

Development supported by simulation of a test bench for the validation of a composite horizontal tail plane structure

International Conference on Composites - 2nd October 2018

D'Agruma J., Nepper V., Dumont A., Dorval S. Strepenne F., Vu Ton Anh.T., Nguyen Dai Q., Bruyneel M. Vroomen C. SABCA GDTech ULiège

Presentation outline

- 1. Introduction to SABCA
- 2. Context of the development
- 3. Demonstrator design
- 4. Test setup
- 5. Test loads derivation & test sequence
- 6. Detailed model
- 7. Sizing and interface validation
- 8. Next steps
- 9. Acknowledgment

Shareholder & Plans

> Facts & Figures

LONG-TERM, STABLE AEROSPACE SHAREHOLDERS

LOCATIONS IN THE 3 BELGIAN REGIONS + IN MOROCCO

Brussels

> PLANTS

Established in 1920

 $680\,\text{employees}$

1,120,000 Sq. feet **105,000** m²

- Group HQ
- Engineering Dept.
- Metal Manufacturing
- Testing
- Actuators
- Electronics
- Surface Treatment

Gosselies

> plants

Established in 1955

292 employees

 $540,000\, \text{Sq. feet} \\ 50,000\, \text{m}^2$

- Aircraft & Helicopter MRO&U
- Engineering Department
- Direct Access to Runway
- Own Control Tower
- Painting Facility

Lummen

> plants

Established in 1992

90 employees

 $215,000\,\mathrm{Sq.\,feet} \\ 20,000\,\mathrm{m^2}$

- Composite Systems
- Engineering Department
- 16ft X 49ft Autoclave
- Automatic Tape Layer

Morocco

> PLants

Established in 2012

70 employees

- Aero structure Assembly
- Joint Venture with AAA
- African Footprint

Focus on Integrated composite structures

> Integrated assemblies

3 Autoclaves

Max. Usable Ø: 5500 mm Max. Outside Ø: 6100 mm Max. Length: 15000 mm

- 2 Automated tape layers
- Automated **Trimming**
- Robotised **Ultra Sonic** Inspection

Commercial and transport Aircraft

> Aerostructures

FUSELAGE & TAILPLANE

WING HIGH-LIFT

FLAP SUPPORT FAIRINGS

Business & Regional Jet

> Aerostructures

FUSELAGE & TAILPLANE

ALLIC FLOOR FUSELAGE ELEMENT

Context of the development

➤ Main aim of the project for SABCA is to develop more integrated structures based on an outof-autoclave (OOA), closed mould process, specifically SQRTM

Objectives:

- Reduction of assembly time and fastener count (cost and weight)
- Better quality because of OOA parts (surface quality and tolerances, repeatability)
- Approach net shape ideal

Challenges:

- Find right level of integration (structure must still be inspectable and repairable)
- Post-curing deformation of the integrated part
- Handling of potentially large preforms and blocks of closed moulds

> Selection of a wingbox type structure representative of a SABCA production

Chordwise: true length

Lengthwise: long enough to capture post-cure

deformation issues

Geometry: some simplification, but varying

thicknesses and double curvature kept

Test setup

- Clamped interface on inboard side
- ➤ 4 hydraulic jacks for static and fatigue load introduction

Tests will be made at ULG M&S

Test setup

- Interface plate with test load portal
- Interface aluminium brackets designed to avoid fastener overload
- > Standard steel profiles with steel rods for transmitting the jack loads

Wooden blocks interface for matching skin profiles and rubber sheets to avoid excessive bearing

load on composite

Test load derivation & test sequence

- Selection of a critical static load case from the real structure
- Upward approximation of the shear, bending and torsion loads with the 4 discrete loads
- Lengthwise and chordwise load positioning for best load fit

Test load derivation & test sequence

Proposed test sequence

Detailed model

HTP:

- # Elements = 149628
- # Nodes = 154554
- Finite element size ≈ 7mm

Components are modelled with shell FE elements

Detailed model

Sub-components view

Lower skin:

- # Elements = 31893
- Regions of different stacking sequence and thickness

Upper skin:

Elements = 31843

Ribs:

- # Elements = 21580
- # Nodes = 23173

Omega stiffeners:

Elements = 44223

Front and rear spars:

- # Elements = 20089
- # Nodes = 20740

Modeling of the interfaces (gluing) between stiffeners and skins: to study possible separation during

Detailed model

- > Each zone is characterized by:
 - its own stacking sequence (plies at 0°, 45°, -45° and 90°)
 - its own thickness

- Validation of interface parts with the demonstrator
 - Stiffness and stress check of metallic plate and brackets
 - Check of fastener strength and composite bearing

Validation of interface parts with the demonstrator

- Stiffness check : max displacement ≈ 0,5mm
- Strength check : Von Mises stress < yield stress

Validation of the load introduction parts

Models of increasing difficulty are developed

- Contact between metallic frame and wood
- Contact between wood and rubber
- Contact between rubber and composite HTP

Pretension loads applied to the bar to model the behaviour under load

- Check for load transfer to demonstrator, should be as uniform as possible

Validation of the load introduction parts

Visualisation of the displacements (max displ≈ 0,2mm)

Visualisation of the Von Mises stresses << yield stress

Check
displacements
and stresses in
the metallic bars
used for the
pretension

Validation of the composite parts: check of the structural integrity with a linear material model

Next steps

- Manufacture, assembly and instrumentation of the demonstrator
- Positioning in the test bench
- Damage introduction
- Physical testing
- Correlation physical testing/virtual testing
 - Use of advanded non linear material models to simulate the progressive damage of the composite part (SAMCEF)
 - Specific material model for the plies
 - Specific material model for the interfaces between skins and stiffeners

Acknowledgement

- > The results presented here were obtained in the frame of the TECCOMA project
- > The authors acknowledge the support of Wallonia (DGO6), Skywin and Innoviris

