quantify the
degree of irregularity over a range of time scales (τ ).
The method involves the construction of coarse-grained
IBI time series and the quantification of the degree of
irregularity of each of these. We then extracted 10min
from the tachogram. The time series from τ = 1–10 were
constructed by averaging the IBI/tachogram’s data points
within non-overlapping windows of increasing length, τ

(Figure 2).
Finally, the SE was applied for each coarse-grained

constructed (37, 77) (Equation 1). The purpose of SE is to
look for patterns in a time series and quantify its degree of
predictability or regularity (77). The parameters involved in the
calculation of the SE are the dimensional phase space m and the
tolerance for accepting matches of two patterns r and were set to
m= 2 and r = 0.15 (41, 78).

SE(m, r,N) = − ln
φm+1(r)

φm(r)

Equation (1): SE: Sample Entropy; m: distance between time
series points to be compared; r: radius of similarity; N: length of
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TABLE 1 | Demographic information of patients.

ID CRS-R

diagnosis

CRS-R

total score

CRS-R

subscore

Etiology Age Days

since onset

1 UWS 3 S101100 OTHER 15–24 18

2 UWS 3 S001101 ANOX 55–64 21

3 UWS 3 S001101 ARCA 65–74 31

4 UWS 4 S002101 ARCA 55–64 24

5 UWS 4 S001201 ANOX+TBI 45–54 46

6 MCS 5 S102101 TBI 15–24 38

7 MCS 5 S030101 HEM 45–54 30

8 UWS 5 S201101 ARCA 35–44 733

9 UWS 5 S102101 ARCA 65–74 18

10 UWS 5 S002102 ARCA 65–74 43

11 MCS 6 S012102 TBI 15–24 31

12 UWS 6 S111102 ARCA 45–54 37

13 UWS 6 S102102 HEM 55–64 248

14 UWS 6 S101202 ARCA 45–54 101

15 UWS 6 S111201 TBI 25–34 1017

16 MCS 7 S302101 ARCA 45–54 209

17 MCS 7 S230101 TBI 25-34 534

18 UWS 7 S102202 HEM 45-54 353

19 UWS 8 S112202 ANOX 15-24 462

20 MCS 9 S311211 TBI 15–24 432

21 MCS 10 S232201 TBI 35–44 1294

22 MCS 10 S331102 ANOX 25–34 2407

23 MCS 10 S115201 TBI 45–54 220

24 MCS 11 S305201 TBI 25–34 561

25 MCS 11 S305102 ANOX 15–24 624

26 MCS 12 S305202 TBI 15–24 660

27 MCS 13 S335101 TBI 35–44 319

28 MCS 15 S345102 ANOX+TBI 45–54 2086

29 MCS 16 S345202 ARCA 45–54 290

30 MCS 16 S335212 TBI 55–64 4322

In bold: patients included in fMRI analysis (S2 group). Days since onset: evolution time since the brain injury up to the ECG/MRI acquisition. CRS–R subscore represent the subitems

scores of the best CRS–R during the period of assessment (in order: “S” prefix for subscore then auditory, visual, motor, oromotor/verbal, communication and arousal scores). The

rejection details for the patients discarded from the fMRI analysis are available in the Supplementary materials (Appendix B).

ARCA, cardiac arrest; TBI, traumatic brain injury; HEM, hemorrhagic; ANOX, anoxic.

the time series; φ: probability that points m distance apart would
be within the distance r.

The CI of the MSE is calculated as the area under the SE time
scale curve (Equation 2).

CI =

N∑

i=1

SE(i)

Equation 2: CI summations of quantitative values of the Sample
Entropy of N coarse-grained time scale.

The CI provides insights into the integrated complexity of a
system, over a range of time scales of interest. The summations of
quantitative SE values over time scales 1–5 and over time scales
6–10 represent the complexity index calculated in short (CIs) and
long time scales (CIl), respectively (41), corresponding to high
frequency (0.15–0.4Hz) and low frequency band (0.04–0.15Hz)
respectively.

MRI Procedure
MRI Data Acquisition
All structural and functional images of the MCS and UWS
patients were acquired on a 3 Tesla Siemens Magnetom TrioTim
magnetic resonance image machine at the University Hospital of
Liège.

Structural Imaging
A high-resolution T1-weighted image was acquired for each
patient (T1-weighted 3D gradient echo images using 120 slices,
repetition time= 2,300ms, echo time= 2.47ms, voxel size= 1×
1× 1mm3, flip angle= 9 degrees, field of view= 256× 256mm²)
in order to allow for precise segmentation and coregistration as
well as denoising.

Resting-state fMRI
Multislices T2∗-weighted fMRI images were obtained during
10min for each patient by using Echo Planar Imaging (EPI)
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FIGURE 1 | ECG/PPG data extraction and data analysis. First, the signal’s QRS complex peaks are detected from ECG and PPG signals, from which the interbeat

intervals are extracted. These intervals are used to produce an interbeat (IBI) series, showing in x axis the interval counter since the start, and as y-axis the duration of

this interval. From this IBI series, the Sample Entropy is calculated over multiple time windows: first the standard Sample Entropy on each interval, then the Sample

Entropy on the average of n intervals, allowing to compare the entropy of blocks of intervals instead of only the sudden change in between two consecutive intervals.

Finally, these multiscale entropy values are averaged five by five into the Complexity Indices, one for the short time scale and one for the long time scale.

FIGURE 2 | Coarse graining procedure. (A) scale 2, (B) scale 3, where the “x” series is the original IBI and the “y” is the new time series constructed through an

averaging of the data points. For τ = 1 the course-grained scale is the original IBI sequence; A corresponds to the time series τ = 2, B corresponds to the time series

τ = 3.

sequence with axial slice orientation (300 volumes, 32 slices,
voxel size = 3.0 × 3.0 × 3.75 mm3, repetition time =

2,000ms, echo time = 30ms, flip angle = 78◦, field of
view = 192mm, matrix size = 64 × 64 × 32, delay = 0,
slice order = sequential descending). As a standard protocol,
all subjects were instructed to keep their eyes closed and
not to think of anything in particular. Head motion was
restricted by placement of a comfortable padding around each
participant’s head, and earplugs and headphones were placed
on the patient’s ears. The first three initial volumes were
automatically discarded by the MRI scanner (dummy scans)

to allow for longitudinal magnetization to reach steady-state
(79).

MRI Data Pre-processing

Structural imaging
Structural (T1∗-weighted) MRI images were manually reoriented
to the anterior commissure/posterior commissure (AC-
PC) scheme and then normalized and segmented into
gray matter, white matter, cerebrospinal fluid, skull, and
soft tissue outside the brain, using the “old segmentation”
module and standard tissue probability map of Statistical
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Parametric Mapping 12 (SPM12) (www.fil.ion.ucl.ac.uk/
spm).

Resting-state fMRI
Functional volumes were first manually reoriented and
coregistered to the structural images, and then preprocessed by
using SPM12 (SPM, RRID:SCR_007037). First, the EPI volumes
were corrected for the temporal difference in acquisition
among different slices using the slice timing correction module
with the reference slice set to the first temporal slice, and
then the images were realigned for head motion correction
using a two-steps procedure: (1) realignment to the first
volume and creation of the mean image, (2) then all images
were realigned to the mean EPI image. The mean EPI image
across all realigned volumes was then auto-coregistered to the
structural image. Then the structural image was segmented
into three tissues: gray matter (GM), white matter (WM), and
cerebro-spinal fluid (CSF) in the subject’s space, producing as a
by-product of the segmentation the parameters of the transform
from the subject’s space to Montreal Neurological Institute
(MNI) space. This transform was then used to normalize
the structural image, the co-registered EPI images and the
segmented tissues. Finally, all the coregistered and normalized
EPI images were smoothed with an isotropic Gaussian kernel
(8mm full-width-at-half-maximum). A manual inspection of
the whole BOLD timeseries motion was conducted from the
SPM motion file to exclude any subject where the translational
head displacement was greater than 1mm, or if the rotational
displacement was greater than 0.1 radians. With the aim of
reducing loss of signal or whole subjects exclusion due to motion
artifacts (80), we used the “scrubbing” technique from the ART
toolbox (Artifact Detection Tools, RRID:SCR_005994)1 for
artifactual volume detection and rejection using a composite
motion measure (largest voxel movement) with a “liberal”
threshold (global threshold 9.0, motion threshold 2.0, use
scan-to-scan motion and global signal). With this approach,
a volume was defined as an outlier (artifact) if the largest
voxel movement detected was above the specified thresholds.
We subsequently included outliers in the global mean signal
intensity and motion as nuisance regressors (i.e., one regressor
per outlier in the first-level general linear model). Thus, the
temporal structure of the data was not disrupted. Several
parameters were included in a linear regression using CONN
v17F (Connectivity Toolbox, RRID:SCR_009550) and SPM12 to
remove possible spurious variances from the data. These were
(i) six head motion parameters obtained in the realigning step,
(ii) scrubbing the outlier scans detected by ART’s composite
motion measure, (iii) non-neuronal sources of noise estimated
using the anatomical component-based noise correction method
[aCompCor; (81, 82)], which consists in regressing out the
representative signals of no interest from subject-specific white
matter and cerebro-spinal fluid, which were the top five principal
components (PCA) from the white matter and the top five from
cerebrospinal fluid per-subject mask (81). Then the residual time

1NITRC: Artifact Detection Tools (ART): Tool/Resource Info. Available at: https://
www.nitrc.org/projects/artifact_detect/ (Accessed March 1, 2018).

series were linearly detrended (no despiking) and temporally
band-pass filtered (0.008–0.09Hz) using CONN’s denoising
procedure.

Statistical Analyses
ECG Statistical Analyses
In both the entire patient group S1 and the subgroup undergoing
fMRI analysis S2, the CIs and CIl measures average per MCS
and UWS groups were compared using a Mann-Whitney exact
test. Correlation between the CRS-R total score—the sum of all
CRS-R items of the best assessment over a week—with the CIs
on one hand, and between the CRS-R total score and CIl on the
other hand was analyzed using the Spearman’s correlation test.
Significance of tests was set to p<0.05.

Machine Learning Model
WEKA (Waikato Environment for Knowledge Analysis,
RRID:SCR_001214), an open source toolbox for machine
learning analysis (64) 2 was used to assess the discriminative
power of the CI measures by a machine-learning model called
the One-R classifier (83), with the objective of predicting the
CRS-R diagnosis of UWS or MCS given a patient’s CI measures.
The retained CRS-R diagnosis was the final best diagnosis over
a week of CRS-R assessments. One-R (83) is a fast and very
simple algorithm deriving a one level decision tree. It operates
by generating a separate rule for each individual attribute of
the dataset (CIs and CIl) based on error rate. To generate
the rule, each attribute is discretized into bins calculating the
percentage that each class (MCS and UWS) appears within
each bin. Finally, the rule for the final decision tree is chosen
by selecting the attribute with minimum error to perform
the diagnostic classification. This algorithm was chosen as it
reported the best results in our case while being the most simple
and thus robust model after running multiple simulations with
various machine learning algorithms known to derive efficient
models for diagnosis (84), the results of these simulations are
available in the supplementary materials (Appendix A). The
dataset used to generate the model consisted of the CIs and
CIl values of the S1 group, and the objective was to predict the
patient’s diagnosis (UWS or MCS). To assess the performance
of this model in generalization, a 10-fold cross-validation test
(85) was conducted, thus the S1 group was split into 10 parts of
equal number of patients, and the model was learnt on 9 parts
and tested on the 10th part. This process was performed 10
times in total to use each part as the test set at some point, and
metrics were calculated as the average over all 10 tests. Several
metrics were calculated on both the 10-fold cross-validation test
results, the S1 subgroup results and the S2 subgroup results such
as the sensitivity (rate of MCS correctly classified), specificity
(rate of UWS correctly classified), false positive and negative
rates of MCS and UWS classification, accuracy (MCS and
UWS predicted conditions), F1-score (86) [a measure of the
test’s accuracy that takes in consideration the harmonic mean

2Weka 3 - Data Mining With Open Source Machine Learning Software in Java.
Available online at: https://www.cs.waikato.ac.nz/ml/weka/ (Accessed April 27,
2018).
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of sensitivity and its precision also called the Dice similarity
coefficient, ranging values between 0 [worst precision and
sensitivity] and 1 [perfect precision and sensitivity]]and the
Matthews Correlation Coefficient (87) [a correlation coefficient
between the observed and predicted binary classifications,
ranging values between 1 [perfect prediction], 0 [random
prediction], and −1 [total disagreement between prediction and
observation]].

Resting-state fMRI Analyses
Functional magnetic resonance imaging is a non-invasive
technique used to investigate the spontaneous temporal
coherence in blood-oxygen-level dependent (BOLD) signal
fluctuations related to the amount of synchronized neural
activity (i.e., functional connectivity) existing between distinct
brain locations (65)

With the aim of investigating the possible brain connectivity
changes associated with a change of the CI values, we conducted
a whole-brain resting-state fMRI functional connectivity analysis
using a seed-to-voxel correlation analysis to observe changes in
correlation of the BOLD signal in the whole brain with respect
to the specified seed regions. Using CONN, we extracted from
fMRI BOLD time series from a region of interest (the seed) and
measured the temporal correlation between this signal and the
time series of all other brain voxels. We have also conducted
a voxel-to-voxel analysis by correlating the activity of all fMRI
BOLD voxels to all other voxels via the Intrinsic Connectivity
Contrast [ICC; in Conn toolbox; (88, 89)] as a quantification
measure of global brain connectivity. In short, ICC quantifies the
degree, including positive and negative correlations, of each voxel
with all other brain voxels, which is then standardized against
the average voxel degree as the mean and variance 1 to derive a
Z-score. In other words, a positive ICCmeans that a brain region
is significantly more connected to the rest of the brain compared
to the average voxel connectivity.

The seeds were defined as spheres of 5mm radius around the
peak coordinates of main structures of the ANS/CAN (90): the
Superior Temporal Gyrus (STG) [−44, −6, 11] & [44, −6, 11],
the Dorso-Lateral PreFrontal Cortex (DLPFC) [−43, 22, 34] &
(22, 34, 42), the Fronto-Insular cortex (FI) [−40, 18,−12] & [42,
10, −12], the Paracingulate cortex (PC) [0, 44, 28], the anterior
cingulate cortex/mesioprefrontal cortex (ACC/MPFC) [−1, 54,
27], the posterior cingulate cortex/precuneus (PCC/precuneus)
[0, −52, 27], cerebellum [−4, −56, −40], thalamus [−4, −12,
0],[4, −12, 0]. Their coordinates have been taken from previous
studies in order to avoid circularity (16). We used the averaged
time series to estimate whole brain positive correlation r maps,
and the t-test contrasts. In the design matrix, we applied a
contrast to regress out the average connectivity of MCS and
UWS patients and to highlight any connectivity difference that is
correlated only with the complexity index. We did two different
correlation tests for CIs and CIl.

Finally, we examined global brain connectivity patterns
(without a priori seed) between each voxel and the rest of the
brain using the ICC measure. We used the same design matrix
to highlight only the connectivity differences correlated only with
CIs and then CIl.

Age standardized to unitary standard deviation and centered
to the mean was used a regressor of nuisance in the design
matrices for both the seed-based and the hypothesis-free
analyses.

Statistical results were generated with CONN and considered
significant with multiple comparison correction at the
topological level with non-parametric permutation test cluster-
mass p-FWE < 0.1 and with primary voxel-wise threshold
p-uncorrected < 0.001 with 1000 iterations. CONN 17f was
patched with a permutation test patch to allow for generalized
permutation of residuals (https://www.nitrc.org/forum/message.
php?msg_id=23131). The significant regions names were
derived from the Harvard-Oxford atlas (Harvard - Oxford
Cortical Structural Atlas, RRID:SCR_001476), using bspmview
tool 3 Visualizations were generated using CONN, MRIcron
(RRID:SCR_002403), NiLearn (RRID:SCR_001362) (91), Python
(Python Programming Language, RRID:SCR_008394) and an
in-house python script (https://github.com/lrq3000/neuro-
python-plotting).

RESULTS

In the S1 group, when comparing the CI values of MCS and
UWS patients, higher values of CIs (z = −3.346, p < 0.001) and
of CIl (z = −4.095, p < 0.0001) were observed for the MCS
group compared to the UWS group (Figures 2, 3). A stronger
correlation was found between the CRS-R total score and CIl
(Spearman’s rho= 0.671, p < 0.0001) compared to the moderate
correlation between CRS-R total score and CIs (Spearman’s rho
= 0.579, p < 0.001) (Figure 5). The results of the S1 group
are superimposable to the subgroup S2 who underwent fMRI
analysis. In the S2 subgroup, higher values of CIs (z = −3.063,
p = 0.002) and of CIl (z = −3.556, p < 0.001) were observed
in the MCS group compared to the UWS group (Figure 3). A
stronger correlation was found between the CRS-R total score
and CIl (Spearman’s rho = 0.676, p < 0.001) compared to
the moderate correlation between CRS-R total score and CIs
(Spearman’s rho= 0.619, p= 0.003) (Figure 5).

Using the machine learning One-R classifier, the CIl was
selected as the most discriminating feature for the diagnostic
classification of MCS and UWS patients. The model’s accuracy
in the classification of MCS and UWS patients was 93%, with
a correct classification of MCS and UWS of 94 and 93%
respectively (Table 2). The false positive (UWS as MCS) and
false negative (MCS as UWS) rates were 7 and 6% respectively.
F1-score and Matthews Correlation Coefficient were 94 and 0.87
respectively, evidencing a high performance of the model in the
diagnostic classification. Superimposable results were obtained in
the 10-fold cross-validation test (Table 2), with an accuracy of
90% and a correct MCS and UWS classification of 88 and 93%
respectively. The false positive and false negative rates were 7 and
13% respectively.

These results showed that most MCS patients displayed more
complex HRV patterns compared to UWS patients. In addition,

3BSPMVIEW|bspmview. Available online at: http://www.bobspunt.com/
bspmview/DOI 10.5281/zenodo.168074 (Accessed March 1, 2018).
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FIGURE 3 | Complexity Index statistical analysis comparing UWS and MCS patients summarized as a box plot. Higher values of CIs (z = −3.346, p < 0.001) and of

CIl (z = −4.095, p < 0.0001) were observed for MCS group compared to UWS using Mann–Whitney’s test. The 1st row compares the entire group of patients S1

(n = 30), while the 2nd row compares the subgroup of patients S2 (n = 21) who underwent fMRI analysis. The 1st column represents the complexity index (CI) in short

time scale, while the 2nd column is for the long time scale. White boxes represent MCS patients; gray boxes the UWS patients. The boxes range from Q1 to Q3, while

the whiskers are defined at the 1.5 interquartile range, and the black lines are the medians, points are outliers.

the CI measures showed strong discriminative power when used
to predict the diagnosis of a patient. Under the frame of the brain-
heart two-way interaction and with the aim to observe how this
complexity is linked to the brain activity, we investigated the
resting state fMRI of a subset of 24 patients who had sufficient
image quality to ensure successful analysis. We chose to focus
on only positive correlations, using one-sided statistical test and
multiple comparison correction at the cluster level with non-
parametric permutation test (Figure 6). Both CI were positively
correlated with an increase of the brain’s functional connectivity
in CAN regions. Increased values of CIs were associated with
increased connectivity between the Fronto-Insular cortex with
the Superior Frontal Gyrus and between the Paracingulate cortex
with two clusters covering the inferior and middle Temporal
Gyrus, the Frontal Operculum and the Insular cortex. CIl values
positively correlated with an increase of connectivity between
the Paracingulate cortex with the right Frontal Pole, between
the Superior Temporal Gyrus (STG) with the Superior Parietal
Lobule (SPL) and finally between the Dorso-Lateral PreFrontal
Cortex (DLPFC) located in theMiddle Frontal Gyrus (MFG)with
the left and right Frontal Pole. The Anterior Cingulate Cortex, the

Medial Prefrontal Cortex, the Thalamus and the Cerebellum did
not show significant results. Statistical tables are available in the
Supplementary materials (Appendix B).

The ICC showed a positive correlation between the CIs and
the intrinsic connectivity (i.e., an overall connectivity with the
rest of the brain) in a cluster covering the Middle Temporal
Gyrus (MTG) and the STG and between the CIl and the intrinsic
connectivity of the MFG. Of interesting note, both the seed-
based and the hypothesis-free analyses found an increase of
connectivity in the STG and MFG correlated with an increase
of CI. By comparing only the functional connectivity of MCS
to UWS patients, without CI measures, no significant results
were found except for the ICC analysis (see the Supplementary
materials, Appendix B).

DISCUSSION

We investigated the HRV and more specifically the CI of
the MSE in MCS and UWS sedated patients, tested its
discriminative power for diagnosis and investigated the possible
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TABLE 2 | One–R classifier results and confusion matrix.

Confusion Matrix Classifier: One-R

MCS (true) MCS as UWS

(false negative)

15 1

1 13

UWS as MCS

(false positive)

UWS

(true)

Rule:

CIl < 4.876 →UWS

CIl ≥ 4.876→ MCS

Test dataset results

Full training test

(S1 group)

10-fold

cross-validation

fMRI test

(S2 subgroup)

True positive (MCS) rate (%) 94 88 92

True negative (UWS) rate (%) 93 93 100

False negative rate (%) 6 13 8

False positive rate (%) 7 7 0

Precision MCS classification (%) 94 94 100

Precision UWS classification (%) 93 87 91

accuracy (%) 93 90 95

F1-score (%) 94 90 96

Matthews Correlation Coefficient[−1:1] 0.87 0.80 0.91

The confusion matrix is based on the S1 group. The One-R classifier is a simple machine learning decision tree model that derives a single rule from the single most contributing

parameter to predict the patient’s diagnosis. This model deduced that the long term complexity index (CIl ) is the best predictor of patient’s diagnosis, with a threshold of ∼4.9, below

which the patient should be diagnosed as unresponsive (UWS) and above as minimally conscious (MCS). The 10-fold cross-validation test shows that this model is quite robust and

reliable, with 90% accuracy, 7% false positive rate, 13% false negative rate and a F1-score, combining both accuracy and recall, of 90%. For comparison, a baseline Zero-R rule always

predicting MCS as the diagnosis would have an accuracy of 53% on the S1 group dataset. Additional machine learning models and results can be found in the Supplementary materials

(Appendix A).

neural correlates sources of CI modulation via a resting-state
fMRI analysis. The present study is the first to show that
baseline HRV entropy, more specifically the CI, can be a reliable
predictor of the clinical level of consciousness, and furthermore
the first to estimate the direct relationship between CI and CRS-R
and between CI and the brain functional connectivity using
simultaneously acquired resting-state fMRI.

Group-wise, we found higher values of CI in MCS patients
compared to UWS patients (Figure 3). This difference was
observed for both the CIs (linked to the parasympathetic
modulation) with moderate significance and the CIl (linked to
the sympathetic modulation) with strong significance. Moreover,
the values of CI were correlated to the CRS-R total score
(Figure 5), with MCS patients generally displaying a higher-end
CI value compared to UWS patients, with only UWS patients
having CI values in the lower-end (Figures 4, 5).

To assess the discriminative power of CI for disorders of
consciousness, we built a machine learning model based on
the One-R rule association algorithm, using both CI as input
features, with the objective to predict whether a patient is
MCS (positive condition) or UWS (negative condition). The
One-R algorithm derives a single rule from the single most
contributing parameter to predict the patient’s diagnosis. This
classifier deduced that CIl was the best predictor of patient’s
diagnosis, with a threshold of ∼4.9, below which the patient
should be diagnosed as UWS and above as MCS. According
to the best standards in machine learning for neuroimagery,
we conducted a 10-fold cross-validation test to evaluate the
generalizable performance of this model (85) (Table 2), which
showed that this model is quite robust and reliable, with 90%

accuracy, 7% false positive rate, 13% false negative rate and
a F1-score, combining both accuracy and recall, of 90%. For
comparison, a baseline Zero-R rule always predicting MCS as
the diagnosis would have an accuracy of 53% on the S1 group
dataset. Thus, the model reported a high accuracy performance,
while having low false positive and negative rates compared to
the CRS-R gold standard. Since the One-R model is a very simple
classifier with a linear decision frontier based on only one feature,
this suggests that CIl is a highly discriminative measure for UWS
and MCS. Considering the much higher misdiagnosis rate of
about 40% by human assessors not using the CRS-R, even after
nation-wide efforts to reduce it (12, 13), and considering the
very simple machine learning model used here, these results
strongly suggest that heart rate CI might have an application as a
complementary assessment tool andmight help physician in their
decision process by providing a supplementary hypothesis-free
evaluation of the patient’s state of consciousness.

Finally, the fMRI analysis reported a positive correlation
between the CI and the connectivity in several brain areas
belonging to the CAN/ANS (Figure 6), using both seed-based,
thus guided, approach and voxel-based, thus hypothesis-free,
approach. Indeed, the voxel-based ICC results showed that, even
without any a priori about the spatial location of connectivity
changes associated with higher CI values, we could observe that
higher CI values were associated with brain regions belonging to
the CAN/ANS.

Many studies have reported the potential usefulness of
HRV analysis (in both time and frequency domains, as well
as non-linear analysis) in consciousness studies (18, 19, 92).
They observed better autonomic response to specific stimuli
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(i.e., music, visual, acoustic), higher sympathetic activation,
modulation in peak of the low frequency band or ratio between
low and high frequency power in MCS than in UWS (93–101).

FIGURE 4 | Dispersion graph of CIl and CIs. This shows that the repartition of

patients relatively to the CI is defined by the diagnosis, with UWS patients

usually on the lower-end and MCS patients on the higher-end, showing some

degree of linear separability. White circles and diamonds represent MCS

patients; black circles and diamonds the UWS patients. Diamonds represent

the patients discharged for the fMRI analysis (i.e., only included in S1, n = 30)

while the circles are the patients included in the fMRI analysis (S2 group,

n = 21). Outlined in red are patients in subacute state (i.e., with MRI

acquisition between 2 and 4 weeks from brain insult).

A greater HRV responsiveness in time and frequency domains
to emotional stimuli than to non-emotional stimuli has been
observed in MCS patients compared to UWS (97) and similarly
for nociceptive stimuli (92) and auditory oddball tasks (102).

In the frequency domain, modulation of sympathetic response
(observed by the normalized unit of low frequency) has been
associated to musical stimuli (selected to elicit specific emotional
response) in UWS patients (95), MCS patients and healthy
subjects (93), allowing the experimenters to classify the subjects’
emotional responses as positive or negative. For acute traumatic
patients, pre-hospital low entropy has been associated with
mortality, independently of GCS score or Injury Severity Score
(103). MSE measured within the first 24 h can identify trauma
patients at increased risk of subsequent hospital death (69)
and predict robustly within 3 h of admission the death of the
patients occurring days later (104). SE has proved useful for
rapid identification of trauma patients with potentially lethal
injuries (105). In pediatric patients, the reduction of heart rate
dynamics was shown to correlate negatively with disease severity
and outcome (106).

However, few studies have reported results in the non-
linear domain (i.e., approximate entropy, sample entropy,
multiscale entropy, etc.) in chronic patients with disorders of
consciousness. In these few studies, lower values of approximate
and sample entropy have been reported in UWS than MCS
patients compared to healthy subjects following musical stimuli
with increasing structural complexity (107, 108). Studies with
anesthetized healthy subjects have reported decreased entropy
during anesthesia (109, 110). Decreased sample entropy and
approximate entropy values have also been reported in UWS and
MCS compared to healthy subjects (103, 105).

We here investigated the HRV of mostly chronic
patients with disorders of consciousness by using the
MSE, which is a non-linear analysis that can capture

FIGURE 5 | Dispersion graphs of the correlation between CRS-R total score and CI. This shows the per-subject CI value relatively to the patient’s CRS-R total score.

Both CIl (Spearman’s rho = 0.671, p < 0.0001) and CIs (Spearman’s rho = 0.579, p < 0.001) were correlated with the CRS-R total score. S1 (diamond and circle

markers, n = 30) and S2 (circle markers, n = 21) groups were compared for CIs (left) and CIl (right). White circles represent MCS patients; black circles the UWS

patients. Diamonds represent the patients discharged for the fMRI analysis while the circle markers represent the patients included in the fMRI analysis (S2 group).
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FIGURE 6 | Resting-state fMRI analysis results of the parametric regression between CI and UWS/MCS patients’ connectivity changes in the S2 group (n = 21). Top

row shows the seeds: Fronto-Insular (FI, red), Paracingulate cortex (PC, blue), Superior Temporal Gyrus (STG, magenta), Dorso-lateral prefrontal cortex (DLPFC,

green). Middle rows show the seed-based analysis results, with same colors as the seeds, and effect size as box plots (range Q1-Q3, whiskers interquartile 1.5, black

line as median, black triangle as mean, points as outliers), first with the CI in short time scale (CIs) and then long time scale (CIl). We can see a positive correlation of

the CIs with the connectivity between FI with Superior Frontal Gyrus (red) and between PC with two clusters covering the Temporal Gyrus (inferior and middle), the

Frontal Operculum and the Insular Cortex (blue). The CIl is positively correlated with the connectivity between PC and the right Frontal Pole (blue), between STG with

the Superior Parietal Lobule (magenta) and between DLPFC and the left and right Frontal Poles (green). Bottom rows show the hypothesis-free intrinsic connectivity

correlation (ICC) results, with a positive correlation between values of CIs and an increase of intrinsic connectivity of the posterior Middle Temporal Gyrus (pMTG) and

posterior STG (orange); and a correlation between CIl and an increase of intrinsic connectivity in the Middle Frontal Gyrus (MFG) (yellow). Statistical significance was

considered at permutation of residuals test cluster-mass p-FWE< 0.1 and primary threshold p-uncorrected < 0.001.
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a wider dynamic range of interaction between heart
and brain than simple entropy or variability in the
linear (time) or spectral (frequency) domains, and
therefore potentially bear more diagnostic and prognostic
information.

Indeed, cardiovascular signals are largely analyzed using
traditional time and frequency domain measures, however these
measures are not capable of measuring dynamic changes in the
autonomic control of the heart rate, thus failing to account
for important properties related to multiscale organization and
brain-heart non-equilibrium dynamics (111–113).

The brain-heart dynamic processes, that characterize the
cardiac signal output, can be described as non-linear, non-
stationary, asymmetric and with multiscale variability (i.e.
small perturbation can cause large effects, the system’s output
has dynamical properties that can change over time, the
system dissipates energy as it operates far-from-equilibrium,
and exhibits spatio-temporal patterns over a range of scales)
(114).

In contrast, these dynamic processes in healthy conditions
exhibit complex fluctuations that are reduced or absent in
pathological conditions, where we can observe less complex
outputs (115) expressed by an increased randomness (e.g., in a
subject with atrial fibrillation) or augmented periodicity (e.g., in
UWS patients).

Our results in the non-linear domain showing higher
CI in MCS than UWS are in line with the above-cited
literature and further characterize the complexity of brain-
heart interactions. Our findings are also highly significant
compared to previous studies using other types of analysis
(100, 107, 108, 116). This confirms that the extra information
extracted using non-linear analyses can lead to better differential
diagnosis with high discriminative power, even higher than
that of the clinical consensus without CRS-R (13), which
can potentially be applied to clinical practice in a near
future.

Several fMRI studies on healthy subjects have shown
the complexity of interaction of the heart with the Central
Autonomic Network (22, 52, 53, 117, 118). Valenza and
colleagues have shown that the insular cortex, frontal gyrus,
lateral occipital cortex, paracingulate and cingulate gyrus and
precuneus cortices, as well as subcortical structures including
the thalamus are involved in the modulation of the CAN/ANS
network-mediated cardiovascular control (119). The causal,
directed interactions between brain regions at rest (brain-
brain networks) and between resting-state brain activity and
the ANS outflow (brain-heart links) have been studied by
Duggento et al. (120) showing that the amygdala, hypothalamus,
brainstem and, among others, medial, middle and superior
frontal gyri, superior temporal pole, paracentral lobule and
cerebellar regions are involved in modulating the CAN. Previous
studies reported that CIs is probably linked to the vagal control
of HRV, while CIl seems to be more related (although not
exclusively) to the sympathetic control of HRV (41, 78, 121,
122).

While most of these studies used active tasks paradigms or
cardiac gating to investigate HRV (52, 66), the fMRI results

of our study extend the previous findings by offering a new
approach with two innovations: (1) by studying the resting-state
connectivity changes, after the regression of physiological noise
by principal components analysis via aCompCor, rather than
by using an active paradigm or cardiac gating, which allows to
estimate how the CI relates to the baseline cognitive abilities of
the patient; (2) by investigating the direct correlation between the
heart rate’s complexity modulation (as measured by the CI) with
the brain areas connectivity in regions involving the autonomic
system, in order to identify some of the cerebral sources
of HRV modulation. We found that both CIs and CIl are
linked to the brain’s functional connectivity of the CAN/ANS,
with higher CI values being correlated with a recovery of
CAN/ANS faculties. Indeed, by looking at the effect sizes,
we can observe that the correlation is positive in MCS and
usually close to null for UWS, suggesting a recovery of
real positive connectivity in MCS as compared to UWS. Of
note, we observed that the DLPFC, which seem to be a
component of the CAN unique to humans (52, 53, 123), had
a greater connectivity with the Frontal Poles correlatively with
the CIl.

This highlights that (impaired) complex brain-heart
interactions characterize chronic patients with disorders or
consciousness, and that the CI can reflect these connectivity
changes at resting state, in the form of a scalar value summarizing
the connectivity changes of multiple regions of the CAN/ANS.
This further suggests that the CI could potentially be used as a
fast, inexpensive and entirely non-invasive method of screening
andmonitoring connectivity changes in the CAN/ANS networks.
Combined with the observation of a high discriminative power
using a model as simple as the one rule association of the
One-R machine learning model, CI could represent a very
interesting alternative for medical centers that cannot afford
expensive MRI machines as well as for highly busy medical
centers as a preliminary screening method. Furthermore,
this method can work even for patients with extensive brain
damages that might prevent neuroimagery methods from
functioning.

Although less practical and affordable than ECG, future
studies should investigate whether screening directly the
functional connectivity change patterns in the CAN might
also yield predictive value for the diagnosis, although we
expect with less sensitivity than the CI. Indeed, our fMRI
results suggest that the CI measures reflect an aggregation of
various functional connectivity changes in the CAN, which
allows for increased sensitivity compared to any single seed
analysis.

Interestingly, one of the three UWS patients with a high CI
evolved into a MCS state one year later after the assessment
considered here. The CI measures might prove clinically relevant
not only for diagnosis but also as outcome predictors. Future
studies to assess the prediction power the CI measures are
warranted.

This study is however not free of limitations. As patients
suffering from disorders of consciousness notably move a
lot (e.g., spasms, spasticity) and since fMRI data are very
sensitive to movement, Propofol was here used in low doses
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in order to avoid movement artifacts during the fMRI scan
acquisition, as required by clinical practice. HRV entropy
is known to be profoundly affected by general anesthesia
and it can play more roles in the monitoring of anesthetic
depth (124). SE decreases after induction of anesthesia (110)
and decrease of HRV entropy following Sevoflurane and
Propofol anesthesia (109) has been observed. However, there
is preliminary evidence that sedation might not exert a
significant influence on the resting-state functional connectivity
of UWS and MCS patients, since the impairment following
the brain injury somehow overshadows the sedation effect (71,
125).

The ECG used in this study was acquired simultaneously
to MRI, as was the standard procedure at the time at
the Hospital of Liège. It would however be interesting for
future studies to additionally acquire ECG outside of MRI
acquisitions, which would be useful to derive additional metrics
and assess the possible influence of MRI auditory noise on
resting-state ECG. Indeed, a previous work observed that MCS
patients show a phase shift of their cardiac cycle to global
regularities in auditory signal (102), thus it is conceivable that
the auditory noise induced by a MRI machine might impact
the ECG.

Recently, there were a few findings about the circadian
rhythm and body temperature fluctuations in disorders of
consciousness, finding that several parameters such as the
HRV, the body temperature and the circadian rhythm are
correlated with the prognosis (126, 127). Furthermore, the
preliminary results from an ongoing work investigating the
day-to-night variations of the HRV in disorders of consciousness
seem to indicate that the circadian cycle impacts directly
the HRV, with more difference between groups being
highlighted during the day. If this is confirmed on a bigger
sample, this would indicate that ECG acquisition should be
preferentially done during the day, as was done in our study
(128).

Although the difficulty to recruit and analyze such a
challenging population of patients should be noted, the relatively
limited number of patients, heterogeneity of their etiology and
time of disease onset can represent a limit for this study.
For instance, outcome studies have highlighted that there is
a correlation between the etiology and the final diagnosis
(129). Due to the heterogeneity of our cohort of patients, a
characterization of etiology is not possible. Future studies with a
larger cohort of patients are needed to evaluate the relationship
between the heart rate CI measures and the etiologies. The
CIl threshold found by the OneR classifier seems to be quite
stable according to the 10-fold cross-validation test, but this
threshold should be confirmed in practice on a larger population
and on multiple centers in order to account for inter-scanners
variability. Furthermore, we used the CRS-R diagnosis as the gold
standard for most analyses and notably machine learning, which,
like other behavior-based clinical assessment methods, might
produce false negative errors as explained in the introduction,
as previous studies observed UWS patients retaining covert
consciousness (13, 130, 131). Finally, for the fMRI analysis,
the CI, being based on the HRV, correlation with brain

regions connectivity results might be partly influenced by blood
irrigation variation.

CONCLUSION

Our findings show that the MSE analysis of HRV and in
particular the CI could be a useful tool to measure the
degree of complexity in the brain-heart interaction and the
response of the CAN/ANS systems to external stimulations.
With the CI being correlated and even predictive of the clinical
level of consciousness as assessed by the CRS-R, this could
represent a fast, effective, inexpensive, and particularly easy to
use tool to evaluate the level of consciousness in patients with
disorders of consciousness. In particular, our findings show
that CI has potential to be a useful supporting metric in the
differential diagnosis between UWS and MCS, as well as a
way to monitor patients’ consciousness and brain connectivity
evolution, in particular with patients that cannot be assessed with
neuroimagery because of artifacts or extensive brain damage.
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