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Abstract. In this paper we investigate whether Deep Convolutional Neural Net-
works (DCNNs), which have obtained state of the art results on the ImageNet
challenge, are able to perform equally well on three different art classification
problems. In particular, we assess whether it is beneficial to fine tune the net-
works instead of just using them as off the shelf feature extractors for a sepa-
rately trained softmax classifier. Our experiments show how the first approach
yields significantly better results and allows the DCNNs to develop new selective
attention mechanisms over the images, which provide powerful insights about
which pixel regions allow the networks successfully tackle the proposed classi-
fication challenges. Furthermore, we also show how DCNNs, which have been
fine tuned on a large artistic collection, outperform the same architectures which
are pre-trained on the ImageNet dataset only, when it comes to the classification
of heritage objects from a different dataset.
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1 Introduction and Related Work

Over the past decade Deep Convolutional Neural Networks (DCNNs) have become
one of the most used and successful algorithms in Computer Vision (CV) [10] [18]
[30]. Due to their ability to automatically learn representative features by incrementally
down sampling the input via a set of non linear transformations, these kind of Artifi-
cial Neural Networks (ANNs) have rapidly established themselves as the state of the
art algorithm on a large set of CV problems. Within different CV testbeds large atten-
tion has been paid to the ImageNet challenge [9], a CV benchmark that aims to test
the performances of different image classifiers on a dataset that contains one million
natural images distributed over thousand different classes. The availability of such a
large dataset, combined with the possibility of training ANNSs in parallel over several
GPUs [17], has lead to the development of a large set of different neural architectures
that have continued to outperform each other over the years [25] [27] [7] [13] [14].

A promising research field in which the classification performances of such DCNNs
can be exploited is that of Digital Heritage [22]. Due to a growing and rapid process
of digitization, museums have started to digitize large parts of their cultural heritage
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collections, leading to the creation of several digital open datasets [3] [20]. The im-
ages constituting these datasets are mostly matched with descriptive metadata which,
as presented in e.g. [20], can be used to define a set of challenging machine learning
tasks. However, the number of samples in these datasets is far smaller than those in, for
instance, the ImageNet challenge and this can become a serious constraint when trying
to successfully train DCNNs from scratch.

The lack of available training data is a well known issue in the Deep Learning com-
munity and is one of the main reasons that has led to the development of the research
field of Transfer Learning (TL). The main idea of TL consists of training a machine
learning algorithm on a new task (e.g. a classification problem) while exploiting knowl-
edge that the algorithm has already learned on a previously related task (a different
classification problem). This machine learning paradigm has proved to be extremely
successful in Deep Learning, where it has been shown how DCNNs that were trained
on many large datasets [15] [26], were able to achieve very promising results on classi-
fication problems from heterogeneous domains, ranging from medical imaging [28] or
gender recognition [32] over plant classification [24] to galaxy detection [2].

In this work we explore whether the TL paradigm can be successfully applied to
three different art classification problems. We use four neural architectures that have
obtained strong results on the ImageNet challenge in recent years and we investigate
their performances when it comes to attributing the authorship to different artworks,
recognizing the material which has been used by the artists in their creations, and iden-
tifying the artistic category these artworks fall into. We do so by comparing two pos-
sible approaches that can be used to tackle the different classification tasks. The first
one, known as off the shelf classification [23], simply retrieves the features that were
learned by the DCNNs on other datasets and uses them as input for a new classifier. In
this scenario the weights of the DCNN do not change during the training phase, and
the final, top-layer classifier is the only component of the architecture which is actually
trained. This changes in our second explored approach, known as fine tuning, where the
weights of the original DCNNSs are “unfrozen” and the neural architectures are trained
together with the final classifier.

Recent work [16] has shown the benefits that this particular pre-training approach
has. In particular, DCNNs which have been trained on the ImageNet challenge typically
lead to superior results when compared to the same architectures trained from scratch.
However, this is not necessarily beneficial and in some cases DCNNs that are randomly
initialized are able to achieve the same performances as ImageNet pre-trained models.
However, none of the results presented in [16] have been applied to datasets containing
heritage objects, it is thus still an open question how such pre-trained DCNNs would
perform in such a classification scenario. Below, we extensively study the performance
of these DCNNS; at the same time we assess whether better TL performances can be
obtained when using DCNNSs that, in addition to the ImageNet dataset, have additionally
been pre-trained on a large artistic collection.

Contributions and Outline: This work contributes to the field of (Deep) TL ap-
plied to art classification problems. It does so by investigating if DCNNs, which have
been originally trained on problems that are very dissimilar and far from art classifica-
tion, can still perform well in such a different domain. Moreover, assuming this is the
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case, we explore if it is possible to improve on such performances. The paper is struc-
tured as follows: in Section 2 we present a theoretical introduction to the field of TL, a
description of the datasets that we have used and the methodological details about the
experiments that we have performed. In Section 3 we present and discuss our results. A
summary of the main contributions of this work together with some ideas for possible
future research is finally presented in Section 4.

2 Methods

We now present the methods that underpin our research. We start by giving a brief for-
mal definition of TL. We then introduce the three classification tasks under scrutiny,
together with a brief description of the datasets. Finally, we present the neural architec-
tures that we have used for our experiments.

2.1 Transfer Learning

A supervised learning (SL) problem can be identified by three elements: an input space
X;, an output space 9, and a probability distribution p; (x,y) defined over X; x 9; (where
t stands for ’target’, as this is the main problem we would like to solve). The goal of SL
is then to build a function f : X; — 9] that minimizes the expectation over p;(x,y) of a
given loss function £ assessing the predictions made by f:

E(x,y)wp,(x,y){E(yaf(x))}v (D

when the only information available to build this function is a learning sample of input-
output pairs LS; = {(x;,y;)|i = 1,...,N;} drawn independently from p;(x,y). In the gen-
eral transfer learning setting, one assumes that an additional dataset LSy, called the
source data, is available that corresponds to a different, but related, SL. problem. More
formally, the source SL problem is assumed to be defined through a triplet (X;, 9%, ps(x,y)),
where at least either Xy # X;, 95 # 9}, or ps # p,. The goal of TL is then to exploit the
source data LS, together with the target data LS, to potentially find a better model f
in terms of the expected loss (1) than when only LS; is used for training this model.
Transfer learning is especially useful when there is a lot of source data, whereas target
data is more scarce.

Depending on the availability of labels in the target and source data and on how
the source and target problems differ, one can distinguish different TL settings [21]. In
what follows, we assume that labels are available in both the source and target data and
that the input spaces X; and X, that both correspond to color images, match. Output
spaces and joint distributions will however differ between the source and target prob-
lems, as they will typically correspond to different classification problems (ImageNet
object recognition versus art classification tasks). Our problem is thus an instance of in-
ductive transfer learning [21]. While several inductive transfer learning algorithms ex-
ist, we focus here on model transfer techniques, where information between the source
and target problems is exchanged in the form of a DCNN model pre-trained on the
source data. Although potentially suboptimal, this approach has the advantage of being
more computationally efficient, as it does not require to train a model using both the
source and the target data.
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2.2 Datasets and Classification Challenges

For our experiments we use two datasets which come from two different heritage col-
lections. The first one contains the largest number of samples and comes from the Ri-
jksmuseum in Amsterdam*. On the other hand, our second ‘Antwerp’ dataset is much
smaller. This dataset presents a random sample that is available as open data from a
larger heritage repository: DAMS (Digital Asset Management System)>. This reposi-
tory can be searched manually via the web-interface or queried via a Linked Open Data
API. It aggregates the digital collections of the foremost GLAM institutions (Galleries,
Libraries, Archives, Museums) in the city of Antwerp in Belgium. Thus, this dataset
presents a varied and representative sample of the sort of heritage data that is nowa-
days being collected at the level of individual cities across the globe. While it is much
smaller, its coverage of cultural production is similar to that of the Rijksmuseum dataset
and presents an ideal testing ground for the transfer learning task under scrutiny here.

Both image datasets come with metadata encoded in the Dublin Core metadata stan-
dard [31]. We selected three well-understood classification challenges: (1) “material
classification” which consists in identifying the material the different heritage objects
are made of (e.g paper, gold, porcelain, ...) ; (2) “type classification” in which the DC-
NNs have to classify in which artistic category the samples fall into (e.g. print, sculpture,
drawing, ...), and finally (3) “artist classification”, where the main goal is to appropri-
ately match each sample of the dataset with its creator (from now on we refer to these
classification tasks as challenge 1, 2 and 3 respectively). As reported in Table 1 we can
see how the Rijksmuseum collection is the dataset with the largest amount of samples
per challenge (N;) and the highest amount of labels to classify (Q,). Furthermore it is
also worth noting that there was no metadata available when it comes to the first classi-
fication challenge for the Antwerp dataset (as marked by the x symbol), and how there
are some common labels between the two heritage collections when it comes to chal-
lenge 2. A visualization reporting some of the images present in both datasets can be
seen in Figure 1.

We use 80% of the datasets for training while the remaining 2 x 10% is used for
validation and testing respectively. Furthermore, we ensure that only classes which oc-
cur at least once in all the splits are used for our experiments. Naturally, in order to
keep all comparisons fair between neural architectures and different TL approaches, all
experiments have been performed on the exact same data splits which, together with the
code used for all our experiments, are publicly released to the CV community ©.

2.3 Neural Architectures and Classification Approaches

For our experiments we use four pre-trained DCNNs that have all obtained state of
the art results on the ImageNet classification challenge. The neural architectures are
VGG19 [25], Inception-V3 [27], Xception [7] and ResNet50 [34]. We use the imple-
mentations of the networks that are provided in the Keras Deep Learning library [8]

4 https://staff.fawi.uva.nl/t.e.j.mensink/uval2/rijks/
3 https://dams.antwerpen.be/
6 https://github.com/paintception/Deep- Transfer- Learning-for- Art-Classification- Problems
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Table 1: An overview of the two datasets that are used in our experiments. Each color
of the table corresponds to a different classification challenge, starting from challenge
1 which is represented in yellow, challenge 2 in blue and finally challenge 3 in red.
Furthermore we represent with N; the amount of samples constituting the datasets and
with Q, the number of labels. Lastly, we also report if there are common labels between
the two heritage collections.

Challenge| Dataset Ny Q; |% of overlap
Material |Rijksmuseum|110,668| 206 None
Antwerp X X

Type |Rijksmuseum|112,012(1,054
Antwerp | 23,797 | 920 ~15%

Artist  |Rijksmuseum| 82,018 1,196 None
Antwerp | 18,656 | 903

together with their appropriate Tensorflow weights [1] that come from the Keras of-
ficial repository as well. Since all architectures have been built in order to deal with the
ImageNet dataset we replace the final classification layer of each network with a new
one. This final layer simply consists of a new soffmax output, with as many neurons
as there are classes, which follows a 2D global average pooling operation. We rely on
this dimensionality reduction step because we do not add any fully connected layers
between the last convolution block and the soffmax output. Hence, in this way we are
able to obtain a feature vector, X, out of the rectified activation feature maps of the net-
work that can be properly classified. Since all experiments are treated as a multi-class
classification problem we use the categorical crossentropy function as the loss function
of the DCNN:Gs.

We investigate two possible classification approaches that are based on the previ-
ously mentioned pre-trained architectures. The first one, denoted as off the shelf classi-
fication, only trains a final softmax classifier on X, which is retrieved from the different
DCNNs after performing one forward pass of the image through the network 7. This
approach is intended to explore whether the features that are learned by the DCNN5s
on the ImageNet challenge are informative enough in order to properly train a ma-
chine learning classifier on the previously introduced art classification challenges. If
this would be the case, such pre-trained models could be used as appropriate feature ex-
tractors without having to rely on expensive GPU computations for training. Naturally,
they would only require the training of the final classifier without having to compute
any backpropagation operations over the entire network.

7 Please note how instead of a softmax layer any kind of machine learning classifier can be used
instead. We experimented with both Support Vector Machines (SVMs) and Random Forests
but since the results did not significantly differ between classifiers we decided to not include
them here.



6 M. Sabatelli et al.

Fig. 1: A visualization of the images that are used for our experiments. It is possible
to see how the samples range from images representing plates made of porcelain to
violins, and from Japanese artworks to a more simple picture of a key.

Our second approach is generally known as fine tuning and differs from the previous
one by the fact that together with the final soffmax output the entire DCNN is trained as
well. This means that unlike the off the shelf approach, the entirety of the neural archi-
tecture gets “unfrozen” and is optimized during training. The potential benefit of this
approach lies in the fact that the DCNNs are independently trained on samples coming
from the artistic datasets, and thus their classification predictions are not restricted by
what they have previously learned on the ImageNet dataset only. Evidently, such an
approach is computationally more demanding.

In order to maximize the performances of the DCNN's we take the work presented in
[19] into consideration and train them with a relatively small batch size of 32 samples.
We do not perform any data augmentation operations besides a standard pixel normal-
ization to the [0,1] range and a re-scaling operation which resizes the images to the
input size that is required by the different DCNNs. Regarding the stochastic optimiza-
tion procedures of the different classifiers, we use two different optimizers, that after
preliminary experiments, turned out to be the best performing ones. For the off the shelf
approach we use the RMSprop optimizer [29] which has been initialized with its default
hyperparameters (learning rate = 0.001, a momentum value p = 0.9 and € = le — 08).
On the other hand, when we fine tune the DCNNs we use the standard (and less greedy)
Stochastic Gradient Descent (SGD) algorithm with the same learning rate, 0.001, and a
Nesterov Momentum value set to 0.9. Training has been controlled by the Early Stopping
method [6] which interrupted training as soon as the validation loss did not decrease for
7 epochs in a row. The model which is then used on the testing set is the one which
obtained the smallest validation loss while training.
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To the best of our knowledge, so far no work has been done in systematically as-
sessing to which extent DCNNSs pre-trained on the ImageNet dataset could also be used
as valuable architectures when tackling art classification problems. Furthermore, it is
also not known whether the fine tuning approach would yield better results when com-
pared to the off the shelf one and if using such pre-trained ANNs would yield better
performances than training the same architectures from scratch as observed by [16]. In
the coming section we present new results that aim to answer these research questions.

3 Results

Our experimental results are divided in two different sections, depending on which kind
of dataset has been used. We first report the results that we have obtained when using ar-
chitectures that were pre-trained on the ImageNet dataset only, and aimed to tackle the
three classification problems of the Rijksmuseum dataset that were presented in Section
2.2. We report these results in Section 3.1 in which we explore the benefits of using the
ImageNet dataset as the TL source data, and how well such pre-trained DCNNs gen-
eralize when it comes to artistic images. We then present the results from classifying
the Antwerp dataset, using DCNNs that are both pre-trained on the ImageNet dataset
and on the Rijksmuseum collection in Section 3.3. We investigate whether these neu-
ral architectures, which have already been trained to tackle art classification problems
before, perform better than the ones which have been trained on the ImageNet dataset
only.

All results show comparisons between the off the shelf classification approach and
the fine tuning scenario. In addition to that, in order to establish the potential benefits
that TL from ImageNet has over training a DCNN from scratch, we also report the
results that have been obtained when training one DCNN with weights that have been
initially sampled from a “He-Uniform” distribution [12]. Since we take advantage of
work [4] we use the Inception-V3 architecture. We refer to it in all figures as Scratch-
V3 and visualize it with a solid orange line. Figures 2 and 3 report the performances
in terms of accuracies that the DCNNs have obtained on the validation sets. While the
performances that the neural architectures have obtained on the final testing set are
reported in Tables 2 and 3.

3.1 From Natural to Art Images

The first results that we report have been obtained on the “material” classification chal-
lenge. We believe that this can be considered as the easiest classification task within the
ones that we have introduced in Section 2.2 for two main reasons. First, the number of
possible classes the ANNSs have to deal with is more than five times smaller when com-
pared to the other two challenges. Furthermore, we also believe that this classification
task is, within the limits, the most similar one when compared to the original ImageNet
challenge. Hence, the features that might be useful in order to classify the different
natural images on the latter classification testbed might be not too dissimilar from the
ones that are needed to properly recognize the material that the different samples of
the Rijksmuseum collection are made of. If this would be the case we would expect



8 M. Sabatelli et al.

very close performances between the off the shelf classification approach and the fine
tuning one. Comparing the learning curves of the two classification strategies in Figure
2, we actually observe that the fine tuning approach leads to significant improvements
when compared to the off the shelf one, for three architectures out of the four tested
ones. Note however that, in support of our hypothesis, the off the shelf approach can
still reach high accuracy values on this problem and is also competitive with the DCNN
trained from scratch. This suggests that features extracted from networks pretrained on
ImageNet are relevant for material classification.
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Fig. 2: Comparison between the fine tuning approach versus the off the shelf one when
classifying the material of the heritage objects of the Rijksmuseum dataset. We observe
how the first approach (as reported by the the dashed lines) leads to significant improve-
ments when compared to the latter one (reported by the dash-dotted lines) for three out
of four neural architectures. Furthermore, we can also observe how training a DCNN
from scratch leads to worse results when compared to fine-tuned architectures which
have been pre-trained on ImageNet (solid orange line).

The ResNet50 architecture is the DCNN which, when fine tuned, performs overall
best when compared to the other three ANNs. This happens despite it being the DCNN
that initially performed worse as a simple feature extractor in the off the shelf experi-
ments. As reported in Table 2 we can see how this kind of behavior reflects itself on the
separated testing set as well, where it obtained the highest testing set accuracy when fine
tuned (92.95%), and the lowest one when the off the shelf approach was used (86.81%).
It is worth noting how the performance between the different neural architectures do not
strongly differ between each other once they are fine tuned, with all DCNNs perform-
ing around =~ 92% on the final testing set. Furthermore, special attention needs to be
given to the VGG19 architecture, which does not seem to benefit from the fine tuning
approach as much as the other architectures do. In fact, its off the shelf performance on
the testing set (92.12%) is very similar to its fine tuned one (92.23%). This suggests that
this neural architecture is actually the only one which, in this task, and when pre-trained
on ImageNet, can successfully be used as a simple feature extractor without having to
rely on complete retraining.
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When analyzing the performances of the different neural architectures on the “type”
and “artist” classification challenges (respectively the left and right plots reported in
Figure 3), we observe how the fine tuning strategy leads to even more significant im-
provements when compared to what has been observed in the previous experiment. The
results obtained on the second challenge show again how the ResNet50 architecture is
the DCNN which leads to the worse results if the off the shelf approach is used (its
testing set accuracy is as low as 71.23%) and similarly to what has been observed be-
fore, it then becomes the best performing ANN when fine tuned, with a final accuracy
of 91.30%. Differently from what has been observed in the previous experiment, the
VGG19 architecture, despite being the ANN performing best when used as off the shelf
feature extractor, this time performs significantly worse than when it is fine tuned, which
highlights the benefits of this latter approach. Similarly to what has been observed be-
fore, our results are again not significantly in favor of any neural architecture once they
are fine tuned, with all final accuracies being around ~ 91%.

If the classification challenges that we have analyzed so far have highlighted the
significant benefits of the fine tuning approach over the off the shelf one, it is also im-
portant to note that the latter approach is still able to lead to satisfying results. In fact,
accuracies of 92.12% have been obtained when using the VGG19 architecture on the
first challenge and a classification rate of 77.33% was reached by the same architecture
on the second challenge. Despite the latter accuracy being very far in terms of perfor-
mance from the one obtained when fine tuning the network (90.27%), it still shows how
DCNNS pre-trained on ImageNet do learn particular features that can also be used for
classifying the “material” and the “type” of heritage objects. However, when analyz-
ing the results from the “artist” challenge, we can see that this is partially not the case
anymore.

For the third classification challenge, the Xception, ResNet50, and Inception-V3
architectures all perform extremely poorly if not fine tuned, with the latter two DC-
NN not being able to even reach a 10% classification rate. Better results are obtained
when using the VGG19 architecture, which reaches a final accuracy of 38.11%. Most
importantly, all performances are again significantly improved when the networks are
fine tuned. As already observed in the previous experiments, ResNet50 outperforms the
others on the validation set. However, on the test set (see Table 2), the overall best per-
forming network is Inception-V3 (with a final accuracy of 51.73%), which suggests that
ResNet50 suffered from overfitting. It is important to state two major important points
about this set of experiments. The first one relates to the final classification accuracies
which have been obtained, and that at first sight might seem disappointing. It is true that
these classification rates are significantly lower when compared to the ones obtained in
the previous two experiments. However, it is important to highlight how a large set of
artists present in the dataset are associated to an extremely limited amount of samples.
This reflects a lack of appropriate training data which does not allow the DCNNs to
learn all the features that are necessary to successfully deal with this particular clas-
sification challenge. In order to do so, we believe that more training data is required.
Moreover, it is worth pointing out how despite performing very poorly when used as off
the shelf feature extractors, ImageNet pre-trained models do still perform better once
they are fine tuned than the DCNN which is trained from scratch. This suggests that
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Fig. 3: A similar analysis as the one which has been reported in Figure 2 but for the sec-
ond and third classification challenges (left and right figures respectively). The results
show again the significant benefits that fine tuning (reported by the dashed line plots)
has when compared to the off the shelf approach (reported by the dash-dotted lines) and
how this latter strategy miserably under-performs when it comes to artist classification.
Furthermore we again see the benefits that using a pre-trained DCNN has over training
the architecture from scratch (solid orange line).

these networks do learn potentially representative features when it comes to challenge
3, but in order to properly exploit them, the DCNNs need to be fine tuned.

3.2 Discussion

In the previous section, we have investigated whether four different DCNNs pre-trained
on the ImageNet dataset can be successfully used to address three art classification
problems. We have observed how this is particularly the case when it comes to classi-
fying the material and types, where in fact, the off the shelf approach can already lead
to satisfactory results. However, most importantly, we have also shown how these per-
formances are always significantly improved if the DCNNs are fine tuned and how an
ImageNet initialization is beneficial over training the networks from scratch. Further-
more, we have discovered how the pre-trained DCNNs fail if used as simple feature
extractors when having to attribute the authorship to the different heritage objects. In
the next section, we want now to explore if the fine tuned DCCNs can lead to better
performances, when tackling two of the already seen classification challenges on a dif-
ferent heritage collection. For this problem, we will again compare the off the shelf
approach with the fine tuning one.

3.3 From One Art Collection to Another

Table 3 compares the results that have been obtained on the Antwerp dataset when using
ImageNet pre-trained DCNNs (which are identified by 8) versus the same architectures
fine tuned on the Rijksmuseum dataset (0). Similarly to the results presented in the
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Table 2: An overview of the results obtained by the different DCNNs on the testing set
when classifying the heritage objects of the Rijksmuseum. Bold results report the best
performing architectures overall. The additional columns “Params” and “X” report the
amount of parameters the ANNs have to learn and the size of the feature vector which
is used as input for the softmax classifier.

Challenge] DCNN |off the shelf|fine tuning| Params| X
1 Xception 87.69% 92.13% 21K |2048
1 InceptionV3| 88.24% 92.10% 22K 12048
1 ResNet50 86.81% 92.95% 24K |2048
1 VGG19 92.12% 92.23% 20K | 512
2 Xception 74.80% 90.67% 23K 2048
2 InceptionV3| 72.96% 91.03% 24K 2048
2 ResNet50 | 71.23% 91.30% 25K 2048
2 VGG19 77.33% 90.27% 20K | 512
3 Xception 10.92% 51.43% 23K 2048
3 InceptionV3 .07% 51.73% 24K |2048
3 ResNet50 .08% 46.13% 26K |2048
3 VGG19 38.11% 44.98% 20K | 512

previous section the first blue block of the table refers to the “type” classification task,
while the red one reports the results obtained on the “artist” classification challenge.

While looking at the performances of the different neural architectures two inter-
esting results can be highlighted. First, DCNNs which have been fine tuned on the
Rijksmuseum dataset outperform the ones pre-trained on ImageNet in both classifica-
tion challenges. This happens to be the case both when the DCNNs are used as simple
feature extractors and when they are fine tuned. On the “type” classification challenge,
this result is not surprising since, as discussed in Section 2.2, the types corresponding
to the heritage objects of the two collections partially overlap. This is more suprising on
the “artist” classification challenge however, since there is no overlap at all between the
artists of the Rijksmuseum and the ones from the Antwerp dataset. A second interesting
result, which is consistent with the results in the previous section, is the observation that
it is always beneficial to fine tune the DCNNs over just using them as off the shelf fea-
ture extractors. Once the ANNSs get fine tuned on the Antwerp dataset, these DCNNss,
which have also been fine tuned on the Rijksmuseum dataset, outperform the architec-
tures which have been pre-trained on ImageNet only. This happened to be the case for
both classification challenges and for all considered architectures, as reported in Table
3. This demonstrates how beneficial it is for DCNNSs to have been trained on a similar
source task and how this can lead to significant improvements both when the networks
are used as feature extractors and when they are fine tuned.
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Table 3: The results obtained on the classification experiments performed on the
Antwerp dataset with DCNNs which have been initially pre-trained on ImageNet (6)
and the same architectures which have been fine tuned on the Rijksmuseum dataset ().
Our results show how the latter pre-trained DCNNSs yield better results both if used as
off the shelf feature extractors and if fine tuned.

Challenge| DCNN |6 + off the shelf|® + off the shelf|0 + fine tuning|0 + fine tuning
2 Xception 42.01% 62.92% 69.74% 72.03%
2 |InceptionV3|  43.90% 57.65% 70.58% 71.88%
2 ResNet50 41.59% 64.95% 76.50% 78.15%
2 VGG19 38.36% 60.10% 70.37% 71.21%
3 Xception 48.52% 54.81% 58.15% 58.47%
3 InceptionV3 21.29% 53.41% 56.68% 57.84%
3 ResNet50 22.39% 31.38% 62.57% 69.01%
3 VGG19 49.90% 53.52% 54.90% 60.01%

3.4 Selective Attention

The benefits of the fine tuning approach over the off the shelf one are clear from our
previous experiments. Nevertheless, we do not have any insights yet as to what exactly
allows fine tuned DCNNSs to outperform the architectures which are pre-trained on Im-
ageNet only. In order to provide an answer to that, we investigate which pixels of each
input image contribute the most to the final classification predictions of the DCNNss.
We do this by using the “VisualBackProp” algorithm presented by [5], which is able to
identify which feature maps of the DCNNs are the most informative ones with respect
to the final predictions of the network. Once these feature maps are identified, they get
backpropagated to the original input image, and visualized as a saliency map according
to their weights. The higher the activation of the filters, the brighter the set of pixels
covered by these filters are represented.

The results that we have obtained provide interesting insights about how fine tuned
DCNNSs develop novel selective attention mechanisms over the images, which are very
different from the ones that characterize the networks that are pre-trained on ImageNet.
We report the existence of these mechanisms in Figure 4 where we visualize the dif-
ferent saliency maps between a DCNN pre-trained on ImageNet and the same neural
architecture which has been fine tuned on the Rijksmuseum collection (specifically re-
named RijksNet ). On the left side of Figure 4 we visualize which sets of pixels allow
the fine tuned DCNN to successfully classify an artist of the Rijksmuseum collection
that the same architecture was not able to initially recognize. It is possible to notice how
the saliency maps of the latter architecture either correspond to what is more similar to
a natural image, as present in the ImageNet dataset (e.g. the buildings of the first and

8 To show these results we have used the VGG19 architecture since it provided a better in-
tegration with the publicly available source code of the algorithm which can be found at
https://github.com/raghakot/keras-vis
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third images), or even to non informative pixels at all, as shown by the second image.
However, the fine tuned DCNN shows how these saliency maps change towards the set
of pixels that correspond to the portions of the images representing people in the bot-
tom, suggesting that this is what allows the DCNN to appropriately recognize the artist.
Similarly, on the right side of the figure we report which parts of the original image
are the most useful ones when it comes to classify the type of the reported heritage
object, which in this case corresponds to a glass wall of a church. We can see how the
pre-trained architecture only identifies as representative pixels the right area above the
arch, which turned out to be not informative enough for properly classifying this sample
of the Rijksmuseum dataset. However, once the DCNN gets fine tuned we clearly see
how in addition to the previously highlighted area a new saliency map occurs on the
image, corresponding to the text description below the represented scene. It turns out
that the presence of text is a common element below the images that represent cleri-
cal glass windows and as a consequence it is recognized by the fine tuned DCNN as a
representative feature.

RijksNet VisualBackProp ImageNet VisualBackProp

RijksNet VisualBackProp

Fig.4: A visualization that shows the differences between which sets of pixels in an
image are considered informative for a DCNN which is only pre-trained on ImageNet,
compared to the same architecture which has also been fine tuned on the Rijksmuseum
collection. It is clear how the latter neural network develops novel selective attention
mechanisms over the original image.

These observations can be related to parallel insights in authorship attribution re-
search [11], an established task from Natural Language Processing that is highly sim-
ilar in nature to artist recognition. In this field, preference is typically given to high-
frequency function words (articles, prepositions, particles etc.) over content words (nouns,
adjectives, verbs, etc.), because the former are generally considered to be less strongly
related to the specific content or topic of a work. As such, function words or stop words
lend themselves more easily to attribution across different topics and genres. In art his-
tory, strikingly similar views have been expressed by the well-known scholar Giovanni
Morelli (1816-1891), who published seminal studies in the field of artist recognition
[33]. In Morelli’s view too, the attribution of a painting could not happen on the basis of
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the specific content or composition of a painting, because these items were too strongly
influenced by the topic of a painting or the wishes of a patron. Instead, Morelli proposed
to base attributions to so-called Grundformen or small, seemingly insignificant details
that occur frequently in all paintings and typically show clear traces of an artist’s indi-
vidual style, such as ears, hands or feat, a painting’s function words, so to speak. The
saliency maps above reveal a similar shift in attention when the ImageNet weights are
adapted on the Rijksmuseum data: instead of focusing on higher-level content features,
the network shifts its attention to lower layers in the network, seemingly focusing on
insignificant details, that nevertheless appear crucial to perform artist attribution.

4 Conclusion

This paper provides insights about the potential that the field of TL has for art clas-
sification. We have investigated the behavior of DCNNs which have been originally
pre-trained on a very different classification task and shown how their performances
can be improved when these networks are fine tuned. Moreover, we have observed how
such neural architectures perform better than if they are trained from scratch and de-
velop new saliency maps that can provide insights about what makes these DCNNs
outperform the ones that are pre-trained on the ImageNet dataset. Such saliency maps
reflect themselves in the development of new features, which can then be successfully
used by the DCNNs when classifying heritage objects that come from different heritage
collections. It turns out that the fine tuned models are a better alternative to the same
kind of architectures which are pre-trained on ImageNet only, and can serve the CV
community which will deal with similar machine learning problems.

As future work, we aim to investigate whether the results that we have obtained
on the Antwerp dataset will also apply to a larger set of smaller heritage collections.
Furthermore, we want to explore the performances of densely connected layers [14]
and understand which layers of the currently analyzed networks contribute the most to
their final classification performances. This might allow us to combine the best parts of
each neural architecture into one single novel DCNN which will be able to tackle all
three classification tasks at the same time.
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