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Abstract: In recent decades, remote sensing has increasingly been used to estimate the spatio-temporal
evolution of crop biophysical parameters such as the above-ground biomass (AGB). On a local
scale, the advent of unmanned aerial vehicles (UAVs) seems to be a promising trade-off between
satellite/airborne and terrestrial remote sensing. This study aims to evaluate the potential of a
low-cost UAV RGB solution to predict the final AGB of Zea mays. Besides evaluating the interest
of 3D data and multitemporality, our study aims to answer operational questions such as when
one should plan a combination of two UAV flights for AGB modeling. In this case, study, final
AGB prediction model performance reached 0.55 (R-square) using only UAV information and
0.8 (R-square) when combining UAV information from a single flight with a single-field AGB
measurement. The adding of UAV height information to the model improves the quality of the
AGB prediction. Performing two flights provides almost systematically an improvement in AGB
prediction ability in comparison to most single flights. Our study provides clear insight about how
we can counter the low spectral resolution of consumer-grade RGB cameras using height information
and multitemporality. Our results highlight the importance of the height information which can be
derived from UAV data on one hand, and on the other hand, the lower relative importance of RGB
spectral information.

Keywords: unmanned aerial vehicles; unmanned aerial systems; drone; above-ground biomass; RGB
imagery; photogrammetry; Zea mays

1. Introduction

Maize, rice, and wheat provide 30% of the food calories to more than 4.5 billion people in almost
100 developing countries [1]. Grain yield related to these major crops is therefore one of the most
important issues related to national food security and personal living standards [2]. Therefore, accurate
crop yield forecasts prior to harvest would enable planners to take more sound and reasonable
decisions regarding national food policy [3].

At the local and farm scale, the estimation of crop biomass production is of great importance
and remains one of the basic indicators to assess the performance of agricultural practices
(e.g., crop response to tillage or residue management [4]), to study environmental processes in the
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agro-ecosystem (e.g., estimation of carbon stocks or light use efficiency [5]), to analyze plant health
status (e.g., estimation of crop losses due to disease severity), to predict and plan logistical aspects
(e.g., estimating feed production available on the farm, or planning grain delivery and stock in grain
depots) or for the purpose of precision agriculture (e.g., site-specific N management [6]).

In such a global and local context, techniques allowing for a rapid, economical and quantitative
estimation of crop biomass and yield production are therefore of great importance for accessibility risk
management, global markets, policy-making, and decision-making from farm over regional to even
global scale [7].

Remote sensing is increasingly used to estimate the spatio-temporal evolution of crop biophysical
parameters, thanks to its ability to collect non-destructive time-lapse information over large area [8].
Satisfactory relationships have been proposed in the literature between remotely sensed spectral
variables, usually combined in and expressed through vegetation indices (VI), and crop biophysical
parameters such as phenology [9], leaf area index (LAI [10]), and above-ground biomass (AGB [11]).

The Near InfraRed (NIR) spectral band is by far the most used in VI’s, because of the reflection
characteristic of this spectral band by green vegetation, in comparison to the reflection in the visible
bands: Red (R), Green (G) or Blue (B). Even though they are smaller, spectral differences in the
reflectance in the visible bands exist, and are caused by biochemical plant constituents such as
chlorophyll [12,13], allowing for RBG-derived VI’s to be properly used for agronomical purposes
as well. However, in both the NIR-based and RGB-based indices, the spectral signals of remotely
sensed images tend to saturate with vegetation biomass where or when canopy densities become too
important. Furthermore, reference [14] reported that small changes in leaf orientation could induce
important modifications in the spectral composition and intensity.

Biomass estimation is commonly recognized as being crucial for yield prediction of crops [15],
and for certain agricultural species such as maize, accurate determination of the crop height has also
been proven to be a very good indicator of the actual plant biomass [8] or the upcoming crop yields [16].
Plant height information is most useful when it is available at high spatial and temporal resolution,
but in situ physical measurements are laborious and it can be difficult to properly characterize the
spatial variability [17]. As an alternative to physical measurement methods of crop heights, several
studies have investigated remote sensing as an alternative for crop height measurement. In terms of
remote sensing approach, LiDAR [8,18] and structure from motion photogrammetry [13] are the most
common. These methods can be implemented on aerial platforms (unmanned and manned aircraft) or
by a human operator on the ground.

The recent advent of unmanned aerial vehicles (UAVs) seems to be a promising trade-off
between satellite/airborne and terrestrial remote sensing in the study of agronomical and ecological
management. Both non-imaging (e.g., LiDAR) and imaging (e.g., RGB camera, multispectral or
hyperspectral) sensors can be mounted on UAV. A detailed presentation on the evolution and
state-of-the-art discussion of the use of UAV systems is presented in Colomina and Molina [19].

Recently, photogrammetric imaging using UAV’s, supported by the structure of motion (SfM)
technique and dense image matching has become very interesting tool to collect 3D information of
objects due to its low cost, efficiency, flexibility and ability to work in near-real-time [17,20,21]. These
methods, in combination or not with spectral data, have already been investigated in different studies
regarding e.g., winter barley [11,13,22], winter wheat [23] or maize [8] crop production. Nevertheless,
those studies did not investigate the use of combinations of RGB vegetation indices and UAV Crop
Height data to predict AGB considering various growing stages. They also did not provide insight
about the added value of UAV imagery in terms of AGB modeling when compared with classical field
measured parameters (e.g., intermediate AGB).

The main goal of our study is to evaluate the potential of multitemporal UAV imagery to predict
AGB of maize using a consumer-grade UAV and RGB camera. More specifically, our study aims to:
(i) evaluate the added value of 3D data derived from photogrammetric reconstruction using the same
source imagery data, (ii) give insight about the best (combination of) time windows to perform UAV
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flight survey to predict AGB, (iii) compare the added value of UAV imagery with field measure of
AGB in order to predict the AGB of the crop. We tested this approach on a corn field in Belgium.

2. Materials and Methods

2.1. Study Site and Field Measurements

The study site consisted of 32 experimental plots (15 × 40 m) of maize (Zea mays L.) installed in
Gembloux (Wallonia, Southern Belgium—50◦33′50.75′ ′N, 4◦42′46.4′ ′E, Figure 1). The crop was sown
on 21 and 22 April 2015 and harvested on 13 November 2015 (see Figure 2). The emergence and the
anthesis occurred on 6 May and 23 July, respectively.
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2.2. Acquisition and Pre-Processing of UAV Imagery 

Figure 2. Timing of AGB biomass sampling and UAV flight surveys. The field crop was sown on
21 April (0 days after sowing (DAS)) and harvested on 13 November (205 DAS) 2015. The emergence
and the anthesis occurred on 6 May and 23 July, respectively.

The total AGB was measured on each plot four times during the growing season (see Figure 2).
We took destructive crop samples (quadrat method) which were weighted after drying. For each
sample, an associated area was computed based on the outdistance sowing and the number of sampled
crops to approximate an AGB measurement per area unit. Details of data sampling can be found in [4].

2.2. Acquisition and Pre-Processing of UAV Imagery

We used an octocopter drone (X frame type) carrying an off-the-shelf high spatial resolution
(20 Mpx) RGB camera (Sony RX 100 mk3). The octocopter’s flight height was set to 50 m above ground
level, with a cruise speed at 5 m·s−1 and a front and a side overlaps above 80%. Nine flight surveys
were performed every two weeks, from the 15 June to the 15 October 2015 (see Figure 2). This schedule
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was established as a balance between surveying the crops at various growth stages and the operational
complexity of regular flight surveys (e.g., meteorological conditions or manpower). The swath of
the UAV individual images was ca. 75 m and the total area covered by a single flight survey was ca.
42,000 m2.

We set 16 Ground Control Points (GCP) consisting of 0.4 m white square plastic plates in the
surveyed area to ensure geometric calibration. The GCP were georeferenced with a GPS Leica ATX1230
(±0.01 m mean XYZ accuracy).

We used Agisoft PhotoScan Professional (version 1.2, see http://www.agisoft.com/) to perform a
photogrammetric 3D reconstruction of the acquired imagery for every flight survey. Two UAV raster
products derived from each flight were RGB orthophotomosaic and Digital Surface Model (DSM).
The Ground Sampling Distance (GSD) was 0.02 m for RGB orthophotomosaic and 0.05 m for the DSM.

The geometric accuracy of the UAV products is optimized using the reference data provided by
the 16 GCP. Agisoft Photoscan performs a self-calibration process to refine the camera parameters
to match theses reference data. Following the approach proposed by James et al. [24], we selected
the following set of parameters in the optimization process: focal distance (f), principal point (cx
cy), tangential distortion (k1 to k3), radial distortion (p1 p2) and affinity/skew coefficients (b1 b2).
Such approaches are widely used in environmental sciences (e.g., [25,26]) to derive UAV mapping
products presenting high georeferencing and geometric quality.

We produced a Crop Height Model (CHM) by subtracting a LiDAR DTM to the high spatial
resolution photogrammetric DSM to provide a raster of the crop height (0.02 m GSD). The public
regional administration (see http://geoportail.wallonie.be/ for further information) extracted a LiDAR
DTM from LiDAR survey (<1 point/m2) acquired during the years 2013 and 2014. As the trial occurred
in 2015, the LiDAR DTM from the regional survey was considered as still relevant to describe the
topography of the study area.

2.3. Modeling Final AGB with UAV Imagery

Partial least-square (PLS) regressions were used to investigate the relationship between
multitemporal UAV imagery and the AGB through three different modeling approach directly linked
to the three specific sub-objectives of the study. The “plsdepot” package [27] implemented in the R
software [28] was used for the modeling tasks. The PLS regression modeling is used to find the relations
between two matrices (X and Y) and present the advantage to be more robust than linear regression
and principal component regression methods [29]. PLS regression modeling is also less affected by
data collinearity and represents a valuable method for modeling high-dimensional data [30].

2.3.1. Data Preparation

The field measured AGB observations were linearly interpolated to the flight times (time-based
interpolation) to match the timing of field AGB acquisition with the nine dates associated with UAV
flight surveys. The AGB interpolated for the 15 October (last UAV flight) will be further referred to the
final AGB measurement.

For every UAV flight survey, a median value was extracted for the Red, Green and Blue channels
of the corresponding orthophotomosaic within the 32 field plots. The median values are divided by the
associated brightness (Median Red + Median Green + Median Blue) to reduce the impact of changing
sunlight condition during the flight surveys.

Median plant height values were also extracted for the 32 field plots, based on the CHM raster.
To enhance contrast and reduce the spectral heterogeneity, we computed five spectral indices, which
are listed in Table 1. The spectral indices cover the spectral ranges of the camera used for this study
and were chosen because of their simplicity and replicability. They were used as predictors within the
constructed model instead of the original luminescence value from the RGB orthophotomosaic and
were computed for each plot for the 9 UAV flight survey dates.

http://www.agisoft.com/
http://geoportail.wallonie.be/
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Table 1. Vegetation indices computed from median luminescence value normalized by brightness.

Reference Formula Source

NGRDI—Normalized Green Red Difference Index (GREEN − RED)/(GREEN + RED) [31]
NGBI—Normalized Green Blue Index (GREEN − BLUE)/(GREEN + BLUE) [32]

NRBI—Normalized Red Blue Index (RED − BLUE)/(RED + BLUE) [32]
VARI—Visible Atmospherically Resistant Index (GREEN − RED)/(GREEN + RED − BLUE) [33,34]

TGI—Triangular Greenness Index GREEN − (0.39 × RED) − (0.61 × BLUE) [35,36]

2.3.2. Modeling Approach 1: 3D Data vs. Spectral UAV Data

The orthophotomosaic and the DSM are the two basics products that can be produced with
overlapping images acquired by a UAV. In this paper, we combined the obtained DSM information with
a LiDAR DTM to produce CHM. Multitemporal CHMs provide insight about the vertical development
and the growth rate of the crops. To evaluate the added value of 3D data, the final AGB was firstly
modeled using a mixed approach (3D and spectral UAV data, Model 1a) and secondly based on
spectral UAV data only (Model 1b). A PLS regression model was adjusted for every flight survey
where the index i represents the considered UAV flight date.

Model 1a : Final AGB = f (Median Heighti + NGRDIi + NGBIi + NRBIi + TGIi + VARIi );

Model 1b : Final AGB = f (NGRDIi + NGBIi + NRBIi + TGIi + VARIi );

Model 1c : Final AGB = f (Median Heighti);

where the index i represents the UAV flight date.
For each model, we used the standardized regression coefficients of the UAV variables to highlight

their individual contribution to the model and their temporal evolution. Higher the standardized
regression coefficients of one variable is, higher the contribution of this variable to the model is.
The same approach was used with the R-square (sum of the two first components) to understand the
quality of the final AGB models associated with each UAV flight survey date.

2.3.3. Modeling Approach 2: Timing of UAV Acquisition

Based on the most suitable option in terms of UAV products previously identified, this section
investigates how two UAV flight surveys can be combined to predict the final AGB. As the combination
of nine flights is most probably too time-consuming for operational application, we used a flights
combination of two flights which is closer to a potential field application. For this purpose, a final
AGB model was developed for every combination of two flying dates, using the corresponding UAV
variables. For each model, the R-square (sum of the two first components) was used to understand the
quality of the final AGB prediction associated with each combination of two flights. In the formulas
here below, UAV variables1 regroups the UAV products corresponding with date 1. Depending on the
results associated with the modeling approach 1, the UAV products can be 3D and/or spectral.

Modeling approach 2:

Final AGB = f (UAV variables1 + UAV variables2)

Final AGB = f (UAV variables1 + UAV variables3)

Final AGB = f (UAV variables1 + UAV variables4)

. . .

Final AGB = f (UAV variables7 + UAV variables8)
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2.3.4. Modeling Approach 3: UAV Data vs. Field Data

The last modeling approach investigates the added value of AGB field measurements in addition
to the UAV imagery variables to predict the final AGB of the crop. The quality of the final AGB
prediction was evaluated based on predictors combining intermediate field AGB (single date) data
with a later UAV variable (single date). It was decided to use the interpolated AGB observations which
presented a higher frequency, to see what the most relevant date would be to perform a sampling,
if the approach was found to be successful.

To complete this analysis, we compared this to a strictly ground-based approach (i.e., prediction
of final AGB with single intermediate field AGB) and to a strictly UAV-based approach (i.e., prediction
of final AGB with UAV variables associated with a single UAV flight survey).

Modeling approach 3:

Final AGB = f (AGB sampling1 + UAV variables2)

Final AGB = f (AGB sampling1 + UAV variables3)

Final AGB = f (AGB sampling1 + UAV variables4)

. . .

Final AGB = f (AGB sampling7 + UAV variables8)

3. Results

3.1. Modeling Approach 1: 3D Data vs. Spectral UAV Data

The Figure 3 shows the result of modeling approach 1 (mixed final AGB model). In Figure 3a we
can see that the mixed models based on different spectral indices and crop height vary slightly among
each other but behave similarly over time. Nevertheless, adding height information to the model
improves the quality of the AGB prediction, especially after 100 days after sowing (DAS). The lower
relative interest for height data in the early growing stages (before 100 DAS) can be linked to the
lower height differences between individual crops at the beginning of the crop growth. The interest of
spectral data can mainly be associated with the early crop development stages. Figure 3b highlights
the performance of models only based on spectral information. There is no particular individual index
performing clearly better than the others and their performance depends on the growing stage of the
crop. UAV data acquired more than 80 DAS does not contribute notably to the quality of the final AGB
prediction (Figure 3c). Since the combination of both data (spectral and height) works out best, this
set-up was kept for the following modeling activities.
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Figure 3. Added value of height data to predict the final AGB in maize crop. The origin of the X axis
corresponds to the sowing of the maize crops. Subplot (a) shows the relative contribution of each
variable in the “Mixed” final AGB model (1a). Subplot (b) presents the relative contribution of each
variable in the “Spectral only” final AGB model (1b). Subplot (c) displays the temporal evolution of the
R-square associated with the “Mixed” AGB model (1a), the “Spectral only” AGB model (1b) and the
“height only” AGB model (1c).

3.2. Modeling Approach 2: Timing of UAV Acquisition

Table 2 investigates how data computed from two selected UAV flight surveys can be combined
to predict the final AGB. When two flight dates are the same (values in the diagonal), the R-square
value corresponds to the value associated with the single date model (Figure 3c).
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Table 2. Modeling the final AGB with the combination of UAV variables (vegetation indices and
height) from two flight surveys. Each cell represents the R-square (sum of the two pls components)
associated with the final AGB model adjusted with the combination of UAV variables from two flight
dates. For every flight date, the best combination is bolded and marked with a * character.

Flight Date (Days after Seeding) UAV Variables

54 71 85 100 114 128 149 162 176

UAV variables

54 0.2 0.35 0.46 0.55 * 0.52 0.44 0.42 0.52 0.47
71 0.32 0.41 0.43 0.39 0.44 * 0.38 0.43 0.43
85 0.43 0.49 * 0.46 0.47 0.46 0.48 0.47

100 0.43 0.47 * 0.46 0.42 0.46 0.46
114 0.45 0.43 0.40 0.47 * 0.47
128 0.42 0.37 0.46 0.49 *
149 0.31 0.39 0.45 *
162 0.45 0.47 *
176 0.45 *

The best performing combinations (e.g., 54 and 100 DAS) reached 0.55 (R-square). While the
absolute gain might seem little in some cases (e.g., when compared to a single flight at 100 or 114
DAS, which yielded respectively R-squared of 0.43 and 0.45), performing two flights provides an
improvement in AGB prediction ability in comparison to most single flights (>90% of potential
combinations). As an example, performing a flight at 71 and 128 DAS (R-square of 0.44) is better than
flying only at 149 DAS (R-square of 0.31).

3.3. Modeling Approach 3: UAV Data vs. Field Data

Table 3 shows the added value of UAV imagery (spectral and height data) to predict the final
AGB if a previous field measured AGB is available. The reading of the last columns from Table 3
indicates quite logically that the later the field ABG measurement is performed, the more the final
AGB prediction is improved. When comparing these values (last column) with the last row of the
table, one can also notice that prediction based on field AGB measure or UAV flight are of similar order
of accuracy when performed around 100 DAS (0.43). Later in the season, the performance becomes
greater with field AGB measures while UAV information remain steady.

Table 3. Modeling the final AGB with the combination of UAV variables (vegetation indices and height)
provided by a single flight survey with an intermediate field AGB measurement. Each cell represents
the R-square (sum of the two pls components) associated with the final AGB model adjusted with the
considered combination. The last row (bolded values) represents the R-square (sum of the two pls
components) of final AGB models build with single date UAV products. The last column represents
the R-square (sum of the two pls components) of final AGB models build with single date intermediate
field AGB values. For every flight date, the best combination is marked with the * character.

Flight Date (DAS)
UAV Variables

54 71 85 100 114 128 149 162 176 Pred. Final AGB
with Field AGB

Field AGB

54 0.35 0.43 0.42 0.41 0.41 0.34 0.42 0.46 * 0.29
71 0.43 0.42 0.41 0.41 0.34 0.42 0.46 * 0.29
85 0.46 0.45 0.44 0.38 0.46 0.48 * 0.38

100 0.48 0.47 0.41 0.48 0.50 * 0.43
114 0.52 0.45 0.53 * 0.52 0.48
128 0.48 0.56 * 0.53 0.49
149 0.58 * 0.52 0.44
162 0.8 * 0.82
176 1

Pred. Final AGB
with UAV 0.20 0.32 0.43 0.43 0.45 0.42 0.31 0.45 0.45
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Each other row of Table 3 indicates how a given final AGB predication based on intermediate
field measured AGB is improved by addition of information gained with a UAV flight performed
in between the sampling date and the time of harvest. In most cases the addition of UAV imagery
improves the final AGB prediction to a varying extent, but certainly confirming the interest of the
approach. Indeed, an early biomass sampling would be much easier to be performed by a farmer and
a UAV flight performed latter in the season would offer the spatial variability of the field.

4. Discussions

Crop height derived from 3D imagery appeared as the most interesting predictor of final AGB,
in comparison to remotely sensed vegetation indices based on RGB imagery. The importance of
crop height as predictor of final yield had been highlighted by [8] which found the crop height to be
systematically selected in an automated stepwise variable selection procedures. When the sole mean
crop height was used, the model performance (adjusted R-squared) ranged approximately 0.51 with
a flight performed ~1.5 month before maize harvest. In our case, when using the sole crop height,
we reached comparable model performance, with a steady R-squared observed from 100 days before
harvest (i.e., ~100 DAS).

Collecting spectral information at different phenological stages, reference [37] found out that
the correlation of different VI with final rice grain yield were almost systematically optimal around
booting stage. This confirmed the observation reported, were the maximum correlation with the
spectral information was maximal between the DAS 85 and 100 time period which can be associated
with the flowering stage in our case (anthesis occurred 92 DAS).

Regarding the combination of plant height estimates and vegetation indices, references [13] found
out that the performance of prediction were not improved when crop height information was combined
with common VI to predict biomass over multiple dates. Oppositely, in the case study of [8], vegetation
indices were found to have an added value in the final set of explanatory variables, in combination
with crop height, and improved prediction of AGB. Our observation seemed to highlight an added
value of spectral information used in early prediction of final AGB (before half-season, ca. 100 DAS).
After that, crop height can be used alone for prediction of final AGB.

Earlier studies have indicated that accumulative VI could improve the stability of yield
prediction [2,38]. However, contrarily to the simple VI values accumulation [2], reference [37] had
proposed to use a multiple linear regression approach to automatically select the best combination
of (two) flying times to predict final rice yield. They found out that combining a flight at jointing
or heading stage with a flight at booting stage gave a better correlation with grain yield than did VI
obtained at any single growing stage.

Using a systematic analysis of all flight combination, our study confirms these findings and the
importance of flying at specific growing stage (flowering stage, in this case). The end of flowering-early
grain filling represents the end of the vegetative phase, where the plant enters the reproductive phase.
At that moment, maize reaches its vegetative nutrient growth peak [39] and most of the reserve has
been acquired, allowing to partially compensate for further potential problem during grain filling
phase. Around that time, the LAI is also the highest, and to some point it reflects the maximal
photosynthetic capacity of the plant. This explains why many studies reports successful estimates of
crop yield using VI indices computed when LAI has reached its maximum [7,37,40].

Yet, it seems that UAV-derived information cannot really outperform the use of in situ field
measurements. However, from our results, it seems clear that the combination of information acquired
from biomass sampling performed during early growth—when it is quite easy to access the field
and when the biomass development might be relatively more homogeneous—and combined with
UAV-derived information gathered through a later flight—when it is more complicated to access the
field and when the variability is greater between different field zone—present an interesting potential
to assess final AGB or yield.
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Globally, our results point out the importance of UAV information acquired at the mid-season
(100 DAS), around the end of the vegetative phase. Even if this timeslot did not provide the
best result in terms of prediction accuracy, it represents the most interesting timeslot in terms of
operational application, providing satisfactory final AGB prediction more than 100 days before the
actual harvesting.

5. Conclusions

In terms of timing of UAV surveys, our results suggest that the half-season (100 DAS) is the best
time windows to predict the final AGB. In this case, study, final AGB prediction model performance
reached 0.55 (R-square) using only UAV information and 0.8 (R-square) when combining UAV
information from a single flight with a single-field AGB measurement. When assessing the final
AGB using consumer-grade UAV-derived information, it seemed, from the different approaches set
up, that there is a crucial interest of performing flight mid-season, between flowering and early grain
filling, (~100 DAS in this case).

Nevertheless, the crop height reconstruction requires higher computing time and a more specific
expertise than the production of spectral information, our results claim that a sound AGB estimation
using consumer-grade cameras must rely on height information. In terms of potential operational
application, the use of cloud-based solutions and standardized procedure integrating automatic
referencing can simplify the production of photogrammetric crop height information. Photogrammetry
based on off-the-shelf RGB cameras is still the only low-cost approach to produce 3D information
but the development of low-cost LiDAR will open new opportunities, notably relying on completely
“onboard” processing workflows.

Our study provides clear insight about how we can counter the low spectral resolution of
consumer-grade RGB cameras using height information and multitemporality. Our results highlight
the importance of the height information which can be derived from UAV data on one hand, and on
the other hand, the lower relative importance of RGB spectral information.
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