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Abstract 

 

In agricultural fields, wildflower strips can be sown to enhance conservation biological 

control of insect pests. However, issues remain regarding the composition of flower mixtures 

to effectively attract and support large communities of natural enemies. Trait-based 

approaches are promising for this purpose. In the present study, conducted in an agricultural 

field of Belgium in 2014 and 2015, 15 flower mixtures were considered to explore the relation 

between the abundance of trapped generalist predators (i.e., lacewings [Neuroptera: 

Chrysopidae], ladybeetles [Coleoptera: Coccinellidae] and hoverflies [Diptera: Syrphidae]) 

and the community-weighted means of seven flower traits. Through a redundancy analysis, it 

was found that the presence/absence of flower ultra-violet pattern and the morphology of the 

corolla (that determines the accessibility of floral resources) were the traits that significantly 

affected the abundance of the generalist predators in the flower mixtures. The ladybeetles 

Harmonia axyridis and Propylea quatuordecimpunctata as well as the lacewings Chrysoperla 

carnae were more abundant in mixtures with a high cover of flowers showing an ultra-violet 

pattern, while the opposite was observed for the ladybeetle Coccinella septempunctata. As for 

hoverflies, Episyrphus balteatus and Eupeodes corollae were more abundant in mixtures with 

a high cover of flowers with open nectar. These results bring new knowledge regarding how a 

range of natural enemy species reacts to flower cues in diversified plant communities and 

should help in elaborating flower mixtures that enhance conservation biological control. 

 

Keywords: Conservation biological control; Coccinellidae; Syrphidae; Chrysopidae; 

Community-Weighted Mean; Ultra-violet pattern; Corolla morphology 

 

 

Introduction 

 

Spatial diversification of agroecosystems is prerequisite for the delivery of ecosystem services 

in agricultural landscapes (Wratten et al. 2012; Hatt et al. 2018). The natural regulation of 

insect pests is one of these ecosystem services (Letourneau et al. 2011; Dassou and Tixier 

2016; Rusch et al. 2016). It can be enhanced by manipulating habitats to increase the 

abundance, diversity and efficacy of pest natural enemies (i.e., conservation biological 

control, Barbosa 1998). At the field scale, crop habitats can be diversified by cultivating 

variety mixtures (Grettenberger and Tooker 2017) or multiple crops simultaneously (Lopes et 
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al. 2016). Moreover, semi-natural habitats can be implemented and managed adjacent to crops 

(Holland et al. 2016).  

Wildflower strips (WFS) are one these semi-natural habitats. Over the last two decades, 

several studies explored whether sowing and/or managing WFS in agricultural landscapes 

allow enhancing the provision of ecosystem services (for a review: Uyttenbroeck et al. 2016). 

Recent studies have shown that sowing WFS adjacent to crops enhances biological control of 

insect pests due to an increased abundance of natural enemies (Tschumi et al. 2016; Hatt et al. 

2017a; Toivonen et al. 2018). Indeed, generalist predators such as hoverflies (Diptera: 

Syrphidae), ladybeetles (Coleoptera: Coccinellidae) and lacewings (Neuroptera: 

Chrysopidae) commonly consume nectar and pollen from flowers at some—or at all—of their 

development stages in addition to prey food (Lundgren 2009a; Lu et al. 2014). Hence, 

flowering plants can attract and support them particularly when prey is scarce. Nevertheless, 

the studied WFS may not succeed in significantly increasing the diversity (i.e., richness and 

evenness) of these natural enemies in adjacent crops (Hatt et al. 2017a), thus questioning the 

ability of WFS to enhance biological control of several pest species in the long term. Indeed, 

the strength and stability of biological control may need a high functional diversity and 

redundancy of natural enemies, which is favoured by a high species richness and evenness 

within their community (Letourneau et al. 2009; Crowder et al. 2010; Jonsson et al. 2017). 

Trait-based approaches have been increasingly used to understand how vegetation 

composition and management affect natural enemy abundance and diversity towards 

biological control (Gardarin et al. 2018; Perovic et al. 2018). The use of functional traits 

instead of taxonomic diversity allows an easier generalization of the observed patterns and 

mechanisms to other agroecological contexts. Indeed, whereas certain species are found in 

relatively specific ecological ranges, traits are attributes that can be shared across species and 

ecological ranges. As stated by McGill et al. (2006), ‘statements about traits give generality 

and predictability, whereas nomenclatural ecology tends towards highly contingent rules and 

special cases’. 

For flower-insect interactions, previous research has identified the flower traits and their 

values that determine natural enemy attractiveness (Sutherland et al. 1999; Koski and Ashman 

2014; Song et al. 2017), their ability to collect floral resources (Nave et al. 2016; Van Rijn 

and Wäckers 2016) and the benefits they obtain from these resources (Vattala et al. 2006). 

Most of these studies used artificial devices or assessed the paired interaction between a 

certain flower species and a given insect species in relatively controlled environments. In field 

conditions, Fiedler and Landis (2007) identified that among six traits measured on 48 plants 
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sown in separate plots, an increased floral size and a late peak bloom increased the abundance 

of natural enemies approaching flowers. Additionally, Van Rijn and Wäckers (2016) showed 

that hoverflies more often visit flowers with accessible nectar in species-rich WFS. However, 

few studies to our knowledge have identified the various floral traits and their values that 

affect the abundance of an array of natural enemy species in multiple species WFS. 

Several types of metrics are used to understand plant-arthropod interactions in diversified 

ecosystems (Gardarin et al. 2018). Among them, the Community-Weighted Mean (CWM) is 

the ‘mean of [trait] values present in the community weighted by the relative abundance of 

taxa bearing each value’ (Lavorel et al. 2008). By considering the functional traits rather than 

the plant species per se, the CWM is a descriptor of the functional composition of a 

community and a predictor of ecosystem processes (Garnier and Navas 2012). Previously, 

Hatt et al. (2017b) related the abundance of specialist natural enemies (i.e., the parasitoids of 

Meligethes spp. [Coleoptera: Nitidulidae] and Ceutorhynchus spp. [Coleoptera: 

Curculionidae]) with the CWM of flower traits in perennial WFS. By following a similar 

approach, the present analysis aims at identifying those flower traits which affect the 

abundance of generalist predators (i.e., predatory lacewings, ladybeetles and hoverflies) in 

such semi-natural habitats. 

 

Material and methods 

 

Field setup 

 

The study was conducted in a field of the AgricultureIsLife experimental farm of Gembloux 

Agro-Bio Tech (University of Liege) in Belgium (50°34′03″N; 4°42′27″E). The surrounding 

landscape comprised a matrix of crop fields and pastures, semi-natural habitats (woodlots, 

riverbanks, roadsides) and urban areas. In June 2013, five replicated WFS (125 m × 8 m) 

were sown in the centre of the field. Each WFS was separated by 27 m of crop (Fig. 1). 

Oilseed rape (Brassicaceae: Brassica napus) was cultivated from September 2013 to June 

2014 and winter wheat (Poaceae: Triticum aestivum) from October 2014 to July 2015. Each 

WFS was divided into five plots (25 m × 8 m). Four of the plots were sown with a different 

flower mixture made of three Poacae species (Festuca rubra, Agrostis spp. and Poa 

pratensis) and seven perennial wildflower species that are commonly found in Belgian 

grasslands (seeds were purchased from Ecosem, Belgium). The fifth plot in each WFS was 

sown with only the three Poacae species. In total, 17 perennial flower species were sown in 
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the field (Table 1; for more details regarding the sowing protocol and the composition of each 

mixture at sowing, see Uyttenbroeck et al. 2015, 2017; Hatt et al. 2017c). The layout resulted 

in a Latin square design with 25 plots and in the present study, three out of the five WFS (in 

total 15 plots) were used (Fig. 1). Spontaneous plant species were allowed to grow into the 

plots (i.e., they were not removed) which increased the variability of the different plots in 

terms of plant composition. 

 

Fig. 1 Experimental design. 1–15 are the flower plots considered. Mean cover of each flower 

species in every plot is given in Table S2 

 

 

 

Flower species monitoring and plant traits 

 

In each plot, three 1 m × 1 m quadrats were installed at a distance of 6 m to one another (Fig. 

1). On 17
th
–18

th
 June 2014 and 18

th
 June 2015, the presence of each flower plant and their 

relative cover (%) were assessed in each quadrat following the nomenclature of Lambinon et 

al. (2004). Additionally, the blooming flower species were recorded by visual observations 

following a 20 m × 2 m transect in each plot in May 2014, June 2014 and June 2015. 

Although flower blooming was expected to change from May to June, it was hypothesised 

that plant diversity and relative cover were stable through this period. 

Each flowering plant recorded in the quadrats was described through seven traits (Table S1) 

that are known to affect the behaviour of flower-visiting insects (e.g., Sutherland et al. 1999; 
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Wratten et al. 2003; Fiedler and Landis 2007; Adedipe and Park 2010; Koski and Ashman 

2014; Van Rijn and Wäckers 2016). Traits related to visual cues were (i) flower colour (i.e., 

yellow, white, violet), (ii) the ultraviolet (UV) reflectance of the peripheral part of the flower 

(numerical value in % indicated as ‘UV periphery’) and (iii) the presence/absence of UV 

pattern (i.e., whether the UV reflectance of the internal flower part differed to that of the 

external flower part). Phenological traits were (iv) the month of the onset of blooming (i.e., 

numerical value from 1 to 12 with ‘1’ being January) and (v) the number of blooming months 

(numerical value). Morphological traits were (vi) height (numerical value in cm) and (vii) the 

flower class that was delineated after Müller (1881) (indicated as ‘Flower type’) because it 

notably gives the accessibility of floral food source for flower-visiting insects (i.e., bee 

flowers, Hymenoptera flowers, flowers with open nectar, flowers with partly hidden nectar, 

flowers with totally hidden nectar, flower associations with totally hidden nectar). For each 

plant species, the values of the phenological traits and plant height were obtained from 

Lambinon et al. (2008), while those of the visual and resource accessibility traits were 

retrieved from the TRY database (Kattge et al. 2011). 

 

Fig. 2 Mean number (± SE) per trap of lacewings (Neuroptera: Chrysopidae), ladybeetles 

(Coleoptera: Coccinellidae) and hoverflies (Diptera: Syrphidae) through time over the three 

sampling periods (May 2014, June 2014 and June 2015) 
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Table 1 List of flower species sown and that spontaneously grew, record of those that bloomed during the different sampling periods, and mean 

cover (% ± standard error) of each species through the different plots monitored on 17
th
–18

th
 June 2014 and 18

th
 June 2015. 

 

Family Species 

Sown  Blooming  Cover (%) 

Yes No  
May 

2014 

June 

2014 

June  

2015 
 

Mean (±SE) 

2014 

Mean (±SE) 

2015 

 Flowering species          

Apiaceae Aethusa cynapium  x  x x   0.02 (± 0.09)  
Apiaceae Anthriscus sylvestris x         

Apiaceae Heracleum sphondylium x         

Asteraceae Achillea millefolium x   x x x  6.56 (± 5.36) 16.4 (± 11.96) 

Asteraceae Cirsium arvense  x    x   1.49 (± 2.63) 

Asteraceae Crepis biennis x   x x x  0.78 (± 1.74) 0.09 (± 0.23) 

Asteraceae Hypochaeris radicata x   x x x  3.02 (± 6.33) 2.31 (± 5.94) 

Asteraceae Leontodon hispidus x   x x x  0.18 (± 0.49) 0.96 (± 2.18) 

Asteraceae Leucanthemum vulgare x   x x x  18.09 (± 25.42) 27.00 (± 35.50) 

Asteraceae Matricaria recutita  x  x x   0.49 (± 0.79)  

Brassicaceae Capsella bursa-pastoris  x  x    0.02 (± 0.09)  

Brassicaceae Sinapis alba  x  x x   0.51 (± 1.33)  

Dipsacaceae Knautia arvensis x   x x x  0.07 (± 0.14) 0.04 (± 0.12) 

Fabaceae Lotus corniculatus x   x x x  2.35 (± 8.57) 0.04 (± 0.17) 

Fabaceae Medicago lupulina x   x  x  0.31 (± 0.69) 0.02 (±0.09) 

Fabaceae Trifolium pratense x         

Fabaceae Trifolium repens  x  x x   0.02 (± 0.09)  

Geraniaceae Geranium pyrenaicum x   x x x  0.40 (± 1.20) 0.42 (± 1.37) 

Lamiaceae Origanum vulgare x         

Lamiaceae Prunella vulgaris x         

Lythraceae Lythrum salicaria x         

Malvaceae Malva moschata x    x x  0.64 (± 1.24) 0.58 (± 1.16) 

Malvaceae Malva sylvestris  x    x   0.02 (± 0.09) 

Rubiaceae Galium verum x    x   0.91 (± 1.22)  
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Predator species monitoring 

 

Yellow pan traps (Flora
®
, 27 cm diameter and 10 cm depth) were used to monitor the 

abundance and diversity of adult lacewings, ladybeetles and hoverflies in the WFS. One pan 

trap was placed in the middle of each plot (Fig. 1), filled with water and few drops of 

detergent to reduce the surface tension of the water. The height of the pan traps was adjusted 

to the height of the vegetation throughout the experiment. Trapped insects were collected 

every seven days from 7
th

 May to 28
th

 May 2014, from 4
th

 June to 25
th

 June 2014 and from 2
nd

 

June to 30
th

 June 2015 (i.e., four times in May 2014, four times in June 2014 and five times in 

June 2015). Traps were refilled each time with clean water and drops of detergent. Insects 

were kept in 70 % ethanol. The starting of insect trapping was delayed in 2015 compared to 

2014 because flowers bloomed later in 2015 compared to 2014. Indeed, spring 2014 was 

especially warm: temperature was on average 2.7°C higher in March 2014 than that in March 

2015, and 2.1°C higher in April 2014 than in April 2015 (Institut Royal Météorologique 2014, 

2015). In the laboratory, predatory lacewings, predatory ladybeetles and hoverflies which 

larvae are predators were identified at the species level following the keys of San Martin 

(2004), Roy et al. (2013) and van Veen (2010), respectively. The identification of the hoverfly 

species was verified by a taxonomist in case of doubt (see Acknowledgements).  

 

Statistical analyses 

 

As the 15 plots were sown as three replications of five mixtures (see ‘Field setup’ above), 

their plant composition was theoretically related between each other. However, the 15 plots 

were considered independent here because in reality, the vegetation developed differently in 

each of them (Uyttenbroeck et al. 2015, 2017). Moreover, three sampling periods were 

considered (i.e., May 2014, June 2014 and June 2015) because the flower species blooming at 

these periods were different. Indeed, only those flower species blooming in the plots were 

considered in the analyses. 

First, the mean cover of each flower plant (both sown and spontaneous ones) found in each 

plot was calculated from the three quadrats (i.e., for each plot, the summed cover of each 

plant species obtained from the three quadrats, divided by three) (Table S2). Then, by using 

the mean cover in each plot of the plants that bloomed during each period and the list of the 

plant traits (Table S1), the CWM of each flower trait was calculated for each plot and for the 

three sampling periods (R function ‘dbFD’, package ‘FD’, Laliberté et al. 2014). A single 
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CWM value per trait was obtained for numerical trait values and a single value for each class 

was obtained for class trait values (Table S3). The matrix of CWM was later considered as the 

matrix of explanatory variables. The matrix of the variables to be explained was the mean 

abundance per week of each insect species trapped in each plot during the three sampling 

periods (for each plot, the abundance of each insect species was divided by four for May 2014 

as well as for June 2014, and by five for June 2015, to avoid any effect due to sampling effort) 

(Table S4). 

The interactions between the CWM of traits and the abundance of generalist predators were 

analyzed by (i) conducting a forward selection of the significant variables and (ii) performing 

a redundancy analysis (RDA). Predator abundances were log10(x+1)-transformed prior to the 

analysis. RDA combines multivariate multiple linear regression and principal component 

analysis (Borcard et al. 2011). The ‘matrix of explanatory variables’ was the matrix of the 

CWM values of each plot, and the ‘matrix of centred response’ was the matrix of predator 

abundance in each plot (respectively the matrices X and Y of Borcard et al. 2011). Through 

the forward selection process (R function ‘ordistep’, package ‘vegan’, Oksanen et al. 2015), 

the plant traits that significantly (P < 0.05) affected the abundance of predators were 

identified and those with the lowest Akaike Information Criterion (AIC) at each step were 

selected for inclusion in the RDA analysis. The interactions between the abundance of 

predators and the selected traits were analyzed through a Constrained Analysis of Principal 

Coordinates using Bray–Curtis distances (R function ‘capscale’, package ‘vegan’, Oksanen et 

al. 2015). The obtained ordination, as well as each of its axis, were tested with a permutation 

test (n = 1000, P = 0.05). All statistical analyses were performed with R software (R Core 

Team 2017). 

 

Results 

 

Flowers 

 

Fourteen flower species were blooming in May 2014 and June 2014, and twelve in June 2015 

(Table 1). Among the sown ones, five flower species were not found blooming during the 

sampling periods and three flower species were found blooming at only some of the sampling 

periods (Table 1). Seven flower species that were not sown were found blooming in the 

quadrats: Aethusa cynapium (Apiaceae), Matricaria recutita (Asteraceae), Capsella bursa-

pastoris (Brassicaceae), Sinapis alba (Brassicaceae), Trifolium repens (Fabaceae) that 
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bloomed in 2014 only, and Cirsium arvense (Asteraceae) and Malva sylvestris (Malvaceae) 

that bloomed in 2015 only. Among all the flower species, Leucanthemum vulgare 

(Asteraceae) and Achillea millefolium (Asteraceae) were those with the highest cover in both 

years in the WFS (Table 1). 

 

Predators 

 

Ladybeetles were the most abundant predators trapped in May 2014, June 2014 and June 

2015, followed by hoverflies and lacewings (Table 2). Ladybeetles were particularly abundant 

in May and June 2014, hoverflies in the end of June 2014, and the abundance of the predators 

remained relatively low in June 2015 (Fig. 2). Propylea quatuordecimpunctata (Coleoptera: 

Coccinellidae), Harmonia axyridis (Coleoptera: Coccinellidae) and Coccinella 

septempunctata (Coleoptera: Coccinellidae) were the three main species of ladybeetles 

trapped, however their abundance varied through time (Table 2): H. axyridis was not trapped 

in 2015, while C. septempunctata was trapped only in June in both years. Only P. 

quatuordecimpunctata was trapped throughout the experiment. Episyrphus balteatus 

(Diptera: Syrphidae) was the most abundant hoverfly trapped, followed by Eupeodes corollae 

(Diptera: Syrphidae) and Sphaerophoria scripta (Diptera: Syrphidae) (Table 2). Hoverflies 

were only trapped in June in both years (Fig. 2) and S. scripta, which was the most abundant 

hoverfly species in June 2015, was not trapped in 2014 (Table 2). Finally, Chrysoperla carnae 

(Neuroptera: Chrysopidae) was the only species of lacewing trapped (Table 2). It was found 

in a relatively low but stable abundance across the sampling periods (Fig. 2). 

 

Effects of flower traits on predator abundance 

 

The presence or absence of a UV pattern and the type of corolla ‘open nectar’ were the flower 

trait values that significantly affected the abundance of trapped predators in the WFS (Table 

3). The ordination built with these variables significantly explained the spread of the predators 

in the different plots (F2-39 = 2.20; P = 0.001). 10.13 % of the total variance of the matrix of 

insect abundance was explained by these variables (axis 1 explained 6.37 % of the variance, 

F1-39 = 2.77; P = 0.001; axis 2 explained 3.76 % of the variance, F1-39 = 1.69; P = 0.03).  

The abundance of ladybeetles was especially driven by the flower UV pattern (axis 1): H. 

axyridis and P. quatuordecimpunctata were correlated with a high cover of flowers showing a 

UV pattern while C. septempunctata was correlated with a high cover of flowers without a 
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UV pattern (Fig. 3). The abundance of C. carnae was also affected by the flower UV pattern 

(axis 1) and was correlated with a high cover of flowers with a UV pattern (Fig. 3). The 

abundance of hoverflies was mostly affected by the type of corolla (axis 2): E. balteatus 

particularly, and E. corollae to a lesser extent, were correlated with a high cover of flowers 

with open nectar (Fig. 3). 

 

Table 2 Diversity and summed abundance of predators trapped during sampling periods. 

  May 2014   June 2014   June 2015   Total 

 

Abundance %   Abundance %   Abundance %   Abundance % 

Chrysopidae 13 

  

9 

  

7 

  

29 

 
Chrysoperla carnea 13 100,0 

 

9 100,0 

 

7 100,0 

 

29 100,0 

            
Coccinellidae 54 

  

73 

  

16 

  

143 

 Propylea 

quatuordecimpunctata 27 50,0 

 

28 38,4 

 

6 37,5 

 

61 42,6 

Harmonia axyridis 27 50,0 

 

28 38,4 

 

0 0 

 

55 38,5 

Coccinella septempunctata 0 0 

 

15 20,5 

 

9 56,2 

 

24 16,8 

Tytthaspis sedecimpunctata 0 0 

 

2 2,7 

 

0 0 

 

2 1,4 

Harmonia quatripunctata 0 0 

 

0 0 

 

1 6,3 

 

1 0,7 

            
Syrphidae 0 

  

32 

  

15 

  

47 

 Episyrphus balteatus 0 0 

 

26 81,2 

 

4 26,7 

 

30 63,8 

Eupeodes corollae 0 0 

 

3 9,4 

 

4 26,7 

 

7 14,9 

Sphaerophoria scripta 0 0 

 

0 0 

 

6 40,0 

 

6 12,8 

Melanostoma mellinum 0 0 

 

2 6,3 

 

1 6,6 

 

3 6,4 

Syrphus ribesii 0 0   1 3,1   0 0   1 2,1 
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Table 3 Permutation test (n = 1000) of forward selection of explanatory variables affecting the community of predators through the sampling 

period (May 2014, June 2014, June 2015). * P < 0.05; ** P < 0.01. Values used in analysis (i.e., the community-weighted means, CWM) of traits 

and predator abundances in each plot, are given in Tables S3 and S4, respectively. 

 

Explanatory variables   Step 1   Step 2   Step 3 

Trait Value   AIC F P(>F)   AIC F P(>F)   AIC F P(>F) 

UV Pattern Yes 

 

14.607  2.71 0.005 ** 
        UV Pattern No 

 

14.607  2.71   0.005 ** 
        Flower type Open nectar 

 

15.724  1.59   0.040 * 
 

14.868 1.65 0.035 * 
    Colour  Violet 

 

16.049  1.27   0.130    
 

15.435 1.10 0.225 
 

15.858 0.93 0.575 

Colour  Yellow 

 

16.067  1.25   0.135    
 

15.474 1.07 0.340 
 

15.990 0.80 0.830 

Blooming duration Numerical 

 

16.151  1.17   0.215    
 

15.308 1.22 0.145 
 

15.567 1.20 0.190 

Blooming start Numerical 

 

16.242  1.08   0.305    
 

15.434 1.10 0.330 
 

15.657 1.11 0.205 

Flower type Associations with totally hidden nectar 

 

16.307  1.02   0.400    
 

15.435 1.10 0.265 
 

16.063 0.74 0.960 

Flower type Bee flower 

 

16.383  0.94   0.430    
 

15.562 0.98 0.395 
 

15.801 0.98 0.425 

UV Periphery Numerical 

 

16.327  0.99  0.445    
 

15.518 1.02 0.350 
 

15.643 1.13 0.280 

Flower type Hymenoptera flower 

 

16.384  0.94  0.505    
 

15.477 1.06 0.340 

 

15.665 1.10 0.300 

Flower type Partly hidden nectar 

 

16.416  0.91  0.595    
 

15.588 0.96 0.530 

 

15.534 1.23 0.135 

Maximum height Numerical 

 

16.431  0.90 0.595    
 

15.606 0.94 0.510 

 

15.842 0.94 0.585 

Colour  White 

 

16.480  0.85 0.715    
 

15.704 0.85 0.705 

 

16.038 0.76 0.885 

Flower type  Totally hidden nectar   16.794  0.55 1.000      16.005 0.56 1.000   16.225 0.59 1.000 
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Fig. 3 Factorial map of redundancy analysis (RDA) carried out on the community of trapped 

predator species. Grey triangles represent flower plots. Variance explained by each axis is 

given, as well as the effect of selected factors (i.e., those with the lowest AIC—see Table 3) 

on them (Permutation test: n = 1000; *P < 0.05; ***P < 0.001) 

 

 

 

Discussion 

 

In the WFS, the abundance of predatory ladybeetles and lacewings was significantly affected 

by visual cues (i.e., the presence or absence of flower UV pattern) while the abundance of 

hoverflies which larvae are predators was affected by the flower morphology (i.e., the shape 

of the flower corolla).  

 

Effects of UV 

 

Despite variations among taxa, it is known that most insects are sensitive to UV due to UV-

absorbing visual pigments (in addition to blue- and green-absorbing pigments) that constitute 

the photoreceptors of their compound eyes (Briscoe and Chittka 2001). Experiments in 

controlled environments evaluating the effect of various wavelengths on insect phototactic 

behaviour showed that C. carnea (Kral and Stelzl 1998), C. septempunctata (Agee et al. 1990; 

Lin 1993; Zhou et al. 2013) and P. quatuordecimpunctata (Chen et al. 2009) are sensitive to 

UV. Other experiments using blacklight traps (which have the specificity to emit UV 

wavelength) in open fields reported the sensitivity to UV of H. axyridis (Nalepa 2013) and 
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confirmed the sensitivity of P. quatuordecimpunctata (Ma and Ma 2012). Whereas some 

flower species generally reflect or absorb UV, others show a UV pattern that is often 

characterized by UV-reflecting peripheral flower parts and UV-absorbing centre parts, a type 

of pattern termed ‘bull's-eye’ (Silberglied 1979).  

The bull’s eye UV pattern participates in the attraction of pollinators such as bees 

(Hymenoptera) and flies (Diptera) (Koski and Ashman 2014) and can guide them to the 

centre of the flower (Jones and Buchmann 1974; Lunau 1992) where floral pollen and nectar 

are produced (in the present experiment, none of the flower species growing in the plots 

produced extrafloral nectar, Weber et al. 2015). To our knowledge, the present study is the 

first to report the relation between flower UV pattern and a high abundance of some 

ladybeetle and lacewing species. Although they are more often considered predators than 

pollinators, H. axyridis (Berkvens et al. 2008), P. quatuordecimpunctata (Pervez and Omkar 

2011) and C. carnae (Villenave et al. 2005, 2006) commonly consume flower pollen and 

nectar (Lundgren 2009b). Hence, flower UV pattern may have attracted and guided these 

species to such floral food sources. However, the UV pattern is considered an important cue 

in the attraction of insects at close range only because of the low spatial resolution of insect 

eyes (Kevan et al. 1996). Hence, we can hypothesize that UV pattern here participated in 

maintaining the populations of H. axyridis, P. quatuordecimpunctata and C. carnae that had 

already flown into the WFS, rather than attracting them from a long distance. More controlled 

experiments assessing the effect of UV pattern on the attractiveness of these predators, as 

previously conducted with bees and flies (Jones and Buchmann 1974; Lunau 1992; Koski and 

Ashman 2014), could confirm the present observations. 

Similar to other ladybeetle species, C. septempunctata is also a pollen and nectar feeder 

(Triltsch 1999; Ricci et al. 2005). However, it was found abundant in plots with a high cover 

of flower species without a UV pattern. This result suggests that the attracting and guiding 

effects of UV pattern vary among ladybeetle species and that C. septempunctata may use 

other cues to locate floral nectar and pollen. This difference in the sensitivity to UV pattern 

among species of ladybeetles might participate in segregating their habitats, leading in 

avoiding inter-specific competition and intra-guild predation. Roy et al. (2012), assessing the 

role of H. axyridis arrival in the decline of native ladybeetle species in the UK and Belgium, 

indeed explained that the non-decline of C. septempunctata was partly due to the segregation 

of its habitat with H. axyridis. In contrast, intra-guild predation of H. axyridis on P. 

quatuordecimpunctata (both sharing the same habitat according to the present study) has been 
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reported in Belgium (Hautier et al. 2011) and the decline of P. quatuordecimpunctata after the 

arrival of H. axyridis was shown by Roy et al. (2012). 

 

Effects of resource accessibility 

 

Hoverflies were affected by the morphology of the corolla and the most abundant ones E. 

balteatus, and E. corollae to a lesser extent, were found abundant in plots with a high cover of 

flowers with open nectar. This result is in accordance with the BIOLFLOR database (Kolz et 

al. 2002) indicating that flowers with open nectar are commonly pollinated by hoverflies. 

Hoverfly species mostly feed on flower nectar and pollen at the adult stage, while it is their 

larvae that feed on a diversity of prey (at least, for the hoverfly species considered in the 

present study) (van Veen 2010). It is especially the case for E. balteatus (Van Rijn et al. 2013) 

to which nectar accessibility determines flower choice and abundance in flowering fields 

(Van Rijn and Wäckers 2016). Moreover, flowers with open nectar benefit E. balteatus 

longevity and reproduction (Laubertie et al. 2012; Wäckers and Van Rijn 2012). However the 

corolla morphology may not be a trait that intervenes in the long-distance attractiveness of 

hoverflies. Instead, it more likely determines flower choices by flies hovering above a 

diversity of flowers (Van Rijn and Wäckers 2016). Hence, we can hypothesize that the high 

cover of flowers with available nectar has participated in maintaining the populations of E. 

balteatus, and also E. corollae, which have flown into the WFS. 

 

Long-distance vs. close-range effects 

 

Colour is an important cue for the long-distance attraction of insects to flowers. Yellow 

attracts E. balteatus (Sutherland et al. 1999), H. axyridis (Mondor and Warren 2000; Adedipe 

and Park 2010) and C. septempuctata (Maredia et al. 1992), but contradictory results were 

found for C. carnae (Maredia et al. 1992; Koczor et al. 2017). However, here colour did not 

determine the abundance of generalist predators in the WFS and instead traits that participate 

in the orientation to flower food source (UV pattern) and their accessibility (corolla 

morphology) were important. This result suggests that in multiple species WFS, where 

flowers with various colours are mixed, generalist predators can fly to the mixtures in a first 

step, search for suitable flowers within these mixtures in a second step, and spend more time 

in the mixtures if they find the food source they searched for. Hence, the efficiency of sowing 

flowering plants to support natural enemies relies not only on long-distance attractiveness but 
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also on their ability to orient and offer to the visitors the floral food source they are searching 

for.  

 

Perspectives 

 

In a previous analysis, Hatt et al. (2017b) showed that UV pattern, corolla morphology, as 

well as colour, also determine the number of parasitoids of oilseed rape beetle pests in the 

WFS. Present and previous results were obtained by using pan traps. Pan traps present the 

advantage of continually collecting insects; however, they do not allow assessing a real 

contact between insects and flowers. Hence, monitoring flower visitations and collecting 

visitors with a net would be a complementary method to evaluate predator-flower trait 

interactions (Amy et al. 2018). Still, these results suggest that UV pattern, corolla 

morphology, as well as colour are the flower traits to take into account when choosing flower 

plants to compose multiple species WFS towards conservation biological control. Mixtures 

with a high proportion of yellow flowers, providing accessible nectar, some with a UV pattern 

and some without, should be suitable to attract and conserve a diversity of generalist predators 

as well as parasitoids of oilseed rape beetle pests. These findings support the hypothesis that 

the complementarity between diverse plant functions enhances the large community of natural 

enemies required to regulate a community of pests (Gardarin et al. 2018). Nevertheless, 

previous research did not find that an increased functional diversity (i.e., measuring the 

diversity of functional trait values and range within a community, D  a  and Cabido 2001) at 

the mixture level increased natural enemy abundance and diversity (Balzan et al. 2014, 2016; 

Hatt et al. 2017c). Therefore, rather than augmenting the diversity of functional trait values 

per se, tailored flower mixtures could comprise different flower species bearing a diversity of 

key trait values known to attract and support a variety of natural enemy species. Still, some 

questions remain: what would be the proportion of each key trait value in the mixture (i.e., the 

CWM)? What would be the ratio of trait complementarity / trait redundancy? Factorial studies 

comparing mixtures with a gradient of CWM for some key trait values, or a gradual ratio of 

trait complementarity / trait redundancy, could provide answers to these novel issues. In 

addition, although attracting and conserving natural enemies is the first step towards 

biological control, it will also be necessary to evaluate the efficiency of such tailored flower 

mixtures on pest suppression in adjacent crops. Finally, considering traits involved in the 

delivery of additional ecosystem services (e.g., pollination, soil conservation, nutrient 
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cycling—noticing that there are synergies, but also trade-offs, between them) would 

furthermore be required to develop multifunctional WFS for sustainable agriculture. 
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Supplementary materials 

 

Table S1 Theoretical trait values for each flower species. The values on blooming start, 

blooming duration and plant height were obtained from Lambinon et al. (2008), while those 

on colour, UV periphery, UV pattern, and the flower type were retrieved from the TRY 

database (Kattge et al., 2011). 

 

Table S2 Mean cover (%), calculated from the three quadrats in each plot, of each blooming 

flower species found. Sum of percentage may be less than 100 as grass cover and bare soil 

was also considered when assessing flower cover.  

 

Table S3 Community-Weighted Mean (CWM) calculated for each plot based on the average 

cover of each flower species found in the quadrats and blooming (see Table S2) and the traits 

of each species (see Table S1). 

 

Table S4 Weekly mean abundance per trap of each predator species collected in each plot for 

each sampling period. 

 


