

Séminaire en l'honneur du Professeur Jean Schoentgen - 11 Octobre 2018

Listening challenge: How noise and dysphonic voice may disrupt children's spoken language processing

Isabel Schiller¹, Dominique Morsomme¹, Malte Kob², & Angélique Remacle¹

¹Faculté de Psychologie, Logopédie et Sciences de l'Éducation, Université de Liège, Belgium

²Erich-Thienhaus-Institute, University of Music Detmold, Germany

Isabel.schiller@uliege.be

Background

Spoken language processing

- Processing of acoustic information into linguistic information that the listener can use and keep in memory.
- Auditory, cognitive, and linguistic mechanisms

Medwetzky, 2011

The listening challenge

...or how noise and impaired voice reduce intelligibility

The listening challenge in classrooms

Noise

- Speech-in-noise processing develops until late adolescence Hazan & Barrett, 2000; Johnson, 2000
- ► Recommended signal-to-noise ratio (SNR) for children: ≥+15 dB Crandell & Smaldino, 2000
- ► SNRs in classrooms: -7 to +5 dB American Speech-Language-Hearing Association, 2005; Crandell & Smaldino, 2000; Finitzo-Hieber, 1988
- Young pupils face highest noise levels Picard & Bradley, 2001
- ► General effects: hearing loss, annoyance, reduced attention, reduced memory functions Shield & Dockrell, 2003
- ► Effects on spoken language processing: reduced performance and increased listening effort in listening tasks Jamieson et al., 2004; Klatte et al. 2010, Elliott et al., 1979, Howard et al., 2010, Houben et al., 2013

The listening challenge in classrooms

Impaired voice

- Vocal loading in teachers Schiller et al., 2018
- Risk for voice disorders: teachers > general population Roy et al., 2004
- Acoustic characteristic: increased noise components Yanagihara, 1967
- Perceptual characteristic: Hoarseness De Bodt et al., 2016
- ► General effects: nevative attitude, reduced memory functions Brännström et al., 2018, Morton, & Watson, 2001
- ► Effects on spoken language processing: reduced performance and increased listening effort in listening tasks Brännström et al., 2018, Chui & Ma, 2018, Lyberg-Åhlander et al., 2015a, Morsomme et al., 2011, Morton & Watson, 2001, Rogerson & Dodd, 2004

The listening challenge in classrooms

Combination of noise and impaired voice

- Sentence comprehension:
 - No effect on performance Lyberg-Åhlander et al., 2015b
 - Slower responses Sahlén et al. 2017
 - Negative opinions Brännström et al., 2015
- Passage comprehension:
 - No effect on performance Brännström et al, 2018, von Lochow et al., 2018, Rudner et al. 2018

Objective

To investigate the effect of noise and impaired voice on speech perception and sentence comprehension in first grade primary school children.

Hypotheses

- 1. Either noise or impaired voice will impede spoken language processing.
- 2. Spoken language processing will be most affected by a combination of noise and impaired voice.

Methods

Experimental Set-Up

Participants:

- ▶ 53 children (5-6 years)
- ▶ No history of speech/language or hearing impairments
- Age-adequate vocabulary and selective auditory functioning

Procedure:

- Individual testing at school (2 x 20 min.)
 - 1. Assessment of inclusion criteria
 - 2. Experiment (speech perception and listening comprehension)

Tasks

Speech Perception

Minimal-Pair Discrimination Task

Conditions:

- (1) Normal voice no noise
- (2) Impaired voice no noise
- (3) Normal voice speech shaped noise
- (4) Impaired voice speech shaped noise

Outcome:

- Answer accuracy (Performance)
- Reaction time (Listening effort)

/zil/ - /zij/ - same word or two different words?

48

1

Tasks

"L'oiseau a fait son nid." - Which picture corresponds?

Listening Comprehension

Sentence-Picture Matching Task

Conditions:

- (1) Normal voice no noise
- (2) Impaired voice no noise
- (3) Normal voice speech shaped noise
- (4) Impaired voice speech shaped noise

Outcome:

- Answer accuracy (Performance)
- Reaction time (Listening effort)

18

1/8

Results

Task performance

- Speech perception (MPD): performance decreased for noise (z = -6.57, p < .001) or impaired voice (z = -3.18, p = .001)
- Listening comprehension (SPM): no isolated effects
- Speech perception & listening comprehension: lowest performance when noise and impaired voice were combined (p-values < .01**)

16

Task performance

- a) Performance decreased with listening condition (control > impaired voice > noise > noise & impaired voice)
- b & d) Performance generally higher for MPD than SPM \rightarrow guessing probability

Listening condition

c) Performance in listening comprehension better for impaired than normal voice

Interaction of Listening condition and Task

MPD

SPM

Response time

- Speech perception (MPD):
 - Increased response latencies for noise compared to control (z = 2.823, p = .025)
 - ► Longest response latencies when noise and impaired voice combined (*p*-values < .01**)

Summary of the results

- Speech perception
 - Noise: performance >, response time ↗
 - ► Impaired voice: performance \
 - Noise & impaired voice: performance √√, response times ↗↗
- Listening comprehension
 - ▶ No isolated effects
 - Noise & impaired voice: performance >>

Discussion

Noise or impaired voice disrupted speech perception

Past studies found effects on speech perception AND listening comprehension

Noise: Jamieson et al., 2004; Klatte et al. 2010, Elliott et al., 1979, Howard et al., 2010

Impaired voice: Brännström et al. 2018, Chui & Ma, 2018, Morton & Watson, 2001, Rogerson & Dodd, 2004

- Interaction of noise source and linguistic task Klatte et al., 2010
- ► Facilitating effect of context cues Morsomme et al., 2011

Combination of noise and impaired voice more disruptive than each factor in isolation

- ► Energetic masking: more noise components in speech signal Pollack, 1975
- Informational masking: inhibition of two "noise" signals Pollack, 1975, Watson, 2005

Good task performance does not tell the entire story...

Spoken language processing may still be affected (→ listening effort) Houben et al., 2013

Implications for the educational setting

- Motivation loss, memory impairment, lower learning outcome Shield & Dockrell, 2003
- Negative student-teacher relationship Brännström et al., 2018, Morton, & Watson, 2001

Limitations and future directions

Ecologic validity vs. control

Conclusion

- Noise and impaired voice may compromize spoken language processing
- Important to improve classroom listening conditions

Thank you for your attention!

Isabel SCHILLER

isabel.schiller@uliege.be

L'Unité de Logopédie des Troubles de la Voix Université de Liège Rue de l'Aunaie, 30-32 Bât. B38B 4000 Liège

References

- American Speech-Language-Hearing Association. (2005). Acoustics in educational settings [Technical report]. Available from http://www.asha.org/policy
- Brännström, K. J., von Lochow, H., Åhlander, V. L., & Sahlén, B. (2018). Immediate Passage Comprehension and Encoding of Information Into Long-Term Memory in Children With Normal Hearing: The Effect of Voice Quality and Multitalker Babble Noise. *American journal of audiology*, 27(2), 231-237.
- Chui, J. C. H., & Ma, E. P. M. (2018). The Impact of Dysphonic Voices on Children's Comprehension of Spoken Language. Journal of Voice.
- Crandell, C. C., & Smaldino, J. J. (2000). Classroom acoustics for children with normal and with hearing impairment. *Language, Speech, and Hearing Services in Schools*, 31(4), 362–370.
- De Bodt, M., Van Den Steen, L., Mertens, F., Raes, J., Van Bel, L., Heylen, L., ... Van De Heyning, P. (2016). Characteristics of a dysphonic population eeferred for voice assessment and/or voice therapy. Folia Phoniatrica et Logopaedica, 67(4), 178–186.
- Elliott, L. L. (1979). Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. The Journal of the Acoustical Society of America, 66(3), 651-653.
- Finitzo-Hieber T. (1988) Classroom acoustics. In: Roeser R, ed. Auditory Disorders in School Children. 2nd ed. New York, NY: Thieme-Stratton, 221–233.
- Hazan, V., & Barrett, S. (2000). The development of phonemic categorization in children aged 6–12. Journal of Phonetics, 28(4), 377–396.
- Houben, R., van Doorn-Bierman, M., & Dreschler, W. A. (2013). Using response time to speech as a measure for listening effort. *International Journal of Audiology*, 52(11), 753–761.
- Howard, C. S., Munro, K. J., & Plack, C. J. (2010). Listening effort at signal-to-noise ratios that are typical of the school classroom. *International journal of audiology*, 49(12), 928-932.
- Jamieson, D. G., Kranjc, G., Yu, K., & Hodgetts, W. E. (2004). Speech intelligibility of young school-aged children in the presence of real-life classroom noise. Journal of the American Academy of Audiology, 517(15), 508–517.
- Johnson, C. E. (2000). Childrens' phoneme identification in reverberation and noise. Journal of Speech, Language, and Hearing Research, 43(1), 144-157.
- Klatte, M., Lachmann, T., & Meis, M. (2010). Effects of noise and reverberation on speech perception and listening comprehension of children and adults in a classroom-like setting. *Noise & Health*, 12(49), 270–282.
- von Lochow, H., Lyberg-Åhlander, V., Sahlén, B., Kastberg, T., & Brännström, K. J. (2018). The effect of voice quality and competing speakers in a passage comprehension task: perceived effort in relation to cognitive functioning and performance in children with normal hearing. Logopedics Phoniatrics Vocology, 43(1), 32-41.

- Lyberg-Åhlander, V., Haake, M., Brännström, J., Schötz, S., & Sahlén, B. (2015a). Does the speaker's voice quality influence children's performance on a language comprehension test?. International journal of speech-language pathology, 17(1), 63-73.
- Lyberg-Åhlander, V., Holm, L., Kastberg, T., Haake, M., Brännström, K. J., and Sahlen, B. (2015b). Are children with stronger cognitive capacity more or less disturbed by classroom noise and dysphonic teachers? Int. J. Speech Lang. Pathol. 1–12.
- Medwetsky, L. (2011). Spoken language processing model: Bridging auditory and language processing to guide assessment and intervention. Language, Speech, and Hearing Services in Schools, 42(3), 286-296.
- Morsomme, D., Minel, L., & Verduyckt, I. (2011). Impact of teacher's voice quality on children's language processing skills. Vocologie: stem en stemstoornissen.
- Morton, V., & Watson, D. R. (2001). The impact of impaired vocal quality on children's ability to process spoken language. *Logopedics, Phoniatrics, Vocology,* 26(1), 17–25.
- Picard, M., & Bradley, J. S. (2001). Revisiting Speech Interference in Classrooms. International Journal of Audiology, 40(5), 221–244.
- Pollack, I. (1975). Auditory informational masking. The Journal of the Acoustical Society of America, 57(S1), S5-S5.
- Rogerson, J., & Dodd, B. (2005). Is there an effect of dysphonic teachers' voices on children's processing of spoken language? *Journal of Voice*, 19(1), 47–60.
- Roy, N., Merrill, R. M., Thibeault, S., Parsa, R. A., Gray, S. D., & Smith, E. M. (2004). Prevalence of voice disorders in teachers and the general population. *Journal of Speech, Language and Hearing Research*, 47(2), 281–293.
- Rudner, M., Lyberg-Åhlander, V., Brännström, J., Nirme, J., Pichora-Fuller, M. K., & Sahlén, B. (2018). Listening Comprehension and Listening Effort in the Primary School Classroom. Frontiers in psychology, 9, 1193.
- Sahlén, B., Haake, M., von Lochow, H., Holm, L., Kastberg, T., Brännström, K. J., & Lyberg-Åhlander, V. (2018). Is children's listening effort in background noise influenced by the speaker's voice quality?. *Logopedics Phoniatrics Vocology*, 43(2), 47-55.
- Schiller, I. S., Morsomme, D., & Remacle, A. (2018). Voice use among music theory teachers: A voice dosimetry and self-assessment study. Journal of Voice, 32(5), 578-584.
- Shield, B. M., & Dockrell, J. E. (2003). The effects of noise on children at school: a review. Building Acoustics, 10(2), 97-116.
- Watson, C. S. (2005). Some comments on informational masking. Acta Acustica, 91, 502–512.
- Yanagihara, N. (1967). Significance of harmonic changes and noise components in hoarseness. *Journal of Speech, Language, and Hearing Research*, 10(3), 531-541.