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Abstract. Eco-cultural landscapes are assumed to be favourable environments for the 
persistence of biodiversity, but global change may affect differently their terrestrial and aquatic 
components. Yet, few long-term studies have examined how multiple, global change stressors may 
affect wetland biodiversity in such environments. Facultative paedomorphosis is a spectacular 
example of intra-specific variation, in which biphasic (metamorphosing) amphibians coexist with 
fully aquatic conspecifics which do not metamorphose (paedomorphs). Paedomorphosis is 
seriously threatened by global change stressors, but it is unknown to what extent traditional 
management will allow its long-term persistence. Here, we tested the effects of alien species 
introductions while taking into account land-use and climate changes on the distribution of two 
polymorphic newt species (Ichthyosaura alpestris and Lissotriton graecus) in Montenegro by 
using a 68-year data set and Bayesian mixed models integrating complex spatial and temporal 
structures. We found that, despite the persistence of natural landscapes, metamorphs dramatically 
declined, and paedomorphs were nearly extirpated, losing 99.9% of their aquatic area of occupancy 
and all the major populations. Fish introduction was the main determinant of decline for both 
phenotypes. Climate and the presence of crayfish further contributed to the decline of metamorphs, 
which started later and was less dramatic than that of paedomorphs. The near extinction of 
paedomorphosis on a country-wide scale shows how invasive species determine broad scale 
impacts, which can be even stronger than other global change stressors, and underlines the need 
for immediate management actions to avoid the extinction of a unique developmental process, 
paedomorphosis.  
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INTRODUCTION 

Traditional cultural landscapes are the result of centuries of long co-evolution between the social 
and the ecological systems. Within the context of Europe, these systems are thought to have 
exceptional natural values; several protected species and habitats being maintained by the 
traditional agricultural and forestry practices (Hartel et al. 2010, Fischer et al. 2012, Rotherham 
2015). Aquatic habitats are typical components of traditional landscapes. These habitats can serve 
a wide range of social functions, from recreation to the provisioning of water for humans and 
livestock (Hammitt et al. 1994, Boix et al. 2012, Hartel and von Wehrden 2013). They are also 
essential for the persistence of a large diversity of native species because water offers vital 
resources, such as a place for life, reproduction, development of aquatic larval stages, foraging and 
hydration (Dudgeon et al. 2006). The Convention of Biological Diversity highlighted the need to 
protect waters, but there is a lack of data on the long-term evolution of the status of freshwater 
environments (Williams et al. 2004, Vorosmarty et al. 2010, Abell et al. 2017). However, there is 
evidence that global changes may have a greater effect on freshwater fauna than on terrestrial fauna 
(Ricciardi and Rasmussen 1999, Bignal and McCracken 2000). It is therefore important to 
determine the ecological transitions occurring in these habitats, particularly with respect to the 
globalisation of anthropogenic activity, land use and climatic features (Stoate et al. 2009, Gordon 
et al. 2010, Plǎiaşu et al. 2012, Hartel et al. 2014). Among freshwater species, amphibians, and 



 
 

more particularly newts, often dominate freshwater habitats such as ponds and mountain lakes 
(Schabetsberger and Jersabek 1995). Because many amphibian species exhibit a typical biphasic 
life stage, they are particularly threatened by environmental perturbations acting on both aquatic 
and terrestrial environments (Semlitsch 2003). One of the important causes of decline in aquatic 
habitat is the introduction of alien species, such as fish and crayfish (Knapp and Matthews 2000, 
Orizaola and Braña 2006, Pilliod et al. 2010, Bucciarelli et al. 2014, Havel et al. 2015, Miró et al. 
2018). In response to these introductions, populations can collapse or subsist through dispersal to 
the terrestrial habitat and the use of alternative breeding patches, provided they are available 
(Winandy et al. 2015, 2017, Tiberti 2018).  

Many newt and salamander species express paedomorphosis, a developmental trait which 
makes them fully aquatic, as it involves the retention of larval traits (e.g. gills) at the adult stage 
(Fig. 1). This is important in the adaptation and evolution of species (Gould 1977, Denoël et al. 
2005b, Bonett and Blair 2017). Whereas it is obligate in some species which lose the ability to 
metamorphose, it is a polyphenism in other species (facultative paedomorphosis) and, thus, 
involves the coexistence of both a paedomorphic and a metamorphic phenotype as a response to 
environmental drivers (Oromi et al. 2016, Mathiron et al. 2017). Yet, a genetic basis of 
paedomorphosis was found in some species (Voss and Shaffer 1997) and constraining 
environments can promote metamorphosis over paedomorphosis across generations (Semlitsch 
and Wilbur 1989). Monitoring the state and temporal change of these particular populations can 
help inform us about local and global threats to their habitats as well as on both developmental 
processes. Indeed, the decline of paedomorphs can result from severe, but localized perturbation 
in the aquatic habitat, while a decline of both phenotypes likely reveals longer-term effects and a 
larger perturbation as metamorphs can survive, at least temporarily, detrimental waters (Denoël et 
al. 2009).  

Until recently, no long-term studies have examined how multiple, global change stressors 
affect the diversity of ponds and mountain lakes on a country-wide scale in areas dominated by 
eco-cultural landscapes. Montenegro is a good candidate in which to investigate the ecological 
transition of freshwater environments in traditionally managed landscapes because of its 
geographic location within the Mediterranean hotspots, its richness in many endemic species, its 
low populated areas and the area’s prevalence of traditional agricultural and wild landscapes 
(Griffiths et al. 2004, Mittermeier et al. 2004). Moreover, among Balkan countries, Montenegro 
has historically been known to host numerous paedomorphic populations and endemic taxa 
(Radovanović 1951, 1961, Džukić et al. 1990) that have been surveyed across decades. Fish 
introductions were linked to declines in some amphibian populations following a two-step process, 
involving first the loss of paedomorphosis followed thereafter by metamorphosis. Yet, previous 
surveys showed the local persistence of the paedomorphs in some sites and the generalized 
persistence of the metamorphs up to the early 2000’s (Breuil 1985, Denoël et al. 2005a, Denoël et 
al. 2009). From this point, it is unknown if both could have recovered, or whether declines 
continued following the same trend. Because many factors, such as land-use and climatic changes, 
can affect natural populations (Walls 2009, Ficetola et al. 2010), it is important to differentiate 
their contribution to the ongoing declines from the effects of alien species introductions. 

In this study, we took advantage of a data set covering more than 60 years to assess the 
impact of multiple threats on the freshwater habitats of the traditionally managed landscapes of 
Montenegro (Breuil 1985, Džukić et al. 1990, Denoël et al. 2009). We analysed representative 
sites across the entire Montenegro to determine four phenomena: (1) whether pond and lake 



 
 

environments suffer biodiversity loss – focusing here on amphibians – even if their surrounding 
terrestrial environment suffers limited habitat loss, (2) the current status and decline of all known 
populations of paedomorphic newts, including those of endemic taxa as historically described in 
Montenegro, (3) whether common terrestrially-adapted phenotypes (i.e. metamorphs) are similarly 
threatened as are rare aquatic phenotypes (i.e. paedomorphs) and (4) the identification of the 
potential drivers of decline, focusing on alien species introductions while taking into account land-
use and climate changes.  

 

 

 

FIG. 1. Paedomorphic alpine newt (A, Ichthyosaura alpestris) and Greek smooth newt 
(B, Lissotriton graecus). This phenotype is characterized by the retention of larval 
traits, such as gills, at the adult stage. Both pictures depict a male. Photos: Mathieu 
Denoël. 



 
 

METHODS 

Studied localities and species 

We focused on the two newt species in which paedomorphosis is the most frequently 
expressed in the Balkans: the alpine newt (Ichthyosaura alpestris) and the Greek smooth newt 
(Lissotriton graecus) (Amphibia, Salamandridae) (Fig. 1). These two species were, until recently, 
classed within the genus Triturus, whereas L. graecus was formerly considered as a subspecies of 
Lissotriton vulgaris (Wielstra et al. 2018). In this study, we considered the 23 main localities in 
which paedomorphosis is expressed in Montenegro (Ćirović 2009, Denoël et al. 2009; pers. obs.) 
and for which historical data are available (Appendix S1: Tables S1 and S2). These data came 
from a combination of our own observations (see also Džukić et al. 1990) and bibliographical data, 
including data representing type description (Radovanović 1951 for the oldest record). An 
examination of the conserved specimens (Institute for Biological Research ‘Siniša Stanković’, 
Belgrade, Serbia) was also done in 2017 to complete our data set and confirm the historical 
presence of paedomorphosis (Appendix S1: Table S3 and Fig. S1) (Džukić et al. 2015). Combining 
bibliographic and direct observations, our data covered 68 years (1948–2016), with direct surveys 
covering the period 1970-2016. 

 

Sampling procedure 

Sampling techniques varied across sites due to the differences among the studied 
freshwater habitats (lakes, ponds and wells). To limit observer effects across sites, one of the 
authors (MD) was involved in all the surveys of 2010’s, as well as in a number of the historical 
ones. In all sites, we first used visual sampling techniques by walking around all the water bodies. 
Then, we used dip-netting of either visually encountered specimens or those which could be taken 
blindly (i.e. without initial sight) from the most favourable areas (e.g. aquatic vegetation). 
Moreover, when possible, aquatic rocks were turned over to look for hidden newts. Most surveys 
were done during one or two visits (several hours minimum per visit), but up to two weeks were 
spent in the most important historical sites. In the deep Bukumirsko Lake, we also used ‘minnow’ 
traps in all the benthic micro-habitats, including the deepest ones. Traps were built with plastic 1.5 
L water bottles from which the neck of the bottle was inverted to point toward the interior of the 
bottle. Some historical sites (particularly Bukumirsko Jezero and Velika Osječenica) were also 
highly prospected as part of in depth studies on the evolutionary ecology of newt paedomorphosis 
(e.g. Kalezić et al. 1996). All sampling followed ethical standards, and the studied newts were 
released directly back into their habitat of capture after each census. 

Non-observing a species in a site during a particular survey can mean that the species is 
absent, or that it is present but has remained undetected, and not taking into account this issue can 
result in biased inference (MacKenzie et al. 2017). A subset of 11 sites were surveyed multiple 
times during the same year (average: 2.6 surveys per site; range: 2-7), by means of the multiple 
techniques used in all the surveys. We therefore used occupancy analysis to assess the reliability 
of the presence/absence pattern (MacKenzie et al. 2017). Occupancy models were run using the 
unmarked package in R 3.3 (Fiske and Chandler 2011), assuming constant detection probability 
across all surveys. Occupancy analysis suggested that the per-visit detection probability was very 
high for both paedomorphic and metamorphic newts. For paedomorphs, the estimated detection 
probability was ~100% (SE = 0.001), while for metamorphs the estimated detection probability 



 
 

was 90% (SE = 7) per visit. Therefore, one single survey was generally enough to ascertain newt 
occupancy with high reliability and imperfect detection was not a major issue in our data set. 

 

Newt identification 

Newts were identified according to species and phenotype. Paedomorphs were 
distinguished from metamorphs by the presence of external gills and open gill slits. The adulthood 
of each individual was established on the basis of a well-developed cloaca (Denoël 2017). 
Occurrence data on both paedomorphs and paedomorphs of each species at different times allowed 
us to analyse the timing of their decline. We also recorded the number of individuals caught, but, 
as these data were not available historically for most of the sites, we used only occurrence data. 
The analysis of ecological correlates of paedomorphosis versus metamorphosis was performed 
previously (Denoël et al. 2009); therefore, the present study focused only on the populations which 
expressed paedomorphosis in at least one survey. All these populations had also historically 
expressed metamorphosis.  

 

Habitat characterization 

We determined the persistence of the water bodies and recorded the presence of introduced 
alien species, i.e. fish and crayfish. We calculated the extent of occurrence (EOO) as the minimum 
convex polygon for each species and the area of occupancy (AOO) as the sum of areas of cells, 
considering 2 x 2 km cells as recommended by the IUCN (IUCN 2017). We also measured the 
surface area and maximum water depth of each pond and lake, and calculated the aquatic area of 
occupancy (AAOO) as the sum of all occupied surface areas. Finally, we classed water bodies in 
three categories: lakes, ponds and wells. 

 

Land use 

To determine temporal changes in terrestrial landscapes, we extracted the cover percentage 
from the Corine Land Cover maps (https://land.copernicus.eu). We considered natural habitats 
(Corine Land Cover classes 311-324 and 332) and agricultural lands (211-242). These layers 
constitute most of the local land use which can represent favourable versus potentially 
unfavourable habitats for newts, respectively. In Montenegro, the natural and traditionally 
managed lands are typically characterized by low densities of cattle, such as sheep and cows. Cattle 
graze either in semi-open landscapes constituted of bushes and wood patches at mid-elevations or 
in alpine meadows at the highest altitudes. These lands have very limited use of crops, contrasting 
with intensive agriculture as commonly found in Western Europe (Lakovic et al. 2016). Impacts 
on natural lands by farmers have been generally low, as seen by resilience patterns of natural 
vegetation over the last decades (Nyssen et al. 2014). There were no urban areas, or almost none, 
around the studied ponds and lakes according to Corine (Fig. 2).  

The Corine Land Cover programme was started in 1985 by the European Community to 
generate digital land-use/land-cover maps covering the European continent. Analyses were based 
on four Corine Land Cover maps: the Corine 1990 (generated using satellite images taken during 
1986-1988); Corine 2000 (images from 1999-2001), Corine 2006 (images from 2005-2007) and 



 
 

Corine 2012 (images from 2011-2012). All measures of landscape features were computed at two 
radii (100 and 1,000 m) around the periphery of the water bodies. These radii were chosen because 
they have been shown to act on newt distribution (Denoël and Ficetola 2007, Denoël et al. 2013). 
The 100 m radius is expected to have the most importance when directly in contact with water and 
because most metamorphic newts stay in close proximity to water during their terrestrial phase 
(Semlitsch 1998, Jehle and Arntzen 2000). 

 

 

FIG. 2. Amphibian distribution across time: Historical (1951-2004), intermediate (2002-2005) and 
recent (2016) distribution of paedomorphic newts in Montenegro. Circles: alpine newts 
(Ichthyosaura alpestris), squares: Greek smooth newts (Lissotriton graecus). Black symbols: 
persistence of paedomorphosis until the last sampling, grey symbols: persistence until the 
intermediate surveys and open symbols: disappearance before the intermediate surveys. 
Background: Corine Land Cover 2012 (dark green: natural vegetation, light green: mosaics between 
natural and agricultural vegetation, yellow: agriculture, red: urbanisation, blue: water). 

 



 
 

Climate 

As climatic variables, we considered the mean annual temperature and the total annual 
precipitation during the period before each survey for each locality. Climate was calculated as the 
mean value considering the year of the survey and the four years preceding years. Climatic data 
were extracted from the Climatic research Unit (CRU) 4.01 climate grids (Harris et al. 2014). The 
CRU 4.01 climate grids contain the monthly values of precipitation and temperature for 1901–
2016, on the basis of data collected from meteorological stations over the entire globe. These data 
have a coarse resolution (resolution: 0.5°, i.e. approx. 50 km for the study area) compared to the 
distance among nearby sites, and no high-resolution time series of climatic data were available for 
the study area. Therefore, we downscaled the CRU on the basis of the CHELSA high-resolution 
layers of mean annual temperature and calculated the total annual precipitation (30 arc-seconds 
resolution) (Karger et al. 2017), using the change factor approach (Diaz-Nieto and Wilby 2005). 
The average data of the CHELSA climatology are mean values over the 1979-2013 period. 
Therefore, we calculated the change factor between the CHELSA data and the average CRU data 
for the 1979-2013 period, and then used them to downscale the resolution of annual layers. Given 
that downscaling might produce bias, we also repeated analyses using the CRU data (without 
downscaling), and obtained nearly identical results. 

 

Statistical analyses 

We used Bayesian mixed models with binomial error distribution to assess the factors 
determining changes in the distribution of paedomorphic and metamorphic newts in the 23 water 
bodies, while taking into account multiple typologies of non-independence among observations. 
As independent variables, we considered six parameters which can determine newt distribution. 
Two variables represented the distribution of non-native predators (the presence of introduced fish 
and crayfish); two variables represented the climate during the years preceding the survey (mean 
temperature and total annual precipitation); two represented landscape composition during the 
period of survey (cover of natural vegetation and of agricultural land within 100 m; obtained from 
the Corine Land Cover data from the closest period). All independent variables were scaled (mean 
= 0 and variance = 1) before analyses. The correlation between independent variables was weak 
(|r| < 0.5 in all pairwise correlations), suggesting that collinearity was not a major issue for our 
analyses. Landscape variables were only available since 1985; therefore, we repeated analyses 
twice: we first analysed the entire data set (1948-2016), not considering land use, and then analysed 
only data collected after 1984, including landscape as an additional variable. 

We used first-order autoregressive models to take into account temporal autocorrelation. 
We included site identity as a random factor. Furthermore, we used a conditional autoregressive 
term to take into account spatial non-independence between nearby sites. We repeated these 
analyses two times. In a first set of analyses, we aimed to assess the overall causes of the decline 
of paedomorphs and metamorphs, without focusing on interspecific differences; therefore, we 
included species identity as a random factor. In a second set of analyses, we tested whether there 
were interspecific differences in the response to threats. Therefore, we included species identity as 
a fixed factor, and we also tested the interactions between species identity and the threatening 
factors. We used the Integrated Nested Laplace Approximations (INLA) approach to fit mixed 
models and calculate 95% credible intervals (CIs). INLA is a computationally effective and 
extremely powerful alternative to Markov Chain Monte Carlo to run Bayesian models, which is 



 
 

particularly appropriate for data sets with complex spatial and temporal dependencies (Bivand et 
al. 2015, Bivand et al. 2017, Rue et al. 2017). 

 

RESULTS 

Historical distribution of paedomorphosis 

Both phenotypes (i.e. paedomorphs and metamorphs) have been described in 23 localities 
of Montenegro (11 for the alpine newt and 12 for the Greek smooth newt: Fig. 2, Appendix S1: 
Tables S1 and S2). Examination of the museum collections of 19 historical localities and field 
verifications in the four remaining localities confirmed the sexual maturity of gilled newts, i.e. 
their paedomorphosis in all of the 23 studied populations (Appendix S1: Table S3, Fig. S1). This 
sample represents almost all the populations of paedomorphs in Montenegro (all major ones), as 
very few additional mentions of occurrence were (i.e., three records in museum, only one in the 
literature: Denoël et al. 2005a) but not usable here given the lack of data. 

The aquatic habitats where paedomorphs were historically found encompassed mountain 
lakes (30%), ponds (52%) and wells (17%) (Appendix S1: Fig. S2). Sixty-four percent of 
populations of paedomorphic alpine newts occurred in lakes, whereas all paedomorphic Greek 
smooth newts were found in ponds and wells. The lakes, ponds and wells had a mean ± SE surface 
area of 790 ± 24 m², 432 ± 129 m² and 18 ± 3 m², respectively. All aquatic habitats were permanent 
and deep (mean ± SE water depth of lakes = 14.0 ± 4.3 m, ponds = 2.2 ± 0.3 m and wells = 2.6 ± 
0.8 m). See Appendix S1: Table S1 for details on the aquatic habitats.  

 

Land-use and climate changes 

The cover of forests and shrubland was, on average, > 60% if measured within a 100-m 
buffer, and > 70% if measured within a 1000-m buffer (Appendix S1: Table S4; Fig. S3). The 
agricultural cover was generally limited (Appendix S1: Table S4). In 2012, landscape changes 
were generally limited. Agricultural cover remained stable and natural vegetation showed an 
increase of approximately 18%, which corresponded to a decrease of mosaics between agricultural 
and natural lands (Fig. 2; Appendix S1: Fig. S3; Table S4). Only one of the studied aquatic habitats 
was destroyed during the study period. 

Climatic parameters showed strong variation throughout the study period. Total annual 
precipitation showed strong variation among these years, but we did not detect obvious long-term 
trends (Appendix S1: Fig. S4). For temperature, in the study sites, there was a trend towards 
warmer mean annual temperature, particularly after 1980. The average annual temperature of the 
last years was roughly 1.5 °C higher than average temperatures of the 1970’s (Appendix S1: Fig. 
S4). 

 

Freshwater habitat deterioration 

Major disturbance was found in 57% of the studied Montenegrin freshwater habitats (100% 
of lakes, 25% of ponds and 25% of wells). Considering the specific habitats of alpine and Greek 
smooth newts, 73% and 42% of the water bodies were disturbed, respectively. The most frequent 



 
 

observed disturbance was the presence of aquatic alien species, notably fish (52%) and crayfish 
(17%), and these disturbances occurred over the whole of Montenegro (Fig. 3a; Appendix S1: 
Table S5). In habitats with fish, there were, on average, 2.5 fish species present (range: 1-6 
species), belonging to Salmonidae, Cyprinidae and Ictaluridae; all crayfish were Astacidae. All 
lakes had introduced fish, and all localities with invasive crayfish also had introduced fish. 
Introductions took place in all types of habitats, except wells. Only one case of crayfish 
introduction was observed in the 2000’s, the others occurring after 2010.  

 

 

 

FIG. 3. Main local threats to freshwater habitats (lakes and ponds) of Montenegro: 
(a) proportion of sites with introduced fish and astacid crayfish and those destroyed;  
(b) proportion of sites fished with cyprinids, salmonids and ictalurids. 

 

Paedomorphic newt decline 

Paedomorphs of both the alpine and Greek smooth newts have declined progressively since 
their historical discovery (Fig. 4 and Appendix S1: Table S6). During the 2000’s and 2010’s 
surveys, paedomorphs were found in 57% and 22% of the historical localities, respectively (Figs 
2 and 4; Appendix S1: Table S2). For paedomorphic alpine newts, in the 2000’s, only 36% of 
historical populations persisted, and only 18% of populations persisted in the 2010s. For 
paedomorphic Greek smooth newts, in the 2000’s, 75% of historical populations persisted, and 



 
 

only 25% of populations persisted in the 2010’s. No paedomorphs subsisted in lakes, while they 
persisted in 17% of ponds and in 75% of wells.  

 

 

FIG. 4. Decline of paedomorphic and metamorphic alpine newts and Greek smooth newts in traditional 
landscapes of Montenegro. (a-b): Mean observed frequency ± SE; (c-d) Frequency fitted using 
generalized mixed models. Blue: paedomorphs, red: metamorphs. Shaded areas represent 95% 
Confidence Intervals.  

 

 



 
 

The extent of occurrence (EOO), the area of occupancy (AOO based on 2 x 2 km grid cells) 
and the aquatic area of occupancy (AAOO based on the surface of water bodies) dropped 
considerably in both studied species since their historic record began. Alpine newts lost 99.99% 
of EOO, 81.81 % of AOO and 99.99% of AAOO, while Greek smooth newts lost 97.2% of EOO, 
83.33% of AOO, and 95.41% of AAOO (Fig. 5). During the last decade (2000’s to 2010’s), the 
decline in EOO, AOO and AAOO was 99.99%, 73.68% and 50% in the alpine newt, and 95.40%, 
92.82% and 77.78%, respectively, for the Greek smooth newt (Fig. 5).  

 

FIG. 5. Global change in the amount of habitat use in Montenegro by paedomorphic alpine newts 
(blue bars) and Greek smooth newts (red bars): (a) extent of occurrence, (b) area of occupancy 
(based on 2 x 2 km grid cells) and (c) aquatic area of occupancy (based on surface area of water 
bodies) at the historical maximum (all known populations), in the 2000’s and in the 2010’s.  

 

Bayesian autoregressive mixed models showed that fish presence was the main driver of 
paedomorph extirpation. When we analysed the entire period, there was a strong negative 
relationship between fish and paedomorph presence in ponds, while the CIs of climatic and land 
cover variables, as well as crayfish presence, widely overlapped zero (Fig. 6). Results were similar 
when we focused on the period 1985-2016, and we did not detect any relationship between 
paedomorph persistence and landscape variables (Fig. 6). 



 
 

 

 

FIG. 6. Bayesian mixed models of the effect of environmental and climatic variables on the decline of 
paedomorphic and metamorphic newts. Whiskers denote 95% Credible Intervals. 

 

When we considered species as a fixed factor, we observed a slightly lower persistence rate 
for Greek smooth newts, but the CIs overlapped zero (Appendix S1: Table S7). Models were 
similar to the ones considering species identity as a random factor (Appendix S1: Table S7). When 
we added the interactions between species and independent variables to this model, none of them 
was significant, suggesting a similar response to the different stressors across species. 

 

 

 



 
 

Metamorphic newt decline 

Although metamorphs remained present in all sites in the early 2000’s, they were only 
found in 52% of localities in the 2010’s (lakes: 43%, ponds: 50%, wells: 75%). They declined 
significantly later than paedomorphs in both species (non-overlap of CI bands: see Fig. 4). 

Some metamorphic newts could still be found in sites with fish, but they were fully or 
almost fully absent in places where crayfish had been introduced. Auto-regressive mixed models 
showed that invasive species and climate can act jointly, determining the extirpation of 
metamorphic newts. When we analysed the whole period, there was a strong negative relationship 
between fish and metamorph presence in ponds. The effect size of climate and crayfish presence 
was weaker than the effect size of fish presence. Nevertheless, the 95% CIs of these variables did 
not overlap zero, suggesting a negative relationship between metamorph persistence and crayfish 
presence, and between metamorph presence and mean annual temperature during the years before 
the survey (Fig. 6). Results were identical when we focused on the period 1985-2016. Fish 
presence showed the strongest, negative effect size; crayfish presence and temperature during the 
previous years showed negative effect sizes with 95% CIs not overlapping zero, while we did not 
detect any relationship between metamorph persistence and precipitation or landscape variables 
(Fig. 6). 

When we considered species as a fixed factor, we observed a lower persistence rate for 
Greek smooth newts (Appendix S1: Table S7). The credible intervals of the two interactions 
(species × crayfish presence and species × cover of natural habitat) did not overlap zero. Crayfish 
presence more strongly affected alpine than Greek smooth newts, as 75% of crayfish occurrences 
affected alpine newts. An interaction between natural habitat and species identity suggested that 
alpine newts suffered from the change of surrounding habitat more than Greek newts. 

 

DISCUSSION 

Whereas terrestrial environments showed limited alterations in the studied eco-cultural 
landscapes, the associated aquatic landscapes have been deeply affected over the last decades. The 
main driver of change was the introduction of alien aquatic species, which persisted and expanded 
over the last decades. This resulted in a rapid biodiversity loss as shown by the high decline of 
amphibian populations. Even worse, the fully aquatic and rare paedomorphic phenotypes are now 
on the edge of extinction on a country-wide scale. Although Montenegro was historically a hotspot 
of the unique evolutionary process which is paedomorphosis (Džukić et al. 1990), this is no longer 
the case. Because newts and, even more specifically, paedomorphs used to be the native top 
predators of these freshwater habitats, the current situation is, therefore, more than just alarming, 
suggesting that many of these aquatic ecosystems may be globally impacted.  

In Western Europe, terrestrial lands are deeply affected by anthropogenic change, and the 
alteration and disappearance of freshwater habitats have been well-documented on a variety of 
scales (Wood et al. 2003, Ferreira and Beja 2013, Arntzen et al. 2017). In many cases, the 
remaining aquatic habitats became less favourable for the establishment of native aquatic fauna 
(Ficetola et al. 2011, Denoël et al. 2013). In contrast, it is often assumed that alpine environments 
and other traditionally managed lands continue to offer valuable resources to sustain biodiversity 
(Hartel et al. 2010, Rotherham 2015). Although agricultural practices are rapidly changing in 



 
 

Eastern European countries (Pătru-Stupariu et al. 2016, but see Miró et al. 2018), there was no 
generalised increase of agricultural lands in the proximity of ponds and lakes in the present study. 
In most cases, the landscape remained natural with even a decrease of some agricultural typologies 
(i.e. agriculture mosaics), a sign of land abandonment and reduced use of natural resources (see 
also Nyssen et al. 2014, Lakovic et al. 2016). However, ponds, which were historically used 
primarily for water sources for humans and livestock are now often redirected to new objectives, 
such as fish stocking. This exemplifies a major and worrying change of thinking on the value and 
use of water resources in rural environments which can have significant negative impacts on 
biodiversity. 

 

Declines over the last decades 

Previous reports highlighted the decline of amphibians, including newts on a global scale, 
(Denoël 2012, Dufresnes and Perrin 2015, Drechsler et al. 2016, Arntzen et al. 2017), and 
paedomorphic newts have suffered particularly dramatic population losses (Denoël et al. 2005a). 
In Montenegro, the first report of paedomorph extirpation dates back to the 1980’s (Breuil 1985), 
whereas the first global survey in the early 2000’s showed a strong decline which altered the 
distribution of paedomorphs, but caused no changes for metamorphs (Denoël et al. 2009). Our 
results show that paedomorphs are now only present in one-fifth of the historical sites. Only a few 
paedomorphs were observed in the remaining populations, suggesting that the large historical 
populations no longer exist. With a maximum of 13 paedomorphs found at a single site (all 
populations considered) in 2016, the situation contrasts radically with what existed more than 30 
years ago, when populations of up to one thousand paedomorphs could be found in ponds and in 
lakes (Džukić 1981, Kalezić and Džukić 1985, 1986, Kalezić et al. 1989). The proportion of 
paedomorphs within populations also dropped significantly. Indeed, some populations were 
predominantly paedomorphic in historical surveys (e.g. 86% paedomorphs in Bukumirsko jezero: 
Kalezić et al. 1989), whereas paedomorphs were either extinct or found in very low proportions 
during the latest survey (i.e. maximum 7% in Rutešića voda), therefore showing an extinction of 
all populations which were mainly paedomorphic. We also point out that the observed declines are 
not due to turn-over in metapopulations (Cruickshank et al. 2016) because there was no potential 
population source of paedomorphs nearby the study populations.  

 The present survey showed a much more serious decline than in other diversity hotspots 
where both phenotypes declined but persisted (Crochet et al. 2004, Denoël et al. 2005a, Denoël 
and Winandy 2015). Countries near Montenegro were also known to host populations of 
paedomorphic newts (Džukić et al. 1990, Denoël et al. 2001, Papaioannou et al. 2015, Sotiropoulos 
et al. 2017). However, the most important populations of alpine newts also disappeared in Bosnia 
and Herzegovina and Slovenia (Denoël et al. 2005a). Some extinct paedomorphic populations 
were unique and were historically described as endemic subspecies (Radovanović 1951, 1961). 
This is the case of Ichthyosaura alpestris montenegrina in Bukumirsko Jezero, I. a. serdara in 
Zminičko Jezero and I. a. piperiana in Kapetonovo and Manito Jezero. In all cases, paedomorphs 
disappeared from the type localities, whereas metamorphs also vanished or largely declined (see 
also Džukić 1995, Denoël et al. 2005a). Such continuous decline overcomes thresholds defined by 
the International Union for the Conservation of Nature (IUCN) to identify critically-endangered 
taxa (IUCN 2017). Localised extinctions have also been reported for lakes inhabited by 
paedomorphs in other families, such as ambystomatids, including the axolotl (Ambystoma 



 
 

mexicanum), which is now nearly extinct (Whiteman and Howard 1998, Contreras et al. 2009), 
further stressing the high conservation concern of paedomorphosis.  

 

Anthropogenic pressures on freshwater habitats and amphibians 

Multiple factors drive biodiversity loss on the global scale. Invasive species, land use 
conversion and climate change are among the most threatening factors (Sala et al. 2000, Bosch et 
al. 2018). The introduction of non-native species, particularly fish, was the main driver of the 
decline of both metamorphic and paedomorphic newts (Fig. 4). Fish stocking started in alpine 
lakes of Montenegro in the 1970’s, and continued in the last decades, particularly in ponds. The 
presence of youngs-of-the-year indicated reproduction at several sites. The lakes which were 
already fished in the early 2000’s continued to be stocked with fish, and multiple species were 
often introduced in the same lake. Introductions involved fish as varied as cyprinids, catfish and 
salmonids, with up to six species found in a single lake. The presence of such alien fish 
communities is very detrimental to native species because they are expected to occupy varied 
niches of the freshwater habitats and profoundly impact native food webs (Havel et al. 2015, 
Gallardo et al. 2016, Cabrera-Guzmán et al. 2017). For instance, the larger and more predatory 
species can impact newts by predation, as shown by the stomach contents of 11 salmonids, which 
contained 15 paedomorphic alpine newts at the time of introduction in Bukumirsko Jezero (Denoël 
et al. 2005a; A. Ivanovic, pers. comm.; pers. obs.). In addition to consumptive interactions, fish 
can also be competitors and be aggressive towards newts and salamanders (Zambrano et al. 2010, 
Winandy and Denoël 2015).  

An interesting pattern evidenced by the present study is that metamorphs manage to persist 
in ponds and lakes longer than paedomorphs in the presence of fish (Fig. 4). This differential 
response of both phenotypes could be explained by different factors. First, the fully aquatic life of 
paedomorphs exposes them to fish all year round and prevents them from leaving water bodies 
with fish by dispersal on land, whereas metamorphs are able to do so (Winandy et al. 2015). 
Second, it has been suggested that metamorphs in water bodies with fish could come from nearby 
fishless ones, i.e. through a source-sink dynamic process (Breuil 1985). Third, paedomorphic 
newts are more pelagic than metamorphs and, therefore, are more easily preyed upon by large 
predators such as salmonids (Denoël et al. 2005b, Lejeune et al. 2018). Unfortunately, the longer 
persistence of metamorphs proved to be, in most cases, only a transient state, given that in the last 
years they showed a pattern of decline comparable to the one of paedomorphs in the 2000’s. 

In addition to fish, the last survey detected crayfish, which are a new threat to newts. 
Although not seen historically and found in only one of the studied ponds a dozen of years ago 
(Ćirović 2009; pers. obs.), crayfish have now been introduced in four localities, including both 
ponds and lakes. Crayfish are amongst the most important invasive components of freshwater 
ecosystems worldwide, with the potential to have significant detrimental effects on whole 
communities due to their omnivorous feeding behaviour and intense burrowing activity 
(Rodríguez et al. 2005, Gherardi 2010). Their recent invasion in numerous countries raises 
important concerns for amphibians and, even more, newt conservation (Gamradt and Kats 1996, 
Cruz et al. 2006, Ficetola et al. 2011, Ficetola et al. 2012). The effect of crayfish in Montenegro 
was particularly detrimental as shown by the disappearance of both newt phenotypes following 
crayfish introduction.  



 
 

Finally, mixed models showed that climate change affected the metamorphic phenotype in 
the studied populations. Although drought events can affect populations of paedomorphs in other 
areas (Semlitsch and Gibbons 1985, Denoël and Winandy 2015, Mathiron et al. 2017), it is less 
likely the case in Montenegro because most ponds and lakes are very deep, making them 
permanent aquatic habitats. In contrast, high temperatures were associated with a decrease in the 
occurrence of the metamorphs, the terrestrially-adapted phenotypes. Despite the fact that 
microhabitats could buffer the impact of climate change (Scheffers et al. 2014), this result 
constitute recent evidence that global warming could affect amphibian populations (Walls 2009, 
Bonett et al. 2014, Ficetola and Maiorano 2016). 

 

Is there still hope for amphibians and paedomorphosis? 

Despite perturbations and declines, many species are able to show resilience after threat 
removal (Knapp et al. 2001). This is the case in amphibians (Vredenburg 2004, Knapp et al. 2007, 
Knapp et al. 2016, Milligan et al. 2017), and even paedomorphic newts, after fish removal (Denoël 
and Winandy 2015). Indeed, as facultative paedomorphosis is a polyphenism, some metamorphic 
dispersers from populations where facultative paedomorphosis is expressed can give birth to 
individuals which can mature as paedomorphs (Denoël and Winandy 2015, Oromi et al. 2016). 
However, selection against paedomorphosis can alter its expression (Semlitsch and Wilbur 1989), 
which might decrease the likelihood of the resilience of paedomorphic populations after a long 
period of time of counter selection, as is probably the case in Montenegro. Moreover, as there are 
no remaining populations of paedomorphs nearby to the studied populations, colonizers would 
come only from populations of metamorphs (see also Oromi et al. 2019). In fact, fish were 
extirpated in one of the mountain lakes (Ridsko Jezero), but paedomorphs did not recover as only 
metamorphic newts were found during the last surveys. 

Fish removal could be performed in both ponds and lakes, but this often requires long-term 
actions (Knapp and Matthews 1998, Tiberti et al. 2017). These management aspects were therefore 
not in the scope of the present study whose primary aim was to show the ongoing decline and to 
raise awareness that the extinction of paedomorphs, and consequently of the process itself, is likely 
to occur globally if no conservation measures are taken. In developing countries, such as 
Montenegro, management may be particularly challenging. On the one hand, the recent fishing 
interest of local people and the abandonment of the traditional use of ponds (i.e. providing water 
sources for humans and cattle) make it likely that new introductions will occur after management. 
On the other hand, no significant management activities or funding have been devoted as yet to 
freshwater biodiversity conservation in Montenegro. Thus, local enforced protection along with 
awareness raising should be promoted in parallel with all removal actions. For instance, fishing 
bans helped in preventing new fish introductions in Pyrenean alpine lakes (Miró and Ventura 
2013). 

It is possible that some new populations of paedomorphs could still be discovered. 
However, all major alpine lakes have already been intensively surveyed in Montenegro (Denoël et 
al. 2009); therefore, it is likely that no new major populations would be found. In principle, it is 
also possible that paedomorphosis could still be expressed later in some of the studied ponds, 
despite the absence of observation during the last survey. However, only direct management 
through fish removal could help to restore populations as ponds and lakes are usually permanent. 



 
 

 

Conclusions 

Land use and running waters are targeted by major legislation and funding programmes 
(EU Water Framework Directive 2000, Young et al. 2005, Rounsevell et al. 2006). However, small 
lentic freshwater habitats, such as ponds and mountain lakes are often disregarded (Nicolet et al. 
2009, Oertli et al. 2010, Boix et al. 2012, Sayer 2014). As shown here, freshwater habitats can 
show a higher degradation than terrestrial landscapes, even within areas which are considered 
traditionally managed. In particular, introduced species were shown in the present case to have a 
stronger effect on amphibian decline and on the almost extinct emblematic paedomorphic 
phenotype than be those of climate change (see also Ficetola et al. 2018). Therefore, it is urgent 
that ponds and small lakes receive as much attention as large lakes and rivers in conservation 
policy (Davies et al. 2008). Such a target would need a better recognition of these habitats for 
preserving intra and interspecific biodiversity value and an improvement of the ecosystemic value 
of freshwater habitats without alien fish introductions. 
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