Balancing forest ES by adapting their management to the ecological context: a case study in Southern Belgium

ESP Europe 2018 Regional conference Tuesday, October 16 T10b - Towards multifunctional landscapes – assessing and governing synergies between biodiversity conservation and ecosystem services

Laura Maebe (PhD student) – laura.maebe@uliege.be Hugues Claessens & Marc Dufrêne (co-advisors)

Objectives

1. Map ES supply depending on the ecological **context** (i.e. natural conditions) and the management (i.e. human activities)

2. Test different management scenarios on ES supply depending on the ecological context

A

11

Variety of ES assessment methods but should take into account the ecological context and the management

Impacted ES

ological Climate, soil, ontext topography, etc.

Impacted ES

users

ES Matrix

Improvements:

• Consider the management

Pure even-aged spruce forest

ES Matrix

Improvements:

• Consider the management

Irregular broadleaved forest

15

ES Matrix

Improvements:

Consider the management

Ecological

• Take into account the ecological context

context Brown soil Steep slope Alluvial soil Wet soil Podzolic soil Peat soil Brown soil Steep slope Alluvial soil Wet soil Podzolic soil Peat soil

ES Matrix

Improvements:

- Consider the management
- Take into account the ecological context

Good soils

Sensitive soils = (1) non productive soils or (2) high ecological issues

ES Matrix

Six ES ranked

	Ecological context	Wood	Carbon	Flood	Erosion	Water	Recreation
	Brown soil						
	Steep slope						
	Alluvial soil						
	Wet soil						
	Podzolic soil						
	Peat soil						
	Brown soil						
	Steep slope						
	Alluvial soil						
	Wet soil						
	Podzolic soil						
	Peat soil						

18

ES Matrix

Six ES ranked

19

ES Matrix

Six ES ranked

ES Matrix

Six ES ranked based on literature review revised by experts

ES Matrix

- Pure even-aged spruce forest
- High wood production except on some sensitive soils
 Ecological

Wood

Scale of the ES ranking Minimal capacity 1 2 Very low capacity Low capacity 3 4 Medium capacity 5 Good capacity 6 Very good capacity Maximum capacity 7 Watan

- -

context	wood	Carbon	F 1000	Erosion	water	Recreation
Brown soil	7	6	6	6	4	4
Steep slope	5	4	3	2	3	2
Alluvial soil	7	4	3	1	1	3
Wet soil	4	3	2	2	2	2
Podzolic soil	5	4	4	3	2	4
Peat soil	1	1	1	1	1	1
Brown soil	5	7	7	7	7	6
Steep slope	4	5	6	5	6	5
Alluvial soil	5	7	7	7	7	7
Wet soil	3	4	6	6	6	6
Podzolic soil	4	5	6	6	4	6
Peat soil	1	5	5	6	6	5

ES Matrix

Pure even-aged spruce forest

• Low regulating and cultural ES especially on sensitive soils

Ecological						
context	Wood	Carbon	Flood	Erosion	Water	Recreation
Brown soil	7	6	6	6	4	4
Steep slope	5	4	3	2	3	2
Alluvial soil	7	4	3	1	1	3
Wet soil	4	3	2	2	2	2
 Podzolic soil	5	4	4	3	2	4
Peat soil	1	1	1	1	1	1
Brown soil	5	7	7	7	7	6
Steep slope	4	5	6	5	6	5
Alluvial soil	5	7	7	7	7	7
Wet soil	3	4	6	6	6	6
 Podzolic soil	4	5	6	6	4	6
Peat soil	1	5	5	6	6	5

23

Irregular broadleaved forest

• Medium wood production but lower on some sensitive soils

Ecological						
context	Wood	Carbon	Flood	Erosion	Water	Recreation
Brown soil	7	6	6	6	4	4
Steep slope	5	4	3	2	3	2
Alluvial soil	7	4	3	1	1	3
Wet soil	4	3	2	2	2	2
 Podzolic soil	5	4	4	3	2	4
Peat soil	1	1	1	1	1	1
		•				
Brown soil	5	7	7	7	7	6
Steep slope	4	5	6	5	6	5
Alluvial soil	5	7	7	7	7	7
Wet soil	3	4	6	6	6	6
 Podzolic soil	4	5	6	6	4	6
Peat soil	1	5	5	6	6	5

24

ES Matrix

Irregular broadleaved forest

• High regulating and cultural ES

Objectives

 Map ES supply depending on the ecological context (i.e. natural conditions) and the management (i.e. human activities)

Case study

- 54% of forests
- Half of broadleaved forest , mostly beech and oak in irregular stand
- Half of coniferous forest, mostly spruce, Douglas fir, larch and Scots pine in pure even-aged stand

28

ES Mapping

29

ES Mapping

Soil Sensitivity Map (Jacquemin, 2015)

30

ES Mapping

Soil Sensitivity Map (Jacquemin, 2015)

34

ES Mapping

Average of 5 regulating and cultural ES (collective interests)

35

ES Mapping

Average of 5 regulating and cultural ES (collective interests)

ES Mapping

Average of 5 regulating and cultural ES (collective interests)

Provisioning ES (individual interests) Balance between collective and individual interests

2. Test different management scenarios on ES supply depending on the ecological context

ES scenarios

Three scenarios to test different managements on the supply of ES

1.a. Scenario « restoration »

On all sensitive soils (10%)

ES scenarios

Three scenarios to test different managements on the supply of ES

1.a. Scenario « restoration »

1.b. Scenario « restoration + compensation »

On all sensitive soils (10%)

On good soils (10%)

ES scenarios

Three scenarios to test different managements on the supply of ES

1.a. Scenario « restoration »

1.b. Scenario « restoration + compensation »

2. Scenario « continuous forest cover »

(40% + 10%)

ES scenarios

Three scenarios to test different managements on the supply of ES

2. Scenario « continuous forest cover »

Ecological

ES rankings were adapted with literature + experts

context	Wood	Carbon	Flood	Erosion	Water	Recreation
Brown soil	7	6	6	6	4	4
Steep slope	5	4	3	2	3	2
Alluvial soil	7	4	3	1	1	3
Wet soil	4	3	2	2	2	2
Podzolic soil	5	4	4	3	2	4
Peat soil	1	1	1	1	1	1
Brown soil	7	7	7	7	6	5
Steep slope	5	5	6	5	5	4
Alluvial soil	7	7	7	5	4	3
Wet soil	4	4	6	6	5	4
Podzolic soil	5	5	6	6	3	5
Peat soil	1	5	5	6	5	1

- « Continuous forest cover » > « Restoration » > « Restoration + compensation »
- but on sensitive soils « Restoration » > « Continuous forest cover »

- High spatial variability in maps
- => ecological context plays an important role in ES supply

Discussion

- Intensive management
- High wood production but low regulating and cultural ES

- Ecological context X management
- Effects of the management exacerbated on sensitive soils

	Ecological						
	context	Wood	Carbon	Flood	Erosion	Water	Recreation
	Brown soil	7	6	6	6	4	4
	Steep slope	5	4	3	2	3	2
新茶茶	Alluvial soil	7	4	3	1	1	3
	Wet soil	4	3	2	2	2	2
	Podzolic soil	5	4	4	3	2	4
	Peat soil	1	1	1	1	1	1
	Brown soil	5	7	7	7	7	6
	Steep slope	4	5	6	5	6	5
	Alluvial soil	5	7	7	7	7	7
	Wet soil	3	4	6	6	6	6
	Podzolic soil	4	5	6	6	4	6
	Peat soil	1	5	5	6	6	5

Discussion 49

- Management recommendations
- Maps to identify areas of improvement

- Management recommendations
- Maps to identify areas of improvement
- Adapting the management to the ecological context

Good soils with productive forest All ES

Collective ~ individual interests

Sensitive soils with natural forest

Regulating and cultural ES

Collective > individual interests

Conclusion

1. Map ES supply depending on the **ecological context** and the **management**

- A forest is not like another: depending on the ecological context and management, a forest provides a different set of ES
- It is important to map the heterogeneity to identify which management can be applied where

2. Test different management **scenarios** on ES supply depending on the ecological context

• Adapt the management to the ecological context

Sensitive soils

Thank you for your attention Any questions?

Laura Maebe - laura.maebe@uliege.be

ES scenarios

Three scenarios to test different managements on the supply of ES

1.a. Scenario « restoration »

1.b. Scenario « restoration + compensation »

2. Scenario « continuous forest cover »

$$D = \frac{\sum_{i=1}^{12} (x_i^{Scenario} * S_i^{Scenario}) - \sum_{i=1}^{12} (x_i^{Current status} * S_i^{Curent status})}{\sum_{i=1}^{12} (x_i^{Scenario} * S_i^{Scenario}) + \sum_{i=1}^{12} (x_i^{Current status} * S_i^{Curent status})}$$

D = Difference in the capacity to supply the ES between the scenario and the current status i = each combination of a type of management with a type of ecological context x = the ranking of the ES

S = the surface (ha) covered by each combination of a type of management with a type of ecological context