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Abstract

Machine Learning aims at developing models able to accurately predict an output variable
given the value of some input variables by using a dataset of observed (input, output) pairs.
In the recent years, the development of new Machine Learning algorithms as well as the
increase of computing capabilities have made these methods very popular and successful
to address various image processing related tasks.

One of these tasks is landmark detection, which consists in �nding the coordinates of one or
several interest points in images. Landmark detection �nds many applications in computer
vision. In this thesis, we focus on two of them, both related to bioimaging. The �rst is
morphometrics, where landmark coordinates are used to measure the size and the shape
of body parts. The second is image registration, where the coordinates of the landmarks
are used to compute the deformation between two images.

During this thesis, we have developed an automated landmark detection algorithm combin-
ing tree-based machine learning models with multi-resolution pixel descriptors. Starting
from an algorithm used for cephalometric landmark detection, we have progressively ex-
tended it in order to �t the needs of morphometric analyzes, where a wide variety of image
datasets and body types are observed. We carefully analyzed the behavior of our algorithm
in order to provide detailed insights about its performance on new image datasets. We then
extended our landmark detection algorithm to 3D images and used it to perform CT-CBCT
rigid registration. Finally, we studied the relevance of using post-processing steps based
on the landmark shape structure given the speci�cities of biomedical applications.

Throughout this work, we evaluated our method on four di�erent datasets: three datasets
concerning 2D morphometrics, and one concerning 3D image registration. On these datasets,
we showed that our algorithm could reach state of the art performance while providing
additional genericity regarding its application on datasets containing di�erent types of
images.
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Chapter 1

Introduction

Imaging techniques are a widespread technology in many di�erent �elds of science. They
are crucial for the analysis of bodies and objects of interest: they allow to make accurate
observations that are potentially impossible to carry out without such tools or techniques.
For example, environmental scientists study multi-spectral images to analyze the e�ects
of global warming, mechanical engineers study the quality of their equipment through
computed tomography (CT) scans, biological experts use imaging techniques to study
the development of microscopic bodies, and oncologists use PET-scans to detect potential
tumors lying inside their patients. With the increase of computer performances bringing
more and more images with always higher resolution and additional informations to extract,
it became a necessity to use automated image processing techniques in order to replace
or assist the experts in the process of their analysis. The types of tasks that can be
automated are as various as there are research �elds: it goes from image classi�cation, to
object recognition and segmentation. In this thesis, we focus on one of these particular
image processing tasks: the automated detection of anatomical landmarks for medical and
biological applications.

1.1 Anatomical Landmark Detection

1.1.1 Presentation of the problem

In the remaining of this work, we use the term anatomical landmark to describe a
position in an image or in a volume. This position corresponds to a speci�c location in
a particular body displayed in the image. A landmark is de�ned by a name (usually the
anatomical name of the body location), and 2D (x, y) or 3D (x, y, z) coordinates in the
image. In general, several landmarks are annotated on a single image.

An example is given in Figure 1.1 where the top left corner is considered as the origin
(0, 0). Three landmarks have been annotated on the body of the fox: (1) the tip of its nose,
located at coordinates (737, 247), (2) the upper corner of its right ear, located at coordinates
(682, 119), and (3) the upper corner of its right ear, located at coordinates (790, 120). It

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Three landmarks on the body of a fox.

is important to stress the di�erence between anatomical landmarks (as in Figure 1.1) and
�ducial landmarks which are markers consisting of physical objects purposely placed in
order to highlight a speci�c location by responding to the imaging technique used.

For a speci�c landmark, given its name, the process of landmark detection consists
in �nding its coordinates in the image. The task of detecting several landmarks on a
new image can be performed quite easily and accurately by a human operator: with some
typical examples, or just by using his prior knowledge, a human will be able to easily detect
the landmarks on a new image. However, this easy task quickly becomes unmanageable
with the increase of the number of images, their size as well as the number of landmarks
to detect. When large datasets of images and landmarks are used, it becomes less and less
realistic for a human to perform this task in a completely manual fashion. Not only this
task can take precious time from an expert who could instead focus on more interesting
matters, but the redundancy also adds to the painfulness of the task. These di�culties can
be at the origin of a decrease of the accuracy in the detection, or even lead to confusion
between the di�erent landmarks to annotate. This is the reason why the development of
(semi-)automated landmark detection algorithms is of great importance.

1.1.2 Applications

Landmark detection is useful in di�erent �elds. In this section, we present the three main
applications using landmark detection, illustrated in Figure 1.2.

• In video and image recognition, landmarks are annotated on human faces. These
landmarks are then detected and used in order to describe the given faces and help
in the recognition procedure. This topic is highly popular due to the accessibility
of the datasets, with large number of annotated images. As we show in Figure 1.2
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Figure 1.2: Landmark detection for A) Face recognition B) Image registration and Morpho-
metric analysis on C) Fish images, D) Dinosaurs skeletons, E) Human humeri, F) Butter�y
wings.

A), typical datasets use an important number of landmarks in order to be able to
segment the face in the image.

• Landmark detection can also be used in image registration. Image registration
is the problem of registering images in the same coordinate system. It therefore
requires to �nd the deformation between the images to register. This problem can
be solved with landmark detection by computing the deformation with the help of
the coordinates of corresponding anatomical landmarks. An example is given in
Figure 1.2 B), where the deformation between the corresponding landmarks could be
computed, and applied in order to register the images.

• Landmark detection is also used in (bio-)morphometrics. Morphometrics is a set
of analysis performed in several areas in which the morphology of a given body is
studied through the analysis of distances, angles and shapes inside the body of in-
terest. In order to perform these measurements, landmarks need to be annotated on
the bodies that are studied. Morphometrics is widely used in applications related to
biological studies. In Figure 1.2 C) to F), we present some morphometric applica-
tions: morphometric analysis can be used to study the impact of drugs on classical
bodies (such as zebra�shes), extract digging rules from the study of dinosaur bones,
investigate the morphology of neanderthal's humeri, and even monitor the evolution
of butter�ies.

The focus of this work is on medical and biological applications, which means morphometric
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studies as well as image registration.

1.1.3 Landmark detection by supervised learning

The automated detection of landmarks is not an easy task for an algorithm. Indeed,
given the body and the images on which the algorithms need to be applied, the visual
appearances of the landmarks can be very di�erent. For example, the conditions in which
the images are taken can change the illumination in the image. The orientation of the body
can also vary, and thus the orientation and the position of the landmarks. This variation
can also come directly from the di�erences in the morphology of the studied body. In
the example presented in Figure 1.1, we could try to detect the three landmarks on adult
and young foxes, but they might have di�erent types and shapes of ears and noses. It is
therefore not easy for a developer to establish an algorithm with a set of rules that would
be able to directly �nd the landmarks on each image. A natural approach to deal with
such situations is the use of methods able to automatically generate this set of decision
rules using a dataset of manually annotated images. Supervised machine learning focus on
such methods.

Let X be the set of observations (input space), and Y be the corresponding set of anno-
tations (output space). Supervised machine learning is a term used to describe the set
of methods that, from a dataset made of N observations coming from X and their an-
notations in Y , computes a function f : X → Y able to predict an output (annotation)
y ∈ Y from an input x ∈ X with the highest possible accuracy. If the output space Y con-
sists of categorical values (unordered), the method can also be described as a classi�cation
algorithm. If not, it can be described as a regression algorithm. Supervised machine learn-
ing algorithms consider that the input space X consists of continuous and/or categorical
values.

There are many approaches that are studied in supervised machine learning algorithms:
some use a (non-)linear model, where the weights of the models are found by solving an
optimization problem on the training data (Linear Regression, Support Vector Machines,
Neural Networks), some others try to divide the space of the observations into subregions
sharing the same type of output (C4.5, Random Forests), while some others simply use
proximity criterions to decide which are the most relevant observations in the training
dataset to get information from (Nearest Neighbors).

Supervised Machine Learning methods could potentially be used in most areas as long as
observations and their corresponding outputs can be modeled using numbers or categories.
The applications of these methods range from the prediction of equipment failures from
diverse statistics (energy consumption, usage, location,...) to the recognition of speech
from audio signals or to the diagnosis of potential diseases from DNA sequences or gene
expression measurements.

It is in particular widely used in the area of image processing: supervised learning methods
are developed in a wide range of applications going from recognizing characters or numbers
[56, 49] to automated industrial inspection [52] or face recognition [2, 92]. It has also been
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applied to applications close to the automated landmark detection problem [95, 80, 21],
but with relative success, due to lacks of genericity, accuracy and prediction speed.

1.2 Objectives

Recent studies [64] showed that machine learning approaches based on the classi�cation of
sub-windows using Random Forests [12, 38] can bring additional genericity to automated
image classi�cation methods. It means that with this kind of methods, it is not necessary
to make assumptions on the type of images on which the method is applied and that
hyper-parameter tunings can be reduced to a minimum.

Given that we want to apply our method on datasets of di�erent types, our �rst goal in this
thesis is to analyze the application of a similar type of approach in order to build a robust
visual model 1 able to automatically detect each of the landmarks using the available visual
information. This model will not make any prior assumptions about the visual appearances
of the landmarks or about their spatial con�guration.

The second goal of this thesis is to test di�erent approaches aiming at correcting the
landmark positions predicted by a fully visual model by using models of the structure
formed by the landmark positions. Indeed, one of the founding hypothesis of this work is
that the landmark structure 2 formed in typical biomedical applications is harder to model,
when compared to popular face detection applications, due to the scarcity of available
annotated data and to the smaller number of landmarks that de�ne the structure.

Although we will evaluate our methods on speci�c datasets, we will develop them so that
they are as generic as possible and can be used for other types of data (like di�erent types
of morphometric studies or image registration problems). This genericity can be expressed
in two di�erent ways:

• The local visual information around the landmarks can vary: no assumptions are
made about the physical location of the landmark.

• Potential users need to be able to autonomously use the landmarks detection methods
on their own datasets. In particular, they need to know how the methods need to
be tuned accordingly. They should also know what are the potential solutions (e.g.,
adding more manual annotations or landmarks or decreasing image variability) to
improve the performance of the algorithm.

Note that, although no hypothesis will be made on the visual appearance of the landmarks,
we will nevertheless assume that the images are already roughly registered, both in terms
of scaling and orientation. To achieve the second goal, we will put some e�ort throughout

1In this work, we use the term visual model to denote landmark detection models that only exploit

visual features to predict the position of each landmark individually, independently of the other landmarks

and their relative positions.
2In this work, we use the term landmark structure to denote all statistical or geometrical relationships

that exist between the di�erent landmark positions and that could be exploited to improve landmark

predictions.
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the thesis on the systematic exploration of the in�uence of the di�erent method parameters
and we will also carry out experiments on di�erent types of datasets. Finally, to make our
methods accessible to everyone, we will implement them within the Cytomine platform,
an open-source web-based image processing software.

1.3 Contributions

During this thesis, we proposed several contributions regarding biomedical imaging research
in automated landmark detection:

• We participated in the 2014 ISBI challenge of cephalometric landmark detection
with a preliminary version of our visual detection algorithm, presented in Chapter
3. With this version, we ranked #2 over nine teams. This participation resulted in
the publication of a supplementary material [87] to the co-authored paper with the
competing methods [91] and a presentation of the method during the corresponding
2014 ISBI Workshop 3.

� R. Vandaele, R. Marée, S. Jodogne, and P. Geurts. Automatic cephalometric
x-ray landmark detection challenge 2014: A tree-based algorithm. Proceed-
ings of the ISBI International Symposium on Biomedical Imaging, Automatic
Cephalometric X-Ray Landmark Detection Challenge, 2014. [87].

� C.-W. Wang, C.-T. Huang, M.-C. Hsieh, C.-H. Li, S.-W. Chang, W.-C. Li,
R Vandaele, R. Maree, S. Jodogne, P. Geurts, C. Chen, G. Zheng, C.-W.
Chu, H. Mirzaalian, G. Hamarneh, T. Vrtovec, and B. Ibragimov Evaluation
and comparison of anatomical landmark detection methods for cephalomet-
ric x-ray images: A grand challenge. IEEE Transactions on Medical Imaging,
34(9):1890:1900, 2015. [91].

• We improved the previous 2D landmark detection method, and extended it to mor-
phometric studies by evaluating it on three di�erent datasets, thus o�ering a more
generic approach. A preliminary study was presented at the ICSIA 2015 conference,
then a thorough study was published as a journal paper in Nature Scienti�c Reports
[85].

� R. Vandaele, J. Aceto, M. Muller, F. Péronnet, V. Debat, C.-W. Wang, C.-
T. Huang, S. Jodogne, P. Martinive, P. Geurts, and R. Marée. Landmark
detection in 2d bioimages for geometric morphometrics: a multi-resolution tree-
based approach. Scienti�c Reports , 8(1):538, 1 2018. [85].

• We implemented our method as well as two other 2D landmark detection methods
in the bio-imaging Cytomine software 4, published in Bioinformatics [66]. This im-
plementation is open-source, and the software is available to everyone interested in
landmark detection.

3http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/
4http://www.cytomine.be

http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/
http://www.cytomine.be
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� R. Marée, L. Rollus, B. Stévens, R. Hoyoux, G. Louppe, R. Vandaele, J.-
M. Begon, P. Kainz, P. Geurts, and L. Wehenkel. Collaborative analysis of
multi-gigapixel imaging data using cytomine. Bioinformatics , 2016. [66].

• We extended our method to 3D images for CT-CBCT registration. Initially, we
presented a poster at the 2015 ESTRO Conference. A later study using additional
data was presented at the 2017 VISAPP conference, where it was published in the
proceedings of the conference [86]

� R. Vandaele, F. Lallemand, P. Martinive, A. Gulyban, S. Jodogne, P. Coucke,
P. Geurts, and R. Marée. Automated multimodal volume registration based
on supervised 3d anatomical landmark detection. In Proceedings of the 12th
International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISAPP) , 2017. [86] .

The latest research results presented in this document regarding the study and comparison
of post-processing methods using the landmark structure (Chapter 6) is under consideration
for a future publication. This publication could also include a study concerning the use of
this method in a semi-supervised context.

1.4 Outline of the thesis

The remaining of this thesis is structured in six chapters as follows:

• Chapter 2 presents the main principles underlying machine learning and state of
the art methods in both machine learning and landmark detection.

• Chapter 3 describe a preliminary version of our algorithm, developed in the context
of the 2014 ISBI challenge for landmark detection on cephalometric images. This �rst
version introduces the concept of multi-resolution features for landmark detection.

• Chapter 4 presents the �nal version of our 2D visual landmark detection algorithm
for morphometric studies, applied on three di�erent datasets of images, and provides
a complete analysis of its parameters in order to help potential users to apply it on
their own datasets.

• Chapter 5 extends the method presented in Chapter 4 to 3D images in the context
of image registration. We also compare this image registration extension to state of
the art image registration methods.

• Chapter 6 presents advanced analysis and extensions to our 2D landmark detec-
tion method. It is divided in three parts: First, we study the impact of the number
of training images on algorithm performances. Second, we study post-processing
methods that re�ne the landmark positions initially predicted by the visual model.
Finally, the last part of the chapter studies the possible intervention of human ob-
servers during the automatic annotation process.
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• Chapter 7 is the conclusion chapter. It o�ers some insights about the future work
that could be done in order to further improve our method. We also o�er some
perspectives about the use of deep neural network approaches for landmark detection,
a method that is currently o�ering interesting results in most areas where machine
learning is used, especially in computer vision.



Chapter 2

Supervised learning and landmark

detection methods

In this chapter, we review the main concepts underlying the studies presented in this
thesis. First, the di�erent notions concerning the domain of supervised machine learning
are presented in Section 2.1. Secondly, we introduce in Section 2.2 the machine learning
algorithms used in order to develop our landmark detection algorithm. We also make a brief
description of the multi-layer perceptrons. After a brief introduction on supervised machine
learning for image processing tasks in Section 2.3, we review the main landmark detection
algorithms that existed prior to this work in Section 2.4, and then we detail in Section
2.5 two algorithms that were developed alongside this work. These algorithms, based
on machine learning, were analyzed and reimplemented for the studies and comparisons
performed in the following chapters.

2.1 Supervised machine learning

Machine Learning is a research �eld in arti�cial intelligence that focuses on the devel-
opment of techniques and algorithms that can make a computer learn from data. These
algorithms and techniques are based on theories coming from the �elds of mathematics,
statistics and computer sciences. It is closely related to data mining, which uses machine
learning tools to analyze datasets.

The methods developed in machine learning are divided into two main categories: super-
vised and unsupervised. Unsupervised machine learning focus on developing methods
for �nding common patterns, groups and/or outliers in the datasets. Supervised ma-
chine learning uses datasets made of pairs (observation, output). The goal is then to
produce, from these datasets, a model able to predict the output of a new observation with
the highest possible con�dence. As we explained in Chapter 1, the landmark detection
methods presented in this thesis are based on supervised machine learning.

A toy example of a supervised machine learning dataset is given in Table 2.1. In this sce-

9



10 CHAPTER 2. SUPERVISED LEARNING AND LANDMARK DETECTION

Observation Output

Temperature Tension BMI Heart rate Has the �u?
#1 34 16 17 70 Yes
#2 38 12 21 89 Yes
#3 37 10 25 76 No
#4 35 15 35 95 No
#5 38 13 28 80 Yes

Table 2.1: Toy example of a supervised machine learning dataset: patient data for �u
prediction

nario, we have �ve pairs (observation, output). One observation corresponds to a patient,
and its output corresponds to a binary answer, if he has the �u or not. The patient is
described using four measurements: his temperature, tension, BMI (Body Mass Index)
and heart rate. By applying a supervised machine learning on this dataset, we want to
create a model able to predict if a new patient described by these four measurements has
the �u, with the highest con�dence possible. In machine learning, the measurements of an
observation are usually described using the term descriptors or features.

Supervised machine learning is itself divided into two main categories, depending on the
type of the output of the dataset. If the output is an unordered category (this is the case
for the example presented in Table 2.1), we can use the term (supervised) classi�ca-
tion. In the case where the output is an ordered value (in Table 2.1 the output could for
example be replaced with the severity of the �u), then the term (supervised) regression
is used.

With the increase of data storage and computing capacities, datasets can consist of hun-
dreds of thousands of observations, and be characterized by thousands of features. Human
operators are generally not able to have a global understanding of the behavior of the
datasets with such quantities of data. They are therefore assisted by machine learning
algorithms. These algorithms can be used in two contexts. The �rst one is to automate a
prediction task, which would mean predicting if a patient has the �u in our toy example.
The second one is to use the model in order to understand which are the most relevant
features for the prediction, which in our toy example would mean �nding the most relevant
symptoms of the �u.

The concepts of supervised machine learning can be described more formally. A typical
dataset of observations X with its annotations Y is described in Equation 2.1. In machine
learning, this dataset is also called learning set or LS. This dataset consists of N pairs
(observation, output). The observations are described by vectors xi ∈ Rm composed of m
continuous feature values. Although this continuity of the features is not assumed in every
supervised machine learning algorithm, this assumption will stay true along this thesis.
For some cases, the corresponding output values yi of the observations can also belong to
a multi-dimensional space C. In supervised machine learning, the aim is to �nd a function
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f : Rm → C minimizing the error of the prediction of new observations.

X = {xi}, Y = {yi}, i ∈ [1, N ], xi ∈ Rm, yi ∈ C (2.1)

However, it is complicated to directly estimate the quality of a supervised machine learning
model for new observations. This is even the main problem that a machine learning
algorithm has to tackle, and it is called the bias-variance trade-o�. If a model focuses
too much on minimizing the prediction error on the learning set, the risk is that the model
will also �t random noise present in the learning set: outliers (exceptional observation),
measurement variations or mistakes. The model created will then be unable to correctly
generalize on new observations and will give unstable predictions on new observations
(variance). This problem is called over�tting. At the opposite, if the machine learning
algorithm does not focus enough on reducing the error on the learning set, it will not be able
to �nd the best model of the problem, and will give inaccurate predictions (bias).

With our toy example, we can create a simple model classifying patients as not having the
�u only if they have a temperature between 35◦ and 37◦. While this model works on our
dataset, we can easily suspect that it can not generalize to new patients: other sicknesses
can be the cause of the temperature, and other symptoms can highlight a �u. Because this
model is able to correctly classify the learning set, but is not generalizable, this model is
described as having a high variance.

It is also quite simple to build a model with high bias: in our toy example, we can de�ne
a model that outputs the most represented category in the learning set: people with a �u.
While this model will predict new patients with a non-zero accuracy, it will have learned
nothing from the patient's features, and will be unable to accurately predict if a patient is
sick or not.

While this problematic trade-o� is approached di�erently by the di�erent families of ma-
chine learning algorithms, the potential over�tting of a model also needs to be directly
treated at the validation of the parameters of the model. For most machine learning
algorithms, it is a bad choice to test the accuracy of a model with the observations used
to build it. Indeed, the model is likely to over�t the learning sample and estimating its
accuracy on this sample will give an optimistic estimation. This is why the learning sets
are generally divided into three partitions:

• The machine learning model is built using the training set.

• The di�erent parameters of the model are chosen by optimizing its performance on
the validation set.

• The quality of the model built using the training set, with its parameters validated
and tuned over the validation set is �nally evaluated over the test set. This data,
that were not used for building the model, nor to validate its parameters, thus min-
imizes potential over�tting at the evaluation of the model.

However, one could argue that the parameters of the model are then over�tted on the
validation set: indeed, the parameters are tuned in order to work well on this dataset.
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1 2 ... i ... ... K

Data used to build the model (step i)

Data used to validate the model (step i)

Data used to test the model

Figure 2.1: Visual representation of a step of a K-fold cross-validation methodology.

This is why a more reliable approach is generally used: K fold cross-validation. A step
of cross validation is represented in Figure 2.1. In K fold cross-validation, K models are
built during K di�erent steps. Training and validation sets are merged and then divided
into K partitions. At the ith step, with i ∈ [1,K], a model is built using all the partitions
except partition i. This partition i is used to test the error of the model. The process is
repeated K times, for each partition. The �nal validation error will then be the averaged
error obtained over the K cross validation steps. When K is equal to the number of
observations (i.e, one model is built per observation), this process can also be referred to
as leave-one-out cross-validation.

Several families of algorithms exist to tackle the challenges of supervised machine learning.
The family of (ensembles of) decision trees methods aims to create decision trees dividing
the m-dimensional space de�ned by the features into subspaces sharing similar outputs.
Over�tting and bias are then controlled by pruning the tree, by carefully choosing the
decisions in the tree, and by using ensemble of trees. Support Vector Machines (SVMs)
try to �nd the position for a (non-)linear border between the classes over the feature space
giving the best bias-variance trade-o� by maximizing its distance to the observations that
are the closest, where this distance is called the classi�cation margin. Other algorithms
try to optimize the weights of a (non-)linear sum over the di�erent feature values in order
to minimize the di�erence between the sum and the outputs. The bias variance trade-o�
is controlled by the minimization of the number of weights and their relative importance.
The k Nearest Neighbor algorithm simply tries to �nd the most similar observations in
the dataset, and control the trade-o� by considering the number of observations taken into
consideration at prediction. In the next section, we brie�y describe the two main families
of machine learning methods in more details.

2.2 Machine Learning methods

Machine learning is an active research topic since the middle of the 20th century, and since
then many supervised machine learning methods were developed along the years. In this
work, we mainly focus on one family of these methods: the ensembles of decision trees.
Indeed, as explained in Chapter 1, these methods are known for their good performances
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in image processing tasks. After a description of this family of methods, we also give a
description of the most popular family of machine learning methods today: the multi-layer
perceptrons.

2.2.1 Decision tree

The decisions trees are a widely used technique, not only in the context of supervised
machine learning. As shown in Figure 2.2 (Left), the principle behind a decision tree is to
follow a tree of rules with binary answers in order to come up with a �nal decision at one
of the leaves of the tree (terminal node). Given a de�ned feature space and a set of rules
based on inequality tests, a tree also corresponds to a partitioning of the feature space (see
also Figure 2.2).

Temperature
< 35◦

Blood pres-
sure > 16

Has the �u

Has the �u Has no �u

NoYes

Yes No
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Figure 2.2: Left:Toy example of a decision tree. Right: Spatial representation of the
decision tree.

In supervised machine learning, these decision trees can be built by using the learning set.
By choosing rules with binary answers, consisting of inequality tests in the feature space
of the observations (e.g Tension< 16), the di�erent leaves of the trees will correspond to
a partitioning of the learning set. By using supervised machine learning, these rules can
be set in order to regroup the observations sharing similar outputs in the same partitions.
More formally, if we assume that X(i, j) is the numerical value of the jth feature of the
ith observation, and yi the output of this observation, we can de�ne a generic function for
training a decision tree, presented in Algorithm 1.

Given the node decision rules, the output of a new observation is computed by propagating
it in the tree using its features, from the root node of the tree to one of the leaf nodes.
The observation will then be assigned to the label of the corresponding leaf node. More
formally, given a tree T and a new observation characterized by a vector of its feature values
x, we can de�ne another function for predicting an observation from a trained decision tree.
This is presented in Algorithm 2.

In Algorithm 1, it remains to de�ne the function find_split, which tries to �nd the best
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Algorithm 1 train_tree_from_data(X,y)

1: if Var(y) = 0 then
2: label ← y0
3: else
4: (k, v)← find_split(X,y)

5: Xl ← {X(i)|X(i, k) < v}
6: yl ← {y(i)|X(i, k) < v}
7: Xr ← {X(i)|X(i, k) ≥ v}
8: yr ← {y(i)|X(i, k) ≥ v}
9: Tl ← train_tree_from_data(Xl, yl)

10: Tr ← train_tree_from_data(Xr, yr)
11: end if

Algorithm 2 predict_output_with_tree(T,x)

1: if T is a leaf then
2: return T.label
3: else
4: if x(T.k) < T.v then
5: return predict_output_with_tree(T.Tl, x)
6: else
7: return predict_output_with_tree(T.Tr, x)
8: end if
9: end if

rule to use to partition the learning sample examples that have reached a given node. This
best rule is often obtained by the computation of a quality score for each possible split
at this node and by the selection among them of the split that maximizes this quality
score. Typical quality scores measure the reduction of output impurity brought by the
split, where output impurity is often measured by Shannon's entropy [13] or Gini index
[72] in classi�cation and by output variance [13] in the case of regression. More precisely,
for a problem with c classes, Shannon's entropy and Gini index are computed respectively
as follows for a given vector y of output classes:

Entropy(y) = −
c∑

i=1

fi log2 fi (2.2)

Gini(y) = 1−
c∑

i=1

f2i (2.3)

(2.4)

where fi is the proportion of examples of the ith class in y, i.e., fi = (
#{j|yj=i}

#y ), with #y
the size of y. In the case of regression, output variance is simply:

Var(y) =
1

#y

#y∑
i=1

||yi − ȳ||22. (2.5)
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Denoting by Imp(y) any one of these three impurity measures, the quality score Q(y, s)
of a split s that separates the output vector y into two new output vectors yl and yr is
computed as follows:

Q(y, s) = Imp(y)− #yl
#y

Imp(yl)−
#yr
#y

Imp(yr). (2.6)

The score is thus the di�erence between the output impurity at the node to split and
the average of the impurities at the left and right successors of this node, weighted by
the proportion of examples that they contain. For the three aforementioned impurity
measures, the resulting score is always positive and it is maximized when the output is
constant in the two successor nodes created by the split, leading to a zero impurity after
the split.

As described, Algorithm 1 only stops expanding a tree branch as soon as the output is
constant for all examples in the leaf at the end of this branch. We say in this case that
the tree is fully grown. In practice however, some pruning needs to be applied to avoid
over�tting. Indeed, increasing too much the number of nodes reduces the learning sample
error but might lead to an increase of variance and thus an increase of the generalization
error [37]. Pruning reduces the size of a tree, with respect to a fully grown tree, by replacing
some of its subtrees by leaf nodes. It can be carried out either a priori or a posteriori. In the
�rst case, pruning is called pre-pruning and it merely consists in extending the condition
in Line 1 of Algorithm 1 for stopping the expansion of a given node. For example, one can
stop splitting a node either when its depth has exceeded some threshold, when the number
of examples it contains is too small, or when the output impurity is below some threshold.
When pruning is carried out a posteriori, it is called post-pruning. In post-pruning, a
fully grown tree is �rst built using Algorithm 1 and then irrelevant subtrees within this
tree are highlighted on the basis of a separate validation set and they are replaced by
leaf nodes. As a result of pruning, some leaf nodes potentially contain examples whose
outputs might be di�erent. The label of these leaf nodes can then be computed as the
average of those outputs (regression) or the most represented class (classi�cation). These
labelings respectively minimizes the mean squared error in regression and the error rate in
classi�cation as estimated on the training set.

Even when pruned, decision trees still su�er from a high variance, which makes them often
not competitive with other supervised learning methods such as Support Vector Machines
or Multi-Layer Perceptrons. One way to get rid of this variance is to use ensemble of
decision trees instead of single trees. These methods are described in the next section.

2.2.2 Ensembles of decision trees

The principle behind ensemble methods in machine learning is to exploit the predictions
of several di�erent models built from the same training set in order to take a decision.
Majority vote or averaging the outputs of these di�erent models are classical approaches
to combine them at prediction.

Ensembles of decision trees consist in combining multiple decision trees built from the
same training set. In the previous section, we described a generic approach for building a
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supervised decision tree, but its construction is deterministic: at each node, every possible
splits are evaluated, and the best one is used for splitting the node. Using this approach
in the context of ensembles of decision trees would therefore be useless, because every tree
model would be the same, and have the exact same output for any observation. For this
reason, several approaches, described in the following, have been proposed to randomize
the selection of the splits and thereby generate di�erent trees from the same training
set. Because of the introduction of this randomization, a single randomized tree will
be typically less good than a standard deterministic decision tree, both in terms of bias
and variance. However, averaging the predictions of several randomized trees is expected
to bring superior performances mainly because of a drastic reduction of variance with
respect to standard deterministic decision trees. Randomization indeed makes the tree
less dependent on the speci�c training set used, while averaging gets rid of the variance
brought by the randomization.

One of the most popular algorithm to train an ensemble of decision trees is Breiman's
Random Forests algorithm [12]. The selection procedure for a given node of the tree
is detailed in Algorithm 3. Let us assume that at a given node, we have a set of N
observations xi, i ∈ {1, . . . , N}, characterized by their m features, and yi represents the
corresponding output. The algorithm �rst selects a random subset S of k features with
replacement among the original m features, with k a user-de�ned parameter. Then, for
each of the k selected features, the optimal split v(i) is computed using the function
find_best_split. The best split among the k is then �nally selected for splitting the
node (function find_best_split_pair). The best splits are found using the same quality
scores used for building standard decision trees (see Section 2.2.1).

Algorithm 3 find_split(X,y,k)

1: S ← set of k integers randomly drawn (without replacement) in {1, . . . ,m}
2: for i ∈ S do
3: v(i)← find_best_split(X,y,i)

4: end for
5: return find_best_split_pair(X,y,S,v)

Another speci�city of the Random Forest algorithm is that each tree of the ensemble is
grown from a bootstrap sample of the original training set, as in Bagging [11]. A bootstrap
sample is obtained by sampling N examples with replacement from the original training
of size N . Each bootstrap sample thus potentially contains several copies of some training
examples, while other training examples are missing. Bootstrap sampling introduces some
further randomization of the trees that slightly increases bias (because of a reduction of
the e�ective training set size) but leads to a stronger reduction of variance.

The Extremely Randomized Trees algorithm [38] uses an even more randomized approach
for selecting a split at a given node during training. It modi�es Algorithm 2.2.2 by replacing
the selection of the best split for each of the k selected features (Line 3) by the selection
instead of a random split. For a numerical feature, a random split is obtained by drawing
a cut point uniformily at random between the mininum and the maximum values of the
features in the current node. This modi�cation with respect to Random Forest brings a
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Figure 2.3: Visual representation of a neural network.

signi�cant speed-up when training the model (since the optimization of the split is not
needed anymore). It also leads to a stronger reduction of variance that makes the use
of bootstrap sampling unnecessary [38]. Due to its ability for handling a large number
of features, this algorithm is very popular for supervised machine learning tasks in image
processing [64, 23] and it will also be the basis of our landmark detection solutions later
in this thesis. The method shares the same hyper-parameters as Random Forest: k the
number of features randomly selected at each node, T the number of trees in the ensemble,
and nmin, the minimum number of examples for splitting a node. T has to be �xed to
the highest possible value taking into account only computational considerations, nmin is
usually set to 2 in the context of classi�cation, and a common default value of k is

√
m,

with m the total number of features [38].

2.2.3 Multi-Layer Perceptrons

The algorithm of multi-layer perceptrons [78] is among the most popular supervised ma-
chine learning algorithms of the last years. While it was introduced at the end of the
eighties, its interest has raised in the recent years due to the advent of the more general
domain of deep learning.

The principle of a multi-layer perceptron is to represent the relationship between the input
observations and their outputs by using interconnected mathematical structures called
neurons. As represented in Figure 2.3, neurons are organized into layers. At the exception
of the �rst (input) layer, each neuron of a layer receives as inputs the outputs of the
neurons of the previous layer. Except for the last (output) layer, the output of each
neuron is connected to the inputs of the neurons of the next layer. More complex network
structures, even with recurrent connections, are possible but they will not be considered
here.

A neuron takes as input the output values v1, ..., vJ of the J neurons from the previous
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Figure 2.4: Typical activation functions used in a multilayer perceptron

layer, and outputs a single value computed as a weighted sum of its inputs sent through
a non-linear activation function f , i.e., f(

∑K
i=1wivi). Training the network consists in

optimizing the weights so as to minimize a loss function computed on the training set.
There are di�erent functions commonly used as activation functions (see Figure 2.4): the
ReLU (ramp identity), the hyperbolic tangent or the sigmoid function. These functions can
potentially vary between networks, layers, and neurons. The use of non-linear activation
functions makes the function computed by the network non linear and it allows multi-layer
perceptrons to approximate every possible function, with a su�cient number of layers and
neurons per layers [24].

We can distinguish three di�erent types of layers: the �rst layer of a network is always
the input layer. Each neuron of this layer corresponds to a speci�c input feature of an
observation. There is no weight or activation function in this layer. Given an observation,
the output of these neurons is the value of the feature corresponding to the neuron. The
second type of layer is the hidden layer. There can be several hidden layers in a neural
network. They are assigned weight values as well as an activation function, and their output
corresponds to the non-linearized weighted sum described in the previous paragraph. The
third and last type of layer is the output layer: it takes as input the outputs of the last
hidden layer, and outputs the predicted output of the observation assigned at the input
layer. In this layer, there are as many neurons as there are dimensions in the output space.
The neurons in that layer also have weights and activation functions.

If we consider the global multi-layer perceptron as a function denoted F (x;w) ∈ C where
x is the input features of an observation and w is the weight vector of all the neurons of
every layer, the goal of the training phase is to �nd the weights w minimizing the average
over the training set of a loss function comparing the predictions made through F on
each training observation xi ∈ Rm and its corresponding real output value yi ∈ C. This
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minimization problem can be formulated as follows:

min
w

1

N

N∑
i=1

loss(yi, F (w, xi)) (2.7)

In regression, a typical loss function is the squared error:

lossSE(y, ŷ) = ||y − ŷ||22, (2.8)

where the output vectors can be multi-dimensional. In classi�cation, a typical loss function
is the cross entropy, which is written as:

lossCE(y, ŷ) = −
c∑

j=1

yj log(ŷj) (2.9)

where c is the number of classes, y ∈ Rc is the indicator vector of the true class (with yj = 1
if j is the true class, 0 otherwise), and ŷj is the probability estimated by the neural network
that the example belongs to class j 1. Algorithms used to solve problem (2.7) are generally
based on gradient descent methodologies, bene�ting from the fact that derivatives of the
average loss can be computed e�ciently using the backpropagation algorithm [56].

While multi-layer perceptrons have been used since the end of the eighties, they have
regained important interest recently. New methodological developments and computing
infrastructures (based on GPUs) have indeed been proposed that allow to signi�cantly
speed-up their training and also to train neural networks with increasing numbers of lay-
ers that reached impressive performance on very complex tasks at the heart of arti�cial
intelligence. These advances have lead to the de�nition of a whole new domain called
�deep learning� [39]. The success of these methods is also linked to the fact that the
typical size of the databases available to train supervised learning models have very sig-
ni�cantly increased, which is very crucial to be able to train very deep neural network
architectures.

Some of these network topologies, such as the Convolutional Neural Networks [56] have
proven to be extremely e�cient in imaging tasks involving supervised machine learning
[53, 76, 79]. Although they are not tested in this thesis, landmark detection methods could
probably bene�t from the latest advances in deep neural networks. This will be discussed
in more details in the conclusion chapter of this thesis.

2.3 Images in supervised machine learning

Numerical images, in two or three dimensions, measure the intensity of electromagnetic
waves coming from, or being re�ected by di�erent objects. Given the measured wave-
lengths, images can supply di�erent types of informations (X-Ray imaging, echography,

1To ensure that the c network outputs correspond to proper probabilities, they are usually sent through

a so called Softmax layer.
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Figure 2.5: Description of an image using pixel values.

and photography are some examples). With numerical imaging, this intensity measure-
ment is typically discretized in square pixels averaging the intensity over a given square
resolution.

An image recording the intensity at a given wavelength can therefore be represented as a
matrix of pixel intensity values. A classic RGB image, where the intensity at three dif-
ferent wavelengths is recorded, is represented by three matrices, one for each wavelength.
A 3D image records the averaged intensity over cubic volumes, and their values are rep-
resented as cubes, also called voxels. Hence, 3D images correspond to three dimensional
matrices.

Given that supervised machine learning tools use numerical features to describe an obser-
vation, these intensity values can be exploited as features for image related observations.
An example is given in Figure 2.5, where the location in the image can for example be
represented by their surrounding pixel values.

There are two main ways to describe an image from these values:

• Transform the raw intensity values into new values that will help the supervised ma-
chine learning algorithm to understand the data. This could help the algorithm to
become less sensitive to potential deformations such as rotations, scaling, or illumi-
nation changes. A large number of such transformations (visual image descriptors)
have been proposed in the literature. They help the algorithms to become more
robust to deformations and/or highlight some of the image properties. For example,
instead of using the raw intensity values, we could use a histogram of those values,
an image descriptor insensitive to rotations. Gradient-based information (di�erence
with intensity values of surrounding pixels) is another descriptor that can help to
understand the variation of pixel intensity values around edges. More complex de-
scriptors such as Local Binary Pattern or Speeded-Up Robust Features are classic
examples commonly used in automated image processing [80, 2, 62].
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• Directly use the raw intensity values as they are. The idea behind this approach is
that if a su�cient amount of data is fed to the right supervised learning algorithm,
the algorithm will be able to decide which are the most relevant relations between
the intensity values to use. With the increase in size of both image datasets and
computing capabilities, this approach has become increasingly popular in the recent
years, especially with Random Forests and Convolutional Neural Networks, two types
of methods able to take advantadge of these raw intensity values, given a su�cient
amount of training data [64, 9, 53, 79].

In this thesis, we will explore these two alternatives by comparing raw intensity values
with standard image descriptors from the literature, both fed as inputs to Random Forests
models.

2.4 Landmark detection methods

In the literature, three di�erent approaches have been proposed to tackle the problem of
landmark detection.

The �rst approach, and also the most widely studied prior to the development of our
algorithm, focuses on landmark detection for segmentation purposes (face or biomedical
segmentation). The works coming from this area are mostly improvements or extensions of
two important algorithms developed by Tim Cootes and his colleagues: the Active Shape
Model (ASM) [22] and the Active Appearance Model (AAM) [21].

From an initial setup of landmark positions, the ASM method relies on the repetition of
two iterative steps until convergence:

1. Update the landmark positions to close locations having better visual correspondence
with the landmarks.

2. Update the landmark positions by �tting a model of the global landmark shape,
learned from a dataset of manually annotated images.

This algorithm having been developed for segmentation purposes, the visual correspon-
dence used by the initial algorithm in step 1 was based on the edginess of the pixel location.
In segmentation tasks, landmarks are indeed generally placed at edge locations, denoting
the extent of a given shape or object.

One drawback of the ASM algorithm is that it does not consider the texture of the shape
object. The AAM algorithm aims at addressing this issue by taking this visual information
into account. It uses an optimization process that tries to minimize the least-squares
di�erence between the current shape model and its projection on the target image, taking
into account the intensity values of the shape as well as the landmark positions. However,
this algorithm needs a good initialization in order for the optimization procedure to work
properly. As the algorithm only focuses on the shape texture, landmarks locations are
less likely to converge towards edge positions, which makes it less e�cient than the ASM
method for segmentation problems.
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Several papers have proposed to improve these two algorithms to address their own speci�c
segmentation tasks. For example, Rogers et al. [75] proposed a shape model which is
more adapted to the complexities of medical image segmentation problems. Duta and
Sonka [29] derive ways to exploit prior knowledge about the pixel intensities and landmark
positions to improve the initialization of the landmark position vector. Van Ginneken et al.
[84] proposed to improve the search for better visual positions by using a kNN landmark
classi�er, and tested di�erent image descriptors. This work was later pursued by Sukno
et al. [81], who speeded up the classi�cation by using a neural network and new image
descriptors. Some authors have also applied Active Shape Models for the detection of
cephalometric landmarks. For example, Yue et al. [95] proposed to divide cephalometric
images into di�erent subregions (using prior knowledge) on which they applied di�erent
Active Shape Models, one per region. Ka�eh et al. [45] also use an Active Shape Model,
where the initial landmark positions are found using a neural network classi�er taking
image sub-windows as inputs. More recently, Lindner and Cootes [59] proposed to build
heat maps using a visual regression model, with the latter then exploited by the Active
Shape Model.

The second approach tackles the problem of landmark detection with di�erent ways to
modelize and use the shape of the landmarks: Donner et al. [28] use a Markov Random
Field in order to select the most likely combination of landmark candidates found by a
re�ned classi�cation model (this algorithm is described in more details in Section 2.5.1).
Ibragimov et al. [43] propose a framework in which landmark positions are found by using
a game-theoretic solution.

Lastly, the third approach proposes to perform the detection of the landmarks only on
the basis of a visual model, without using shape models for correcting landmark positions.
Along this line, Stern et al. [80] obtained promising results for detecting landmarks on
Zebra�sh images by using a random forest model to classify image sub-windows described
by a combination of image descriptors. Kaur and Singh [48] used a two steps approach
that uses Zernike moments in order to �nd the landmark positions on cephalometric im-
ages.

2.5 Selected Methods

The landmark detection approach that will be developed in this thesis is inspired by pre-
liminary work of our group on this topic presented by Stern et al. in [80], which is represen-
tative of the third family of techniques presented in the previous section. Commonalities
and di�erences with this latter method will be highlighted in Chapters 3 and 4. In this
section, we describe in details two methods from the literature that we consider to be the
most competitive for the purpose of anatomical landmark detection in biomedical applica-
tions. These two methods, like ours, exploit visual models based on Random Forests. The
method by Lindner and Cootes [59] is one of the most recent and promising approaches
using ASM for landmark detection. The method by Donner et al. [28] relies on a di�er-
ent shape model for correcting landmark positions based on Markov random �eld. Note
that these two methods were actually developed in parallel and independently of our own
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method. Because no implementations of these two methods are available publicly, we
reimplemented them ourselves to carry out our comparative analyzes in Chapters 4 and 6.
The purpose of our detailed description below is also to provide our own interpretation of
the di�erent steps of these methods, as all details are not always provided in the original
publications. Minor di�erences might thus appear between our implementation and the
original methods.

2.5.1 Donner et al., 2013: Global localization of 3D anatomical struc-

tures by pre-�ltered Hough Forests and discrete optimization

This �rst state of the art landmark detection approach was developed by Donner et al. in
order to detect landmarks in both two-dimensional images and three-dimensional volumes
[28]. Although it can be applied for both cases, our description focuses on two-dimensional
images. This approach is divided into three di�erent steps, each using a di�erent machine
learning model. These three steps of the algorithm are described below in turns. In Chapter
4, we will refer to this method as the DMBL method, where DMBL simply stands for the
�rst letters of the last names of the authors of paper [28].

Step 1: Pixel classi�cation

Description. Given a new image for which we want to predict the landmark positions,
the �rst step of the algorithm consists in classifying each of its pixels using a classi�cation
model. Each pixel of the image is assigned one probability per landmark. This probability
corresponds to the likelihood computed by the machine learning classi�cation model that
the position of the pixel corresponds to the position of the landmark.

Supervised machine learning model. The model used is a multi-class classi�cation
model: there is one class per landmark, and an additional class for the pixels that do not
correspond to any landmarks. Random Forests are used as the machine learning algorithm.
Classi�cation Random Forests can output probabilities instead of a class: given that each
tree of the Random Forest is casting a vote, dividing the total number of trees agreeing
that an observation belongs to a given class by the total number of trees in the forest gives
an estimate of the probability that the observation belongs to the given class.

Pixel descriptor. In this algorithm, the pixel of an image I located at position (x, y)
is described by N features Fi, i ∈ [1, N ], computed using the di�erence between the pixel
value I(x, y) and pixel values located at random o�sets vi ∈ R2. These o�sets are common
to all the images and pixels extracted, at training and prediction. They are chosen using
a gaussian function N(0,Σ). The process is showed in Equation 2.10.

Fi(I, x, y) = I(x, y)− I(x+ vi(0), y + vi(1)), vi ∼ N(0,Σ),Σ =

(
σ2 0
0 σ2

)
(2.10)



24 CHAPTER 2. SUPERVISED LEARNING AND LANDMARK DETECTION

In this step, σ (the variance of the gaussian) and N (the number of features) are parameters
that need to be tuned during the validation procedure.

Training. For a given training image I, all the pixels (xj , yj) within a radius R1 from the
landmark position (xI,l, yI,l) are extracted (the training algorithm computes their features),
and assigned to the class l. The process is repeated for each landmark. Additionally,
sampled pixel locations that were not yet extracted, and do not belong to any of the
landmark classes, are extracted and assigned to the not-landmark class. The process is
then repeated for each training image, and a Random Forest model is trained using this
training dataset.

Output prediction. At prediction, each pixel (x, y) of the image is classi�ed using the
Random Forest model. In order to speed up the classi�cation process, the images can
be resized using a parameter δ. This resizing also a�ects the size of the images during
the training process. For a predicted image, the output of this step will consist in one
probability image or vote map Vl for each landmark l, where Vl(x, y) corresponds to the
probability of position (x, y) corresponding to the landmark position as computed by the
model.

Step 2: Candidate selection

Description. This second step takes as input the vote maps of the �rst step. The goal
of this second step is to re�ne the vote maps in order to select a given number of potential
candidate positions for each of the landmarks. The idea is to build one regression model
per landmark l. The model for landmark l learns the o�set between a pixel position (x, y)
and the position (xl, yl) of the landmark in the image, ie., (x− xl, y − yl).

Supervised machine learning model. This is a multi-output regression problem (2
outputs). Regression Random Forests are used for the machine learning model.

Pixel descriptor. The same pixel descriptor as used during the �rst step of the algorithm
(see Equation 2.10) is also used during this step.

Training. At training, L models are built, one for each of the L landmarks. For a
landmark l and an image I, all the pixels within a radius R2 from the landmark positions
(xI,l, yI,l) are extracted, and their o�set to the landmark position assigned as the regression
output. This process is repeated for each of the training images.

Output prediction. At prediction, for a new image I with vote map VI,l for landmark
l, the pixel o�sets (∆xj ,∆yj) are computed using the trained model for each pixel position
(xj , yj) such that VI,l(xj , yj) ≥ βmaxx′,y′ VI,l(x

′, y′). The vote map is then updated using
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Figure 2.6: Representation of the Markov random �eld for landmark detection, using 7
landmarks and two edges (the selected edges are in blue).

the o�sets that were computed: VI,l(xj − ∆xj , yj − ∆yj) = VI,l(xj − ∆xj , yj − ∆yj) +
VI,l(xj , yj), and the process can be repeated S times. Then, the vote map is reduced to its
Nc best landmark positions.

The output of this step is thus a re�ned vote map, composed of at most Nc landmark
positions per landmark.

Step 3: Finding the best combination of landmark candidates

Description. This third step takes as input a re�ned vote map, with at most Nc land-
mark positions per landmark. For a total number of L landmarks, there is therefore a
possibility to select NL

c di�erent combinations of landmark positions. This third and last
step will try to �nd the best combination of candidates using the combinatorial optimiza-
tion procedure of a Markov Random Field.

Markov Random Fields. An example of a given Markov Random Field is represented
in Figure 2.6. The idea is to �nd a combination of landmarks that maximizes both the
landmark probabilities obtained during the second step of the algorithm, and probabilities
concerning distance relationships between the landmarks. These distances probability
functions are modeled using Gaussians, based on statistics of landmark distances (average
and standard deviation) estimated in the training set. In order to reduce the number
of edges to consider, the algorithm proposes to limit the consideration of distances to T
edges per landmark. The selection is done by looking at the variations of the geometric
distances between the landmarks. Di�erential entropy is used to estimate the reliability of
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using a landmark position in order to predict the position of the other landmarks. For a
given landmark, the T most predictive landmark pairs (edges) are then used in the Markov
Random Field.

Candidate selection. Once the Markov Random Field modelization is performed using
the training set, the landmark candidates for an image (obtained at step 2) can be inte-
grated to the model. A belief propagation algorithm speci�c to Markov Random Fields [94]
will then be able to �nd the optimal combination of candidates according to this model.
The output of this third step will then be the best combination of landmark candidates
that were found at step 2. This combination will be the �nal detected positions of the
landmarks on the new image.

2.5.2 Lindner and Cootes, 2015: Fully automatic cephalometric evalua-

tion using Random Forest regression-voting

The approach presented in this section uses a two steps methodology [59]. First, a pixel
o�set regression approach is used in order to build a vote map of the landmark positions.
Second, the landmark detection algorithm tries to �t a shape of the landmark structure to
the image by using the vote maps and a PCA model of the landmark structure. In Chapter
4, this method will be refered to as the LC method, again as a reference to the �rst letter
of the last names of the authors of paper [59] (Lindner and Cootes).

Step 1: Pixel o�set regression

Description. The idea of this �rst step is also to build a vote map for a new image.
The main di�erence is that instead of a classi�cation approach, a pixel o�set regression
approach is used. At prediction, pixels are extracted, and each one of them votes for the
landmark location by using the o�set predicted by a regression model. One model per
landmark is created at training.

Supervised machine learning algorithms. Given that the output is an o�set, this a
multi-output regression problem. Random Regression Forests are used in order to build
the model. One Random Forest model is used per landmark.

Training. At training, for landmark l, the pixels are extracted at positions (xj , yj) within
a window [−dmax, dmax] from the landmark position on each of the training images. Their
regression output corresponds to the o�set with respect to the real landmark position
(xj − xl, yj − yl).

Pixel descriptor. The pixels are described using a given number of Haar-Like features
within a window of size w surrounding the pixel position. As presented in Figure 2.7,
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Figure 2.7: Haar-Like features used to represent a pixel. In order to compute the value of
a haar-like feature, the sum of the pixels in the blue zones are subtracted to the sum of
the pixel values in the white zones.

Haar-Like features correspond to the di�erence between sums of pixels within square or
rectangular areas. They are all extracted at �xed random location inside a window of size
2w × 2w around the landmark position.

Output prediction. At prediction, a mean shape is �rst computed to estimate the
landmark position. In this case, this means that the position of the landmark will be
estimated as the average position of the landmark in the training set. Then, each pixel
in the window [−dmax, dmax] around this position will be extracted, and the tree model
will be used to build a vote map. For each pixel (x, y) extracted, each tree of the random
forest outputs its o�set (xv, yv) to the landmark position, and adds one vote to the position
(x−xv, y−yv) as being the position of the landmark. For a forest of T trees, T×(2dmax+1)2

votes are therefore casted.

The process is repeated for each landmark, hence this �rst step will output a vote map for
each of these landmarks.

Step 2: Shape �tting using PCA reduction

Description. The idea of this second step is to optimize the shape structure while con-
sidering the results obtained with the vote maps Vl of each of the landmarks l as well as
the shape structure modeled from the training images using principal component analysis
(PCA).

Algorithm. The landmark positions (x(l), y(l)) are initialized with the locations of the
pixel positions which obtained the highest number of votes at step 1. Then, an iterative loop
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is created. The �rst step of this loop corrects the landmark positions vector by changing
the landmark positions to the closest positions making the structure an acceptable shape
according to the shape model. The second step changes these new landmark positions to
the location obtaining the highest number of votes within a radius r that is iteratively
reduced by a factor β. The process is repeated until the radius has reached a minimal
acceptable size (1 for example). This procedure is presented in Algorithm 4.

Algorithm 4 Shape-�tting description of the LC landmark detection algorithm
1: for l in [1, L] do
2: (x(l), y(l))← arg maxx,y Vl(x, y)
3: end for
4: while r > rmin do
5: (x, y)← correct_shape(x, y)
6: for l in [1, L] do
7: (x(l), y(l))← arg maxx,y Vl(x, y) s.t (x− x(l))2 + (y − y(l))2 ≤ r2
8: end for
9: r = r × β

10: end while

Shape correction algorithm. The shape correction step (line 5 of Algorithm 4) is
performed using a PCA-based shape model. Let us denote by xi ∈ R2L the vector of
landmark positions of the ith image of the training set, with i = 1, . . . , N . The idea of
PCA is to approximate each such vector as follows [37]:

xi ≈ µx + Pbi, (2.11)

where µx ∈ R2L is a location vector, P is a 2L× t projection matrix whose t columns are
constrained to be orthogonal unit vectors, and bi ∈ Rt is a t-dimensional representation of
the ith image, with t ≤ 2L a user-de�ned parameter. Fitting the parameters of this model
so as to minimize the following (least square) reconstruction error:

N∑
i=1

||xi − µx − Pbi||2, (2.12)

leads to the following solution:

µX =
1

N

N∑
i=1

Xi (2.13)

bi = P T (xi − µx), (2.14)

(2.15)

and P has its columns set as the t eigenvectors of highest eigenvalues of the covariance
matrix of X, the N × 2L matrix compiling the landmark positions of the N images in the
training set.
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Given µx and P as estimated from the training set, the shape correction algorithm will
take as input a landmark position vector x′ ∈ R2L (concatenating the current x and y
coordinates of the landmarks) and it will output a new vector x′′ of corrected coordinates
computed as follows:

x′′ = µx + P (P T (x′ − µx)). (2.16)

2.6 Conclusion

The aim of this chapter was to give a brief overview about the di�erent topics discussed
throughout this manuscript. In Section 2.1, we presented supervised learning and intro-
duced some de�nitions and concepts commonly used in this domain. Section 2.2 introduced
some of the most typical machine learning algorithms used today and Section 2.3 brie�y
discussed their use in image processing. For more details, we encourage the interested
reader to refer to popular general textbooks on the subject of Machine Learning, such
as [37] or [68]. Reference [23] is also an interesting read about the application of Ran-
dom Forest based methods in image processing. In Section 2.4, we then presented existing
landmark detection methods. Finally, we detailed in Section 2.5 two recent state-of-the-art
landmark detection algorithms that we will compare empirically with our methods in the
following chapters.
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Chapter 3

A Landmark Detection Method for

Cephalometric Studies

In this chapter, we present a �rst anatomical landmark detection method. This method is
dedicated to the analysis of cephalometric images, and was presented during the Cephalo-
metric X-Ray Landmark Detection Challenge at the 2014 ISBI Conference in Beijing. With
this �rst method, we introduce two core concepts that we will continue to use in the follow-
ing chapters: we describe the pixels by using multi-resolution features, and estimate the
approximate region of the landmarks using a gaussian function. This chapter is divided
into �ve sections. In Section 3.1 , we motivate the need for an automated landmark de-
tection method in cephalometry. Then, in Section 3.2, we describe and analyze the image
dataset. This analysis will be used in Section 3.3, where we describe our method and
justify our design choices by using this analysis. In Section 3.4, we �rst analyze our cross-
validation results. Then we introduce the other methods presented during the challenge,
and compare our results with theirs. Finally, in Section 3.5, we draw the conclusions from
the experiments that were made. Note that this method was the �rst step towards the
development of a more generic approach for the detection of landmarks in the context of
morphometric studies with di�erent types of images. This extension will be presented in
the next chapter.

This chapter is based on the work published in

R. Vandaele, R. Marée, S. Jodogne, and P. Geurts. Automatic cephalometric x-ray
landmark detection challenge 2014: A tree-based algorithm. Proceedings of the ISBI
International Symposium on Biomedical Imaging, Automatic Cephalometric X-Ray
Landmark Detection Challenge, 2014.

C.-W. Wang, C.-T. Huang, M.-C. Hsieh, C.-H. Li, S.-W. Chang, W.-C. Li, R.
Vandaele, R. Maree, S. Jodogne, P. Geurts, C. Chen, G. Zheng, C.-W. Chu, H.
Mirzaalian, G. Hamarneh, T. Vrtovec, and B. Ibragimov Evaluation and comparison
of anatomical landmark detection methods for cephalometric x-ray images: A grand
challenge. IEEE Transactions on Medical Imaging, 34(9):1890:1900, 2015.
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Figure 3.1: Representation of the 19 landmarks used in recent cephalometric studies.

3.1 Background

This chapter will focus on the development of a landmark detection method allowing to
automatically detect landmark in the context of cephalometric studies. Cephalometric
studies consist in the analysis of cephalograms, which are radiographs of the craniofacial
area that can be acquired in 2D or 3D. During this analysis, the radiographs are used in
order to compute measurements (distances and angles) between the di�erent regions of the
skull. Once these measurements are computed, they will allow orthodontists and stomatol-
ogists to diagnose and treat possible deformities. In another context, these measurements
also allow to easily evaluate di�erent parts of a patient's anatomy such as the shape and
the size of the jaw, the mandible or even some internal soft tissues of the skull. This is
why surgeons also use these studies to plan some of their surgeries such as the treatment
of obstructive sleep apnea [91].

In the context of a cephalometric analysis, the measurements between the regions of the
skull are computed by considering the distances and the angles between anatomical land-
marks distributed on the whole area of the skull. In 1982, Rakosi [73] de�ned a set of 90
standard landmarks which have been used by orthodontists for clinical research to perform
their cephalometric analysis. Among these, a smaller set of 19 landmarks was then com-
monly adopted in recent studies and for clinical practice [30, 95, 45, 48, 89]. The Figure
3.1 shows the repartition of these 19 landmarks on the skull.

These landmarks thus need to be annotated on each of the cephalograms that are studied
before the measurements can be obtained. In practice, medical experts annotate these
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images manually. This process is complicated: indeed, for some of the landmarks that are
not easily recognizable, medical experts will need to extract their position by computing
relative distances and angles from close shapes and/or structures. These structures and
shapes will thus need to be manually traced before the location of the landmark can be
annotated. In [30], it was evaluated that an expert took about 20 minutes in order to
annotate a single cephalogram. Another problem with manual annotation comes from
the intra and inter observer error [47]: expert bias and mistakes has become such a real
problem that several clinical papers focused on the problem of the manual identi�cation
of these landmarks [26, 63, 19].

The automatic detection of these landmarks can be the solution to facilitate these issues.
Some studies already focused on investigating methods for the automatic localization and
identi�cation of cephalometric landmarks. In 2006, Yue et al. [95] built a modi�ed active
shape model to detect 12 anatomical landmarks, achieving a 71% success rate of landmark
detection within 2.0mm and 88% within 4.0mm. In 2009, Ka�eh et al. [45] combined
neural networks with modi�ed active shape models and developed a technique with 93%
landmark detection accuracy for 16 bony structures within 5.0mm.

However, it is considered that the automatic detection of anatomical landmarks in cephalo-
metric images is di�cult and poorly explored due to the complexity and the variability
of these images. The problems arising with the anatomical landmark detection methods
presented in recent studies are the following:

1. The type of the landmarks that are considered di�er from one study to another. Some
landmarks could be more easily identi�ed than others, and some methods could be
biased into accurately detecting one type of landmark while inaccurately detecting
other types of landmarks.

2. The number of landmarks could have an in�uence on the performances of a given
method: we can assume that the larger the number of landmarks, the more stable
the models using the global landmark structure will be.

3. The number of training images will also have an in�uence on the performances: by
using more training images, the models are likely to perform better because the
algorithm will have more visual representations of the landmarks to learn from.

4. The variability in the dataset can also have a direct in�uence on the results: age
and sex are for example factors that can have a direct in�uence on the patient's
morphology. By only focusing on one subgroup, a method could thus be biased.

5. The way the landmarks were annotated can also have a direct in�uence on the results:
it can be suspected that if the landmarks are inaccurately annotated, the landmark
detection methods will have more di�culties to detect those points.

6. Given the study, we noticed that the performance metrics di�er from one study to
another: some consider the percentage of landmarks detected within a given radius
while others only report the MRE. This complicates the comparison between meth-
ods, but we can also assume that these methods were thus optimized in order to best
perform on their given criterion.
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Intra-Observer Variability Inter-Observer Variability
Expert 1 Expert 2 Expert 1 vs Expert 2

MRE (mm) 1.73± 1.35 0.90± 0.89 1.38± 1.55

Table 3.1: Averaged intra and inter observer annotation error on the landmarks of the
cephalometric dataset.

Because of these problems, and the fact that it stays di�cult to share sensitive patient
related data, it is complicated to choose an algorithm given its stated performances in
a paper: these could indeed be biased by the type of dataset that was used during the
study.

The 2014 ISBI Cephalometric challenge was, to our knowledge, the �rst attempt to provide
a common cephalometric dataset that researchers could use in order to evaluate their
algorithm. In this chapter, we propose a novel landmark detection algorithm that was
tested on this dataset, and provide valuable comparisons with state of the art methods
presented during the challenge.

3.2 Dataset and performance criterion

The dataset was supplied by the National Taïwan University for the 2014 ISBI Cephalo-
metric challenge [91]. Each image of the dataset is a two dimensional gray scale image of
size 2400× 1935 pixels, with 0.1mm2 per pixel resolution. The cephalometric radiographs
were collected from patients aged from 6 to 60 years old. Additional images were provided
during two international challenges [91, 90]. The dataset was divided into three parts
described below.

1. A training dataset consisting of 100 training images. Each image was supplied with
the positions of the 19 landmarks presented in Figure 3.1 that were manually anno-
tated.

2. A �rst test set o�-site consisting of 100 images. For this dataset, only the images
were supplied, the ground truth annotations were only known to the organizers in
order to ensure the validity of the predictions.

3. A second on-site test set consisting of 100 images. For this dataset only the images
were supplied to researchers. Ground truth annotations were also only known to the
organizers.

In order to ensure the quality of the annotations, each landmark position was annotated by
two medical experts. The �nal position of the landmark was chosen as the mean distance
between the two annotations. The average distance between the corresponding landmarks
annotated by the two experts is given in Table 3.1 as a comparison for the error of the
landmark detection algorithms.

A sample image with the corresponding landmark is given in Figure 3.2.
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Figure 3.2: Sample image of the cephalometric dataset with the 19 corresponding land-
marks.

During the challenge, 5 performance criteria were considered: 4 of them were the percentage
of landmarks detected within a radius of 2, 2.5, 3 and 4mm. The last one was the average
euclidean distance between the predicted positions of the landmark, and their real positions
(MRE). The idea behind considering these multiple criteria is that we have seen that
landmark detection papers use di�erent performance criteria, that could be related to
speci�c area(s) of interest. By using these multiple criteria, we are thus o�ering an initial
comparison with these papers. It can be noticed that the computed intra and inter observer
variability presented in Table 3.1 is almost reaching the threshold given by the �rst and
smallest error criterion (2mm).
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LDM σ(X) σ(Y ) LDM σ(X) σ(Y )

1 45.12 44.2 11 76.16 76.47
2 63.66 65.68 12 74.25 74.92
3 49.85 58.28 13 66.79 79.63
4 38.44 38.3 14 81.31 82.32
5 68.25 67.4 15 62.87 77.04
6 85.64 77.99 16 98.84 92.92
7 96.51 89.05 17 47.45 49.15
8 96.22 91.56 18 60.72 74.34
9 97.01 90.94 19 38.49 43.93
10 61.04 62.63

Figure 3.3: On the left, the table summarizes the standard deviation of each landmark,
on both axes (in pixel units). On the right, an image on which the 100 positions of two
landmarks in our training dataset have been superposed. In red, landmark 4, the landmark
with the smallest deviation. In blue, landmark 16, the landmark with the highest deviation.

3.3 Methodology

3.3.1 Dataset analysis

Before detailing our method, we present the initial analysis that led us to the design choices
made in our algorithm.

Landmark Positions. A �rst important observation we made on this dataset was the
variance in the positions of the landmarks. The standard deviation of the landmark po-
sitions in the training dataset are given in Figure 3.3. When compared to the total size
of the images, this table shows that the variance in position of the landmarks stays rela-
tively small: the horizontal variance is about 2 to 5% of the total width of the image, and
the same goes for the vertical variance, that is about 2 to 4% of the total height of the
image.

This shows that the landmarks are located in very speci�c positions in the images. De-
pending on the model, this could suggest that full scans (with our without grid spacing)
of images for �nding a landmark, as it is for example suggested in [80] could thus spend
considerable amounts of processing time extracting information where a given landmark
has statistically no chance of being found.
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Landmark Appearance. In the analysis of this dataset, it is also important to discuss
on the visual appearance of the landmarks. Indeed, as in every landmark detection appli-
cation, their visual appearance will play a major role in the choice of a suitable landmark
detection method.

In Figure 3.4, we show the visual representations of the 19 landmarks at di�erent di�erent
sizes of pixel windows.

In order to perform this analysis, we visualized the main di�erences between the landmark
representations at di�erent window sizes. For every landmark l and every window size
w, we computed the corresponding mean image ¯Il,w in the dataset. If we consider that
(xi,l, yi,l) represents the position of the landmark l in image Ii, then the mean image was
computed as following:

¯Il,w =
1

N

N∑
i=1

Ii(xi,l − w : xi,l + w, yi,l − w : yi,l + w), (3.1)

where N represents the number of images in the dataset. For every landmark window l, w
of every image i, we then computed its di�erence εl,w(i) to the corresponding mean image
using RMS error:

εl,w(i) =

√√√√ w∑
xw=−w

w∑
yw=−w

(Ii(xi,l + xw, yi,l + yw)− ¯Il,w(xw + w, yw + w))2 (3.2)

Figure 3.4 shows some of the results we obtained. For each window size, we show the
landmark window with the smallest (�rst row), the median (second row) and the highest
(third row) di�erence for each landmark. From this �gure, we can draw multiple conclu-
sions:

• With the largest pixel windows (256 and 512), the landmarks appearances seems
to slightly vary: even if the orientation of the images stays more or less identical,
the morphology of a human being will vary. However, global rotations between the
images and the global landmark structure stays small.

• With the smallest pixel windows, we can observe more stability in the landmark win-
dows. However, it seems more likely that these pixel windows will be confused with
other places in the image, even landmarks. For example, at the smaller resolutions,
there is only few di�erences between landmark 1 and 17, or between landmarks 2, 14
and 16. And this without taking into account other places in the image that could
lead to additional confusion.

• By looking at the smallest windows, we can also observe that some of the landmarks
do not correspond to corners or intersections, but speci�c places in the images. Land-
mark 1 for example, seems to be de�ned at the center of an oblong shape.

• By using our mean squares criterion, we initially expected to observe high di�erence
in luminosity, but looking at the windows, it clearly is not a problem in our dataset.
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What we can learn from these observations is that speci�c window sizes will provide di�er-
ent kinds of visual informations about the window appearance: while the smaller windows
will give an accurate description of the surroundings of the landmark, they be could easily
confused with other structures, landmarks or other structures in the image. On the other
hand, larger pixel windows have a more varying content and are thus more di�cult to rec-
ognize accurately, but because these windows contain a larger amount of informations, they
will also be harder to confuse with other structures in the image. This is why, depending
on the landmark and the error criterion that will be considered, we suspect that multiple
resolutions will be necessary in order to correctly detect the landmarks. Additionally, we
suspect that because some landmarks do not correspond to borders or intersections, classic
pixel descriptors such as SURF, SIFT, LBP, or even gradient information will be less useful
than usual. This phenomenon could probably be even more increased due to the fact that
problems of rotations and luminosity stays relatively small in our dataset.

Conclusion. Given current landmark detection applications that focus on face recogni-
tion, this landmark detection problem for cephalometric images seems to be quite di�erent:
we have bigger images, with a smaller number of landmarks a smaller dataset. Because the
landmarks are not always located at corners or intersections, landmark detection techniques
based on edges and corners detection will likely be less e�cient than usual.

3.3.2 Presentation of the method

Given the analysis, we chose to improve a supervised learning approach based on the work
of Stern et al. [80]. Stern obtained promising results for detecting landmarks on several
datasets of zebra�sh images, sharing the same traits than our cephalometric dataset.

This method exploits the manually annotated images to train models able to predict land-
mark positions in new, unseen images.

In particular, a separate classi�cation model is trained for each landmark to predict whether
a given image pixel corresponds to the position of the landmark or not. This model is
trained from a learning sample composed of pixel descriptors extracted either in the close
neighborhood of the landmark or at other randomly chosen positions within the training
images. Each pixel in the training sample is described by a vector of visual features
extracted from a window centered at its position.

In order to �nd the landmark position on a new image, all of the image pixels are classi�ed.
The �nal landmark position corresponds to the median position of the pixels classi�ed as
having the highest probability to be the landmark.

Our algorithm, described in the following sections extends this work in order to speed-up
the classi�cation procedure, and allow the parametrization of some design choices.
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Figure 3.4: Appearance of the landmarks using pixel windows of di�erent sizes. The
landmarks are located at the center of the windows.
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Extraction and description of pixels

Each observation in the training sample corresponds to a pixel at position (x, y) in one
of the training images and is labeled into one class among 0, 1 and described by several
input features. We describe below successively the output class associated to each pixel,
the input features used to describe them, and the pixel sampling mechanism.

Output classes. In principle, only one position in each image corresponds to the land-
mark, which means that if N training images are available, only N positive examples would
be available to train our pixel classi�cation model. To extend the set of positive exam-
ples, we consider as positive examples all pixels that are at a distance at most R from the
landmark, where R is a method parameter. More precisely, if the landmark is at position
(xl, yl) in an image, then the output class of a pixel at position (x, y) in the same image
will be 1 if (x− xl)2 + (y − yl)2 ≤ R2, 0 otherwise.

Multi-resolution input features. In the previous section, we showed that the land-
mark's visual appearance could drastically change from one window size to another, and
that di�erent window sizes could help the algorithm to correctly detect the landmark's
positions. This is why, prior to extracting the pixel descriptors, the image is resized to six
di�erent resolutions given in Equation 3.3.

Ir =
2400

2r
× 1935

2r
∀r ∈ {0..5} (3.3)

A pixel located at position (x, y) will then be described by one window Fr of size (2W +1)2

for each resolution r, described in Equation 3.4. These descriptors will then be concate-
nated into a single descriptor. In order to describe these multi-resolution windows, we will
use its raw pixel values. As we have seen in Chapter 2, it was indeed shown in [64] that
raw pixel values were able to perform correctly for most classi�cation tasks when used in
combination with Random Forests. This choice di�ers from Stern [80], who concatenated
several single-resolution pixel descriptors (LBP, Sobel Gradient, RGB and HSV values).
We made this choice in order to speed-up the extraction procedure at both training and
prediction. The intuition being that, given our dataset, it was more important to provide
informations about the landmark pixel location than enforce strong robustness against
deformations.

Fr = Ir(b
y + ty

2r
c−W : by + ty

2r
c+W+1, bx+ tx

2r
c−W : bx+ tx

2r
c+W+1)∀r ∈ {0..5} (3.4)

Pixels of a subwindow extending beyond the image limit will be set to zero. In total, each
pixel will thus be described by an input feature vector of size 6× (2W + 1)2.
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Landmark Avg. distance (mm) STD Landmark Avg. distance (mm) STD

(1) 5.47 3.16 (11) 9.73 4.69
(2) 8.00 4.46 (12) 9.50 4.61
(3) 6.79 3.58 (13) 9.29 4.69
(4) 4.91 2.33 (14) 10.29 5.32
(5) 8.66 4.15 (15) 8.89 4.48
(6) 10.37 5.18 (16) 12.10 6.17
(7) 11.78 5.84 (17) 6.06 3.17
(8) 11.86 6.01 (18) 8.55 4.39
(9) 11.90 5.97 (19) 5.32 2.43
(10) 7.73 4.12

Table 3.2: Average distance of the landmarks to the average of their positions on the
training set.

Pixel sampling scheme. Naively sampling pixels uniformly from the training images
will give a very unbalanced classi�cation problem. Indeed, each image contains 2400×1935
pixels among which only a small number belongs to the positive class. For example, for
a radius R = 2mm, only 0.027% of the pixels (i.e., 1256) correspond to positive exam-
ples.

In opposition to Stern's method where all the positive pixels are extracted with two times
the number of randomly sampled negative pixels, we wanted to have more control over the
composition of our training dataset. With our method, we randomly select N pixels in
each training image, where P% of these N pixels are selected among positive pixels and
100− P% are selected among negative pixels.

In addition, we constrained the image area in which the negative pixels are selected by
taking into account the fact that a landmark is located in very close positions from one
image to another. To con�rm that, Table 3.2 reports the average distance of each landmark
to its average position over all training images. These numbers show that each landmark
is located in a very speci�c region of the image of radius of size between 5 − 15mm. At
the prediction stage (see below), we will use this information to constrain the search for
a landmark to a given subregion of the image around the average landmark position in
the training images. Therefore, it is enough to put in the training sample only pixels that
belongs to this region. Negative examples in each image will be selected uniformly at
random at a distance of at most 40mm around the landmark.

Classi�cation model training

To train the pixel classi�er, we will use the Extremely randomized tree algorithm [38]. As
we explained in chapter 2, this method builds an ensemble of T fully developed decision
trees grown each from the original training sample (i.e., without bootstrapping). At each
node, the best split is selected among k features chosen at random, where k can take its
value between 1 andm, withm the total number of features. For each of the k (continuous)
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features, a discretization threshold is selected at random within the range of variation of
that feature in the subset of observations in the current tree node. The score of each pair
of feature and threshold is computed and the best pair among the k is chosen to split the
node. As a score measure, we use the Gini index reduction.

Landmark prediction

Let us denote by µl ∈ R2 and Σl ∈ R2×2 respectively the average and the covariance matrix
of the landmark positions across the training images and let us denote by σxl

and σyl the
standard deviation of its x and y positions respectively (i.e., the diagonal elements of Σl),
also estimated from the training data. To make prediction of the the landmark position
with our tree-based pixel classi�er, we proceed as follows:

• We randomly draw 16σxl
σyl pixel positions from the multivariate normal distribu-

tion:

N(µl,Σl) (3.5)

• Each of the resulting pixels is classi�ed by the tree ensemble and the �nal predicted
landmark position is taken as the median position among the pixels that are predicted
as being the landmark with the highest con�dence by the tree-based model (i.e, which
receives the highest number of votes for the positive class from the T trees in the
ensemble).

This subsampling scheme also di�ers from Stern's work. It allows us to improve predictive
performance by reducing the probability of generating spurious landmark predictions at
irrelevant positions in the images. It also considerably speedups the algorithm with respect
to a full scan of all image pixels.

3.4 Results Analysis

3.4.1 Cross-Validation Results

Protocol

In this section, we describe the protocol we adopted to generate all 19 landmark detection
models.

Parameter tuning. First, parameters were set to some default value or optimized using
ten-fold cross-validation and then a model was retrained, for each landmark and error
criterion, using the optimal set of parameters. The main method parameters and their
values that were tested are presented in Table 3.3.
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Name Description Values tested

W The size of the windows 8
R The distance to the interest point to decide {0.2, 0.5, 0.7, 1, 1.2, 1.5,

on the training pixel output class (mm) 1.7, 2, 2.5, 3}
P The proportion of non-landmark pixels in the {10, 20, 30, 33.33, 40, 50,

dataset (%) 60, 70, 80, 90}
tx The translation of the subwindow ±{0.8, 1.6, 3.2, 6.4, 12.8

(horizontal) 25.6}
ty The translation of the subwindow ±{0.8, 1.6, 3.2, 6.4, 12.8

(vertical) 25.6}
N The number of pixels per image randomly 500

sampled to train each classi�cation model
k The number of features selected at each node

√
6× (2W + 1)2

in the Extremely Randomized Trees algorithm
T The number of trees 500

Table 3.3: Description of the method's parameters and values tested at cross-validation.

During parameter tuning, T was �xed to a default value of 500 and we used the suggested
default value of k, which is the square root of the number of input features [38]. N was
�xed to 500 andW to 8 in all our experiments. All other parameters were tuned by 10-fold
cross-validation independently for each landmark and each error criterion relevant for the
challenge.

The parameter tuning was done in several steps:

Step 1) The optimal values of tx and ty were jointly tested for translations using R = 1mm
and P = 33%.

Step 2) R was then optimized using P = 33% and the optimal values of tx and ty determined
at the previous stage.

Step 3) Finally, P was optimized with the other parameters set at their optimal values.

In total, this represents about 2000 cross-validation jobs for each criterion.

Final model training. Separate models were then retrained using all 100 training im-
ages for each landmark and error criterion using the optimal values of the parameters
determined during the cross-validation. All non-optimized parameters were set similarly
as during the cross-validation except the number of trees T , which was raised to 5000.
Landmark predictions were then generated on the test image using the approach described
in 2.3 (for each landmark and error criterion).

Software. We use the implementation of the Extremely Randomized Trees in scikit-learn
[70] and our own python code for pixel and feature computation. Visual interpretation of
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Landmark ≤ 2mm ≤ 2.5mm ≤ 3mm ≤ 4mm Eucl. Dist.

sella (1) 87 90 93 96 1.4± 1.2
nasion (2) 80 86 86 91 1.8± 2.0
orbitale (3) 61 72 81 87 2.1± 1.7
porion (4) 76 86 92 96 1.6± 2.1

subspinale (5) 45 57 72 83 2.9± 2.5
supramentale (6) 68 80 86 95 1.9± 1.6
pogonion (7) 90 95 95 97 1.2± 1.4
menton (8) 95 97 98 99 0.9± 0.8
gnathion (9) 95 97 99 99 1.± 1.2
gonion (10) 36 46 55 69 3.8± 3.1

lower incisal incision (11) 83 87 93 95 1.4± 2.3
upper incisal incision (12) 87 89 92 94 1.6± 4.7

upper lip (13) 84 88 91 95 1.8± 2.8
lower lip (14) 84 90 94 96 2.4± 5.1

point pm or mn (15) 88 94 94 98 1.2± 1.2
soft tissue pogonion (16) 64 74 81 88 1.9± 1.8
posterior nasal spine (17) 84 89 94 98 1.5± 1.
anterior nasal spine (18) 63 72 78 88 2.1± 1.9

articulate (19) 62 69 74 81 2.2± 2.3

Mean 75.37 82 86.74 91.84 1.83± 1.81

Table 3.4: Results on all landmarks without translation, in terms of detection rates at
various ranges of accuracy and mean euclidean distance to the landmark.

the results was done using Cytomine [64], a generic web platform for the visualization and
annotation of large-scale bioimages.

Cross-Validation Analysis

Tables 3.4 and 3.5 report the best cross-validation performances after optimization for
each criterion, respectively without and with translation. In this latter case, we also
report in the table the values of tx and ty that give optimal performance for the 2.5mm
detection rate. Note that values in these tables are optimal values over di�erent parameter
settings. They are therefore most probably optimistically biased and only provided here
for information purpose. A more realistic assessment of our method performances will be
done on the challenge test data. There is a clear improvement for some landmarks by using
translations. The sella point for example, is more correctly detected. We notice however
that two particular points are not correctly detected, even at higher acceptance criterion:
the supramentale and the gonion. Given the good results obtained on other landmarks and
other inconclusive tests we have made on these two points, our conclusion is that either the
dataset is not able to capture the high variability of the surrounding of these landmarks
or there were some errors during the manual annotation process.

Figure 3.5 shows the position of the gonion on di�erent images. It seems that the local
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Landmark ≤ 2mm ≤ 2.5mm ≤ 3mm ≤ 4mm Eucl. Dist. tx ty
sella (1) 95 96 96 97 1.21± 1.92 3.2 1.6
nasion (2) 78 83 86 90 1.86± 2.06 0 0
orbitale (3) 63 75 83 92 2.06± 1.50 0.8 −6.4
porion (4) 77 86 92 97 1.53± 1.22 0 0

subspinale (5) 54 63 71 83 2.78± 2.20 0 1.6
supramentale (6) 71 78 86 95 1.84± 1.56 −1.6 −0.8
pogonion (7) 89 94 97 99 1.21± 1.30 0 0
menton (8) 94 97 98 100 0.94± 0.80 0.8 −0.8
gnathion (9) 97 99 99 100 0.91± 0.69 −3.2 −0.8
gonion (10) 38 48 56 66 3.76± 2.85 1.6 1.6

lower incisal incision (11) 89 92 95 97 1.44± 2.35 −1.6 1.6
upper incisal incision (12) 88 92 95 97 1.29± 3.27 3.2 −6.4

upper lip (13) 84 89 93 95 1.56± 2.08 0 −0.8
lower lip (14) 87 93 96 99 1.45± 2.36 −0.8 −0.8

point pm or mn (15) 88 92 95 98 1.19± 1.07 1.6 1.6
soft tissue pogonion (16) 67 75 83 91 1.94± 1.80 −0.8 −1.6
posterior nasal spine (17) 83 90 95 98 1.38± 1.06 0.8 0.8
anterior nasal spine (18) 67 78 84 91 2.01± 1.56 −3.2 0

articulate (19) 65 74 79 86 2.28± 2.06 1.6 3.2

Mean 77.58 83.89 88.37 93.21 1.72± 1.77

Table 3.5: Results on all landmarks with translation, in terms of detection rates at various
ranges of accuracy and mean euclidean distance to the landmark.

position of the landmark does not �t the same structure on each of the images.

3.4.2 Challenge results and comparisons

As we explained in Section 3.2, the test set was divided into two di�erent parts: an
o�ine dataset (Test1) made of 100 images, and an online dataset (Test2) made of 100
other images. For both of these datasets, the landmark annotations were not available.
A summary of the results we obtained during the challenge is presented in Table 3.6. A
landmark per landmark MRE comparison is given in Figure 3.6.

Comparison with the cross-validation results

We can notice that the accuracy of our method has greatly decreased between the results
obtained during the cross validation and the results obtained on the test set. We can also
notice a slight di�erence in accuracy between the two test sets, which seems to show that the
second test set is more di�cult to handle for our method than the �rst one. By analyzing
the di�erence in detection error, we can notice that the biggest di�erences in terms of
detection error happen on the error rates with the smallest radius while the biggest radius
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Figure 3.5: Gonion surroundings for training set images 10,20,30 and 40. In red, the
position of the gonion landmark.

Method 2mm 2.5mm 3mm 4mm MRE
Cross-validation results

Vandaele et al. 77.58 83.89 88.37 93.21 1.72

Test 1 dataset
Ibragimov et al. [43] 72.74 78.79 82.68 87.68 1.819
Chu et al. [20] 39.74 51.79 62.11 77.79 2.921
Chen and Zheng [18] 43.89 54.58 64.21 78.42 2.805
Mirzaalian and Hamarneh [67] 58.21 67.32 72.84 80.68 2.605
Vandaele et al. [87] 70.26 77.95 83.47 88.53 1.951

Test 2 dataset
Ibragimov et al. [43] 70.21 76.37 81.58 88.16 1.919
Chu et al. [20] 44.11 57 68.05 83.84 2.679
Chen and Zheng [18] 42.89 53.89 65.32 78.53 2.847
Mirzaalian and Hamarneh [67] 62.32 70.42 75.68 84.05 2.353
Vandaele et al. [87] 66.74 74.32 80.26 87.84 2.198

Table 3.6: Results of the challenge on the �rst and second test dataset.[91]

seems less impacted by this di�erence. It thus seems that the landmarks are predicted
in the correct region of the image, but our method still encounters some di�culties to
accurately locate the position of the landmark inside this region. On the positive side, this
suggests that our method estimating the region in which the landmark with a gaussian
function works, and that the largest pixel windows allow us to locate this region. On
the negative side, by looking at the results, we can notice that our method has clearly
more di�culties to accurately locate the landmark and its close surroundings. Given the
signi�cant di�erence between the cross-validation and the test sets on these criterions, this
could mean that we over�tted some of the method's parameters which mostly in�uenced
the accurate localization of the landmark during the cross validation. These could be the
translation parameters tx and ty: as we consider only small translations from 0 to 32 pixels,
we can notice that the content of the small pixel windows will always change with a higher
percentage than the biggest pixel windows.
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Figure 3.6: Reported MRE prediction error of the 19 landmarks for every algorithm. This
�gure was presented in [91].
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Comparison with other methods and observations

During the challenge, we were ranked second. The results, presented in [91], are shown in
Table 3.6. 12 methods were initially presented, but only the 5 best methods remained for
being tested on the second test dataset.

The �rst method was proposed in [43]. In this method, the authors propose a two
step approach: in the �rst step, they use one random forest pixel classi�er per landmark
to evaluate the likelihood of the pixel to correspond to the landmark. The pixels will
be described by using Haar-Like features coming from their close neighborhood. These
models will allow them to create appearance likelihood maps for each of the landmarks in
a new image. In a second step, they model the relations between each pair of landmarks
by two gaussians: one based on the average distance between the landmarks, and another
based on the average angle between these landmarks. By considering only the likeliest
landmark positions according to their appearance likelihood maps, they are thus able
to score each landmark position combination by considering both their appearance and
their relationships in distances and angles. By considering the landmarks as players, the
landmark positions as player strategies, and the score as a game output, they model this
problem as a game theory problem, and are thus able to �nd the optimal solution of their
optimization problem using game-theory based algorithms. In the context of this challenge,
40 additional landmarks were manually added to the dataset in order to ensure the stability
of the global landmark structure.

The third method (our method was randed second) was proposed in [67]. In this
method, the landmark detection problem is formulated as an optimization problem taking
into account both the landmark visual appearance and the relationships between pairs of
landmarks. In order to learn the visual appearance of a landmark, they use one random
forest pixel classi�er per landmark. They describe their pixels by several descriptors:
local binary patterns on RGB and HSV modalities [69], x,y coordinates and Frangi et al.
descriptors [36]. The spatial relationships between the pairs of landmarks is expressed
as the manahalobis distance between the average vector separating the pair of landmarks
in the training dataset and this vector computed at prediction. The computation of the
landmarks optimal position is done through the pictorial structure algorithm [34] that will
link this problem to a minimum spanning tree optimization problem.

The fourth method was proposed in [20]. In this method, one random forest pixel
regressor per landmark is trained. These regressor will learn the o�set between the position
of a pixel and the position of its corresponding landmark. Each pixel will be described by a
Histogram of oriented Gradient (HoG) [25]. At prediction, pixels will be extracted from the
image, and each tree of each forest will vote for the position of its corresponding landmark
through a small gaussian distribution which should generate accurate vote maps for each
landmark. These vote maps will then be used to generate a vector y0 representing an
initial guess of the landmarks positions in the image. This vector y0 will then be updated
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through an iterative process that will take into account the global landmark structure: at
each step, they try to �nd the optimal representation of the landmarks position y by trying
to explain y through a sparse linear combination of shapes of the training dataset, where
the sparsity is controlled with a parameter λ.

The �fth method was proposed in [18]. In this, method, the authors also propose to
divide the detection in a two step approach: in the �rst step, they propose to produce
probability vote maps for each landmark. Their idea is to train random forest regressors
that will predict the o�set between square patches in the image and the landmark posi-
tion. The correction of their landmark position vector will then be similar to the previous
algorithm.

Comparison with the algorithms. We can notice a signi�cant gap between the three
best methods, and the two last, that are barely able to reach a 50% detection rate with the
2.5mm error detection rate. Notice that the two last accepted methods were very similar.
On the other hand, except on two performance criterions of the �rst dataset, we are always
slightly outperformed by Ibragimov et al. except on two criteria for the �rst dataset, and
we always outperform the third method (Mirzaalian and Hamarneh). By looking at the
MRE, it is interesting to notice that all the methods follow approximately the same trend:
if one landmark is more di�cult to detect for a given method, it is also more di�cult
to detect for others. Another interesting point is that we obtain the best performances
on the landmark 10 on both the Test-1 and the Test-2 datasets while this landmark was
described as a landmark for which location was only de�ned by the locations of the other
landmarks.

From this perspective, we can conclude several things. Although we were the only team
not using a method correcting the landmarks positions after training, we still obtained the
second best results during the challenge, and the only algorithm that outperformed us had
to use manually added landmarks to the dataset in order to ensure the consistency of the
dataset. This method still obtains results worse than ours for landmark 10, a landmark
which location can only be accurately retrieved using the location of the other landmarks.
As we will try to show in the following chapters, we suggest it is due to the particular
nature of the dataset where we have a limited number of images. The images being of
considerable size, the small number of landmarks does not allow to completely re�ne the
landmark positions by using the relationships between these landmarks, except by adding
a signi�cant number of landmarks in the dataset. In a second time, those results also seem
to con�rm our hypothesis that multi-resolution features are useful during the detection
of the landmarks: our simple raw pixel value multi-resolution feature descriptor obtains
results similar to the other algorithms without any type of post-processing correction. It
is however complicated to certify its usefulness from these results, because the other pixel
descriptors that were tested during this challenge were tested in di�erent contexts: the
post-processing. Finally, we could observe that every other method during this method
was performing full image scans in order to �nd the landmarks. Using our approach to
approximate the region of each landmark could thus speed-up the building of their vote
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Landmark 4 Landmark 10 Landmark 19
Expert 1 Expert 2 Expert 1 Expert 2 Expert 1 Expert 2

Test 1 4.5± 2.4 1.8± 2 2.3± 1.8 0.9± 0.8 3± 3 0.8± 1.1
Test 2 2.5± 1.4 1.7± 1.8 2.6± 1.6 0.1± 0.9 2.2± 2.4 0.8± 1.6

Table 3.7: Intra observer variability of manual marking of landmark 4, 10 and 19. This
Table was �rst presented in [91].

maps without a�ecting their results.

In terms of detection speed, although we did not implemented the other algorithms that
were proposed and no such study was performed during the challenge, it seems that our
algorithm is the fastest among the ones proposed: we do not have any post-processing step
requiring a possibly heavy optimization procedure, and our algorithm simply uses raw pixel
values as pixel descriptors. Moreover, instead of building a complete vote map for each of
the landmarks, we limit the search of the landmark inside a region of the image.

Comparison with intra and inter observer variability. Intra and inter observer
variability in the annotations could have an important impact on the results, not just at
training, but also at prediction: if the landmarks were poorly annotated, then we can expect
to obtain poor-quality results. Averaged intra and inter observer variability is reported in
Table 3.1, and intra observer variability at prediction was reported for 3 landmarks, shown
in Table 3.7. We can notice that the increased intra-observer variability of landmark 4 in
Test 1 corresponds to a peak in detection error of every method in Figure 3.6. We can also
notice that the detection error of landmark 19 is higher with Test 2, which corresponds
to the increase in annotation variability of the �rst expert. Landmark 10 being a speci�c
landmark (its position depends on the location of the other landmarks), the di�erence in
annotation error is less signi�cant. From these three landmarks, it is di�cult to give a
�nal conclusion but it seems that intra observer variability has had an in�uence on two of
the landmarks where we could observe signi�cant di�erences.

When compared to the intra and inter observer variability in the training set, we can
conclude that there is still place for improvement for our landmark detection method, that
do not reach the intra nor inter observer variability that was observed. This is however
also the case for the �rst method of the challenge.

3.5 Conclusion

We showed that it was possible to accurately detect some of the landmarks using a com-
bination of Extremely Randomized Trees and simple multi-resolution features. We think
that given the small size of the dataset and the variance of the landmarks between the
images, these results are promising in comparison to existing algorithms. However, for
some landmarks, our results are still signi�cantly worse than human annotations, which
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means that our algorithm can only be considered in the context of manual assistance. Still,
this algorithm is competitive with state-of-the-art methods.

The main advantage of our approach with respect to existing works is its simplicity and
e�ciency: it considerably reduces the number of pixels to extract at prediction while using
simple features that can be easily extracted. High level features such as Zernike moments
or Haar-Like can more accurately describe an image or a window, but they are slower to
compute, and this could be detrimental in some applications.

The results of the algorithm presented above were thus considered satisfying: by making a
detailed analysis about the dataset, we were able to build an e�cient algorithm regarding
state of the art methods:

• Our multi-resolution approach allows us to consider several resolutions at the same
time and still use simple pixel descriptors. This approach seemed to have brought
advantage when compared to other method using more sophisticated pixel descrip-
tors.

• We are able to accurately detect the landmark by only extracting pixel descriptors
for a small amount of locations. This allows us to signi�cantly speed up the method
when compared to classical full-scans of the images.

• We showed the advantage of using post-processing landmark position re�nement was
not always improving the results, especially during this challenge.

However, it seems that our method can still be improved in several ways:

• By comparing cross-validation and test results, it seems clear to us that some of our
parameters were over�tted during cross-validation. An improvement to our method
would be to prevent this over�tting.

• Some choices were made without real validation: the number of pixel positions ex-
tracted at prediction and the choice of a suitable pixel descriptor for example.

• Another way to improve our method could be to make our method more robust to
deformations: this could be done through the use of a more robust pixel descriptor,
but also by modifying the way pixels are extracted at training from the images.
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Chapter 4

Landmark detection methods for 2D

morphometrics studies

In this chapter, we extend and thoroughly analyse the anatomical landmark detection
method that we have presented in the previous chapter. In an attempt to make this method
more generic, we study the impact of the complete and extended set of its parameters using
a cross-validation approach on three di�erent datasets used in morphometric studies: the
cephalometric dataset that was presented in the previous chapter along with a dataset of
zebra�sh larvae images and a dataset of drosophilia wings images. Given the diversity
provided by these datasets, we are also able to extract generic conclusions on how to
set the parameters of the method according to the types of landmarks and images of
the dataset. This chapter is divided into �ve parts: in Section 4.1, we motivate the
need for a generic landmark detection method. Then, we present our three datasets in
Section 4.2. We then present our method and its di�erences with the one presented in the
previous chapters in Section 4.3. In Section 4.4, we show our cross-validation results and
compare our method with two state-of-the-art anatomical landmark detection methods
that were reimplemented. Finally, we extract conclusions from our comparisons in Section
4.5. The algorithms implemented in this chapter were integrated to the Cytomine open-
source software, and the datasets made available to foster further research.

This chapter is based on the work published in

R. Vandaele, J. Aceto, M. Muller, F. Péronnet, V. Debat, C.-W. Wang, C.-T. Huang,
S. Jodogne, P. Martinive, P. Geurts, and R. Marée. Landmark detection in 2d bioim-
ages for geometric morphometrics: a multi-resolution tree-based approach. Scienti�c
Reports , 8(1):538, 1 2018.

4.1 Background

We have seen in the previous chapter that cephalometric studies consisted in the study
of skull radiographs images where distances, shapes and angles were measured in order

53
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to help clinician and other experts to draw conclusions about a patient's anatomy and
plan their treatment or their surgery in consequence. Cephalometry is one of the speci�c
application of geometric morphometric studies, that is a generic term for the analysis of
distances, angles and shapes for all kinds of objects and images. Especially, it has become
the dominant set of methods used to quantify sizes and shapes of biological objects [51].
It involves the analysis of con�gurations of landmarks (ie. discrete anatomical loci) among
individuals and has been applied to a huge diversity of models and research questions. For
example, it has already been used to study the morphology of neanderthal's fossils humeri
[77], extract digging rules from the shapes of dinosaur's skeletons [32], study the ancestry of
butter�ies through the measurements made on their wings [17] or even study the variations
of �ower shapes [83]. In this chapter, we will focus on three application of morphometric
studies: cephalometry, and two others: the �rst one is the study of zebra�sh larvae images.
The zebra�sh larvae are often used as models in pharmacology to study the impact of
drugs on their development (growing of their cartilage, bones, outgrowths), and in order
to measure these impacts, morphometric measurements must be taken [1]. The second is
the study of drosophilia wings. Drosophilia wings are also a model used in the context
of developmental biological studies. By studying geometric morphometric measurements,
experts are able to study the process of evolution (gene transmission,...).

Typically, the detection process is identical as in cephalometry: landmark positioning is
�rst performed manually in individual two-dimensional images. Then, landmarks con�gu-
rations are compared using, e.g., Procrustes superimposition [8] and various multivariate
statistics can be applied to characterize landmark con�guration variations - and thus shape
changes - in large populations. As such studies could typically involve hundreds or even
thousands of individuals and tens of landmarks, the need to manually position the land-
marks prior to such analysis is a very limiting factor. There is therefore a strong need for
(semi-)automated landmark detection methods in biology.

In computer vision, we saw that the problem of landmark localization has been extensively
studied in faces [15, 93]. Methods for face analysis can however not be easily transposed
to biological images, because of their very di�erent and variable nature. The small size
of ground-truth datasets typically available in biology also requires to design more data-
e�cient approaches. In biology, the landmark structure is also very di�erent than in face
images. Indeed, the number of landmarks of interest is typically small (∼ 20 landmarks)
and the images typically large (∼ 1500× 1500), which makes the landmarks more spaced
apart than in face images. In the biomedical �eld, the problem of automatic landmark
positioning has been mainly addressed in cephalometry. Several successful landmark de-
tection algorithms such as ours have been proposed in this domain that are based on
pixel classi�cation or regression using machine learning techniques possibly followed by
global landmark structure re�nement [43, 28, 59]. Because these approaches have been
proposed in the literature to tackle this speci�c cephalometric application none of them
was systematically evaluated on a broader range of biomedical applications.

In this chapter, we study variants of the cephalometric landmark detection method that
was proposed in the previous chapter. One of the goal of this chapter is to improve
our algorithm with the observations that we made in the previous chapter, while the
other will be to create a more generic landmark detection method that makes no speci�c
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assumption about the types of images to analyze and landmarks to detect. This method
is thus still based on the extraction of multi-resolution features and the use of generic
tree-based ensemble machine learning methods, namely (Extremely) Randomized Forests
(see [12],[38]).

The contributions made with this chapter are the following:

• We propose a novel generic learning-based approach for landmark detection.

• We thoroughly study the e�ect of its parameters on three diverse bioimage datasets
(for human cephalometric radiographs, zebra�sh skeletogenesis, and Drosophila wing
developmental studies). From this analysis, we derive guidelines for choosing these
parameters on new problems.

• We compare our method with several landmark detection algorithms [28, 59, 43] from
the literature, both on the same three datasets and on two cephalometric challenges.
These comparisons show that our approach yields competitive results in terms of
accuracy, with lighter models and lower prediction times.

• We provide an open-source implementation of these algorithms through the Cytomine
platform [66] that further implements proofreading tools to combine automatic de-
tection and manual re�nements.

• As an important side contribution, we provide an easy access to the datasets used in
this study with the hope that the landmark detection problem will gain more interest
in bioimage informatics and machine learning research.

4.2 Materials

We tested our method on the three datasets summarized below. An illustration of the
landmarks is given in Figure 4.1 with one image per dataset and their corresponding
landmarks.

The standard deviation of the landmarks is given in Table 4.1. We can observe that the
landmarks of all the datasets follow the same trend that was observed in Chapter 3: the
position of the landmarks vary only in small areas inside the images.

• CEPHA, a dataset of 100 lateral human cephalometric radiographs. This dataset
has been previously described in [91, 90] and in the previous chapter. Some of the
landmarks corresponds to visual edges (7, 8, 13) while some others corresponds to
morphological locations with less local visual information (1, 4, 19). In this chapter,
given that we only know the landmark positions for the 100 �rst images, only these
images will be used.

• DROSO, a dataset of 138 colored images of Drosophila wings. Image resolution is
1440 by 900 pixels. Fifteen morphometric landmarks were manually acquired on 138
images as described in [27]. Note that on this dataset most landmarks are located at
highly informative locations such as edges and intersections.
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Figure 4.1: Sample image and corresponding landmarks for each dataset. CEPHA (left)
with 19 landmarks, DROSO (top right) with 15 landmarks and ZEBRA (bottom right)
with 25 landmarks.

• ZEBRA, a dataset of 113 ventral views of head skeleton of zebra�sh larvae. The
image resolution is 2576 by 1932 pixels. 25 landmarks were manually marked and
reviewed by the same expert. Most landmarks of this dataset corresponds to locations
with little visual information (1, 2, 5, 15, 18,...).

4.3 Methods

4.3.1 Algorithm description

The principle of this method is similar to the one presented in Chapter 3: we tackle the
problem of landmark detection with a supervised learning approach: we exploit manual
image annotations (ie. (x, y) positions of each landmark in the training images) to train
recognition models for each landmark. These models are then used to predict each land-
mark position in new, unseen, images. The �rst di�erence comes with the fact that instead
of just considering a classi�cation approach, we also consider and compare two di�erent
learning methods for landmark detection: one based on pixel classi�cation as we did in the
previous chapter, and the other based on pixel distance regression. With the �rst one, the
classi�cation model is thus trained for each landmark separately to predict for each image
pixel whether it corresponds to the position of the landmark or not. In the second method,
a regression model is trained, also for each landmark separately, to predict for each image
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DROSO CEPHA ZEBRA
#LDM σ(X) σ(Y ) σ(X) σ(Y ) σ(X) σ(Y )

1 57.8 62.8 45.1 44.2 85.8 70.7
2 43.3 48.9 63.7 65.7 105.6 78.4
3 47.7 73.1 49.9 58.3 95.9 80.1
4 50.1 92.3 38.4 38.3 108.2 84.2
5 43.1 89.0 68.2 67.4 88.2 75.0
6 47.6 100.7 85.6 78.0 107.9 71.9
7 51.1 119.5 96.5 89.1 92.4 69.3
8 53.7 110.3 96.2 91.6 94.0 79.3
9 41.1 28.8 97.0 90.9 91.7 64.4
10 42.5 84.6 61.0 62.6 104.5 67.3
11 63.6 83.2 76.2 76.5 96.6 70.8
12 67.3 34.6 74.2 74.9 106.3 81.1
13 58.9 92.9 66.8 79.6 111.4 85.1
14 41.0 50.8 81.3 82.3 106.3 80.2
15 46.4 29.9 62.9 77.0 99.8 66.4
16 98.8 92.9 84.7 104.1
17 47.4 49.2 87.2 69.3
18 60.7 74.3 97.3 64.9
19 38.5 43.9 90.0 68.3
20 90.6 67.9
21 100.8 64.0
22 86.0 69.7
23 106.5 94.2
24 85.7 68.8
25 107.4 71.1

Table 4.1: Standard deviation of each landmark, on both axes (in pixel units)

pixel its distance to the landmark. Regardless of the method (classi�cation or regression),
the models are trained from a learning sample composed of pixels extracted either in the
close neighborhood of the landmark or at other randomly chosen positions within the train-
ing images. In this work, each pixel in the training sample is also described by a vector
of visual features at di�erent resolutions, the di�erence with our previous work being that
several window descriptors will be considered. It allows to rely on local repeatable patterns
and to disambiguate locally similar patterns using wider contexts.

The di�erent steps of the algorithm for a single landmark are explained in the following
subsections. The whole procedure is repeated for each landmark separately.

Extraction and description of pixels

Each observation in the training sample corresponds to a pixel at some position (x, y)
in one of the training images. Each pixel is labeled by a discrete or a numerical output,
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depending on the chosen method (classi�cation or regression), and it is described by several
input features. We list below successively the output associated to each pixel respectively
in the classi�cation and in the regression method, the input features used to describe them,
and the pixel sampling mechanism.

Classi�cation output. In principle, only one position in each image corresponds to the
landmark, which means that if N training images are available, only N positive examples
will be available to train our pixel classi�cation model. To extend the set of positive
examples, we consider as positive examples all pixels that are at a pixel distance at most
R from the landmark, where R is a method parameter. More precisely, if the landmark is
at position (xl, yl) in an image, then the output class of a pixel at position (x, y) in the
same image will be 1 if (x− xl)2 + (y − yl)2 ≤ R2, 0 otherwise.

Regression output. With the regression method, the output associated to each pixel
is the euclidean distance between this pixel and the landmark position in the training
image. If the landmark is at position (xl, yl) in an image, then the output value of a
pixel at position (x, y) in the same image will be its euclidean distance to the landmark dl
described in Equation 4.1: √

(x− xl)2 + (y − yl)2 (4.1)

Multi-resolution input features. Similarly to the previous chapter and in contrast
to [80, 28, 59] where single-resolution features are extracted, in this work, we capture the
context of the landmark at di�erent scales and distances. A pixel at location (x, y) will
be described by D multi-resolution square windows of resized height and width 2W + 1
centered at its position (x, y), where W is a method parameter.

To this goal, images are downsized to D di�erent resolutions prior to the windows extrac-
tion and the D resulting feature vectors are concatenated. For our images of size m × n
pixels, these resolutions are described in Equation 4.2

m

2i
× n

2i
∀i ∈ J0..DK (4.2)

Out of image pixel values are set to zero. The in�uence of the chosen resolutions is shown
in Section Results. An example of these windows is shown in Figure 4.2. We considered
�ve ways of describing the multi-resolution windows:

• RAW: the raw pixel values of each resized windows are concatenated into a single
vector. This will give a pixel descriptor of D × (2W + 1)2 features.

• SUB: the di�erences between the raw pixel values of the resized windows and the
raw value of the pixel located at the (x, y) position. The pixel descriptor will thus
also be of size D × (2W + 1)2.

• SURF: each window is described by the extended SURF descriptor [6], a descrip-
tor previously proven to show robustness against rotations, scaling and noise. The
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extended SURF descriptor consisting of 128 features, a pixel will be described by
128×D features.

• GAUSSIAN SUB: the di�erences between the raw pixel values of Ng pixels and the
raw pixel value of the pixel located at the (x, y) position on each of the D resolutions,
where Ng is a method parameter. The Ng pixels are chosen according to o�sets from
the (x, y) position. These o�sets are chosen randomly according to the gaussian
distribution N(0, σ), where σ is a user-de�ned parameter. In total, each pixel is
represented by D×Ng features. Note that the window size W has no impact on this
descriptor. Its role is taken by the parameter σ measuring the spread of the gaussian
distribution.

• HAAR-LIKE: Nh Haar-Like features [88] of random size and position are randomly
extracted inside each of the D windows, leading to Nh ×D features.

Gaussian sub features were proposed in [28] and Haar-Like features were used in [58] to
detect landmarks, in both cases however without multiple resolutions.

Pixel sampling scheme at training. Training a model on all pixels from all training
images will be practically unfeasible in most cases and we will thus have to construct our
training set by sampling the pixels. Uniformly sampling pixels from the training images
will give however a very unbalanced learning problem for both classi�cation and regression
methods. For example, with a radius R = 20 pixels, only 1256 observations correspond,
in classi�cation, to positive examples, and in regression, to pixels within a distance < 20
to the landmark. This is very small compared to the whole size of the images (e.g.,
about 4 millions pixels for our images). To generate a more balanced training sample, we
select πR

s

2
pixels within a radius R to the landmark in each training image, where s is a

user-de�ned spacing parameter allowing to control the number of pixels extracted. PπR
s

2

additional pixels are then randomly selected outside this radius, where P a user-de�ned
parameter.

In practice, one can expect in many medical and biological applications that the same
landmark will be located in close positions from one image to another (see Figure 4.3 for
an illustration on one of our datasets). At prediction stage, this information can be used
to constrain the search for the landmark position to pixels that are not too far from the
average position of the landmark in the training images. When this constraint is exploited
at prediction stage, it is natural to avoid putting in the training sample pixels that are
too far away from the landmark position. For this reason, we propose to select the PπR

s

2

pixels outside the radius R uniformly at random within a radius Rmax > R centered at
the landmark position (see Figure 4.2 for an illustration).

This subsampling contrasts with [80] where pixels were sampled in the whole image during
the training and the prediction phase.

Robustness to rotations. To improve robustness to rotations, and also to arti�cially
increase the representativeness of the training data, we propose to expand our training
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Figure 4.2: On the left, illustration of multi-resolution features representing one pixel (on
the DROSO dataset, withD = 6 windows). The corresponding described pixel is located at
the center of the windows (in blue). On the right, illustration of R and Rmax radius (on the
ZEBRA dataset). Observations in the R radius are considered as landmarks (positive) for
the classi�cation approach. At training, PπR2 non-landmark observations are extracted
in the ]R,Rmax] radius.

set by adding arti�cially rotated versions of the training images. More precisely, to the
original training set, we add Nr new versions of each training image, each obtained by
rotating this image by an angle randomly selected between [−α, α], where Nr and α are
two method parameters. With this operation, the total size of the training set will thus be
multiplied by Nr + 1.

In the experiments, we will show that the problem of robustness to rotations is not impor-
tant on our three datasets because the deformations stay small. On other datasets with
bigger rotations, we would suggest to initially use a 2D registration algorithm such as [74]
in order to roughly align the images between each other before analysis.

Classi�cation and regression model training

To train the pixel classi�er or regressor, we will also use the Extremely Randomized Trees
algorithm [38] presented in Chapter 2. Note that with this particular algorithm and at the
di�erence of the algorithm presented in the previous chapter, both the classi�cation and
the regression variants of the algorithm will be tested.

Landmark prediction

Let us denote by µl ∈ R2 and Σl ∈ R2×2 the average and the covariance matrix of the land-
mark positions across respectively the training images. To make prediction of the landmark
position with our tree-based pixel classi�er or regressor, we proceed as follows:

1. We randomly drawNp pixel positions from a multivariate normal distributionN (µl,Σl).
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Figure 4.3: In red, the position of landmark 8 as observed in all the images of the ZEBRA
dataset, overlaid on an image. In blue, the position of the corresponding 30.000 examples
extracted during prediction according to our sampling strategy. In blue, the real landmark
position.

2. We apply the classi�cation or regression model on each of the resulting pixels.

3. The predictions for these pixels are then aggregated as follows to obtain the �nal
predicted landmark position:

• Classi�cation: the �nal position is taken as the median position among the
pixels that are predicted as being the landmark with the highest con�dence by
the tree-based model (i.e, which receives the highest number of votes for the
positive class from the T trees in the ensemble).

• Regression: the �nal position is taken as the median position among the pixels
that are predicted as being the closest pixels to the real landmark position (i.e,
for which the predicted distance to the landmark position is the smallest).

The subsampling scheme of the �rst step is illustrated in Figure 4.3. Such subsampling
allows to improve predictive performance by reducing the probability of generating spurious
landmark predictions at irrelevant positions in the images. It also considerably speeds up
the algorithm with respect to an exhaustive scan of all image pixels as it was performed
in [80].

Summary of the algorithm

Training. An illustration of the di�erent steps for training a single landmark classi�er is
given in Figure 4.4. For each of the training images, landmark pixels are extracted within
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Figure 4.4: Summary of the training phase.

a range R of the true landmark location. Non-landmark pixels are extracted within the
range ]R,Rmax] from the landmark position. These pixels are described using one among
�ve di�erent multi-resolution pixel descriptors (RAW, SUB, GAUSSIAN SUB, HAAR-
LIKE, SURF). The dataset obtained is then used to train an extra-trees classi�er. In the
regression setting, the same procedure is applied, except that the output is numerical and
set to the euclidean distance between the pixel and the landmark position.

Prediction. A summary of the prediction phase for a single landmark is illustrated in
Figure 4.5. For a new image, pixel locations are extracted from a gaussian distribution
trained from the landmark positions in the training dataset. These pixels are described
by the same multi-resolution pixel descriptors that were used at training. The classi�er or
the regressor is then used to score each of these pixel locations. The median of the pixel
locations with the highest (classi�cation) or lowest (regression) score is considered as the
�nal predicted landmark location.
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Figure 4.5: Summary of the prediction phase.

Implementation Details

Algorithms were implemented in Python using the scikit-learn library [70] for its e�cient
implementation of the Extremely Randomized Trees algorithm and the OpenCV library
[10]. All algorithms were further integrated into the open-source Cytomine web software
[66] using its software template mechanisms. End-users interested to interact with a Cy-
tomine web-server through its web interfaces can read the Cytomine user guide [65] and
documentation 1, where complete instructions for using Cytomine and our landmark de-
tection algorithms are given.

Most of the results presented in this chapter were obtained on several computer clusters.
About 20000 cluster jobs were needed for the complete cross validation of our algorithm,
which represents about 10000 hours of computing time.

Note that on a regular computer (8 × 2.8Ghz, 8Go RAM), our implementation takes
approximately 1 minute to build a model for a single landmark, and approximately 1
second to detect a single landmark on an image with Np = 50000. A typical model

1http://doc.cytomine.be

http://doc.cytomine.be
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Parameter Description Default Value

W The size of the multi-resolution window 8
R The distance to the landmark position determining 15 (CEPHA)

the training pixel output class 9 (DROSO)
20 (ZEBRA)

s The spacing between the landmarks extracted 2
inside the R radius

Rmax the maximal distance to the interest point to extract 600 (CEPHA)
non-landmark observations 300 (DROSO)

1000 (ZEBRA)
P The ratio of negative versus positive examples 1 (CEPHA)

sampled during training 2 (DROSO)
1 (ZEBRA)

Np The number of pixels randomly extracted during 30000
prediction

Nr The number of rotated versions of each training 3
images that are introduced in the dataset

α The maximal rotation angle (in degree) 30
D The number of resolutions introduced in the feature 5

representation of each window
T The number of trees 50
F The feature type used to describe the windows RAW

Table 4.2: Description and default values of our method's parameters at validation

(R = 15, P = 2, T = 100, D = 5) with ±100 images takes 2 gigabytes of RAM. Reducing
the values of these parameters can lead to signi�cant speed-ups, but it can also lead to a
signi�cant decrease of accuracy (see section Results).

4.4 Results and Discussion

In this section, we will �rst study the behavior of our parameters through 10-fold cross
validation. The goal of these experiments is to evaluate the in�uence of the method pa-
rameters and to use our three datasets in order to extract guidelines for their initial setting
in future applications. We will then compare our results with existing algorithms. Finally,
we will discuss the results and extract some guidelines for landmark detection on bioimage
datasets.

4.4.1 In�uence of the method parameters

Experimental protocol

We used 10-fold cross validation to perform our experiments. On each dataset, when one
parameter was tested, all the others were �xed to default values given in Table 4.2.

In our experiments, we consider only the euclidean distance of the predicted landmark
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Figure 4.6: In�uence of the parameter R of our algorithm.

position to the real landmark position as an error criterion. Given the fact that we have
images of di�erent sizes, and, as we will see, very di�erent performances between the image
datasets, this criterion was the easiest to use and optimize. Given the comparisons made
in the previous chapter, where the performance order was the same for each criterion, we
also suspect that we can assume the trends will follow for each of the error criterions that
were considered. Moreover, the euclidean distance has the advantage to be applicable to
any other dataset and to be easily interpretable.

Results

Before discussing our �ndings, it is interesting to note that landmarks from the DROSO
dataset are always detected with a signi�cantly higher accuracy than landmarks from the
two other datasets. This result is not surprising when looking at the sample images in
Figure 4.1. Indeed, landmarks from the DROSO dataset are clearly located at borders and
intersections and are thus already easier to detect by human experts.

The in�uence of the radius R is presented in Figure 4.6. In classi�cation, on CEPHA
and ZEBRA, the higher R the better. On DROSO, where the landmarks are easy to detect,
increasing R too much leads to a loss of accuracy. We explain this phenomenon by the fact
that DROSO landmarks are intersections and edges, thus making the landmark position a
highly informative position. Increasing R can thus only increase the confusion with close
pixels. On the three datasets, a too small R has a negative impact on accuracy. This is
probably due to a reduction in the number of the training examples. For CEPHA and
ZEBRA, increasing R improves the accuracy. For these datasets, this increase allows to
consider close well-de�ned structures and implicitly take into account the uncertainty on
the exact location of the landmark (due to variation with the manual annotations by human
experts). The radius R has less impact in regression than in classi�cation although the
main trends are similar. Note that the regression approach is expected to be less impacted
by R because of its continuous outputs while this directly a�ects the binary output in
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Figure 4.7: In�uence of the parameter Rmax of our algorithm.

classi�cation.

The in�uence of the radius Rmax is presented in Figure 4.7. In classi�cation, we noticed
quite similar e�ects on the three datasets: a small Rmax can lead to confusion at prediction
time with pixels far from the landmark, while a large Rmax increases the probability of
confusion with close pixels, because there will be proportionally less pixels close to the
landmark in the training set. On ZEBRA and CEPHA, large values of Rmax work better,
suggesting that there is more confusion with remote pixels. On DROSO, smaller values are
preferable, suggesting there is more confusion with closer pixels. This parameter thus needs
careful tuning although Rmax ∈ [200, 300] seems to bring results close to the optimum. The
main trends are similar in regression, however in this case the error clearly increases on
all three datasets when Rmax is increased too much. This might be explained by the
fact that increasing Rmax directly increases the range of the output values (i.e., distances)
considered during model training. This could have a negative impact on the prediction
error for small distances that are the only predicted distances used to determine the �nal
position of the landmark.

The in�uence of the ratio P is presented in Figure 4.8. In classi�cation, increasing
the ratio P of negative versus positive examples signi�cantly improves the results on the
DROSO dataset, while, even if it is positive, the impact is more subtle on CEPHA and
ZEBRA. Actually, looking at the same curves for individual landmarks (results not shown),
we notice that increasing P has a negative impact for some landmarks on these two datasets.
On DROSO, because landmarks are easier to detect, increasing P will decrease the risk
of confusion with pixels outside the R radius. On CEPHA and ZEBRA, giving more
weights to pixels outside the radius R increases the chance not to detect as positive pixels
inside the radius, which has a negative impact on accuracy. The trends are very similar
in regression: on DROSO, the larger P , the better, while on CEPHA and ZEBRA, the
optimum value is landmark dependent.

The in�uence of the number of trees T is presented in Figure 4.9. For both classi�cation
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Figure 4.8: In�uence of the parameter P of our algorithm.

Figure 4.9: In�uence of the parameter T of our algorithm.

and regression, the impact of increasing the number of trees is always positive as expected.
We can observe however that increasing the number of trees beyond 50 does not bring
improvement.

The in�uences of the number of rotations Nr and the maximum value of the angle
α are presented in Figure 4.10. The rotations do not seem to have an impact on the (mean)
error. This suggests that our pixel descriptors are robust enough to orientation changes in
our three datasets. Additional experiments about the robustness of our pixel descriptors
to rotations is supplied in the Results section of this chapter.

The in�uence of the number Np of pixels tested at prediction is presented in Figure
4.11. On our three datasets, we observe that Np should be at least 10.000 to reach con-
vergence. This number is equivalent to a complete search in a window of size 100 × 100
(i.e respectively 0.77, 0.21 and 0.2 of the full images on the DROSO, CEPHA and ZEBRA
datasets). Increasing Np beyond 10.000 does not signi�cantly improve the results.
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Figure 4.10: In�uence of the parameters Nr and α of our algorithm.

The in�uence of the window size W is presented in Figures 4.12 and 4.13 respectively
for RAW and HAAR-LIKE features. For this parameter, we made a distinction between
RAW and HAAR-LIKE features, because the size of W does not in�uence the size of
the feature vector when using the latter type of features. Also note that when using
GAUSSIAN SUB features, the algorithm is not in�uenced by this parameter. When using
RAW features, increasing W up to 8 seems to signi�cantly improve the results for the
classi�cation and regression approaches. Then, the marginal improvement decreases and,
for DROSO, becomes negative. While small windows do not contain enough information,
larger ones could create an over�tting problem due to the quadratic increase in the number
of features. Because this quadratic increase will also a�ect the computational cost of our
problem, we did not consider higher values. When using HAAR-LIKE features, the size of
W still needs to be kept small, higher resolution information being provided by the use of
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Figure 4.11: In�uence of the parameter Np of our algorithm.

Figure 4.12: In�uence of the parameter W of our algorithm.

multi-resolution windows. Optimal W values are in this case included between 15 and 20.
This experiment was performed using the same number of descriptors per pixels as when
considering RAW feature descriptors (1536).

The in�uence of the window descriptor features F is analysed in Figure 4.14. In this
�gure, we also added single resolution features SR in order to analyze the in�uence of our
multi-resolution approach. The best resolution was validated among the 6 resolutions used
by our pixel descriptor. The σ of GAUSSIAN SUB (SR) was validated among 6 values
(10, 25, 50, 100, 200, 400). The W of HAAR-LIKE (SR) was validated among 6 values (8,
20, 50, 100, 200, 400) and the W parameters used with other features was also validated
among 6 values (8, 15, 20, 25, 30, 40). The total number of features for HAAR-LIKE (SR)
and GAUSSIAN SUB (SR) was set to be the same as the number of descriptors for RAW
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Figure 4.13: In�uence of the parameter W with Haar-Like features of our algorithm.

Figure 4.14: In�uence of the use of the window descriptor features using classi�cation.
Above: the mean error using each window descriptor on each dataset. Below: the time
needed for extracting 10.000 observations using each window descriptor. Grey bars repre-
sent the results obtained by using only the best resolution found during a 10-cross validation
process.

and SUB (1536 descriptors).

From Figure 4.14, we can conclude that using multi-resolution features always improves
the performances while only slightly increasing the prediction time (it takes about 1 second
for the resizings of a 2576×1932 image in our python implementation when D = 5).

Subtracting the value of the central pixel (SUB, GAUSSIAN SUB) instead of using raw
pixel (RAW) values has a positive impact on both CEPHA and ZEBRA, while it clearly
has a negative impact on DROSO. This is most probably due to the particular nature of
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the landmarks on the DROSO dataset. Landmarks in this dataset mostly correspond to
borders and intersections that are rendered more di�cult to detect when centering the pixel
values. The SURF descriptor always performs well when using multi-resolution windows,
but is only signi�cantly better on the DROSO dataset. The GAUSSIAN SUB descriptor
obtains the worst results on the DROSO dataset, but the best on the CEPHA and ZEBRA
datasets. This suggests this feature descriptor is only e�cient for landmarks located in
areas with low visual information. The opposite goes for the HAAR-LIKE pixel descriptor,
which is the most e�cient on the DROSO dataset.

On the DROSO dataset, multi-resolution Haar-Like features seems to be the best option
to use. Given the good performances of the single resolution Haar-Like algorithm, its use
could also be advised. We explain the small di�erence in terms of performances on the
DROSO dataset by the fact that most landmarks are located on corners or intersections,
which makes them easier to detect, even on a single resolution. For the same reason,
gaussian subtraction seems to have di�culties on this dataset: gaussian o�sets are less
useful when using local information.

On the CEPHA dataset, gaussian subtraction seems to be the best option, closely fol-
lowed by SUB, which is window pixel subtraction. In this dataset, landmarks are not
always de�ned at intersections or edges, and thus the use of pixel-wise context information
becomes more interesting. We also noticed that SUB could obtain very accurate detec-
tion of well-de�ned landmarks while GAUSSIAN SUB had more di�culties to reach this
accuracy.

On the ZEBRA dataset, multi-resolution subtraction GAUSSIAN SUB and window sub-
traction SUB are also the best feature descriptors to use. This shows these multi-resolution
feature descriptors are the most adapted to detect landmarks that are not presented at
corners or intersections.

From the results, we can also conclude that while RAW and SUB do not obtain the best
results on any of the datasets, these basic descriptors always obtain good performances.
This is interesting when considering GAUSSIAN SUB and HAAR-LIKE: while they obtain
the best performances on a given dataset, they obtain the worse for another. Given their
small prediction time, we thus think RAW and SUB can be used to reach good performances
on any dataset.

The in�uence of the number of resolutions D is presented in Figure 4.15. In both
classi�cation and regression and for all datasets, increasing D �rst leads to a strong
reduction of the error. At some point however, the error starts increasing. In average over
all landmarks, the best performance is obtained by using D = 6 on our datasets.

4.4.2 Comparison with other algorithms

In this section, we compare the results obtained by our method with several landmark
detection algorithms. Because there is no available implementation of these algorithms,
these comparisons are divided in two parts. First, we compare our method with our own
implementation of the algorithms presented in [28] and [59] on our three datasets, using
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Figure 4.15: In�uence of the parameter D of our algorithm.

only the original number of landmarks. Second, we present the results obtained by all
algorithms on two cephalometry datasets used during international landmark detection
challenges [91, 90].

Comparisons on our datasets

We compared our algorithm with our own implementations of the algorithms presented in
[59] and [28]. These methods are described in Section 2.5, page 22. A quick summary is
proposed in the following paragraphs.

The method presented in Lindner and Cootes's paper[59] (that we call LC) is divided in
two phases: �rst, individual landmark o�set regressors are trained. These landmark o�set
regressors are then used to build vote maps giving the likeliest position of the landmarks.
In a second step, these vote maps are combined with a PCA based model of the landmark
shapes in order to build an active shape model for which an optimal con�guration can be
found through an iterative process. In a related study, they further improved the method
performances on cephalometric data by considering a larger dataset and evaluating the
accuracy of two di�erent experts annotating the images [60].

In Donner et al.'s paper [28] (that we call DMBL), a three step approach is proposed:
�rst, a random forest classi�er is trained to classify pixels. For N landmarks, the classi�er
associates to each pixel one class among N + 1 classes: either the type of a landmark or
the background. This �rst step will be used to build a probability map for each of the
landmarks. These probability maps will be re�ned into a small number of candidates for
each landmark by using landmark o�set regressors. The �nal position of the landmarks
will be chosen among the candidates of each landmark using a Markov Random Field based
on the distances between the landmark positions.

We estimated the results obtained with these two methods and ours on each dataset and
landmark. We divided our datasets into a training and a test set. For each dataset, the
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Algo Tested Values DMBL Tested Values LC Tested Values
R 6, 9, 15, 20 T (phase 1) 50 PCA reduc 1, 25%,

50%, 100%
Rmax 100, 300, 500 F (phase 1) 32 dmax 50, 100,

200, 500
P 1, 3 R (phase 1) 3, 5 Ns 1000
Np 10.000 σ 10, 50, 100, 200 W 100, 200, 400
Nr 1, 3 δ 0.25, 0.5 n 1600
α 30◦ P 1, 0.5N T 50
T 50 R 10, 20, 50, 100 step 4, 8, 16
D 6 Ns 1000 Rmax 100, 300,

500, 1000
F RAW,SUB T 50 Rmin 1, 2, 10, 20

GAUSSIAN SUB,
HAAR-LIKE

F 32 α 0.1, 0.5, 0.9
Filter Size 3, 10
β 0.2, 0.5
#Iterations 1, 3, 5
#Candidates 1, 5, 10
#Edges 0.1N, 0.5N,N

Table 4.3: Parameters tested during cross validation on the three datasets for our method,
DMBL [28] and LC [59].

methods were tuned on the training set using 10-fold cross validation. The models were
then built using the complete training set and then evaluated on the test set. We chose to
use half of the dataset images as learning set, and the other half as test set. For parameter
exploration during CV, we used a grid search where some common parameters were �xed
for a fair comparison: the number of trees, used in all methods, was �xed to 50. The
number of descriptors for a pixel was also roughly �xed: our algorithm used 1536 features
while LC and DMBL were set to use 1600. The tested values are presented in Table 4.3.
The algorithms were all implemented in Python.

The results are presented in Figure 4.16. We obtained the best averaged error on each
of the three datasets. On the DROSO dataset, that seems to be the easiest for all the
algorithms, DMBL performs clearly worse than our algorithm and LC. We explain this
by the feature engineering choice made in DMBL, whose pixel descriptors focus less on
local appearance. On DROSO, our algorithm has only a small advantage compared to
LC. However, our algorithm obtains the best performances for 10 landmarks, LC 5, and
DMBL 0. On the CEPHA dataset, LC seems to obtain worse results than our method
and DMBL. From our observations, we suspect that our algorithm performs better due to
unreliable landmark candidates for DMBL and the correction phase of LC, that imposes
too much constraints on the possible shapes described by the landmarks. Our algorithm
obtained the best performances for 12 landmarks, LC 1, and DMBL 6. On the ZEBRA
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Figure 4.16: Comparison of our algorithm with [59] and [28] on our three datasets. Error
bars corresponds to 95% C.I.

dataset, the results of the three algorithms are really close, but our algorithm obtains the
best mean error. Our algorithm obtained the best performances for 12 landmarks, LC 6,
and DMBL 7. We also suspect that the landmark structures are not de�ned well enough
when using small training image datasets (69 images for DROSO, 50 for CEPHA and 57
for ZEBRA), thus making the re�nement steps of LC and DMBL less useful.

Comparisons on the ISBI cephalometry challenges

We considered a comparison with the preliminary version of our algorithm that was pre-
sented in the context of the 2014 ISBI challenge [87, 91]. The goal of this challenge was
to predict the position of each of the 19 cephalometric landmarks presented above as ac-
curately as possible. Here we focus on the comparison of our algorithm with the best
results obtained during these two challenges. For the 2014 challenge, we compared our
algorithm with its preliminary version that ranked second at the challenge, and with the
challenge best performer [43], a method proposed by Ibragimov et al. (called ILPV in
the rest of the chapter). ILPV combines random forests with game-theoretic tools that
take into account relations between landmark positions. To improve their performance
at the challenge, ILPV furthermore manually created new landmarks that they incorpo-
rated in their training phase. The main di�erence between our preliminary and proposed
method are the parametrization of the sampling at training and prediction, the use of
rotations and the possibility to use SUB, HAAR-LIKE and GAUSSIAN SUB descriptors.
We also compared our method with the 2015 ISBI challenge two best performers: ILPV
that ranked second, and LC that ranked �rst. In the context of this challenge, they also
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used 10 additional manually annotated landmarks in order to ensure the consistency of
their active shape model optimization problem. Note that LC is one of the state-of-the-art
algorithms we tested in the previous section (but without any addition of manual landmark
annotations).

The landmark by landmark comparison between the three methods for both challenges is
presented in Figure 4.17. This comparison was performed according to the challenge rules:
we used the initial training sets (di�erent for each challenge) composed of 100 images for
the 2014 challenge and 150 images for the 2015 challenge. We tuned the parameters by 10-
fold internal CV on the training set, trained the �nal models with the optimal parameters
found on the whole training set, then compared the predictions of the di�erent methods
on the test set composed of 100 new images for both challenges. For parameter tuning,
we used the same grid search as in the previous section. For the �rst challenge, the global
mean accuracy of the preliminary version of our algorithm is 21.84 pixels. ILPV obtains
18.989 and the method proposed in this chapter 17.55. For most of the landmarks (18
out of 19), we observed an improvement between the previous and the novel variants of
our algorithm. This shows that in some cases, using multi-resolution raw pixel values
can help to obtain a better accuracy. On 11 out of 19 landmarks, our method works
also better than ILPV, while it is outperformed on 8 landmarks. Given ILPV requires
some additional manual annotation e�ort to reach this performance, we believe that our
results are very competitive. For the second challenge, the global mean accuracy of the 1st
method (LC) is 16.74 pixels and the second (ILPV) 18.46 pixels while we obtained a mean
accuracy of 17.79 pixels. We obtained the best results for 3 landmarks, the second best
results for 10 other landmarks. As we show in Figure 4.17, it is clear that the di�erences
are also small between the di�erent methods. In comparison to these two other methods
using additional landmarks to re�ne the landmarks shape, we think our algorithm, without
additional annotation and re�nement, is competitive with the state of the art.

Comparison of speed and memory consumption

Table 4.4 compares the four algorithms in terms of training and prediction speed as well
as memory occupation. In terms of memory occupation, at training, our algorithm
will build N classi�cation or regression mono-output models. These models will be built
by extracting around N di�erent datasets of pixels. LC will build N bi-output regression
models as well as a PCA model. In our experiments, we extracted approximately the same
number of pixels for this algorithm and ours. In DMBL, 1 classi�cation model will be built
for phase 1 and N bi-outputs regression models. In our experiments, each of these models
were built using approximately the same number of pixels as in our algorithm. In addition,
a Markov Random Field will be built. We did not reimplemented ILPV, but given its model
features, we can reasonably estimate that a model would ask for approximately the same
number of pixels than our algorithm. This means that, at training time, DMBL extracts
the largest amount of pixels while the three other algorithms use approximately the same
amount. At prediction, we showed we could already reach our best performances by
extracting around 10.000 pixels per landmark, while the number of pixels to extract will
depend on image size for LC, DMBL and ILPV. DMBL extracts height×width×δ2 pixels,
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Figure 4.17: Comparison with 2014 and 2015 ISBI Cephalometric X-Ray Challenge best
results. Error bars corresponds to 95% C.I. For 2014, 1st method is ILPV. 2nd is an initial
version of our algorithm. For 2015, 1st method is LC and 2nd ILPV.

where the optimal δ we found was 0.5. LC extracts height×width
step2

, and we found an optimal

step of 4. In the cephalometric challenge, ILPV extracts height×width
step2

, where step= 3 for
the cephalometric challenge. In addition, DMBL will need to keep probability maps of
size N × height× width× δ2, LC's vote maps of maximal size N × height×width

step2
and ILPV

probability maps of size N × height×width
step2

. Given the size of our images and the variance
of the landmark positions, our algorithm uses a signi�cantly smaller amount of memory
than other methods on our three datasets. Note however that with smaller images or more
variable landmark positions, the memory requirement and time consumption of our method
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might exceed those of LC and ILPV. In terms of speed, at training, DMBL will need
to extract slightly more pixels than the other algorithms, and build one additional forest.
LC, DMBL and ILPV are building additional models based on the landmarks coordinates.
This is why our algorithm can be considered as faster than the other algorithms at training.
However, if parallelization capacities are available, all the models can be built at the same
time, and the same goes for the pixel extraction. In this context, the bottleneck will be the
di�culty of the pixel extraction, which will make LC, ILPV that both use single resolution
Haar-Like features and/or our algorithm if we use SURF features the slowest algorithm. At
prediction, given that we extract less pixels and do not use an additional re�nement step,
our algorithm should be the fastest as long as we are not using SURF features. Another
bottleneck comes from the re�nement step(s) because these steps can not be parallelized
between each other. This is still playing in favor of our algorithm which has no re�nement
step.

4.4.3 Robustness analysis

In this section, we will analyze the in�uence of the deformations in the images on the
accuracy of our method.

We de�ne the deformation of an image i, di as the euclidean distance between its landmarks
and the mean shape (the mean position of the landmarks). This deformation is computed
once the shapes have been centered in order to reduce the impact of translation:

x̄i,l = xi,l −
1

L

L∑
j=1

xi,j , ȳi,l = yi,l −
1

L

L∑
j=1

yi,j (4.3)

di =

√√√√ L∑
l=1

(x̄i,l −
1

N

N∑
k=1

x̄k,l)2 + (ȳi,l −
1

N

N∑
k=1

ȳk,l)2 (4.4)

Where L is the number of landmarks and N the number of images. In order to keep the
deformations comparable between the datasets, image heights and widths were set to 1,
and the number of landmarks was �xed to L = 10. These L landmarks were selected
randomly.

The deformation distribution of both approaches is given in Figure 4.18. From this �gure,
we can conclude that the deformations in the DROSO dataset are more important than in
CEPHA and in ZEBRA.

Figure 4.19 shows the in�uence of the importance of the deformation on the error when
the distance to the mean shape criterion is used. As it could be expected, RAW, SUB
and GAUSSIAN features have more di�culties to handle large deformations than HAAR
and SURF features. Donner's algorithm (DMBL) also seems to encounter di�culties with
bigger deformations. Haar-Like features seems to be the less impacted by the deformations
along with Lindner's algorithm (LC).
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Our algorithm Lindner et al. [60]
TRAINING PIXEL EXTRACTION PIXEL EXTRACTION

N datasets N datasets
- 1 dataset ± 100.000 pixels - 1 dataset ± 100.000 pixels
Extraction can be parallelized Extraction can be parallelized
MODEL BUILDING MODEL BUILDING

N single output classi�cation OR N double-output regression forests
regression forests 1 PCA model (using landmark
ADDITIONAL OPERATIONS coordinates)
Each training image must be ADDITIONAL OPERATIONS

resized D-1 time(s) Integral images need to be built
If HAAR-LIKE features are used,
integral images need to be built

LANDMARK PIXEL EXTRACTION PIXEL EXTRACTION

DETECTION Np pixels height×width
step2 pixels

(for 1 image) - Np << height× width Extraction can be parallelized
(± 10-30.000) ADDITIONAL OPERATIONS

Extraction can be parallelized N vote maps are built
ADDITIONAL OPERATIONS Iterative active shape model
Building of multi-resolution images optimization
Integral image (if HAAR-LIKE is Integral image needs to be built
used)

PIXEL RAW, SUB, SURF, HAAR-LIKE HAAR-LIKE
DESCRIPTOR GAUSSIAN SUB
LEARNING Extremely randomized trees Random forests (regression)
MODEL (classi�cation OR regression) PCA model

Donner et al. [28] Ibragimov et al. [43]
TRAINING PIXEL EXTRACTION PIXEL EXTRACTION

N+1 datasets (1 phase 1 + N phase 2) N datasets
- 1 dataset ± 100.000 pixels - 1 dataset ± 100.000 pixels
Extraction can be parallelized Extraction can be parallelized
MODEL BUILDING MODEL BUILDING

1 classi�cation forest (N+1 classes) N classi�cation forests (2 classes)
N double output regression forests 1 gaussian model (fron coordinates)

ADDITIONAL OPERATIONS

Integral images need to be built
LANDMARK PIXEL EXTRACTION PIXEL EXTRACTION

DETECTION Phase 1: height×width pixels

(for 1 image) height× width× delta2 pixels (1-3M) Extraction can be parallelized
Phase 2: ADDITIONAL OPERATIONS

#Candidates× N×#iterations pixels (max.) N probability maps are built
(500-1000) (size height×width)
Extraction can be parallelized (per phase) GTF optimization
ADDITIONAL OPERATIONS Integral image needs to be built
N probability maps are built
(size height×width×delta2)
MRF optimization

PIXEL GAUSSIAN SUB HAAR-LIKE
DESCRIPTOR

LEARNING Extremely Randomized Trees Random forests (classi�cation)
MODEL (classi�cation and regression) Gaussian model

Markov Random Field

Table 4.4: Comparison of the time and memory consumption of the algorithms. N is the
number of landmarks.
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Figure 4.18: Distribution of the deformation in the images

4.4.4 Guidelines

In this section, we provide guidelines to end-users to choose the best method and param-
eters for their applications.

Method choice

We showed that we could obtain good performances with our algorithm with respect to
other landmark detection methods: while o�ering slightly better performances, our algo-
rithm also creates lighter models and needs to extract less pixels during the prediction
phase, thus o�ering a speed-up during prediction.

However, for datasets with a signi�cantly higher number of landmarks (> 40 − 50), we
expect the algorithms of DMBL, LC and ILPV to bring better results than our own algo-
rithm because they better exploit the global landmark structure for the localization of the
landmarks. In this context, we would advise to use LC's algorithm when landmarks are
visually well de�ned locally, and DMBL otherwise.

Furthermore, our experiments showed that these algorithms could be improved by using
some of our algorithm's speci�cities:

• Di�erent types of pixel descriptors should be considered: our experiments showed
that the performances of a given pixel descriptor can vary from one dataset to another
given the type of landmarks. Moreover, even if it slightly increases computation time,
multi-resolution feature extraction improves the performances. In the context of a
new application, we think that the choice of the pixel descriptor should always be
empirically assessed, if not per landmark, at least per dataset.

• In most biomedical applications, the deformation between the images will remain
small. We showed that this information can be used to reduce the number of pixels
to extract at prediction time, and thus speed up the prediction process.
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Figure 4.19: Prediction error according to the mean-based deformation criterion.
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Parameter setup

Using our method, we recommend to use the classi�cation approach as we showed it has
a better accuracy in almost all settings compared to the regression approach. In addition,
it is typically less demanding in terms of computing time and memory, mainly because it
leads to signi�cantly smaller trees.

According to our experiments, only R, Rmax, and F have to be tuned to optimize perfor-
mance. The optimal value of these parameters are expected to be related to the appearance
of the landmarks and they might thus be tuned for each landmark individually. On land-
marks well de�ned at borders or intersections, small R values can be used (R = 6 for
example). Given R and Rmax are in pixel units, the range of variation of these parameters
should also be adapted to the image resolution : at minimum, R must encompass the
landmark possible locations, and Rmax the nearest visible structures. We advise to use
HAAR-LIKE features in the context of landmarks located at borders or intersections, and
GAUSSIAN SUB features otherwise. If low computing time is a key factor, RAW and SUB
features could also be assessed. Because it requires more computation time (on a factor 10)
than RAW or SUB, we can only advise the use of the SURF descriptor for small datasets
or given high parallelization capacities.

We also recommend to adapt the value of Np to the variability of the position of the
landmark in the training images. Indeed, given our sampling scheme at prediction, the
more variable the position of the landmark, the more spread in the image will be the pixels
tested to compute the �nal prediction. One should thus increase the number of tested
pixels accordingly so as to ensure a �ne enough coverage of the area where the landmark
could be located. In our case, Np = 10.000 seems a good option to start with.

Other parameters can either be set to some reasonable default value (W = 8, D = 6) or
be set to their maximum value given the available computational budget (T, P,Np,W ). If
computational resources are plentiful, a �ner tuning of W and D and Np can bring some
further improvement but according to our experiments this improvement is expected to be
small in most cases.

We carried out our experiments on three very di�erent problems, which gives some gener-
ality to the previous guidelines. Note however that on the three datasets, the deformations
between the images are small, which for example allows to limit the region of interest
within images where the landmark can be searched for. To cope with larger deformations,
one could play with the value of some of the method parameters, e.g. increasing Nr, and
Np. However, in order to increase the performance and reduce computing times, we rec-
ommend either to control image acquisition to avoid large deformations or, if this is not
possible, to perform rigid registration between the images before further analysis.

4.5 Conclusion

The results of this chapter showed that it is possible to accurately detect landmarks using
a combination of randomized trees and pixel-based multi-resolution features. Given the
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small size of our datasets and the variance of the landmarks between the images, we think
that these results are very satisfactory. The main advantages of our approach with respect
to existing works are its e�ciency, its independence to the number of landmarks, and its
lower time and memory requirements. All evaluated algorithms are available through the
open-source Cytomine platform [66], which provide proofreading tools so that end-users
can actually speed-up their annotation processes by focusing on di�cult landmarks.

In terms of future works, we think that improving accuracy on our three speci�c landmark
detection tasks mostly require using more data: for some landmarks, ±100 images does not
seem to be enough to grasp the variability of the possible landmark visual representations.
Moreover, it seems that some landmarks do not especially correspond to speci�c anatomical
locations, but more to geometric positions or intersections (e.g. landmark 10 on CEPHA
dataset. See Figure4.1). This kind of landmark will thus naturally be incorrectly detected
by our approach which exploits repeatable visual appearances without using global spatial
information. We expect further accuracy improvement might be obtained by taking into
account the relative positions and the global structure of the landmarks either directly
during the training stage or as a post-processing during the prediction stage. Note that
this structure is taken into account by current state of the art algorithms we compared
ourselves with. However, given that their accuracy is similar to ours despite this post-
processing, more research seems to be needed to �nd methods more adapted to our datasets.
Further improvement might also be brought by adding some parametrization possibilities:
for example, the windows could be �ne tuned with di�erent shapes at each of the di�erent
resolutions and D could be adapted to di�erent ranges of image resolutions. Interestingly,
as our datasets and source code are available through Cytomine[66], we hope that other
researchers will design new e�cient landmark detection algorithms.

Finally, this algorithm can be extended and used as a �rst step to perform point-based
2D and 3D multimodal registration [86], and also for geometric morphometrics in 3D
[3, 14].



Chapter 5

Landmark detection for 3D

multimodal registration

In this chapter, we propose a new method for automatic 3D multimodal registration based
on anatomical landmark detection. Landmark detectors are learned independently in the
two imaging modalities using Extremely Randomized Trees and multi-resolution voxel
windows. A least-squares �tting algorithm is then used for rigid registration based on
the landmark positions as predicted by these detectors in the two imaging modalities.
Experiments are carried out with this method on a dataset of pelvis CT and CBCT scans
related to 45 patients. On this dataset, our fully automatic approach yields results very
competitive with respect to a manually assisted state-of-the-art rigid registration algorithm.
In Section 5.1, we introduce the problematic of CT-CBCT image registration. In Section
5.2, we present our 3D landmark detection method and explain how it is exploited for
rigid registration. In Section 5.3, we introduce our dataset of simulation-CT and CBCT
and summarize our landmark detection and registration results. Finally, we conclude in
Section 5.4.

This chapter is based on the work published in

R. Vandaele, F. Lallemand, P. Martinive, A. Gulyban, S. Jodogne, P. Coucke, P.
Geurts, and R. Marée. Automated multimodal volume registration based on super-
vised 3d anatomical landmark detection. In Proceedings of the 12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISAPP) , 2017.

5.1 Introduction

In radiotherapy, the 3D Computed Tomography Scanner (CT-Scan) is used as the reference
for treatment dosimetry and patient positioning. During the treatment itself, a Cone-
Beam-CT-Scan (CBCT) is acquired several times at the treatment machine to ensure the
proper positioning of the patient with respect to the simulation CT-Scan so as to correctly

83
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Figure 5.1: Sample volumes (MIP projections) from our dataset. On the left, a CT scan,
on the right, a CBCT scan. Notice the di�erences between the scanned body regions.

deliver the treatment to the tumor. Registration of the two modalities are thus needed
in routine applications. Usually, the registration is performed semi-manually by a human
operator.

The problem of multimodal rigid volume registration consists in �nding the deformation
(translations and rotations) that will minimize the di�erence between the two images or
volumes to register. This di�erence can be evaluated using several possible metrics such
as voxel by voxel mutual information or normalized correlation, but also, as we do in this
chapter, using the distance between common speci�c landmarks identi�ed in both volumes.
Several general optimization algorithms have been proposed for multimodal rigid registra-
tion [98],[71]. However, because the scanned regions can di�er between the two volumes
to register, these algorithms do not perform well enough without manual intervention for
medical registration: an operator is required to manually de�ne in the two images the
region of interest (ROI) in which the registration procedure should be applied [42]. For
example, as shown in Figure 5.1 for CT-CBCT registration in radiotherapy, CT images will
typically correspond to large body scans, while CBCT images will correspond to speci�c
parts of the body (e.g. organs). The application of out-of-the-box registration algorithms
such as 3D-Slicer [33] or Elastix [50] on the whole CT and CBCT images will thus fail as
it will try to register the full body in CT to a speci�c organ in CBCT. The ROI for the
registration therefore needs to be manually selected in both images, which signi�cantly
slows down the registration process.

In this chapter, we propose, and evaluate, a novel fully automated (i.e., free from any
manual ROI selection) multimodal rigid volume registration algorithm. The main idea
of this approach is to �rst automatically detect several 3D anatomical landmarks in each
image modality, using supervised machine learning techniques, and then to register the two
images only on the basis of these landmarks. Our hypothesis is that although patients have
di�erent appearances, a speci�c anatomical landmark is likely to look very similar among
di�erent patients in a given imaging modality, hence each landmark appearance could be
learned in each modality. We want therefore to evaluate such an approach where anatomical
landmarks are detected independently in each modality using supervised learning, then
registered, in contrast to commonly used approaches that rely on the design and matching
of invariant features across modalities.
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Figure 5.2: Representation of our CT-to-CBCT registration algorithm.

5.2 Method

In our approach, landmark detection models are built for each landmark and each modality
independently using training images and expert ground-truth landmark positions. If N
landmarks have to be detected, 2N detection models will be built (one for each landmark
and each modality). For new volumes, once the landmarks are detected automatically in
each modality, the registration is then performed through a matching point registration
algorithm [5] using all the detected landmark position pairs. A graphical representation of
our approach is given in Figure 5.2.

In this section, we �rst describe the learning approach we used for the landmark detection,
and then the registration method we used in order to perform the multimodal volume
registration.
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Figure 5.3: Illustration of the di�erent parameters for one landmark in a CBCT scan. The
multi-resolution windows describe the landmark voxel.

5.2.1 Supervised 3D Landmark Detection

Local, learning-based, feature detectors are promising approaches for landmark detection
in 2D and 3D images. They have been shown recently to outperform global landmark
matching algorithms in various applications [31, 91]. Here, we extended the 2D landmark
detection method of [80] to 3D imaging.

Our algorithm is based on supervised learning: manually annotated volumes are used to
train models (Extremely Randomized Trees [38]) able to predict the landmark positions
in new volumes. As in [80], we propose and compare two approaches: in the �rst, a
classi�cation model is trained for each landmark to predict if a voxel corresponds to the
landmark position. In the second, a regression model is trained to predict the euclidean
distance between a voxel and the landmark position.

Voxel Description. Each voxel v in the training sample is described by D multi-
resolution square voxel windows of side size 2W +1 centered on v on each of the three axes.
W and D are method parameters. It means that one voxel is described by 3D((2W + 1)2)
features. In order to manage possible luminosity variations, the volume voxel values are
normalized and the feature values are computed as the di�erence between each voxel value
and the value of the voxel v. Parameters W and D are illustrated in Figure 5.3.

Classi�cation Output. We consider a binary voxel classi�cation model. The voxels
can either belong to the landmark class (1) or to the non landmark class (-1). Only one
position in each image corresponds to the landmark. If only these positions are considered
as landmarks, and if N training images are available, only N positive examples will be
available to train our voxel classi�cation model. To extend the set of positive examples,
we consider as positive examples all voxels that are at a distance at most R from the
landmark, where R is a method parameter illustrated in Figure 5.3. If the landmark is at
position (xl, yl, zl) in an image, then the output class of a pixel at position (x, y, z) in the
same image will be 1 if (x− xl)2 + (y − yl)2 + (z − zl)2 ≤ R2, or −1 otherwise.
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Regression Output. With the regression method, the output associated to each voxel is
the euclidean distance between this voxel and the landmark position in the training image.
More formally, if the landmark is at position (xl, yl, zl) in an image, then the output value of
a pixel at position (x, y, z) in the same image will be

√
(x− xl)2 + (y − yl)2 + (z − zl)2

Voxel Sampling Scheme. In both cases, the classi�cation or the regression model is
trained from a learning sample composed of all the 4

3πR
3 voxels that are located within

a distance d ≤ R to the landmark position (the landmark class with the classi�cation
approach) and P 4

3πR
3 voxels located at random positions within a distance R < d ≤ Rmax

to the landmark position (the non-landmark class for the classi�cation approach), where
P and Rmax are user de�ned parameter. R and Rmax are represented in Figure 5.3.
In classi�cation, sampling all the pixels inside the R radius allows us to sample more
landmark voxels in the positive class than uniform sampling. For the regression approach,
this parameter allows us to sample more voxels close to the real landmark position, which
helps the model to perform a better di�erentiation for the voxels close to the landmark
position. On the other hand, the e�ect of the Rmax parameter is to arti�cially reduce the
number of distant voxels, which allows to reduce the size of the dataset, while having little
to no e�ect on the prediction accuracy, as we will show in our experiments.

Model Training. The voxel classi�cation or regression model is trained using the Ex-
tremely Randomized Trees algorithm [38]. This learning algorithm is a variant of the
Random Forest algorithm [12] o�ering similar accuracy than regular Random Forest while
speeding up model training. In this algorithm, an ensemble of T decision or regression
trees are built from the original training sample (no bootstrapping), without pruning. At
each node, the best split is selected among K features chosen at random, where K is a
number between 1 and the total number of features. For each of the K (continuous) se-
lected features, a separation threshold is chosen at random within the range of the feature
in the subset of the observations (i.e., voxels) in the node. A score is computed for each
pair of feature and threshold, and the best pair according to a score measure is chosen. We
chose to use the Gini index reduction score for classi�cation, and the variance reduction
score for our regression trees.

Landmark prediction. During the radiotherapy process, the patients are placed in the
same position according to the tumor location. When considering speci�c tumor locations,
the landmarks will be found in close areas from one image to another. In consequence,
it would be ine�cient to search for each landmark in the whole volume. This is why
instead of thoroughly scanning the volume, we are considering another solution: in a new
volume, we extract Np voxels taken at random locations following the normal distribution
N (µ̄,Σ2), where µ̄ is the mean position of the landmark in the training dataset, and Σ
the corresponding covariance matrix. The predicted position of the landmark in a new
volume will either be the median of the locations of the voxels predicted as landmarks
with the highest probability (classi�cation), or as the closest to the landmark position
(regression).
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Parameter setting. The method depends on several parameters: the radius R and
Rmax, the ration of non-landmark versus landmark voxels P , the number of voxels Np to
extract for computing a prediction, the number of trees T , the size of the window W and
the number of resolutionsD. These parameters are either set to their maximum value given
the available computing resources (T,Np) or tuned through cross-validation. Trees were
fully grown (nmin = 2) and the K parameter was set to its default value

√
3D((2W + 1)2)

[38].

5.2.2 Multimodal Landmark-based Rigid Registration

Once anatomical landmark coordinates have been predicted in both images, the registration
of the resulting matching pairs of landmark positions is formulated as the least-square
optimization problem presented in (5.1).

min
X,T

N∑
i=1

||p′i − (Xpi + T )||2 (5.1)

N is the number of landmarks, pi and p′i are the coordinates of the ith landmark in the two
images, X is a 3×3 rotation matrix, and T a 3×1 translation vector. To solve this problem,
we use the noniterative SVD-based algorithm proposed in [5]. It is important to notice
that, as opposed to volume registration based on local feature detectors and invariant
descriptors (e.g. [62]), our method does not require matching of landmark descriptors
accross modalities.

5.3 Experiments and results

In this section, we �rst describe our dataset, divided into a training and a test set. Then,
we study systematically the in�uence of the main parameters of our landmark detection
method by leave-one-patient-out validation on the training set. Finally, we present regis-
tration results on the test set and compare them to a semi-automated volume registration
algorithm [33].

5.3.1 Datasets

Our dataset contains images related to 45 patients (male and female) and was acquired
at the Radiotherapy and Oncology Department, University of Liège, Belgium. For each of
these patients, we have one pelvic CT scan as the reference (45 CTs in total), and at least
one corresponding CBCT scan of the pelvis (68 CBCTs in total). We divided this dataset
into a training set of 30 patients, each with one CT and at least one CBCT (i.e 53 CBCTs
in total), and a test set of 15 patients, each with exactly one CT and one CBCT.

Because our algorithm works better with volumes of identical resolutions and the original
resolution information is always available, each CT and each CBCT were resized to 1 ×
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Figure 5.4: Representative pictures showing the position of the 8 landmarks on a CT-scan.

Parameter Tested values
R 2, 4, 5, 6, 7,8, 10, 12, 14, 16

Rmax 10, 25, 40, 50, 75, 100, 200,500, 1000, 2000
P 0.1, 0.25, 0.5, 1, 1.5,2, 3, 4, 6, 8
Np 1, 10, 100, 1000, 5000, 10000, 50000,

100000, 200000, 500000
T 1, 5, 10, 25,50, 75, 100, 150, 200, 300
W 2, 3, 4, 5, 6, 7,8, 9, 10, 12
D 1, 2, 3,4, 5, 6, 7, 8, 9, 10

Table 5.1: Sets of values tested during cross-validation for each parameter. In bold, the
default value of each parameter used in the �rst stage of cross-validation.

1×1mm voxel resolution. Originally, CT scan resolutions were comprised between 0.5 and
3mm. The CBCT scans were acquired with an Elekta XVI scanner, that were reconstructed
to 1 × 1 × 1mm resolution. More information about the quality of the CBCT image
acquisition procedure can be found in [46].

On each CT and each CBCT, 8 landmarks distributed in the pelvis were manually an-
notated two times by the same skilled operator. The mean distance between the two
annotation runs is shown in Table 5.2 (Manual Err.). The position of each landmark is
presented in Figure 5.4 for CT scans. We used as ground-truth for each landmark the
mean coordinates of the two manual annotations provided by the operator.

5.3.2 Landmark Detection Results

Protocol

For our experiments, we �xed extremely randomized tree parameters to recommended
values (K =

√
3D((2W + 1)2), nmin = 2) [38]. Other parameter values were evaluated in

the ranges presented in Table 5.1.

These values were tested for both the regression and the classi�cation approaches using
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leave-one-patient-out in the training set. Since it is not possible to explore all parameter
combinations, we use a two-stage approach. In the �rst stage, for each parameter in turn,
all its values were tested with the other parameters set to some default value (in bold in
Table 5.1). In the second stage, the exact same procedure was applied by using as a new
default value for each parameter the value that led to the lowest CV error (in average
over all landmarks) in the �rst stage. The best values for each parameter in this second
round were then identi�ed, this time for each landmark separately, and used to retrain a
model using all training images. In total, 4480 parameter combinations were tested using
computer clusters.

In�uence of Method Parameters

The in�uence of method parameters is shown in Figure 5.5. We did not notice major
di�erences between the classi�cation and the regression approaches. For some particular
landmarks, the performance was worse for the CBCT scans. We believe that this di�erence
is mainly due to one particular patient for which our algorithm had di�culties because of
its particular CBCT localization: the regions containing the landmarks 3, 4, 7 and 8 was
not acquired. For the classi�cation approach, the R parameter clearly needs to be tuned:
too small R will lead to too few positive examples in the dataset, while too large R will
associate too distant voxels to the positive class. The regression approach is less sensitive
to too large R values. We noticed that small values of Rmax (25-40 voxels) work better for
both classi�cation and regression. We explain that by the fact that the landmark structure
is unique inside the volume, and thus learning to discriminate close voxels is more e�ective
than comparing more distant voxels. Increasing the proportion P improves the performance
for classi�cation but smaller P values can be used for regression (which decreases the size
of the dataset). Increasing the number of predictions Np always improves the performance
as expected. However, optimal performance is already attained with Np = 100000. The
same e�ect is observed with the number of trees T , with optimal performance reached
at T = 50. The windows size W controls the number of features and the locality of the
information that is provided for each voxel. This parameter clearly needs to be tuned with
values in the range 6�8 being optimal in most cases. Increasing the number of resolutions
D quickly increases the error, most likely because it leads to over�tting. Small values of
D ' 2�3 are optimal in most cases.

Test Set Errors

Table 5.2 reports for each landmark the error obtained on the test set (column 'Test Err')
using the optimal parameter setting determined with the two-stage CV explained above.
For comparison, columns 'CV Err' and 'Manual Err' provide respectively the optimal CV
error on the training set and the error between the two manual annotations of the human
operator.

Results are satisfactory although the di�erence between the algorithmic and the manual
errors remain important. When interpreting these results, we have to take into account
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Figure 5.5: In�uence of method parameters From top to bottom, left to right:
R,Rmax, P,Np, T,W,D. The y−axis is the CV error (in mm) averaged over all landmarks.
.
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Landmark CV Err Test Err Manual Err
CT-1 3.23 3.33 1.04
CT-2 2.68 2.77 2.11
CT-3 2.84 2.71 1.81
CT-4 3.43 3.36 2.65
CT-5 2.83 3.28 0.73
CT-6 2.09 3.91 0.84
CT-7 2.92 3.2 0.94
CT-8 2.61 3.7 0.78

Avg 2.83 3.28 1.36

CBCT-1 3.49 3 2.01
CBCT-2 4.53 3.8 2.23
CBCT-3 9.44 4.98 1.34
CBCT-4 5.69 6.39 1.10
CBCT-5 2.84 4.03 1.41
CBCT-6 3.65 3.41 0.98
CBCT-7 8.75 3.56 1.50
CBCT-8 6.08 5.13 1.79

Avg 5.56 4.4 1.54

Table 5.2: Test set results (error in mm).

the low resolution of the CT and CBCT images that forced us to resize our voxels to a
1×1×1mm resolution. Given this resizing, an error of only 2 or 3 voxels directly translates
into an error of 2 or 3mm. With CBCT scans of higher resolution, we could have resized
the images to a higher common resolution, which should have led to a lower global error
(in mm). Performance on the CBCT scans are worse than on the CT scans. We attribute
this di�erence to poorer image acquisition quality [46].

5.3.3 Multimodal Volume Registration Results

The registration results on all 15 CT-CBCT pairs in the test set are shown in Figure 5.6.
The quality of the registration is measured by the average distance between the ground-
truth positions of the landmarks in the two images after their registration. LDM stands
for landmark registration. It corresponds to the proposed approach, i.e., the application
of the registration algorithm of [5] after the 8 pairs of landmarks were automatically de-
tected in the CT and CBCT images using our algorithm. MANUAL corresponds to the
application of the same registration algorithm but using the exact ground-truth positions
of the landmarks. Its error is thus a lower bound on the error we can expect to achieve
with our method. For comparison, we also provide the error obtained using the state-of-art
(SOA) semi-automatic registration method implemented in 3D-slicer [33] and described in
[44]. We applied the method within the smallest box-sized ROI surrounding all landmark
positions and using the Mattes mutual information, which we found to be the best cost
metric to use when compared to mean squared error and normalized correlation.
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Figure 5.6: CT to CBCT registration results on the test set of 15 CT-CBCT pairs.

As shown in Figure 5.6, the performance of SOA is unstable compared to our method
and with respect to manual ground truths. For most patients, our algorithm performs
much better. Globally, our results are very good. They show that our fully automatic
approach performs better than [44] which in addition requires a manual intervention for
the delineation of the ROIs. The manual ground truth approach is most of the time
much better than our approach, suggesting that improving the quality of the landmark
detectors, e.g. by collecting more training images, could potentially improve even further
the performance of our method.

On a Ubuntu 15.04 8 × 2.4Ghz, our paralellized python implementation of our algorithm
takes 4 seconds for the complete registration (T = 50, D = 3, Np = 100000). We only
take into account the CBCT landmark detection and the volume registration, given that
in radiotherapy practice, CT landmarks can be detected o�ine. On the same computer,
the registration of the box-sized ROI of the CT and CBCT took approximately 7 seconds
using 3D Slicer, which is also parallelized [44].
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5.4 Conclusion

In this work, we proposed a simple but e�cient method for fully automated 3D multimodal
rigid registration based on automated anatomical landmark detection using supervised
machine learning. We applied our approach for pelvis CT-CBCT registration for patient
positioning in radiotherapy. Our results showed that our automated approach is competi-
tive with current state-of-art registration algorithms that require manual assistance. Given
any kind of body location and modality, interesting landmarks to register can be selected
and detected by experts on a small training dataset, and then multi modal registration
can be performed on new volumes by using our algorithm. In future works, we would like
to manage the possibility to have landmarks out of the volume(s). Future works will also
focus on non-rigid registration, where a higher number of landmarks will most probably be
required in order to perform plausible registrations. To speci�cally address this issue, an-
other interesting future research direction would be to design techniques for the automatic
selection of the most appropriate landmarks given pre-registered data. Beyond this speci�c
application, we also think that our 3D landmark detection method could be interesting in
other areas such as 3D morphometrics [3].



Chapter 6

Advanced analyses of landmark

detection methods for morphometric

studies

In this chapter, we focus on three distinct and practical aspects of landmark detection
for 2D images in the context of morphometric studies. The underlying motivations for
these additional analyses are introduced in Section 6.1. In Section 6.2, we study the
impact of the number of annotated images on the performances of the algorithm, and
propose potential solutions to reduce the number of images to annotate while trying to
keep the best performances. In Section 6.3, we carry out an in-depth analysis, on three
datasets, of existing post-processing techniques for improving landmark detection methods.
We then propose and evaluate in Section 6.4 a new post-processing approach based on the
observations drawn from this analysis. In Section 6.5, we carry out preliminary experiments
studying the opportunity to improve landmark detection methods by incorporating manual
corrections of initial method predictions. Finally, we conclude in Section 6.6.

6.1 Introduction

In the previous chapters, we proposed and extended an anatomical landmark detection
method, that we applied in two di�erent contexts: morphometric image analysis [85] and
3D image registration [86]. Although these methods are competitive with the state of the
art methods in their speci�c areas of interest, some interesting aspects of our landmark
detection method were not su�ciently analyzed. In this chapter, we will focus on three of
these aspects.

The �rst aspect that we will study, in Section 6.2, is the impact of the number of available
annotated images to learn a visual model. Through this study, we would like to estimate
how many images are required to obtain (close to) optimal performance, or, from another
point of view, how many images should be annotated in order to reach a speci�c detection

95
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error. We will also check whether the number of images required is landmark dependent
and if so, try to characterize visually the most demanding landmarks. While more anno-
tated images is expected to always lead to better performance, determining the minimal
number of images required is important in practice, �rst to reduce as much as possible
user annotation e�orts (by allowing to focus this e�ort on the most demanding landmarks)
and second to reduce also computing times (as more images means higher model training
times and also, in the case of tree ensemble methods, more complex models). At the end
of this section, we will also study how the number of images a�ects the setting of the
hyper-parameters of our method. One could indeed expect that some parameters will need
to be tuned appropriately to compensate for the lack of images.

We showed in the previous chapters that our method could match or even outperform
the performance of several landmark detection algorithms from the literature. Unlike our
method, all these methods [60, 28, 43] exploit a sophisticated post-processing step that
re�nes the landmark positions, initially obtained from a visual model, on the basis of a
model of the structure formed by the landmarks. In our algorithm [85], we chose not
to use such post-processing step and simply compute the median position of the pixel
locations with the highest landmark probability. Although our method is competitive as
such, an interesting question is whether its performance could be improved further by
adding some post-processing. To answer this question, we will �rst assess in Section 6.3
the combination of our method with post-processing approaches from the literature and
then propose and evaluate in Section 6.4 an original post-processing approach based on
supervised regression.

So far, the method we proposed is fully automatic, in the sense that it does not require any
human intervention at prediction time. In the case where some minimal human intervention
would be permitted for the sake of maximizing detection accuracy, it could be interesting
to investigate also semi-automated methods. The idea of such methods is to ask a human
expert to correct (or set) the positions of a limited amount of landmarks, and then to exploit
these corrections to automatically improve the predicted positions of the other landmarks.
This could be achieved for example by adapting accordingly the post-processing step. We
will describe in Section 6.5 some preliminary work in this direction.

6.2 Analysis of the in�uence of the number of images

In order to be trained, our landmark detection method based on machine learning needs a
dataset of annotated images. We saw in the previous chapters that the image annotation
process is a time-consuming and tedious task for a manual operator that can lead to
potential annotation mistakes [26, 19, 63]. It is therefore desirable to reduce as much as
possible the required annotation e�ort. Using smaller datasets can also lead to simpler
models, and smaller memory consumption. Also, we saw that our method can greatly
bene�t from parallelization, given that the detection is independent for each landmark:
smaller datasets would mean that it could be possible to use more models in parallel,
because these models would consume less memory. These observations motivate the study
of the in�uence of the number of images on the performances of the method that we carry
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out in this section. We describe the evaluation protocol in 6.2.1, present the main results
in Section 6.2.2, and provide practical guidelines in Section 6.2.3.

6.2.1 Evaluation Protocol

The analysis is performed on the three 2D image datasets that were presented in Chap-
ter 4 (see Section 4.2): DROSO (138 images), CEPHA (100 images) and ZEBRA (113
images).

In order to test the in�uence of the number of images on the performance of the algorithm,
we need to build landmark detection models with restricted numbers of images N . These
numbers are given in Table 6.1 for each dataset.

Because reducing the number of images means that the size of our training dataset is
also reduced (given a set of parameters, we extract a �xed number of observation per
training image), we want to test several combination of our method's parameters in order
to evaluate if it was not possible to compensate the reduction of the number of images by
increasing the number of observations sampled in the training images. Only a subset of our
method parameters have an in�uence on the size of the training sample: R (the landmark
radius), P (the proportion of not-landmark observations that are extracted), s (the spacing
in the landmark extraction grid) and Nr (the number of additional rotated versions of an
image added to the training set) with maximal angular rotation α. The values of these
parameters that are tested in our experiments are presented in Table 6.1.

The other parameters, which do not in�uence the size of the training dataset, are �xed to
default values identi�ed from the experiments in Chapter 4:

• The Rmax value is set to 100 for DROSO, 400 for CEPHA and 1000 for ZEBRA.

• The number of pixels extracted at prediction is set to 50.000.

• The depth D is �xed to 5.

• The window descriptor F is RAW for DROSO, SUB for CEPHA and MRDONNER
for ZEBRA.

• The number of trees T is �xed to 50.

• The window size W is �xed to 8.

Detection errors in the experiments are estimated using leave-one-out cross-validation: for
each image of a dataset, N images are randomly selected among the others in order to train
the landmark detection model. This model is then used for detecting the landmark on the
test image and computing detection error (the euclidean distance between the predicted
landmark position and its ground-truth position).

In what follows, we will report average detection errors as a function of the number of
images for di�erent parameter settings. Average errors however do not allow to fully
appreciate the behavior of the algorithm over the di�erent landmarks. An algorithm can
indeed be very accurate for some landmarks but completely fail for others. To better
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DROSO CEPHA/ZEBRA

R P s Nr α R P s Nr α

6 2 2 1 0 15 2 2 1 0
9 2 2 1 0 18 2 2 1 0
12 2 2 1 0 21 2 2 1 0
6 3 2 1 0 15 3 2 1 0
6 4 2 1 0 15 4 2 1 0
6 5 2 1 0 15 5 2 1 0
6 2 1 1 0 15 2 1 1 0
6 2 2 2 15 15 2 2 2 15
6 2 2 3 15 15 2 2 3 15
6 2 2 4 15 15 2 2 4 15

N (DROSO) 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135
N (CEPHA) 5, 15, 25, 35, 45, 55, 65, 75, 85, 95
N (ZEBRA) 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105

Table 6.1: Cross-validation parameters for the analysis of the in�uence of the number of
images on our method.

capture how the algorithm performs over the landmarks for a given setting, we will use
a new type of graphical representation, that we call cumulative error graphs. Examples
of such plot are given in Figures 6.1 C,D and E. The cumulative error graph shows, for
a given detection error threshold (horizontal axis, in pixels), the percentage of landmarks
that are detected with an error below this threshold (vertical axis, in %). The closer
the resulting curve is to the point (0, 1) (resp. (1, 0)), the better (resp. the worse) the
performance.

6.2.2 Results

Best result for each N

For each given number of images N , Figure 6.1optimal A gives the best mean landmark de-
tection error that was obtained among the di�erent parameter settings that were explored
(presented in Table 6.1) for each of the three datasets. Thus, this gives an idea of the
global performance increase that can be obtained by annotating additional images on each
of these datasets. From this �gure, we can observe that the global impact of the number
of annotated images is similar on the three datasets. There is a large increase of perfor-
mance when annotating the �rst 20-30 images. While annotating additional images still
increases the performances, the improvement slows down signi�cantly beyond this thresh-
old. On the DROSO dataset, there is no signi�cant decrease of the detection error after
50 images, while on CEPHA and ZEBRA, the error is still decreasing when reaching the
largest number of images, which suggests that these two problems could potentially bene�t
from more annotated images. This con�rms the hypothesis made in Chapter 4, where we
noticed that landmarks on the DROSO dataset were easier to detect than landmarks in
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Figure 6.1: A) In�uence of the number of images on the mean landmark detection error. B)
Corresponding evolution of the con�dence interval with the number of images. C),D),E):
Corresponding cumulative error graphs obtained respectively on DROSO, CEPHA and
ZEBRA. F),G),H): Scatter plots showing the evolution of the landmark detection error
when using additional images. Each point corresponds to a landmark in a given test
image.
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CEPHA and ZEBRA. Indeed, these landmarks mainly consist of visual edges and corners,
which have less variability in their visual appearance than the landmarks in CEPHA and
ZEBRA. In consequence, they need fewer images in order to be correctly identi�ed by our
algorithm.

Figure 6.1 B shows that increasing the number of training images also reduces the size of
the con�dence intervals of the mean landmark detection error. On CEPHA and ZEBRA,
this can be partly explained by the fact that the average error decreases (and is always
greater than 0). However, on DROSO, the size of the con�dence interval continues to slowly
decrease when the average error has reached its plateau. This means that the errors (in
pixels) made by the algorithm are stabilizing. This stabilization of the predicted landmark
positions should translate into a stabilization of distance measurements based on these
landmarks, which can be very important in morphometric applications.

Our experiments so far thus show that 40 images are enough in most cases, while additional
images can be bene�cial to improve further detection error, in problems where landmarks
are di�cult to detect visually, or, in all cases, to reduce the variability of the predictions.
These conclusions are con�rmed by the corresponding cumulative graphs that are presented
in Figures 6.1 C, D, and E and by the scatter plots in Figures 6.1 F, G, and H. From Figures
6.1 C and F (DROSO), we observe that a small number of images is enough to accurately
detect the easiest landmarks of the dataset. However, an important number of landmarks
are still very poorly detected with only 5 training images. Using 65 images brings a
signi�cant improvement in the detection of those landmarks: the maximum detection
error is reduced from about 700 to about 200. Increasing the number of images from 65
to 135 has not much visible e�ect on the cumulative error plot, but one can nevertheless
see on the scatter plots that it decreases even further the detection error of the worse
landmarks: the largest errors decrease from 200 to 100. Results are similar on the two
other datasets. Indeed, using 55 images instead of 5 decreases the detection error for most
of the landmarks. Increasing further the number of images has only a marginal e�ect on
the cumulative error graph but it still improves the detection of the hardest landmarks, as
shown in the scatter plots.

Best result for each N, landmark per landmark

For each given number of images, Figure 6.2 shows the smallest average detection error
that can be reached for each landmark among the di�erent parameter settings that were
explored (given in Table 6.1). For each dataset, we highlighted two landmarks with speci�c
behaviors that support the generic observations we made previously. In Figure 6.3, we
give visual examples for each of these selected landmarks. On the DROSO dataset, we can
see that landmark 8 bene�ts from the addition of up to 137 images, while landmark 10
only needs 20 images to be detected with an optimal accuracy. This could be potentially
surprising because landmarks 8 and 10 correspond visually both to a corner. However, this
can be explained by the observation in Figure 6.3 of larger variations around landmark 8
than around landmark 10. Indeed, tears and blurs seem to be more likely to occur at the
position of the wing corresponding to landmark 8 and thus, this landmark will bene�t more
from additional images. On the CEPHA dataset, we highlighted landmarks 5 and 14. Both
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Figure 6.2: In�uence of the number of images on the mean landmark detection error
(landmark speci�c) for A) DROSO, B) CEPHA and C) ZEBRA

need less than twenty annotated images to be detected at the highest possible accuracy.
However, landmark 5 is detected with a signi�cantly worse accuracy than landmark 14.
Figure 6.3 shows that the visual appearance of landmark 5 is varying a lot from one image
to another. Annotating new images does not allow to grasp this variation. Landmark
14 is easier to detect visually, because it corresponds to a well-de�ned edge (the edge
of the bottom lip). In consequence, annotating a few images is enough to detect this
landmark with high precision. On the ZEBRA dataset, we highlighted landmarks 10 and
21. The detection error of landmark 21 continues decreasing when adding more images,
but remains one of the worst errors in the dataset. On the other hand, landmark 10 is
one of the landmarks detected with the highest accuracy and it only needs a few images
to reach this performance. This is con�rmed visually in Figure 6.3. The region around
landmark 21 is mostly uniform and contains thus practically no visual information, while
the appearance of landmark 10 is more stable.
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Figure 6.3: 15 random landmark samples for 2 given landmarks of each dataset. The
landmark is positioned in the center of the square image.

Figure 6.4: Relation between the number of images and the method's parameters.
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DROSO CEPHA ZEBRA
N R P s Nr α N R P s Nr α N R P s Nr α
5 6 2 2 2 15 5 15 5 2 1 0 5 15 2 2 4 15
65 6 2 1 1 0 45 15 5 2 1 0 65 15 2 2 2 15
135 6 2 2 2 15 95 15 5 2 1 0 105 18 2 2 1 0

Table 6.2: Best set of parameters found for each N .

In�uence of the parameters

Figure 6.4 studies the relation between the number of images and the method parameters.
For a given dataset and each possible value of a given parameter (among R, P , s, and
Nr), we draw the evolution of the best average detection error over all tested values of the
other parameters (in Table 6.1) as a function of the number of images. The purpose of this
experiment is to see whether the value of these parameters have an in�uence on the impact
of the number of images on detection errors. Whatever the parameter, we hardly see any
impact of the parameter value on the detection error curve with N . Similar performance
can be obtained for all values in the selected ranges, when the other parameters are tuned
to minimize the error. Only a marginal positive e�ect can be observed when the step size
s is set to 1 instead of 2, but even in this case, the e�ect is essentially independent of the
number of images.

This result is con�rmed in Table 6.2, where we report the optimal set of parameters, in
terms of average detection error, for di�erent values of N . Onthe three datasets, the
optimal parameter setting turns out to be clearly independent of the number of training
images, except for some small �uctuations most probably only due to randomness. On
DROSO and CEPHA, the optimal setting is exactly the same for both the minimum and
the maximum values of N .

From these experiments, it thus appears that there is no need for reoptimizing the pa-
rameters when considering di�erent number of images. This is obviously an advantage.
First, it means that no additional parameter tuning is needed if we want to add new man-
ually annotated images in the dataset. Second, it suggests that parameter tuning can be
performed on a subset of the dataset, which can severely reduce computing times when
training the models since parameter tuning requires several cross-validation rounds.

6.2.3 Guidelines for manual annotation

From our observations, we can conclude that choosing the exact number of images to
annotate in advance, or trying to guess the performance of the method for a given number
of annotated images can be tricky. Some generic guidelines can however be drawn from
our experiments:

• We suggest to �rst annotate 20-30 images for every landmark in order to get a �rst
intuition about the algorithm performance. This applies even for the landmarks that
seem easy to detect (landmarks located at corners or edges).
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• Knowledge of the subject anatomy can help to highlight the landmarks requiring
more data: high variance in its appearance, possible close defects (bubbles on the
microscope blade, torns, etc.).

• During the annotation process, it is a good idea to choose a dataset of images with
large visual variations to capture as many di�erent landmark structures as possible.

• From our observations, annotating more than 70 images is probably not worthy, as
this will only slightly improve average detection errors and slightly reduce the largest
errors.

When using small datasets, we also saw that it was not necessary to adapt the parameters
of the visual algorithm in order to virtually increase the size of the training dataset. Tuning
them according to what was advised in Chapter 4, Section 4.4.4, where the parameters are
chosen according to the landmarks appearance, is still the best approach.

6.3 Analysis of post-processing methods

In Chapter 4, we proposed a method that mostly only uses the visual appearance of the
landmarks to perform the detection. It only exploits landmark positions by sampling candi-
date landmark positions around the average position of each landmark in the training data.
We compared our method with other algorithms that all use an additional post-processing
step to re�ne the landmark positions using information about the global shape formed by
these landmarks in the training images. Given that we reached the performance of those
methods, we concluded that most of the relevant information was already captured in the
distribution of individual landmark positions. However, we never tested this hypothesis
and therefore, it is not clear that our method can not bene�t from such post-processing
steps. Our objective in this section and in the next is precisely to answer this question.
In this section, we will evaluate the application of existing post-processing methods on the
top of our method, while in Section 6.4, we will propose a new post-processing approach
based on supervised regression.

6.3.1 Extension with existing post-processing methods

Experimental Protocol

The existing post-processing methods that are tested correspond to the ones described in
Chapter 2 (Sections 2.5.2 and 2.5.1), from LC [60] and DMBL [28]. LC and DMBL apply
their post-processing methods on a vote map produced by a visual model. A vote map
gives, for every position in an image, a score, e.g., a probability, for this position to be
the landmark position. There is thus one vote map per landmark. For a test image, our
method estimates the landmark probability for Np pixel positions per landmark. Then,
it extracts the landmark position as being the median of the positions with the highest
landmark probability. In order to apply the LC and DMBL post-processing methods, we
need to represent the results of our visual model as a vote map.
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Figure 6.5: Comparison of the best results obtained between Median, LC and DMBL
post-processing.

For this, we consider our Np predictions as the vote map for a given landmark. The
Np position scores are set to the probability value estimated by our tree-based visual
model. The other positions that are not scored are set to a landmark probability of 0. We
considered �rst applying a gaussian smoothing on the resulting sparse vote maps, but we
noticed that better results were always obtained without any smoothing.

During validation, we optimized the post-processing method parameters using leave-one-
out cross-validation on the whole image dataset. We compared these results with the
median approach that we used with our initial method. The vote maps were also created
using leave-one-out validation, using the corresponding default parameters given in Chapter
4, Table 4.2. Notice that the results of this experiment will be slightly positively biased:
the post-processing model trained to predict the landmark positions of a given image using
its vote map was trained using the vote maps of the other images of the dataset. However,
these other vote maps were built using visual models trained from data coming in part
from this given image (because we use leave-one-out cross-validation).

In the rest of this chapter, we will refer to the extraction of the landmark position by
using the median position of the pixels with the highest landmark probability (presented
in Chapter 4) as the Median post-processing.

Comparison of the post-processing methods

The best cross-validation results obtained during the validation of the LC and DMBL post-
processing parameters are summarized and compared to the Median approach (no post-
processing) in Figure 6.5. On the DROSO dataset, the DMBL post-processing approach
seems to obtain the best results on average. We also notice that DMBL is always better
than LC and Median, with the 95% con�dence intervals furthermore not overlapping. On
the CEPHA dataset, the LC post-processing approach obtains the worst average results,
while the DMBL post-processing approach gives slightly better performances than Median.
Given the close con�dence intervals of these average errors, it remains di�cult to consider a
clear winner. On the ZEBRA dataset, the DMBL post-processing approach obtains worse
results than the two other approaches. For this dataset, we see that LC and Median are



106 CHAPTER 6. ADVANCED ANALYSES

the most interesting approaches to use.

From these observations, we can thus conclude that there is no evidence suggesting to
blindly trust the corrections brought by any post-processing method. While it is true that
those methods can bring improvements, in some cases, they can either be ine�ective or
even deteriorate performance.

Evolution of the error and cumulative error graphs

Figure 6.6 shows the evolution of the error when using post-processing methods. In Figures
6.6 A (DROSO), B (CEPHA) and C (ZEBRA), each point represents the evolution of the
detection error of a landmark in an image between Median (horizontal axis) and LC or
DMBL (vertical axis). The Median and post-processing methods are applied on the same
vote maps. The corresponding cumulative error graphs are given in Figures 6.6 C, D and
E. Notice that we restricted the range of the cumulative error graphs to a maximal error
of 50 pixels in order to get a clear understanding of the method behavior with landmarks
that are actually detected by at least one of the methods. The corrections brought by
post-processing methods with higher detection errors can still be observed on the plots
showing the e�ect of the corrections (Figures 6.6 A, B and C).

OnDROSO (Figures 6.6 A and D), we observe that LC worsens the detection of landmarks
that are detected with a high accuracy by Median (< 20 pixels), but still corrects some of
its biggest detection errors. DMBL makes better corrections, and is not outperformed by
Median.

On CEPHA (Figures 6.6 B and E), LC also has a negative impact on the best detections
made by Median, but slightly improves the error of landmarks detected with low accuracy
(error > 40 pixels). The DMBL post-processing approach also makes some interesting
corrections for landmarks already detected with a good accuracy by Median, but it has no
impact on landmarks detected with higher errors. By looking at the three cumulative error
graphs, we can see that this dataset is the least in�uenced by the use of post-processing
methods.

On ZEBRA (Figures 6.6 C and F), LC worsens the results for landmarks detected with
good accuracy by Median (error < 30 pixels), but brings some improvements for landmark
of higher errors. DMBL always worsens the results, but converges with Median and LC on
landmarks detected with error thresholds above 40 pixels. If considering higher acceptable
error thresholds, the di�erence between the three methods is thus decreasing.

Additional observations

The main interest of LC is its relative independence from the vote maps generated by
the visual model: due to the fact that LC post-processing will primarily focus on the
construction of the most likely landmark shape, the landmark detection method is more
likely to detect the general area in which a landmark is located. However, for the same
reason, the post-processing method can ignore the local maximas generated by high quality
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maps, and thus generate small detection errors. This is for example what we observe on
DROSO: the method fails to correct the smaller detection errors, but succeeds on the
largest ones.

DMBL tends to produce good results with high quality vote maps, but confusions between
some of the image areas are still possible. This is for example the case with DROSO: most
of the wing intersections (where the landmarks are positioned) are visually close. However,
unlike LC, DMBL worsens the detection with vote maps of low accuracy, when compared
to Median. Indeed, if a landmark position is not correctly highlighted by a vote map, the
post-processing algorithm can not converge to this position, because only the best local
maximas are taken into account by the algorithm.

Median works correctly on the three datasets. However, DMBL can easily make the dis-
tinction with similar looking visual structures, and LC can correct the largest detection
errors that are made by this approach.

6.3.2 In�uence of the number of landmarks and images

As we hypothesize that the number of landmarks as well as the number of images have
an in�uence on the quality of the landmark structure model used for the post-processing
methods, we want to see in this section how they would behave with smaller numbers of
landmarks and images.

Experimental protocol

For the reduction of the number of images, we use the same approach as in Section 6.2: for
a given test image, N training images are randomly chosen among the other images of the
dataset, with the process repeated for each image and each landmark. The reduced set of
images is then used by the post-processing methods to learn their structure model. Note
that, since we want to study the impact of the number of images on post-processing only,
the visual model is trained in all cases using the full image set, without random subset
selection.

To arti�cially reduce the number of landmarks, they are randomly partitioned into groups
of L landmarks and the post-processing method is then run on each of these groups inde-
pendently, as if the other landmarks did not exist. When the total number of landmarks is
not exactly divisible by L, the group with less than L landmarks is �lled in with some ran-
domly chosen landmarks. There are thus in this case landmarks that belong to two groups,
for which two predictions are obtained, one for each group. For those landmarks, the de-
tection error that is reported below is the average detection errors of the two predicted
positions.
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Results

Figure 6.7 shows the evolution of the detection error as a function of the number of images
and landmarks for the three datasets and the di�erent post-processing methods. Concern-
ing the DMBL approach, we see that the number of images (Figure 6.7 A) has a positive
impact on the results: adding additional images seems to improve the quality of the land-
mark structure model. This in�uence is more important on DROSO than on CEPHA and
ZEBRA. It suggests that adding images at post-processing does not make up for a visual
model of lesser quality: if the visual model is not able to approximate the real landmark
location, none of these two post-processing models will be able to �nd it. We observe that
the number of landmarks does not have a signi�cant impact on the performances of the
DMBL algorithm on our datasets. Using only 3 landmarks selected randomly already seem
to bring the best results the method can obtain. Moreover, even with a small number of
images, the method always obtains results close to Median. This is due to the fact that
even if the method is unable to model the landmark structure and outputs random deci-
sions, the DMBL algorithm will still select one candidate among the most likely landmark
positions predicted by the visual model.

For the LC post-processing approach, we observe that a small number of images makes
the model completely useless, but the detection models seem to improve to solutions of
better accuracy until a speci�c threshold is reached (approximately 30 images). Once
this threshold is reached, we see that increasing the number of images further does not
signi�cantly improve the accuracy of the post-processing method. Concerning the number
of landmarks, we do not observe a clear positive or negative trend. Three randomly chosen
landmarks seem to be enough to obtain a good model of the landmark structures.

From these observations, we can thus conclude that using additional landmarks does not
bring better accuracy to the post-processing methods, at least when combined with our
visual model: for both approaches, the minimum of 3 landmarks randomly selected brings
the same results as using the maximum available number of landmarks. Using as many
images as possible is, as it could be expected, important, but just like for the visual
model, 40 to 50 images seem to be enough for the models to understand the landmark
structure.

6.4 SCA: Extension with a new post-processing method

In the previous subsection, we analyzed two distinct approaches allowing to perform the
post-processing of vote maps for landmark detection: the LC approach, based on an itera-
tive correction of the landmark positions, and the DMBL approach, based on the selection
of the best combination of landmark candidates given a MRF model of the landmark struc-
ture. We have seen that even if the DMBL approach gives the best results on average, its
results are not always satisfactory, especially when the visual models is of low quality, i.e.,
when several candidates far from the real positions of the landmarks are selected. In this
case, the MRF model is too much biased by the landmark probabilities, although they are
of low signi�cance.
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In this section, we propose a new post-processing approach that tries to circumvent the
limitations of existing methods when applied with our visual model. This approach is also
based on the scoring of landmark candidates. The general idea of this approach is to train
a supervised regression model to predict the average detection error of a given prediction
of the landmark positions and then to use this model to correct the errors made on the
candidate positions initially predicted by the visual landmark detection model. The scoring
model will be trained on candidate landmark predictions derived by cross-validation from
our visual model, with the idea that this training set will capture typical visual errors
that will happen at prediction time. We will refer to this method as the SCA algorithm,
standing for Shape Correction Algorithm.

We �rst describe the method in details in Section 6.4.1 and then perform extensive exper-
iments with it on our three datasets in Section 6.4.2.

6.4.1 Method

Before going into a formal description of the method, let us �rst give an intuitive description
of its main steps. The main idea of SCA is to train a scoring model, denoted S below, that
tries to predict the average detection error for a given candidate landmark structure, i.e.
a set of (predicted) positions for all the landmarks. This model will be used at prediction
time to select the optimal landmark structure, i.e. the one with the lowest predicted
detection error, among several candidate structures generated on the basis of the vote
maps obtained for each landmark from the visual landmark detection model. To train this
scoring model, we will derive its training samples of structures using the same algorithm
as used for extracting candidate landmark structures at prediction time. This algorithm
generates a given candidate structure by randomly selecting positions among individual
sets of candidate positions generated for each landmark. Candidate positions for each
landmark are selected that have both a high probability in the vote maps and that are not
too close to each other (to maximize coverage). To obtain vote maps at training time that
are representative of vote maps at prediction time, these latters will be obtained by leave-
one-out cross-validation. More precisely, the vote map for each landmark and each training
image will be generated by a visual detection model trained using all images except the
one for which the vote map needs to be predicted. Landmark structures given as input to
the scoring model will be described by a vector of features composed of distances de�ned
by pairs of landmarks and angles de�ned by triplets of them.

We describe below successively the algorithm to train the structure scoring model, the ac-
tual post-processing algorithm that predicts a landmark structure using this scoring model
(page 111), the canditate generation algorithm (page 111), and the feature description of
landmark structure (page 112). The training algorithm is illustrated graphically in Figure
6.8, while the post-processing algorithm is illustrated in Figure 6.9.
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Training the structure scoring model

Let us denote the training dataset of NI images as {T1, ..., TNI
} and the corresponding

positions of the NL landmarks as P (i, l) ∈ R2 (with i = 1, . . . , NI and l = 1, . . . , NL}.
We want to build a scoring model denoted S able to predict the average detection er-
ror of a given landmark structure. In order to do so, we extract a dataset of NE pairs
{(d(e), q(e))|e = 1, . . . , NE}, where each d(e) is a candidate landmark structure and q(e)
its corresponding average detection error. The number NE of candidate structures in the
training set is a user-de�ned parameter. The algorithm also depends on another parameter
NC , which is the number of positions extracted from each landmark vote map from which
the candidate structures are generated (see Step 1.(c) below).

Training proceeds as follows (see Figure 6.8 for an illustration of the di�erent steps):

1. For each training image Ti (i = 1, . . . , NI):

(a) NL visual landmark detection models are built using the NI − 1 other images
of the training dataset.

(b) The visual landmark detection models are applied each on Ti in order to obtain
one vote map per landmark denoted Vi,l(l = 1, . . . , NL).

(c) NC candidate landmark positions are extracted from each vote map (candidate
extraction is described on page 111). Let us denote by C(i, l, c) ∈ R2, the cth
position (with c ∈ {1, . . . , NC}) extracted for image Ti and landmark l.

2. NE candidate landmark structures d(e) are created using the NC candidate positions
for each landmark and training image and their detection error q(e) is evaluated as
follows (with e ∈ {1, . . . , NE}):

d(e) = (C(ie, 1, ke,1), ..., C(ie, NL, ke,NL
)), q(e) =

1

NL

NL∑
j=1

‖P (ie, j)− C(ie, j, ke,j)‖2

(6.1)
where ke,i are random integers ∈ {1, . . . , NC} and ie are random integers ∈ {1, . . . , NI}.
P (i, j) denotes the true position of landmark j in image i.

3. Candidate structures d(e) are transformed into feature vectors lsd(d(e)) ∈ Rp of size
p using a landmark structure descriptor lsd (see page 112). This yields a learning
sample:

D′ = {(lsd(d(e)), q(e))|e = 1, . . . , NE} (6.2)

4. A regression model S : Rp → R is trained on D′ to predict the average detection
error from a landmark structure feature description.

In order to learn the regression model, we use the Extremely Randomized Trees algorithm
[38] presented in Chapter 2, with NT trees.
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Using the scoring model at post-processing

Now that we have shown how the SCA scoring model S is built, we describe here how it
is integrated in a post-processing step to �nd the optimal landmark structure for a given
test image. The principle of our approach is to create NV candidate landmark structures
dt(i) for the test image. Each structure dt(i) is then given a score S(lsd(dt(i))) using
the scoring model S. The �nal landmark structure is then obtained by computing the
median position of the r × NV vectors having the smallest score (predicted error), with
r ∈ [0, 1] a user-de�ned parameter. As in the training stage, candidate structures dt(i)
will be generated by �rst extracting NC candidate positions for each landmark (using
the algorithm described later in this section, on page 111) and then randomly combining
positions from the candidates for each landmark.

More formally, for a test image T ′, a visual landmark detection model, a landmark structure
descriptor lsd and a structure scoring model S, the positions P̂l for each landmark are
computed as follows (see Figure 6.9 for an illustration of the di�erent steps):

1. Use the visual model to generate the vote maps V ′l , for l ∈ {1, . . . , NL}.

2. Extract NC landmark candidate positions {C ′(l, c)|c = 1, . . . , NC} from each vote
maps V ′l .

3. Create NV candidate landmark structures dt(i) = (C ′(1, ki,1), . . . , C
′(NL, ki,NL

)), for
i = 1, . . . , NV , with ki,l random integers ∈ {1, . . . , NC}.

4. Associate an error score si = S(lsd(dt(i))) to each structure dt(i) using the model S.

5. Let X be the set of the r ×NV indices with the smallest error scores: X = {j|sj <
sorted(si)[r ×NV ]}.

6. P̂l = median({C ′(l, kj,l)|j ∈ X}), for l = 1, . . . , NL.

Candidate landmark position extraction

In order to extract candidate positions from a landmark vote map (in step 1.(c) of the
training algorithm and step 2 of the post-processing algorithm), SCA uses the same ap-
proach as DMBL. As a reminder, a vote map Vl for landmark l gives the probability that
each pixel (x, y) of the image corresponds to landmark l. Let us denote by Vl(x, y) this
probability at pixel (x, y). A set D of candidate positions for landmark l are extracted
from Vl using the following algorithm:

1. i = 0

2. D = ∅

3. While i < NC :

(a) (x′, y′) = arg maxx′,y′(Vl(x
′, y′))

(b) if
√

(x′ − x)2 + (y′ − y)2 ≥ Rs∀(x, y) ∈ D:
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i. D = D ∪ (x′, y′)

ii. i = i+ 1

(c) Vl(x′, y′) = −1

This algorithm depends on two user-de�ned parameters: the number NC of candidates
to extract from the vote map and the selection radius Rs. The basic idea behind this
algorithm is to iteratively select each candidate as the position of maximum probability in
the image, while preventing the selection of a candidate position if it is too close (according
to the distance threshold Rs) to an already selected position.

Note that the vote maps used in this algorithm are the same vote maps as the one used
with the LC and DMBL post-processing in Section 6.3.1. In particular, no smoothing was
applied to the vote maps, as it was detrimental with LC and DMBL, and each vote map
thus contain only at most Np non-zero values.

Description of the structure (lsd)

Each candidate landmark structure needs to be described by a feature vector. In our
context, we use descriptors directly linked to our morphometric application: each candi-
date is described by the distances and angles between the di�erent landmark positions.
These features have the advantage to be independent of the absolute positions of the land-
marks and are thus robust to rotations and translations. With NL landmarks, there are
N2

L−NL

2 possible pairwise distances, and, if we consider all three angles de�ned by triplets
of landmarks, we have 3CNL

3 angles. For our ZEBRA dataset, this would mean about 300
distances and 6900 angles. To reduce the number of angles, we propose simply to select
NA angles at random per landmark, where NA is a user-de�ned parameter. This allows us
to avoid a potential combinatorial increase of the number of features with the number of
landmarks.

Notice that when the number of landmarks is large, a quadratic increase in the number of
features could also be problematic (for example, 124750 features at least can be de�ned
for 500 landmarks). In this case, we would suggest to use other type of shape descriptors,
such as the one used in LC [60], based on a PCA approximation of the structure.

6.4.2 Results

In this section, we carry out experiments with the SCA post-processing method. We �rst
describe our experimental protocol. We then perform an analysis of the in�uence of the
main method parameters and study the impact of the number of landmarks and images,
as done previously for the LC and DMBL post-processing methods. We compare the
SCA post-processing with the other post-processing methods when all are applied on the
predictions of our visual model. To get a better understanding on how the SCA approach
works, we exploit feature importance scores extracted from the tree-based scoring model
to highlight the most relevant distances and angles on each dataset. The SCA approach is
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Description Tested values
NC Number of candidates per landmark and image 1, 3, 5, 7,10, 12, 15, 20, 25, 30, 40, 50
NE Total number of training samples extracted 100, 500, 1000, 2000, 5000, 10000,

20000, 30000, 40000,50000
Rs Selection radius at candidate extraction 1, 3,5, 7, 10, 12, 15, 17, 20, 25, 30
NV Number of combinations scored at prediction 50, 100, 500, 1000, 3000,6000
NT Number of trees of the regression forest 1, 5, 10, 20, 40, 50, 70, 80, 100, 200,

500, 1000
NA Number of angles per landmark 0, 3,6, 12, 18, 24, 30, 36, 42, 48, 64, 80
r Ratio of accepted structures at prediction 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1,

0.05, 0.03, 0.01

Table 6.3: Parameter description and values tested at validation. In bold, the default
values that were used.

then compared against the full LC and DMBL methods on the same three datasets as well
as on some additional Cephalometric challenge data. Finally, to illustrate the behaviour
of the algorithm, we conclude the section by giving examples of corrections obtained by
the SCA approach on the three datasets.

Experimental Protocol

To test our method, we use a double cross-validation. An external cross-validation is
used to estimate the performance of the post-processing method, while the internal cross-
validation is used to generate the training set for the scoring model. To reduce computing
times, we use 10-fold cross-validation at both stages, instead of leave-one-out as exposed
earlier. More precisely, the dataset is divided in 10 folds. For each of the 10 test folds,
visual models are trained on the remaining 9 folds and used to produce the vote maps on
the images of the test fold. Then, a second 10-fold cross-validation is used on the 9 folds to
generate the training set of candidate landmark structures that is used to train the scoring
model. The latter is then used to obtain the �nal landmark structure prediction on the
images in the test fold of the external cross-validation.

The parameter of the method are presented in Table 6.3, with the set of values that are
tested in the experiments below. To determine the optimal parameter setting, we proceed
in two steps. In the �rst step, we test the parameter values presented in Table 6.3 for each
parameter, �xing all the other parameters to their default values (in bold in the table). In
the second step, we repeat the same process with the best parameter values found in the
�rst step replacing the default value.

Parameter Analysis

The in�uence of the parameters of our method is shown in Figure 6.10 on the three datasets.
This �gure gives the in�uence of the parameters as considered in the �rst step of our
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optimization procedure (ie. with all parameters �xed to their default values).

For the number of training samples to extract NE , we see that with only a few
samples (100), the method is already outperforming the median approach, on the three
datasets. However, it takes the method a little bit more data to converge to the optimal
performance (around 5000 observations).

For the number of candidates NC , the behavior is di�erent between the datasets: while
increasing the number of candidates always seems to be a good idea on ZEBRA, increasing
the number of candidates above 30 slightly increases the error on CEPHA, and increasing
the number of candidates above 7 signi�cantly increases the error on DROSO. Note that
such non monotonic behavior with NC was expected. Indeed, increasing NC means that
we will include more and more positions with low probability scores among the candidates
(the higher Rs, the more it is the case). The better the vote maps, the more we expect the
detection error to increase with NC , as very poor candidate positions will be considered.
And the worse the vote maps, the better it can be to explore positions with lower probability
scores. Given that DROSO is the dataset with the lowest detection errors when no post-
processing is performed, it is not surprising that we observe a fast increase of its error with
NC . Since ZEBRA is the hardest problem, it is also not surprising that its error decreases
monotonically with NC . Note that even on this dataset, we expect that the error will
always eventually start increasing if NC is chosen too high. When NC is large, candidate
positions are spread over very large portions of the images and the visual model becomes
useless. In addition, the number of possible combinations of candidates grows very quickly
with NC , making it more di�cult for our post-processing model to work properly.

The selection radius Rs around the best candidates also seem to show its importance:
increasing it on DROSO, our most accurate model, always seems to be a bad idea. This
shows that the corrections made on this dataset are often a matter of 1 or 2 pixels. Just
like with the number of candidates, increasing the selection radius will bring positions of
low probability scores in the vote map as landmark candidates, which can deteriorate the
results. On the CEPHA and ZEBRA dataset, increasing it up to 7 pixels seems to improve
the results, while going beyond this value is detrimental. As expected, this shows that less
accurate models bene�t more from candidates that are further apart.

As expected, the number NV of combinations used for selecting the best landmark at
prediction time has to be set to its maximum value for all datasets. Testing more candidate
landmark structures allows to reach lower detection errors. This parameter should thus be
set only taking into account computing times.

This is also true for the number of trees NT in the extremly randomized trees model
used for scoring. Detection errors reach convergence at approximately 100 trees for each
of our datasets.

The number of angles per landmark NA used to describe the landmark structure does
not seem to have any kind of in�uence on the results on any of the datasets. We thus
recommend not to use angles to describe the structures, and just use the distances, mainly
to reduce computing times. This behavior could be explained by the fact that distances
and angles share a biunivocal relationship in our context: the information brought by the
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angles is indeed redundant with the information brought by the distances, since the angles
can be retrieved,non-linearly, from the distances.

Concerning the ratio of accepted structures r, it seems that using low values (0.1
for ZEBRA, 0.05 for CEPHA, 0.01 for DROSO) is the best approach. The di�erence in
optimal values between datasets can be due to the fact that ZEBRA has more landmarks
than CEPHA, that has more landmarks than DROSO: with the increase in the number of
landmarks, the perfect structure is thus more di�cult to �nd through random candidates
combinations, which makes the (median) averaging of the positions of a higher number of
top-scoring structures more robust.

In�uence of the number of landmarks and images

The in�uence of the number of landmarks and images is evaluated in Figure 6.11. For the
analysis of the number of images, we did not retrain the visual models, and only reduced
the number of images used to build the scoring model. As in previous experiments, the
training images were selected randomly. The in�uence of the number of landmarks was
studied exactly as in Section 6.3.2, by randomly partitioning the landmarks into groups of
a given size at post-processing.

We can observe that the number of images and landmarks have a di�erent in�uence with
SCA than with the DMBL post-processing approach, for which these in�uences were shown
in Figure 6.7. The number of landmarks has now clearly a positive in�uence on the three
datasets. Increasing the number of landmarks tends to decrease the detection error. This
is expected as, with more landmarks, the landmark structure is better de�ned. In Section
6.4.2, we will show that the most important distances that are used for building the model
are a mix of close and remote relationships focusing on the landmarks that are generally
very well or at the opposite, not correctly detected: decreasing the number of landmarks
will prevent the model to make this type of selection. Comparing the datasets, it appears
that CEPHA bene�ts less from additional landmarks than DROSO and ZEBRA. This
could be explained by di�erences between the datasets concerning the spatial distribution
of the landmarks over the images. In CEPHA, most of the landmarks are indeed grouped
spatially into small clusters, while on DROSO and ZEBRA, the landmarks are more uni-
formly spread over the images. For landmarks that are far away from a given cluster, the
information brought by landmarks of this cluster is likely to be redundant. Because of
this redundancy, adding further landmarks is less e�ective on average on CEPHA than
on the other two datasets. The in�uence of the number of images is also interesting to
analyse. The post-processing method already brings improvement for the smaller number
of images. Still, the same amount of training data will be extracted, may they come from
1 or 137 images. This means that with a small number of images, the model is already
able to learn to make the distinction between the worse and best candidates.
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Comparison with LC and DMBL

The comparison is presented in Figure 6.12 using the same three graphs as in the previous
section. For all methods (SCA, LC, and DMBL), these results are the best cross-validation
results obtained on the full dataset of images over all parameter settings explored. We
observe that our approach obtains signi�cantly better results on all three datasets. On
DROSO, we observe that SCA enables better corrections of large errors than the two other
methods. The largest di�erence between SCA and the other methods in terms of cumula-
tive error graphs is observed on CEPHA. The main improvements seem to correspond to
landmarks detected with an error in the range [10, 20] pixels. On ZEBRA, the SCA model
gives slightly better results on small detection errors, but seems to bring its main bene�ts
for landmarks detected with an error in the interval [30, 40].

Feature importances

In addition to the experiments performed with cross-validation, we wanted to understand
how the landmark correction models were built and, in particular, which features the scor-
ing model is exploiting to make its prediction. To do so, we built a SCA score model
using all images of the dataset (with vote maps built using leave-one-out cross-validation)
and the parameters set to their optimal values as found by cross-validation. Ony land-
mark distances were used, with each feature thus corresponding to a distance between two
speci�c landmarks. From the resulting Extremely Randomized Forest model, we derived
importance scores for all features using the mean decrease of impurity measure [61]. These
importance scores represent for each feature the percentage of the output variance that it
explains in the model. We arbitrarily choose to represent in Figure 6.13 the distances of
highest importances that in total explain 50% of the variance on each dataset (surimposed
on one representative image).

On the DROSO wings, 31 ditances among 105 (29.5%) explain 50% of the output variance.
We observe that the model focuses on Landmarks 7 and 12, as well as on local relationships
in the upper left corner of the wing. Landmark 9, an easy landmark to spot, is not used
in the model. Landmarks 7 and 12 are the only landmarks connected to Landmark 8,
which is the most di�cult landmark to spot on the DROSO images. The distance between
Landmarks 8 and 7 is the most important in the dataset. Because of its remote position and
its poor visual detection, we believe that the distances between landmark 8 and the other
landmarks is unstable. In consequence, the model focuses on selecting good candidates to
its closest landmarks, landmarks 7 and 12, that will then help locating the best landmark
8 candidate.

On the CEPHA images, 46 distances among 171 (26.9%) are needed to explain 50% of the
output variance. The model focuses on Landmarks 13 and 14, as well as on landmarks
7,8, and 9. This could be explained by the fact that the upper (Landmark 13) and the
bottom lip (Landmark 14) are easy to be confused for the visual model, while landmarks 7,
8, and 9 are easy to detect by the visual model. They can thus be used as stable positions
that can be be used to evaluate the error made on the localization of the surrounding
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landmarks.

On the ZEBRA images, 64 distances among 300 (21.3%) explain 50% of the output vari-
ance. We noticed that the model again focused on distances between landmarks easier to
detect (e.g landmark 11 and 3), as well as on landmarks that are more di�cult to �nd (e.g
landmarks 13 and 2).

On all the datasets, mixes between long and short distances are selected by the model:
this probably allows the model to perform corrections on several levels of accuracy: long
distances can be used to quickly eliminate outliers, while smaller distances allow the dis-
tinction between closer candidates.

Comparison with other landmark detection algorithms

To compare our method against state-of-the-art landmark detection approaches, we pro-
pose in this section to update the results that were presented in Chapter 4, Section 4.4.2.
First, our method, which includes the visual model and the SCA post-processing, is com-
pared against our implementation of the full LC and DMBL methods on our three datasets.
Second, our method is compared against several competitors on two additional datasets
released in the context of the 2015 ISBI Cephalometric Challenge. Note that an additional
test set was since released for this challenge, and we will thus also compare the results of
the algorithms on this dataset.

For the visual model, we reused the best parameters found by cross-validation in Chapter
4, Section 4.4.2. Most parameters of the post-processing models were tuned by leave-one-
out cross-validation (LOO-CV) on the training set. Some of them were however set to
�xed value: the number of trees NT (200), the number of training samples NE (30000) and
the number of structures to score at prediction Nv (5000). The number of angles could
either be 0 or 5. Other parameters were tested in the set of values in Table 6.3. Unlike in
Section 6.4.2, to reduce the computation burden, we perform two independent, instead of
two nested, LOO CV for parameter tuning. A �rst LOO-CV is used to obtain vote maps
for each training image and each landmark, with the parameters of the visual model �xed
as in Section 4.4.2. Then, a second LOO-CV is used to tune the parameters of the SCA
post-processing method. More precisely, for each training image, a scoring model is trained
on the other images, using the vote maps predicted from the �rst LOO-CV, and this scoring
model is used to make a prediction of the landmark structure on this training image. The
combination of parameters that leads to the best detection error over the second LOO-CV
is then used to retrain a scoring model on the full training set, again using the vote maps
obtained from the �rst LOO-CV. With respect to two nested LOO-CV, this procedure
introduces some bias, as the scoring models are tested on images that have been exploited
to obtain the vote maps from which the scoring models are trained. This bias can make
parameter tuning suboptimal and thus be detrimental to our method. We believe however
that this bias will be minimal.

The results we obtained on our three datasets using this protocol are shown in Figure 6.14.
SCA obtains the best average error on the three datasets when compared to the other
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methods: LC, DMBL, and our visual method using a simple median post-processing. The
error variance of the SCA method is also lower than that of the other methods on the three
datasets.

The results obtained at the 2015 ISBI Cephalometric challenge are presented in Figure 6.15.
SCA has only a slight advantage over the other methods on Test1. Our method is only
detecting 5 landmarks with the highest performances, while 3 others are better detected
with our simple visual model (with median post-processing). On the Test2 dataset, we
obtain the second best performance with SCA, while our visual model obtains the worst
performances among the other methods. Note that, as explained in Section 4.4.2, other
methods use additional, manually labeled, landmarks to improve their performance. Given
that we did not exploit such landmarks, we believe that our approach combined with SCA
post-processing is even more competitive with the state of the art than our approach
without.

Visual examples

To conclude our experiments, we propose to show some examples of typical results obtained
by our SCA landmark detection algorithm on biomedical images when compared to the
Median approach presented in Chapter 4. For each type of 2D image, we show examples
of landmark detection on three images: one detection is performed using Median, and the
other is performed using our SCA post-processing in addition to our visual model presented
in Chapter 4 (Right). These examples are given in Figures 6.16 (DROSO), 6.17 (CEPHA),
and 6.18 (ZEBRA).

Visually speaking, we can see that the improvements brought by SCA are made on land-
marks that look more challenging to �nd: on CEPHA, the landmark 10 (corresponding
to a geometric localization depending on other landmarks) tends to be more accurately
detected. On ZEBRA, landmarks located at positions with few visual cues also seem to
be more correctly detected (landmark 16 for example).
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Figure 6.6: Evolution of the error using post-processing methods.
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Figure 6.7: In�uence of the number of images and landmarks on the post-processing meth-
ods.
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Figure 6.8: Summary of the scoring model building for SCA post-processing.
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Figure 6.9: Summary of the use of SCA post-processing at prediction.
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Figure 6.10: In�uence of the parameters of our post-processing method.
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Figure 6.11: In�uence of the number of images and landmarks on our post-processing
method.



6.4. SCA: EXTENSION WITH A NEW POST-PROCESSING METHOD 125

Figure 6.12: Evolution of the error using post-processing methods.
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Figure 6.13: Most important features used to build the SCA model (in blue).

Figure 6.14: Comparison of SCA with other results obtained on the tests sets.

Figure 6.15: Comparison of SCA with other results obtained during the 2015 ISBI Cephalo-
metric challenge.
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Figure 6.16: Sample of landmark detection on three DROSO images. On the left, using
the visual model with median. On the right, using SCA.
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Figure 6.17: Sample of landmark detection on three CEPHA images. On the left, using
the visual model with median. On the right, using SCA.
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Figure 6.18: Sample of landmark detection on three ZEBRA images. On the left, using
the visual model with median. On the right, using SCA.
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6.5 Experiments with semi-automatic landmark annotation

In the previous section, we developed a new post-processing approach for re�ning landmark
positions. The idea of this method is to �rst train a model for predicting the detection
error of a given candidate landmark structure and then to use this model for �nding the
best possible landmark structure among a set of candidate structures highlighted through
our visual model. In this section, we would to explore the possibility to improve this
method by incorporating in the procedure corrections done by a human user on some of
the predicted landmark positions. The main idea of our extension using human feedback
is to use manual corrections to reduce the set of candidate landmark structures considered
during post-processing, with the hope that this will help improving the prediction of the
positions of the other uncorrected landmarks. Our study of this topic in this section is
very preliminary and should be considered only as a �rst step towards turning our method
into a semi-automatic approach for landmark correction.

In Section 6.5.1, we will �rst study for each dataset the evolution of the average detection
error when the landmark positions are manually corrected and no modi�cation is performed
on the positions of the other landmarks. This result will serve as a baseline to assess the
improvement brought by our proposed extension. The latter will be explained and studied
empirically in Section 6.5.2.

6.5.1 In�uence of human corrections on average detection error

Given some landmark detection results, we want �rst to evaluate the impact on the re-
sults of a possible human corrections of the automated landmark detection. This could
potentially bene�t to potential users, and will help us to get a better understanding of our
method.

On the three datasets, we consider corrections of the predictions obtained with the visual
model only (i.e., with the simple median post-processing) and with the SCA post-processing
method. When simulating a human correction, we assume that the detection error becomes
equal to 0 for each corrected landmark (i.e., the human makes no mistake), while in this
section the predictions for the uncorrected landmark remains unchanged. For each image,
we suppose that the observer would correct the N landmarks that were detected with the
lowest accuracy. Figure 6.19 shows in these conditions the evolution of the mean landmark
detection error as a function of the number of corrected landmarks. In other words, these
curves show on each problem how many landmarks must be corrected manually if the
average detection error is to be lower than a prede�ned threshold.

The �rst thing that can be observed is that it is always better to correct the predictions
made by the method using post-processing. Even if the �rst corrections bring propor-
tionally smaller improvements, the average detection error when correcting the positions
obtained with post-processing are always smaller, for all of the datasets. The di�erence
between the two methods is smaller with CEPHA and ZEBRA than with DROSO, but it
is still observable in these cases. On the three datasets, the di�erence between the visual
model and the post-processing method vanishes with the number of corrected landmarks.
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Figure 6.19: Impact of manual correction on the mean landmark detection error.

The correction of the positions of the 5 to 6 worst predicted positions will lead to a halving
of the average detection error.

6.5.2 Exploiting human corrections at post-processing

The SCA post-processing method tries to select the best landmark structures from a set of
candidate structures, where these structures are generated from the vote maps predicted by
the visual model. The idea of the approach developed here is that the corrected landmark
positions can be exploited to reduce the set of candidate landmark structures explored by
the post-processing method. This could allow the method to detect the other landmarks
more accurately. We give below a more formal presentation of the approach.

Landmark position prediction

Let us denote by NL = {1, . . . , NL} the set of all landmark indices and by KL ⊂ NL

the indices of the landmarks that have been manually corrected on a test image T ′. For
this image, we want to compute an estimate P̂l of the exact landmark positions Pl for all
l ∈ NL\KL. Given a visual landmark detection model, a landmark structure descriptor lsd,
a structure scoring model S, the modi�ed post-processing algorithm works as follows (steps
that are modi�ed with respect to the algorithm in Section 6.4.1 page 111 are highlighted
in blue):

1. Use the visual model to extract the landmark vote maps V ′l , for l ∈ Nl \ Kl (the
uncorrected positions).

2. For each l ∈ Nl\Kl, extractNC landmark candidate positions {C ′(l, c)|c = 1, . . . , NC}
from each vote maps V ′l using the algorithm described in Section 6.4.1, page 111.
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3. For each l ∈ Kl, set all NC candidate positions at the true position: C ′(l, c) = Pl for
c ∈ {1, . . . , NC}.

4. Create NV candidate landmark structures dt(i) = (C ′(1, ki,1), . . . , C
′(NL, ki,NL

)), for
i = 1, . . . , NV , with ki,l random integers ∈ {1, . . . , NC}.

5. Associate an error score si = S(lsd(dt(i))) to each structure dt(i) using the model S.

6. Let X be the set of the r ×NV indices with the smallest error scores: X = {j|sj <
sorted(si)[r ×NV ]}.

7. P̂l = median({C ′(l, kj,l)|j ∈ X}), for l = 1, . . . , NL.

8. For each l ∈ NL \ KL, compute P̂l = median({C ′(l, kj,l)|j ∈ X}).

Because of step 3, the positions of corrected landmarks is �xed to their true positions in
all candidate landmark structures. Only the positions of the other landmarks are modi-
�ed.

Generic versus speci�c scoring model training

The previous algorithm requires a scoring model. We will consider below two strategies
to train this model. The �rst strategy is to train it using the exact same algorithm as
in Section 6.4.1, i.e., without taking into account the fact that some landmark positions
are corrected. We will call this strategy generic training. The main advantage of this
approach is that a single scoring model needs to be trained and can be used whatever
the landmarks that are corrected at prediction time. We will test below another strategy,
called speci�c training, that takes into account the landmarks that are corrected. It works
exactly as in the algorithm of Section 6.4.1 page 110, except that the positions of the
landmarks corrected in the test images are now �xed to their exact positions in all NE

candidate landmark structures used for training the scoring model. Note that there is no
need anymore to train a visual model for the corrected landmarks at the post-processing
stage, although such model might still be required to provide the �rst predictions to be
corrected by the user. This speci�c training has the drawback that it requires to train a
speci�c scoring model for each potential subset of corrected landmarks. However, since the
scoring model is trained in conditions that are closer to the conditions of its applications,
we can expect some improvement with respect to generic training.

6.5.3 Results and observations

The tests that were performed for this analysis were all completed using leave-one-out cross-
validation, using several sets of parameters for our post-processing method with manual
correction. These tests were realized using the three datasets DROSO, CEPHA and ZE-
BRA. For each dataset, we analyzed the mean detection error brought by correcting the
position of di�erent numbers of landmarks: from 0 to all the landmarks of the dataset.
When we simulate a correction, we modify the position of the landmark to its real position
in the dataset, thus cancelling its detection error totally. For each test image, we consider
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Figure 6.20: Comparison of the evolution of the error with and without applying our
post-processing method on the corrected landmark positions.

that the observer corrects �rst the landmark positions that are the less accurately detected
by the fully automatic approach. As a consequence, the corrected landmarks are likely to
be di�erent from one image to another. This also means that our model will need to focus
on correcting landmark positions that were detected with relatively higher accuracy.

Figure 6.20 shows the detection error that our modi�ed post-processing method obtains
(with generic training), compared with the error obtained by these manual corrections,
without modi�cation of the positions of the uncorrected landmarks. The errors that are
reported on the y-axis corresponds to the average error over the landmarks that are not
manually corrected. For our method, we kept the set of parameters with the best average
results over the whole numbers of corrected landmarks. We observe that our post processing
method brings slight improvements when a small number of landmarks are corrected.
Suprisinglt, when the number of corrected landmarks grows, it becomes better not to use
the post-processing method to improve the positions of the other landmarks. On DROSO,
the detection error for the uncorrected landmarks grows strongly when most landmarks
are corrected. This might be due to the fact that the uncorrected landmarks are the one
with the lowest detection errors. The accuracy of their detection might have reached their
limit and post-processing them further only introduces further variance that deteriorates
the detection error.

The results reported in Figure 6.21 compares the speci�c and the generic approaches for
training the scoring model. There is no signi�cant di�erence between the two approaches.
This means that there is no need to build speci�c models for post-processing corrections,
which signi�cantly speeds up an assisting tool using the post-processing method for au-
tomated correction. We also tried our post-processing re�nements if the corrections were
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Figure 6.21: Comparison of di�erent strategies for using the post-processing model on
corrected landmark positions.

performed on landmarks selected randomly in order to consider the relevance of using our
post-processing approach. We can see that even if the corrections are not as e�cient as
when the worst detections are corrected �rst by the observer, the average error over the
remaining landmarks tends to decrease, which shows that our method is still able to bring
improvements to the detection in speci�c scenarios.

6.6 Conclusion

The goal of this chapter was to propose a practical analysis of current state-of-the-art land-
mark detection methods through the prism of our own algorithm. Indeed, most landmark
detection algorithms are divided into two similar steps: a �rst phase in which a visual
model is used to generate vote maps for the likelihood of the landmark's appearances. In a
second step, these vote maps are used in combination with a model of the global landmark
structure in order to re�ne the �nal landmark's positions.

In Section 6.2, we analyzed, with our visual landmark detection algorithm, the in�uence
of the number of images on the results, and extracted guidelines to help the potential user
annotate his set of training images. The main observation that was made was that 30
images were enough for the easiest landmarks, while 70 images could be necessary for the
hardest landmarks. On average on our three datasets, using additional annotated images
will only give slightly better results on landmarks incorrectly detected.

In Section 6.3, we analyzed existing post-processing methods when applied on vote maps
produced by our visual model. Our goal was to evaluate the impact of post-processing
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methods on our results and compare these post-processing approaches to the simple me-
dian post-processing that we used in Chapter 4. We showed that correcting landmark
positions with a given post-processing method was not always bene�cial to the results
when compared to our Median approach: the LC iterative post-processing approach only
improved over median post-processing on DROSO, while the DMBL post-processing ap-
proach improved the results for DROSO, but signi�cantly worsened them on ZEBRA. The
main advantage of the LC post-processing approach is that it is easy and fast to learn, and
is able to e�ciently correct the larger visual errors and confusions, because it converges
to the most likely shape. However, it fails to correct the smaller errors and sometimes
even increases them, for the same reason. DMBL is able to e�ciently correct the largest
errors without increasing the errors on well detected landmarks only when the vote maps
are accurate. With inaccurate vote maps, the model seems unable to understand which
are the best candidates to select.

In Section 6.4, following these observations, we proposed a new post-processing method,
SCA. Our post-processing approach, based on the same candidate selection than DMBL,
does not try to directly learn the landmark structure, but learns the error made by the
combination of landmark candidates output from the visual model. This method always
signi�cantly improves over median post-processing on our three datasets. We think that
the main advantage of our method is that we only focus on the typical errors made by
the visual model that was trained. Its main disadvantage is that the approach is di�cult
to tune, especially if several visual models are tested, and also introduces an important
computational burden. While it is the most e�cient approach, it could become di�cult
to apply it on landmark structures with large number of landmarks (more than 100, as
in face detection for example), because of the exponential growth of possible landmark
combinations.

In Section 6.5, we analyzed the impact of manual correction on the landmark detection. We
saw that by correcting the positions of 5 to 6 landmarks on each image, the mean landmark
detection error could be reduced by half. We proposed an extension of our post-processing
method to take into account those human corrections to potentially improve the predicted
positions of the uncorrected landmarks. Unfornutaly, we could not obtain satisfactory
results. At the present stage of our experiments, the interest of using post-processing
approaches with manual corrections is of very limited interest.

As future work, we think that it could be interesting to extend our post-processing ap-
proach to 3D images, and analyze its impact in this context. In the context of the SCA
approach, it could also be interesting to test di�erent ways to represent the landmark
structure: we could for example try to extract a structure using feature reduction methods
such as PCA, as proposed in LC [60]. Another interesting approach would be to analyze
the results obtained using an unsupervised methodology such as Random Sample Consen-
sus (RANSAC) [35], that could focus on the elimination of outlier structures among the
candidates. Additionally, an in-depth study of methods able to take advantage of human
correction could be interesting. We could for example try di�erent structure descriptors,
but also di�erent ways to build the training dataset. In the speci�c training approach,
it could be interesting for example to generate candidate structures for training the scor-
ing model that includes some small perturbations around the positions of the manually
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corrected landmarks, instead of keeping them �xed.



Chapter 7

Conclusion

In the �rst part of this chapter, we highlight the main results and observations that we
have obtained during the realization of this work regarding the study and the development
of supervised algorithms for the detection of landmarks on biomedical images. In a second
time, we consider the perspectives concerning the future development of our supervised
landmark detection algorithms for biomedical images, as well as for di�erent problems
that could potentially bene�t from the use of such algorithms. Please notice that the
di�erent contributions (papers, posters, presentations, challenges...) were highlighted in
the Introduction chapter.

7.1 Summary

Our work primarily focused on the development and the analysis of landmark detection
methods for biomedical images. These algorithms were applied in two di�erent contexts:
morphometric analysis on biological bodies, and CT-CBCT image registration for radio-
therapy. Along the chapters of this thesis, we have progressively described the improve-
ments and extensions of this method, while comparing it to the di�erent competitive
approaches in the �eld.

Chapters 1 and 2 provided an introduction to the problematic of landmark detection
tackled during this work as well as a short presentation of supervised machine learning and
competitive methods.

In Chapter 3, we developed a basic method for the detection of landmarks based on
supervised learning and we validated it on a cephalometric image database. This method
is based on the construction of visual pixel classi�cation or regression models that tries
to evaluate whether or not the appearance of a pixel corresponds to the one of a given
landmark. This approach uses multi-resolution pixel descriptors, as well as an intelligent
approach aimed at reducing the number of pixels to be extracted both at the training of
the learning model and at the prediction of the position of these di�erent landmarks on
new images. In this chapter, we reviewed the potential interest of these two ideas, and we
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compared our method with state-of-the-art algorithms used in the context of a challenge
associated to the cephalometric dataset. As a result of this latter comparison, it appears
that the most competitive methods in the domain, like ours, mainly used Random Forests
as a supervised learning algorithm.

In Chapter 4, we have extended the basic method presented in Chapter 3 in order to im-
prove its accuracy and genericity on new datasets. We also performed an in-depth study of
the in�uence of its di�erent parameters. With this extension, we tried to use new ways to
describe a pixel, and we proposed to parametrize some aspects of the algorithm, in order to
adapt it more generically to new datasets. Using three databases of biological images with
di�erent numbers of images, landmarks, but also di�erent resolutions and visual landmark
representations to �nd, we were able to highlight the importance of correctly choosing the
parameters of the landmark detection method. We have proven the importance of multi-
resolution features on these three datasets, and compared ourselves to state-of-the-art
algorithms that were reimplemented. On these three datasets, we obtained results equiva-
lent or superior to the state of the art, while proposing a more generic and faster approach
than these other algorithms. Finally, we also analyzed the robustness of our algorithm.
We showed in particular that using raw pixel descriptors (RAW, SUB, GAUSSIAN SUB)
could give competitive results. They were however negatively a�ecting the performances
of the algorithm on the dataset with the largest deformations (DROSO).

In Chapter 5, we extended our method of landmark detection to 3D multimodal rigid im-
age registration on a CT-CBCT radiotherapy dataset. The approach we proposed to tackle
this image registration problem is to use our automated landmark detection algorithm in
order to automatically �nd the positions of common anatomically interesting landmarks
in the images of the two modalities. The positions of these landmarks are then matched
by calculating the corresponding rigid transformation. This transformation is then applied
to the whole images to be registered. During this study, we showed that this approach is
competitive with the performances achieved by regular state of the art rigid registration
algorithms, and that in addition, this approach does not require manual pre-selection of
regions of interest. This gives to our approach a considerable advantage in processes where
the speed of registration and the reduction of manual intervention are important factors,
which is the case in the radiotherapy context studied in this work. However, we observed
that the alignment results were not as good as what an operator could achieve by manually
registering the two volumes without using any registration algorithm. We also showed that
the use of multi-resolution voxel descriptors was less relevant in this particular context. In-
deed, the landmarks being easily recognizable, the use of multi-resolution features seemed
to bring less information than in the 2D context.

In Chapter 6, we performed three types of analysis for the practical use of the di�erent
landmark detection algorithms. First, we performed experiments that allowed us to ex-
tract general instructions that should assist in the manual annotation of a training image
database for landmark detection algorithms using supervised learning. These instructions
focused on the choice and number of images and landmarks that should be annotated.
We also observed that the parameters of the detection method should not be speci�cally
adapted to the number of images on which it was applied. The second part of this chapter
focused on the analysis and the development of post-processing methods in the context
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of landmark detection. We found that post-processing methods based on an unsupervised
modeling of the landmark structure does not always improves the quality of the detection
when compared to the simple consideration of a visual model. Following this observation,
we developed a post-processing method based on the correction of the errors committed
by the visual model. We showed that this algorithm was able to signi�cantly improve the
quality of the landmark detection in images. Finally, we proposed a simple approach to
take into account the possibility of using human interaction in order to improve the results,
and analyzed the possibilities brought by this method.

In addition, all algorithms proposed in Chapters 4 and 6 were implemented in Cytomine
[66], an open-source platform for the analysis of (biomedical) images. Instructions on how
to use the landmark detection module in Cytomine are given in the supplementary material
of [66]. The source code is also available for direct use outside Cytomine, but can also be
modi�ed for further optimization and/or in order to �t di�erent needs.

7.2 Future perspectives

To conclude this thesis, we consider in this section several ways to improve, extend, or use
the landmark detection methods that we developed during this thesis.

7.2.1 Deep neural networks

Since the start of this thesis, deep neural networks have reached an unprecedented popu-
larity in computer vision. Due to new methodological developments and to improvements
of computing architectures and softwares, these methods have reached excellent perfor-
mance in a large number of image processing tasks [53, 79, 55]. While we have based our
approach on tree-based supervised learning techniques, it would be obviously interesting
to investigate the use of deep neural networks for landmark detection. At the time this
thesis is written, little concrete progress has however been made in the speci�c �eld of
landmark detection in biomedical images using these methods. A few studies using neural
networks to detect landmarks in cephalometry have been published [57, 4], but, in view of
the results presented in these papers, neural networks do not seem to bring very signi�cant
improvements with respect to tree-based supervised learning methods. This conclusion
must be taken with caution however, since the results reported in these di�erent papers
are obtained on datasets that are not available for comparison. Further work is therefore
needed to extend these methods for landmark detection in the biomedical domain and to
compare them fairly with state of the art tree-based methods. We discuss in the rest of
this section several ways to apply neural networks for our problem.

We believe that the classical deep learning approach that would aim at creating a convo-
lutional neural network directly outputting the landmark positions from the image pixel
values will not be the most e�cient in our context. Indeed, even if this type of approach
seems to work well for face detection for example [7], we must consider the biomedical
context on which we focused in this thesis. Indeed, those methods are generally mostly
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successful on problems where large training datasets of images are available. However, as
we have already pointed out, one of the central challenges in the biomedical domain is that
we do not have this large number of training images. Moreover, we also have images with
a high resolution from which it should be di�cult to create a model able to accurately
(pixel-wise) predict all of the landmarks positions. However, it seems to us that the use of
neural networks remains possible in the context of our problem, if they are applied at the
level of subwindows, as in our approach, or if appropriate data augmentation techniques
are considered.

A �rst straightforward idea would be to simply replace the Random Forest model used in
our method with a convolutional neural network, keeping all other steps of our algorithms
unchanged, including the extraction of subwindows at training and at prediction as well
as the use of multi-resolution descriptors. An additional small modi�cation could also
be to develop a neural network structure where di�erent convolutional layers would be
used for each of the resolutions we consider. We could then aggregate the output of these
di�erent networks into a �nal multi-layer perceptron in order to obtain a classi�cation or
regression result. In order to facilitate the training of these speci�c networks, at their
di�erent resolutions, we could use characteristics extracted from the internal layers of
neural networks trained on very large numbers of images, such as GoogleNet [82], AlexNet
[54] or ResNet [41]. This approach is used in many image classi�cation tasks for the
extraction of image features [97, 96]. A priori, we do not have conclusion about the
performances that could be obtained with this approach. However, we expect that it would
require a lot of training and validation time in order to give optimal results, contrary to
the methods we have developed in this thesis.

Multi-layer perceptrons could also replace our Random Forests scoring model in the post-
processing stage described in Chapter 6. Indeed, it seems very likely that these models
could learn the structures formed by a combination of landmark candidate positions. In
Chapter 6, we described this landmark structure using the distances and angles between the
di�erent landmarks candidates. This representation, while functional, remains debatable.
Since neural networks are based on (non) linear combinations of input characteristics, we
could imagine that instead of directly developing a de�nition of the structure, we could
provide the raw coordinates of the landmark candidates to the model, which would then be
tasked to discover the most relevant coordinate combinations in order to build the scoring
model. In this context, it would be easy for us to generate a large number of candidate
combinations as required to train multilayer perceptrons.

Moreover, it seems that certain techniques based on the use of deep neural networks would
be useful in the detection of landmarks. For example, the Generative Adversarial Networks
(GAN) [40] caught our attention. The principle of a GAN is to develop two neural networks.
The �rst must generate arti�cial data from noise, and is optimized to confuse the second
network, which is optimized to di�erentiate the arti�cial data generated by the �rst network
from real data. Using this technique to generate new arti�cial images and/or annotations
could potentially allow to overcome the problem of a lack of images and/or annotations in
the biomedical domain.

Other approaches generally associated with deep neural networks could also be imagined
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to tackle the problem of landmark detection. Given the good practical results obtained in
this thesis, it seems to us, however, that the other supervised learning algorithms, and in
particular the ensemble of trees, are not completely out of date, and in this context deserve
to be at least considered as a point of comparison. This is also relevant since most neural
network training methods rely on the intensive use of dedicated computing infrastructures,
such as GPU clusters. Such infrastructures may indeed not be available to people who
want to apply a landmark detection method to their own data.

7.2.2 Dealing with the lack of annotated images

As illustrated in this work, the main problem encountered was the annotation of the data.
While many non-annotated images are potentially available, few images have been anno-
tated with landmarks. This prevents us from using methods that require large numbers
of landmarks and images to reach optimal performance. This also leads to potentially less
interesting and representative results.

Chapter 6 has been partly developed to study some aspects of this question. However, it
seems to us that it would be relevant to further study this particular problem. Several
approaches can be considered in this direction.

First, as explored in Chapter 6, one possibility would be to use semi-automatic annotation
methods, where the operators is assisted by the algorithm in his annotations. The study
in Chapter 6 remains however very limited: we do not consider human annotation times or
potential annotation problems related to the user interface. A �rst track would therefore
be to improve this semi-automatic learning approach.

A second possible research direction could be to use data augmentation techniques to
increase the number of annotated images. As stated above, GANs could be an interesting
possibility. Along with the same idea, given the large number of non-annotated images
often available in some domains, it would be interesting to take them into account during
the development of the algorithm for improving landmark detection performances. This
could be achieved by exploiting so-called semi-supervised or transductive learning methods
[16].

One last possibility could be the use of transfer learning methods. The principle of transfer
learning is to use a model developed for a speci�c application in the context of another
application. This could for example mean using a visual model developed for detecting
landmarks on drosophila images when the �nal goal is to develop a landmark detection
model for zebra�sh images. For example, a visual model developed for one kind of images
could be useful to detect new, initially not available, landmarks in other kinds of images
that might help �nding the original landmarks in these latter images by incorporating
the new landmarks in the post-processing step. We have indeed shown that increasing
the number of landmarks could improve the performance of post-processing landmark
correction techniques.
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7.2.3 Extension of post-processing methods to 3D images

In the context of Chapter 6, we decided to focus on our 2D image databases for purely
practical reasons: the validation of the post-processing approaches studied would have
required a considerable number of additional computations. In addition, visual model
detection errors on these volumes appeared to be more satisfactory than on 2D images,
and therefore the potential contribution of post-processing methods seemed less interesting
to study. However, there is no reason, that the value of these post-processing methods can
not be studied further on 3D images. In order to carry out this analysis, we would also like
to be able to study the potential impact of these post-processing methods on other types
of 3D volumes: 3D cephalometry, other body regions, etc.

7.2.4 Integration of the visual and post-processing steps

All of the landmark detection methods that we have studied, including ours, perform the
post-processing phase once the visual models have been trained. We believe that landmark
detection methods could potentially bene�t from the integration of both steps.

Chaining. The idea of this approach would be to detect a �rst landmark via a purely
visual model. The second landmark would then be detected using a visual model that
would also consider the position of the �rst detected landmark (for example, through its
pixel descriptor). The third point would then be detected considering the position of the
�rst two landmarks, and so on. Preliminary tests were carried out with this approach,
which showed encouraging results.

Common descriptor. The idea of this approach is to simply describe a landmark struc-
ture through the combination of the visual descriptions of each potential candidate land-
mark positions as well as descriptors for the geometrical relationships between those land-
marks. More concretely, for representing a given combination of landmark candidate po-
sitions, we would concatenate all the visual descriptors of each position, as well as the
descriptors of the structure (angles and distances). Preliminary tests were also conducted
with this approach, but obtained results were not conclusive: the models developed were
not able to identify correctly the best candidate structures. Moreover, we have not managed
to develop an e�cient approach for selecting the best possible combination that avoids the
combinatorial explosion due to the number of di�erent landmark positions to test.

7.2.5 Interactive landmark detection

We think that one of the main challenges of future landmark detection algorithms will be to
integrate the information brought by human experts in order to further increase detection
performance.
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We made a �rst experiment for approaching this challenge in Section 6.5. In this experi-
ment, we observed the behavior of our post-processing model when corrections were made
on the landmarks that were detected. We saw that the improvements brought by this
approach were limited, but we think that there is still ample room for improvements. For
example, other strategies to train the post-processing model when considering human in-
teraction could be studied: for example, small perturbations could be added to the training
dataset in order to help the model understand the variations between the landmark struc-
tures. Additionally, it could be interesting to retrain the visual detection models with this
information. This approach would then become linked to the suggestions made in Section
7.2.4.

Finally, we only proposed one way to use informations coming from human observers, i.e.,
through the correction of some landmarks. Other possibilities could also be considered:
the expert could for example in�uence the detection by highlighting region(s) of interest
in which the landmark(s) could be found. Another possibility could also be to re-train
the post-processing and visual models by using the corrections that were brought by the
human observer on (a subsample of) the dataset on which the models were applied.

7.2.6 Application to other research domains

In this thesis, we focused on two practical applications that bene�t from using automated
landmark detection algorithms: morphometric studies as well as the rigid registration of
images. However, we believe that other applications could bene�t from the possibilities
o�ered by the automatic detection of landmarks.

Non-rigid Image Registration In Chapter 5, we showed that it is possible to align
images using our landmark detection method. We believe that by using more landmarks,
intelligently distributed over the bodies to be registered, we could also calculate and apply
non-rigid transformations using the same approach. In this context, an important part of
the work will probably be to automate the choice of landmarks to use in order to obtain a
representative non-rigid deformation once the landmarks are detected.

Image segmentation. A second application of the detection of landmarks could concern
the segmentation of images. Indeed, by detecting landmarks, we could try to model the
contours of an object, and therefore allow its segmentation.

Image classi�cation and regression. Finally, its usefulness could also be in problems
of classi�cation and regression of more generic images: the landmarks could then be con-
sidered as intermediate information that can subsequently be reused to de�ned features
used as inputs by another supervised algorithm. For example, we could imagine applica-
tions where distances between landmarks would be decisive in determining the class of an
image.
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