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Abstract

This paper presents a framework for the simultaneous application of shape and topology optimiza-
tion in electro-mechanical design problems. Whereas the design variables of a shape optimization
are the geometrical parameters of the CAD description, the design variables upon which density-
based topology optimization acts represent the presence or absence of material at each point of
the region where it is applied. These topology optimization design variables, which are called
densities, are by essence substantial quantities. This means that they are attached to matter
while, on the other hand, shape optimization implies ongoing changes of the model geometry.
An appropriate combination of the two representations is therefore necessary to ensure a con-
sistent design space as the joint shape-topology optimization process unfolds. The optimization
problems dealt with in this paper are furthermore constrained to verify the governing partial
differential equations (PDEs) of a physical model, possibly nonlinear and discretized by means
of, e.g., the finite element method (FEM). Theoretical formulas, based on the Lie derivative, to
express the sensitivity of the performance functions of the optimization problem are derived and
validated to be used in gradient-based algorithms. The method is applied to the torque ripple
minimization in an interior permanent magnet synchronous machine (PMSM).
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1. Introduction

Industrial design issues in structural engineering have been handled over the years by applying
either shape optimization [1, 2] or topology optimization [3, 4, 5]. Shape optimization finds
out the optimal layout within the design space determined by the geometrical parameters of
the CAD description of the model. Density-based topology optimization, on the other hand,
optimally removes material in a structure, holding its strength between prescribed limits. The
latter is characterized by its ability to find optimal layouts with sometimes unusual contours and
unexpected holes, but in general significantly lighter (in weight). There is therefore a desire to
combine the two optimization methods in order to reach better performances.

Several strategies intended to handle the complex interactions between shape and topology
optimizations have been developed so far. Among existing methods, adaptive topology optimiza-
tion has been performed to form an explicit interface between the solid and void regions which
arise throughout a structural density-based topology optimization, see for instance [6]. More
recently, a similar paradigm has been followed by [7, 8] to adapt to topology optimization the
deformable simplicial complex (DSC) method [9] which simulates fluids accurately. Here, both
the design and the analysis models rely on the same spatial discretization. The DSC deforma-
tion is therefore used to adapt the mesh after the movement of the interface, such that it is well
formed, and involves a series of mesh operations, e.g. Laplacian smoothing, edge flip, vertex
insertion and vertex removal, which are quite artificial.

Level set methods, which were originally proposed for numerically tracking free boundaries
are among alternative approaches to density-based topology optimization [10]. In this context,
the geometry is represented as the zero level set of functions and are propagated through the
solution of Hamilton-Jacobi type equations. This approach, which allows to easily handle large
shape modifications without requiring a CAD representation, has been first applied to structural
optimization, see [11, 12], but also in electromagnetic design of electrical rotating machines
and inverse problems, see for instance [13, 14]. The method can advantageously be carried
out in a fixed mesh. Furthermore, the topological complexity of classical CAD based shape
optimization is reduced since geometric entities, such as holes, can be merged or removed without
degenerating the model, but unfortunately cannot be created, except if the method is combined
with a topological derivative (see for instance [15, 16, 17, 18, 19] or [20] for more theoretical
aspects). However, the use of a level set representation of the geometry makes it difficult to take
into account geometries with sharp angles (see for instance [21] or [22]). It limits hence the range
of systems that can be optimized.

Topology and shape optimizations have also been coupled in the context of packaging. For
instance, the position [23] and shape [24] of the packaged items are determined by a shape
optimization process while, at the same time, the protective material usage is minimized by
means of a density-based topology optimization, [25, 26], so as to, e.g., minimize the overall
volume of the package. An alternative approach with a fixed mesh is also possible. A level set
representation of the component boundaries is used, instead of a CAD representation, and the
model is solved with an extended finite element method (XFEM) [24].

In all cases, a gradient-based algorithm is preferred to solve the combined shape and topology
optimization problems as it leads to fewer simulations of the underlying PDE model. A substan-
tial gain in computation time is furthermore obtained when sensitivities, i.e., the derivatives of
the performance functions with respect to the design variables, are obtained analytically (prior
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to discretization) by differentiation under the integral sign of the PDEs variational form instead
of evaluating a finite difference, which requires one additional solution of the physical problem
for each design variable. In the continuous context, prior to discretization, the variation of the
residual related to the physics of the problem with respect to a design variable that controls the
material density distribution can be expressed explicitly, in general, by means of the total deriva-
tive, as suggested by e.g. [27]. However, the variation of the residual with respect to a design
variable that brings modifications in the boundaries of the system is more delicate to express,
and requires terms to account for the implicit dependency of the residual in the continuous flow
of geometrical modification.

Analytical shape sensitivities have been obtained in the past through the velocity method,
as introduced in [28]. This approach uses the variation of the shape design variable as the
parameter describing a smooth geometrical transformation of the domain, with no tearing nor
overlapping, that brings the boundaries of the domain from their unperturbed position to their
perturbed position. The variation of the parameter determines therefore a flow characterized by
a velocity field. The velocity method has been applied successively to elasticity problems where
the solution of the physical problem is a scalar field, see for instance [24]. Following this approach,
analytical formulas have also been proposed in other disciplines such as electromagnetics, based
on classical vector analysis, as in [29, 30]. However, these works have been exclusively devoted
to problems expressed in terms of a scalar unknown field, leaving aside the problem of handling
the complex behavior of a vector field under the transformation that brings a modification of
the system boundaries. To handle the shape derivative of vector fields, one can refer to a
more general theoretical framework based on the exterior calculus, well established so far in
mathematical modeling and analysis of PDEs, e.g. [31, 32], borrowed from differential geometry,
and in particular the concept of Lie derivative. These material derivatives have been used more
recently by [33] in order to overcome the limitations and the tedious calculations of the vector
analysis approach, classically used for the scalar field. This approach has been applied to the
sensitivity calculation of a linear acoustic and electromagnetic boundary integral problems [34].
We have shown in [35] that using the Lie derivative, sensitivities for more complex problems (non
linear electromagnetic and elastic) can be efficiently computed in both 2D and 3D thanks to a
velocity field based on the parametrization of the geometric model of the domain. On a practical
level, this approach is very efficient since it limits the support of the volume integrals involved in
the sensitivity formulas to a one layer thick layer of finite elements on both sides of the surfaces
involved in the shape variation. The resulting formulas, expressed in classical vector analysis
form, constitute an easy-to-apply formula sheet for deriving the sensitivity of any vector field.

In this paper, we propose to tackle the combined shape and topology optimization prob-
lem by solving an adjoint formulation by a sequential gradient-based convex programming ap-
proach, [36, 37], called Method of Moving Asymptotes (MMA) in which local approximations
of the performance functions are built as convex and separable approximations (called subprob-
lems). In our combined shape and topology optimization approach, we compute the sensitivities
analytically based on the construction of a velocity field and on the Lie derivative as proposed
in [35]. The paper is organized as follows. The general optimization problem is posed in Sec-
tion 2 and the parameterization of the design space is discussed in Section 3. Section 4 deals
with the theoretical definition of the sensitivities associated with both the density and the shape
variables and provide analytic formulas to evaluate them practically. In Sections 5, the joint
shape-topology optimization is applied to the torque ripple minimization in an interior perma-
nent magnet machine.
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2. Optimization in mixed shape and topology design spaces

A 3-phase permanent magnet synchronous motor (PMSM) is an electro-mechanical energy
converter which transforms electric energy into mechanical energy. It consists of a fixed part,
called the stator, with windings fed by a sinusoidal current, and a rotating part, called the rotor,
with permanent magnets, and separated by an airgap, see Fig. 1. This machine produces torque,
which can exhibit very high level of ripples. We model the geometry of the PMSM as a bounded
domain Ω (rotor and stator), by means of a CAD model. Taking advantage of the symmetries
of the physical field, only 1/8th of the overall geometry is considered. Moreover, the spatial
discretization of the rotor and the stator remain unchanged as the rotor changes positions, and
are connected by a single layer of elements in the moving band, which is remeshed for each rotor
position [38].

The bounded domain Ω undergoes both shape and topology modifications. The shape mod-
ifications are controlled by a set of geometrical design variables, noted τ , of the CAD model
description. Topology optimization acts, on the other hand, on design variables which we call
densities, noted ρ. They represent the presence or not of a specific material at each point of
model region where it is applied. Topology optimization offers a great flexibility in the design
since it allows for an improvement of the material usage while shape optimization, on the other
hand, allows for a fine tuning of the geometrical parameters.

A family of mappings,

pδτ : Ω(τ) ⊂ E3 7→ Ω(τ + δτ) ⊂ E3, (1)

describes the geometrical modification of Ω in the Euclidean space E3, with no tearing nor
overlapping, and it is parameterized by the set of geometrical design variables τ , see [28]. A
variation δτ of the shape variable brings the interfaces and the points of Ω from their current
position to their modified position. A flow with a velocity field noted v is determined on E3 by
varying δτ in the family of mappings (1) in a neighborhood of zero, see [35]. The parameter δτ
plays therefore the role of a pseudo time variable. The value of the density, on the other hand,
at a given point in the region Ωρ (the whole rotor) of the model is obtained by evaluating that
field at the coordinates of that point. However, the variation δρ of the density field ρ does not
involve any movement of the physical interfaces of Ω.

The system is modeled in terms of a magnetostatic formulation, written at the continuous level
by its weak formulation. It reads: find A? the magnetic vector potential verifying appropriate
boundary conditions such that the residual

r(τ, ρ,A?, Ā) =

∫
Ω(τ)

ν(ρ, curlA?) curlA? · curl Ā− J · Ā−M · curl Ā dΩ = 0, (2)

for appropriate test function Ā, [39].
In (2), B? = curlA? is the magnetic flux density, H(B?) = ν(ρ, curlA?) curlA? is the

magnetic field, with ν the reluctivity depending on B? (nonlinear material). It is written by
means of the SIMP law, in the region Ωρ where topology optimization is applied,

ν(ρ,B?) = ν0 + ρp(ν†(B?)− ν0), in Ωρ, (3)

with ν† the reluctivity of steel and ν0 the reluctivity of air.
The design problem aims at determining simultaneously the geometrical design variables,

τ , and the densities, ρ, that minimize a cost function f0(τ, ρ,A), subjected to m inequalities
fj(τ, ρ,A) ≤ 0, j = 1, . . . ,m, ensuring the manufacturability or the feasibility of the design.
The design space is also limited by side constraints either for the shape design variables, τmin ≤
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Figure 1: A slice of a 3-phase interior permanent magnet synchronous machine (PMSM), top, is considered. The
PMSM is fed by a 3-phase sinusoidal current, bottom left, and produces torque, bottom right, which exhibits very
high level of ripples. (Credit: Linz Center of Mechatronics (LCM), motor was produced by Hanning Elektro-Werke
GmbH & Co KG)

τ ≤ τmax, or the density design variables, ρmin ≤ ρ ≤ ρmax. The shape design variables are
independent from the density design variables, but they are both involved in the performance
functions. Hence, the optimization problem reads

min
τ,ρ

f0(τ, ρ,A?)

s.t. fj(τ, ρ,A
?) ≤ 0, j = 1, . . . ,m

τmin ≤ τ ≤ τmax

ρmin ≤ ρ ≤ ρmax

r(τ, ρ,A?, Ā) = 0, ∀Ā.

(4)

In this article, a sequential convex programming algorithm, e.g. MMA [40], is used, coupled
with a finite element analysis code [41, 42] and makes use of the sensitivity of the problem (4)
(the derivatives of the performance functions with respect to the shape design variables, and
also with respect to the density design variables), in order to reduce the number of function
evaluations and hence, limit the required number of resolutions of the finite element physical
problem (2).
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3. Shape and topology design spaces

State-of-the-art methods of density-based topology optimization represent the material den-
sities by a field defined on a fixed grid, identical to the FEM grid, [43], while CAD-based shape
optimization methods completely remesh the structure so as to preserve the quality of the FEM
solution throughout the geometrical changes of the CAD model, see for instance [44].

In our approach, the densities are represented by a field defined on a fixed domain, noted Ωρ,
not involved in the geometrical changes induced by the shape optimization, but covering in space
all configurations allowed by it. The value of density at a point in the model is then simply the
value of that field at the coordinates of the point. The modified CAD obtained by the variations
of the shape design variables, are then discretized spatially by conformal meshes in order to carry
out FEM analysis based on the material properties interpolated from the density field.

The shape design variables, τ , govern the CAD model description of the structure and their
variation implies ongoing geometrical changes of the model, see Fig. 2. Each point P τ , resp.
Qτ , is brought to a point P τ+δτ , resp. Qτ+δτ , as the shape design variables are perturbed by
δτ and generates hence a velocity field, noted v. The densities, denoted ρ, on the other hand,
are represented by a discrete field defined on the fixed grid covering all configurations allowed by
the variation of the geometrical design variable. The value of the density at a given point in the
model, e.g. P τ or Qτ , is then obtained by evaluating that field at the coordinates, x1, x2, x3, of
that point.

x1

x2 Ωρ

Pτ

Pτ+δτ

Qτ+δτ
Qτ

ρ(x1,x2)

v

v

Figure 2: A 2D CAD model of a representative interior permanent magnet synchronous machine (PMSM) rotor
is considered. The shape modifications are represented by means of a velocity field, noted v.
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4. Adjoint-based sensitivity analysis

We shall, for the sake of simplicity, consider one particular performance function f(τ, ρ,A),
written explicitly in the form of an integral 1 evaluated at the solution A? of (2)

f(τ, ρ,A?) =

∫
Ω(τ)

F (τ, ρ,A?) dΩ, (5)

where the function F depends explicitly on A?, itself depending implicitly on the shape and
density variables. The treatment of any other performance function will be similar.

4.1. Sensitivity with respect to density

The derivative of f with respect to ρ,

df

dρ
(τ, ρ,A?) =

∫
Ω(τ)

(
DρF (τ, ρ,A?) +

{
DAF (τ, ρ,A?)

}(dA?

dρ

))
dΩ, (6)

involves two terms. The first term is the partial derivative of the functional,

DρF (τ, ρ,A?) =
dF

dρ
(τ, ρ,A?)

∣∣∣
dA
dρ =0

(7)

defined as the derivative holding the field argument A constant, while the second term involves
the Fréchet derivative of the functional F (τ, ρ,A) with respect to its field argument A, defined
by

lim
|δA|→0

1

|δA|

∣∣∣F (τ, ρ,A+ δA)− F (τ, ρ,A)−
{

DAF (τ, ρ,A)
}(
δA
)∣∣∣ = 0, (8)

where the limit is taken over all sequences of non-zero δA that converge to zero. The Fréchet
derivative is a linear operator applied to the argument in between parenthesis outside the curly
braces, dA/dρ, and evaluated in arguments between parenthesis inside the curly braces.

An augmented Lagrangian function is defined,

fa(τ, ρ,A,λ) = f(τ, ρ,A)− r(τ, ρ,A,λ) (9)

with λ a Lagrange multiplier. As (2) implies that the residual r(τ, ρ,A?,λ) is zero at equilibrium,
one has

fa(τ, ρ,A?,λ) = f(τ, ρ,A?), (10)

and the sensitivity is expressed in terms of fa by

df

dρ
(τ, ρ,A?) =

dfa
dρ

(τ, ρ,A?,λ). (11)

The differentiation of (9) with respect to ρ yields

dfa
dρ

=

∫
Ω(τ)

(
DρF (τ, ρ,A?) +

{
DAF (τ, ρ,A?)

}(dA?

dρ

)
(12)

− ν∂ curl
dA?

dρ
· curlλ− (Dρν) curlA? · curlλ+DρJ · λ+DρM · curlλ

)
dΩ = 0,

1If the performance function is a pointwise value, the expression of F (τ, ρ,A?) will then involve a Dirac
function.
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where we have already omitted the null term, and where

ν∂(B) = ν +
∂ν

∂B
B

is the tangent reluctivity tensor of the material law.
Let now λ? be the solution of the following adjoint problem, proper to the performance

function f , ∫
Ω(τ)

({
DAF (τ, ρ,A?)

}(dA?

dρ

)
− ν∂ curlλ · curl

dA?

dρ

)
dΩ = 0, (13)

which holds for all dA?/dρ. The system matrix of the adjoint problem (13) is the tangent
stiffness matrix of the problem (2), i.e. the Jacobian matrix after finite element discretization
and convergence of the iterative nonlinear process. It can be reused since the same discretization
is used for solving (13) and (2).

Using (13) in (12), the sensitivity is given by

dfa
dρ

(τ, ρ,A?,λ?) =

∫
Ω(τ)

(
DρF (τ, ρ,A?)−Dρν curlA? · curlλ? (14)

+DρJ · λ? +DρM · curlλ?
)

dΩ

in terms of the solutions of the nonlinear problem (2) and of the adjoint problem (13), where the
partial derivative of reluctivity ν with respect to ρ is obtained analytically, e.g. for the SIMP
law,

Dρν = p ρ(p−1)(ν†(B)− ν0). (15)

In our application, we consider that both J and M do not depend explicitly on ρ. Their partial
derivatives DρJ and DρM are hence both zero.

4.2. Sensitivity with respect to shape variation

Theoretical formulas to express the derivative of f with respect to a shape design variable τ
have been demonstrated in detail using the Lie derivative in [35], in the context of the family of
mappings (1), as introduced in [28].

Using the family of mappings (1), the Lie derivative of an arbitrary field ω (scalar field, vector
field, or tensor field) in Ω(τ) is defined as

Lvω = lim
δτ→0

p−1
δτ ω − ω
δτ

, (16)

where the index v in the notation Lvω makes reference to the velocity field characterizing the
geometrical modification flow.

When ω is a scalar field, the classical material derivative can be applied [45]. However, taking
the Lie derivative of a vector field is more delicate as different objects that have three components
in an Euclidian space can behave differently under transformation like (1).

For a circulation density like M , the Lie derivative reads

LvM = (∇v)M , (17)

whereas that of a flux density like J reads

LvJ = J div v − (∇v)TJ . (18)
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Furthermore, a material law like H(B) = ν curlA converts a field quantity, B = curlA,
into another field quantity, H, and contains therefore a geometrical conversion operator, called
Hodge operator, that depends on the metric. The latter has a non-vanishing Lie derivative when
the system deforms. Taking into account the implicit Hodge operator when evaluating the Lie
derivative of a material law gives,

LvH(B?) = ν∂ curlLvA
? + ν∂

(
(∇v)TB? −B? div v

)
+ (∇v)H(B?). (19)

Using this Lie derivative, we can differentiate under the integral sign of the f ,

df

dτ
(τ, ρ,A?) =

∫
Ω(τ)

LvF (τ, ρ,A?) dΩ (20)

=

∫
Ω(τ)

(
DτF (τ, ρ,A?) +

{
DAF (τ, ρ,A?)

}(
LvA

?
))

dΩ,

where the sensitivity is expressed in terms of the Lie derivative LvA
?, which represents the

evolution of the solution A? of the physical problem (2) as the shape parameter τ is changing.
The first term in (20) is the partial derivative of the functional,

DτF (τ, ρ,A?) = LvF (τ, ρ,A?)
∣∣∣
LvA=0

, (21)

whereas the second term is its Fréchet derivative with respect to its field argument, as defined
in (8).

Using the adjoint approach, the differentiation of the augmented function (9) with respect to
τ yields

dfa
dτ

=

∫
Ω(τ)

(
DτF (τ, ρ,A?) +

{
DAF (τ, ρ,A?)

}(
LvA

?
)

(22)

− Lv(ν curlA?) · curlλ+ LvJ · λ+ LvM · curlλ
)

dΩ = 0,

where we have already omitted the null term.
Substituting (17), (18) and (19) into (22) yields the linear adjoint system to solve for LvA

?,∫
Ω(τ)

({
DAF (τ, ρ,A?)

}(
LvA

?
)
− ν∂ curlλ · curlLvA

?
)

dΩ = 0, (23)

which, once discretized, is the same linear system as (13).
The sensitivity with respect to τ is then given by

dfa
dτ

(τ, ρ,A?,λ?) =

∫
Ω(τ)

(
DτF (τ, ρ,A?)− ν∂

(
(∇v)T curlA? − curlA? div v

)
· curlλ? (24)

− (∇v) ν curlA? · curlλ? + (J div v − (∇v)TJ) · λ? + (∇v)M · curlλ?
)

dΩ

The obtained sensitivity has a rather large number of terms, which can however either be reused
from the finite element solution or evaluated on a support limited to a one layer thick layer of
finite elements on both sides of the surfaces involved in the shape variation.
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5. Application to the design of a PMSM

Interior permanent magnets synchronous machines (PMSM) suffer from a high level of torque
ripple which should be reduced as much as possible, while keeping the average torque above or
equal to the nominal torque of the machine. Let us perform a combined shape and topology
optimization to determine simultaneously (1) the distance of the PMs from the air gap, the
angle between the PMs, both set as shape design variables, noted τ , and also (2) the steel
density distribution, noted ρ, defined in the rest of the rotor. We want to smoothen torque with
respect to the movement of the rotor, minimizing hence the torque ripple, while preserving an
average torque to match the nominal torque of the machine. The combined shape and topology
optimization problem (4) reads,

min
τ,ρ

f0(τ, ρ,A?) ≡
Np∑
R=1

(
TR − Tnom

)2
s.t. f1(τ, ρ,A?) ≡ 1

Np

Np∑
R=1

TR − Tnom ≤ 0,

τmin ≤ τ ≤ τmax

ρmin ≤ ρ ≤ ρmax

r(τ, ρ,A?, Ā) = 0, ∀Ā

(25)

A method based on Maxwell’s stress tensor is used for the computation of torque. Choosing
a circular shell of axial length La and surface Sa in the moving band, noted Ωmb, of the airgap
of the machine as a closed integration surface that surrounds the rotor, the torque at a given
rotor position θR reads,

TR =

∫
Ωmb

ν0 tg Br Bθ dΩ, (26)

with

tg = 2π
La
Sa
r · r (27)

being a geometrical coefficient where r is radial vector, Br = B? · er and Bθ = B? · eθ are the
scalar product of B? with respectively the radial basis vector er and tangential basis vector eθ.

The design space is limited by physical side constraints either for the shape design variables,
τmin ≤ τ ≤ τmax, or the density design variables, ρmin ≤ ρ ≤ ρmax, which are independent from
the shape design variables, but involved in the same performance functions.

The evaluation of the performance functions f0 and fj , j = 1, 2 for a given geometric config-
uration, τ , and a given material distribution, ρ, requires the knowledge of A? for that particular
value of τ and ρ, which implies solving anew the nonlinear physical problem (2) at Np rotor
positions and evaluate the torque TR at each position θR, by making use of (26). The repetition
of these evaluations is time-consuming for large scale applications.

A sequential convex programming algorithm, MMA [40], is used, coupled with a finite element
analysis code [41, 42] and makes use of the sensitivity formulas (14) and (24) derived so far.
The results of the optimization problem are summarized in Fig. 3. The entire analysis domain
and design domain are discretized using 37,521 nodes and 64,640 triangular elements. The
densities are used to interpolate the magnetic reluctivity through a classical SIMP (3) with
a penalization parameter p fixed to 3. The optimization process results, after roughly 250
iterations, in PMs with a slightly increased angular openings compared to the original design,
indicating that the topology optimization allows, in this particular case, major improvements of
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the electrical rotating machine. The torque ripple is reduced by 97% while the average torque is
set to the nominal torque of the machine.

A post-processing stage is needed to obtain a manufacturable design, see for instance [46]
or more recently [47]. Computer vision technologies to represent the boundary of the void-solid
finite element topology optimization result have first been performed in [48]. A density contour
approach has also been used in [49], or [50] as well as a geometric reconstruction approach, see
for instance [51].

Here we performed a spline-based interpolation of the density isovalues. This then leads to
a CAD model which is used for latter design stages as well as e.g. for additive manufacturing
purposes, see Fig. 4. However, a drawback inherent to such procedures, is that post-processed
results are no longer optimal and may also not comply with the given design criteria, thus slightly
deteriorating the topology optimization solutions. In this particular case, the torque ripple is
increased by 10% from the one computed with the density field.
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Figure 3: A range of Np = 16 rotor angular positions which covers an angular torque period, from 0 to 16 degrees
has been considered and the geometrical configuration of the PMs as well as the steel density distribution in the
rotor have been determined simultaneously with a combined shape and topology optimization.

6. Conclusion and perspectives

We have developed a unified tool for handling simultaneously the complex interactions be-
tween the material density distribution model of topology optimization and the geometrical
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Figure 4: A smooth CAD model of the optimized rotor is obtained manually from the finite element representation
of Fig. 3 by making use of spline curves. The geometrical model can hence be used in later design stages.

modifications which occur throughout a shape optimization. Following the general framework
of sensitivity analysis derived so far, shape sensitivity is computed efficiently. We can obtain si-
multaneously the sensitivity with respect to shape and density design variables. The theoretical
results gathered in the article have been successfully applied to electro-mechanical optimiza-
tion of the shape and topology of energy conversion systems which are of a great importance
in industry. The design of an electrical synchronous rotating machine with interior permanent
magnets, modeled by means of a two-dimensional CAD model coupled to a nonlinear magneto-
static formulation, and aiming to minimize the torque ripple has been successfully obtained in
our framework.
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[22] F. Duboeuf, E. Béchet, Embedded solids of any dimension in the x-fem, Finite Elements in
Analysis and Design 130 (2017) 80–101.

[23] J. Zhu, W. Zhang, P. Beckers, Integrated layout design of multi-component system, Inter-
national journal for numerical methods in engineering 78 (6) (2009) 631–651.

[24] J. Zhang, W. Zhang, J. Zhu, L. Xia, Integrated layout design of multi-component systems
using xfem and analytical sensitivity analysis, Computer Methods in Applied Mechanics
and Engineering 245 (2012) 75–89.

[25] Z. Qian, G. Ananthasuresh, Optimal embedding of rigid objects in the topology design of
structures, Mechanics Based Design of Structures and Machines 32 (2) (2004) 165–193.

[26] W. Zhang, L. Xia, J. Zhu, Q. Zhang, Some recent advances in the integrated layout design
of multicomponent systems, Journal of Mechanical Design 133 (10) (2011) 104503.

[27] N. H. K. Kyung K. Choi, Structural Sensitivity Analysis and Optimization 1, Springer
Science & Business Media, Inc., 2005.

[28] J. Sokolowski, J.-P. Zolesio, Introduction to shape optimization, in: Introduction to Shape
Optimization, Springer, 1992, pp. 5–12.

[29] I.-H. Park, J.-L. Coulomb, S.-Y. Hahn, Implementation of continuum sensitivity analysis
with existing finite element code, Magnetics, IEEE Transactions on 29 (2) (1993) 1787–1790.

[30] J. Biedinger, D. Lemoine, Shape sensitivity analysis of magnetic forces, Magnetics, IEEE
Transactions on 33 (3) (1997) 2309–2316.

[31] R. Hermann, et al., Harley flanders, differential forms with applications to the physical
sciences, Bulletin of the American Mathematical Society 70 (4) (1964) 483–487.

[32] F. Henrotte, Handbook for the computation of electromagnetic forces in a continuous
medium, Int. Compumag Society Newsletter 24 (2) (2004) 3–9.

[33] R. Hiptmair, J. Li, Shape derivatives in differential forms i: An intrinsic perspective, Annali
di Matematica Pura ed Applicata 192 (6) (2013) 1077–1098.

[34] R. Hiptmair, J. Li, Shape derivatives in differential forms ii: Shape derivatives for scattering
problems, SAM Seminar for Applied Mathematics, ETH, Zürich, Switzerland, Research
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