

Point-based POMDP Risk Based Inspection of Offshore Wind Substructures

P.G. Morato, Q.A. Mai & P. Rigo

Department of ArGEnCO, University of Liege (Belgium)

J.S. Nielsen

Department of Civil Engineering, Aalborg University (Denmark)

October 31, 2018 - Ghent, Belgium

Introduction – Offshore Wind Substructures

Far away from shore

...Complex O&M tasks
Reduce LCOE...

Information available

....Inspections
Monitoring...

Source: https://www.researchgate.net/figure/Opticalstrain-gauges-as-installed-at-a-Belwind-and-b-Northwind

Source: https://www.deltares.nl/en/projects/cuttingmaintenance-costs-offshore-wind-farms-usingimproved-forecasts

Maintenance Decision Problem

Decision Problem Simplifications

Heuristic Rule: 'Constant intervals of time'

More simplifications...

- Perfect inspections
- Repair if detected

MDPs & POMDPs

Decision problem — Dynamic programming

State / Action: Cost

Partially Observable Markov Decision Process (POMDP)

Belief State / Action / Observation: Cost

Solving POMDPs

Decision problem:

'Grid-based' technique

- Finite set of belief points
- Extrapolation/interpolation

'Point-based' technique

- 'Optimally' reachable beliefs
- Large state space (Robotics)

Proposed Methodology

'Fatigue Deterioration'

Example: Tubular Joint (1)

'Probabilistic Fatigue Deterioration'

Time (years)

Example: Tubular Joint (2)

'SARSOP Algorithm': POMDP 60 states

POMDP Result

Discussion & Conclusions

Point-based POMDP - Reasonable CPU Time

Applied to Offshore Wind Substructures

- Future:
 - System-level
 - Monitoring

Point-based POMDP Risk Based Inspection of Offshore Wind Substructures

Questions?

P.G. Morato

pgmorato@uliege.be

October 31, 2018 - Ghent, Belgium