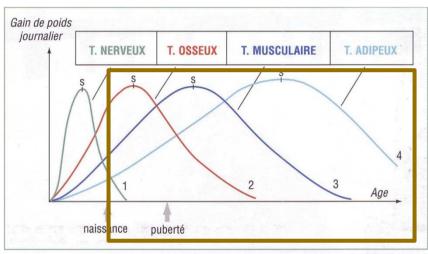
Quel fourrage pour quelle autonomie alimentaire?

Yves Beckers Elevage de précision et Nutrition Gembloux Agro-Bio Tech Université de Liège

Une ration, c'est ...

- Pour un nutritionniste
 - Fournir via l'alimentation les nutriments nécessaires à la vie, la production et les activités physiques des animaux
- Pour un agriculteur
 - Transformer au mieux les aliments disponibles sur l'exploitation en produits commercialisables
- Du nutriment à l'aliment ...
- . .. de l'aliment au nutriment

Une ration, c'est principalement ...


- Réaliser l'adéquation entre les besoins des animaux et les apports des aliments
 - Apports
 - Fonction de l'exploitation et des choix de l'exploitant
 - Fourrages très variables dans le temps et l'espace
 - Besoins
 - Règles du vivant
 - Règles relativement constantes en moyenne selon la catégorie animale
 - Par jour ou par kg MS (ad libitum)
 - Le ruminant et son rumen

Notions sur les besoins énergétiques et protéiques

Besoins alimentaires des bovins en croissance

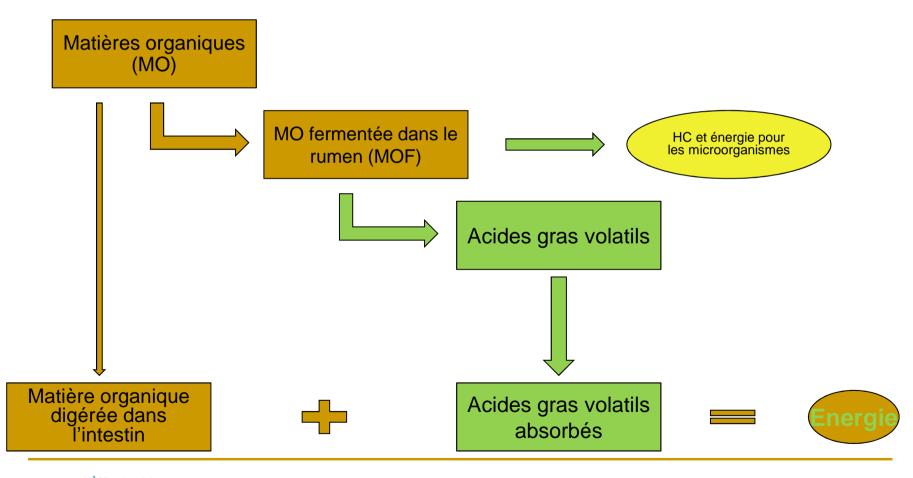
- Besoins fonction
 - Du poids de l'animal (i.e. besoins d'entretien)
 - De la croissance : GQM
 - De la gestation
 - De la nature du dépôt tissulaire
 - Protéines vs lipides
 - De l'efficacité du dépôt tissulaire

▲ Le sommet S de chaque courbe correspond à l'âge auquel ce tissu atteint sa croissance journalière la plus élevée.

- Le tissu nerveux se forme en quasi totalité avant la naissance (courbe 1)
- Le tissu osseux est en pleine croissance chez le jeune (courbe 2)
- Le tissu musculaire a une très forte croissance vers la puberté (courbe 3)
- Le tissu adipeux se dépose en dernier (courbe 4)

Besoins alimentaires des bovins en croissance

- Nature du dépôt tissulaire
 - Classiquement 4 types de bovins viande selon la « précocité »
 - Très précoce : Angus, Hereford
 - Précoce : Holstein
 - Intermédiaire : Salers, Simmental
 - Tardif : Limousin, Charolais
 - □ 5^{ème} type
 - Très tardif : BBBc


Besoins alimentaires des bovins en lactation

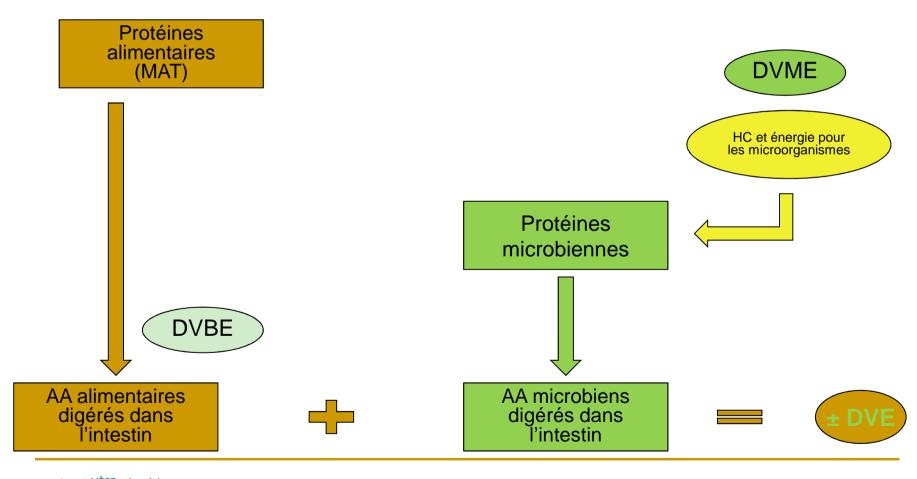
- Besoins fonction
 - Du poids de l'animal (i.e. besoins d'entretien)
 - De la production laitière
 - Quantité de lait
 - Teneurs en matières utiles (i.e. matières grasses et protéines)
 - De l'efficacité de la synthèse du lait
 - De la gestation

Energie chez les ruminants

Particularités du ruminant : énergie

Valeur énergétique des aliments chez le ruminant

- VEVI : bétail producteur de viande à croissance rapide
- VEM : bétail laitier et autre bétail en croissance
- Animaux « digèrent » de la même manière ... mais « métabolisent » de manière variable les éléments digérés ...


Principes du système belge

- Production laitière : VEM
 - « VoedereEnheid Melk »
- Production de viande : VEVI
 - « VoedereEnheid Vleesvee Intensief »
- VEM ou VEVI = (EN aliment / EN orge de référence)
- EN orge de référence
 - 1,65 Mcal par kg pour la production de lait
 - 1,65 Mcal par kg pour l'entretien et la production de viande intensive (NP = 1,5)

Protéines chez les ruminants

Système DVE

Système DVE

- DVE : aliment et animal
 - Mode d'expression : protéines digestibles dans l'intestin (grêle) = ± protéines potentiellement utilisables par l'animal
 - « DarmVerteerbaar Eiwit »

Valeur DVE des aliments

- Deux contributions positives
 - Protéines alimentaires by-pass : DVBE
 - DarmVerteerbaar Bestendig voederEiwit
 - Protéines microbiennes : DVME
 - Uniquement basées sur l'énergie disponible pour le rumen
 - Darmverteerbaar Microbieel Eiwit
- Une contribution négative
 - Protéines endogènes : DVMFE
 - DarmVerteerbaar Metabool Faecaal Eiwit
- DVE = DVBE + DVME DVMFE

Recommandations alimentaires

- Vache allaitante BBB
 - □ Energie: 700 à 900 VEM/kg MS
 - □ Protéines : 40 à 70 g DVE/kg MS
 - Ingestion : de 9 à 15 kg MS/jour

Concentration de la ration de la vache laitière : normes minimales

	6000 L4	7500 L4	9000 L4
Kg MS Ing/jour	19	20	21
Kg L4/jour	20	25	30
VEM/kg MS	800	873	950
g DVE/kg MS	60	71	81
g DVE/k VEM	75	81	85

Valeurs des fourrages

Pour la vache laitière produisant 20 kg de lait

Pour la vache allaitante en vitesse de croisière

	Moyenne	
MS (%)	49	
VEM (kg MS)	820	
DVE (g/kg MS)	52	
OEB (g/kg MS)	13	
MAT (g/kg MS)	132	
NDF (g/kg MS)	569	
Cellulose (g/kg MS)	296	
Cendres (g/kg MS)	89	

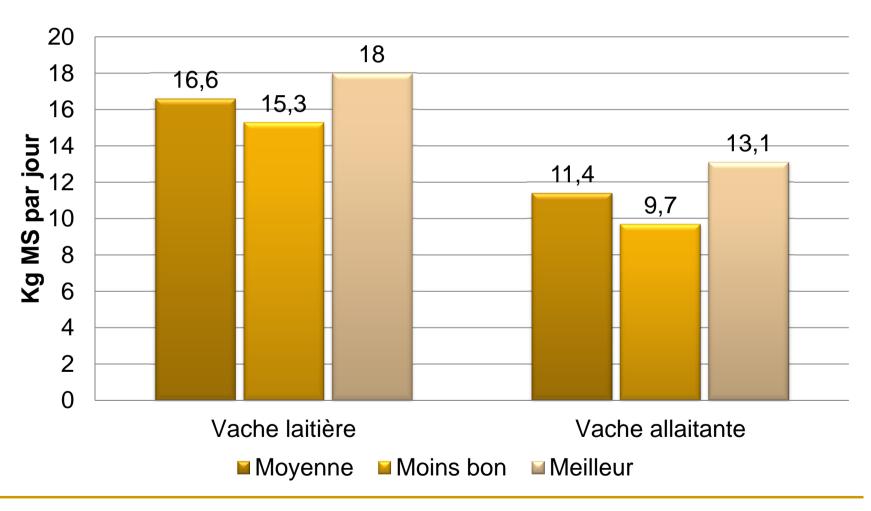
	Moyenne	CV (%)	Valeur minimale	Valeur maximale
MS (%)	49	28	26	81
VEM (kg MS)	820	8	668	967
DVE (g/kg MS)	52	18	29	66
OEB (g/kg MS)	13	195	-50	63
MAT (g/kg MS)	132	25	67	195
NDF (g/kg MS)	569	11	444	706
Cellulose (g/kg MS)	296	12	197	356
Cendres (g/kg MS)	89	17	62	121

- Vache laitière : 850 VEM et 80 g DVE/kg MS
 - Densité VEM des ensilages 2018
 - Moyenne = 820 VEM/kg MS
 - 31 % des ensilages ont une teneur supérieure à 850 VEM
 - Densité en DVE des ensilages 2018
 - Moyenne = 52 g DVE/kg MS
 - 0 % des ensilages ont une teneur supérieure à 80 g
 DVE

- Vache allaitante : 750 VEM et 50 g DVE/kg MS
 - Densité VEM des ensilages 2018
 - Moyenne = 820 VEM/kg MS
 - 86 % des ensilages ont une teneur supérieure à 750
 VEM
 - Densité en DVE des ensilages 2018
 - Moyenne = 52 g DVE/kg MS
 - 59 % des ensilages ont une teneur supérieure à 50 g
 DVE

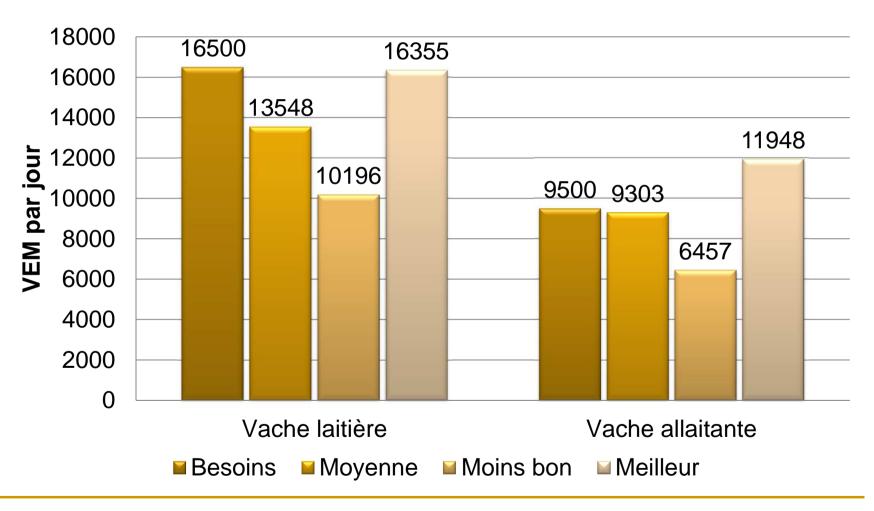
1ère conclusion

- L'ensilage d'herbe moyen de la région
 - Ne peut satisfaire les besoins énergétiques et protéiques de la vache laitière
 - Peut satisfaire les besoins énergétiques et protéiques de vaches allaitantes
 - Besoin d'une complémentation pour augmenter les densités par kg de MS pour beaucoup d'ensilages!
- Les meilleurs ensilages pourraient convenir, mais ...
 - Les vaches peuvent-elles en manger suffisamment ?

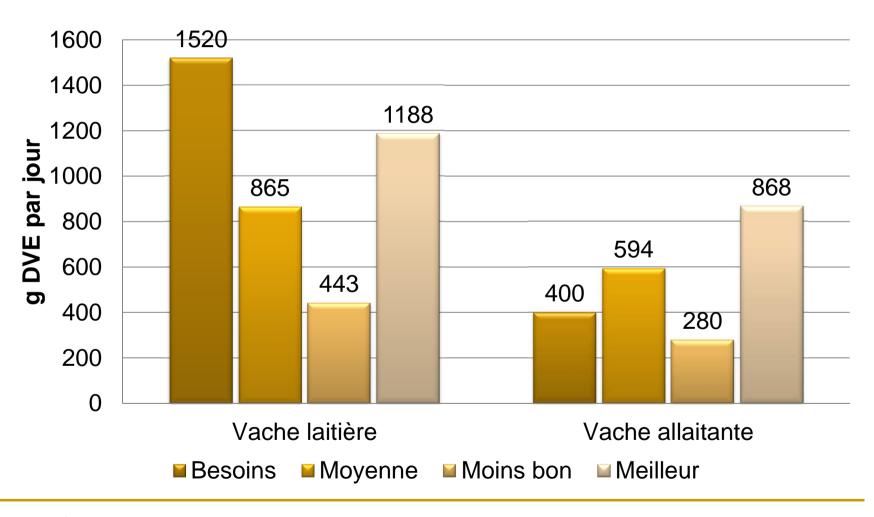


Ensilage herbe 2018: ingestion

- Quelle quantité mange un bovin sur une journée et pourquoi ?
 - Capacité d'ingestion de l'animal
 - Besoins énergétiques (ex. lait par jour ou GQM)
 - Volume de son rumen (ex. poids de l'animal)
 - Ingestibilité des aliments
 - Fonction de leur disparition du rumen (i.e. faire de la place)
 - Digestion dans le rumen
 - Quitte le rumen pour les intestins
- Estimation de l'ingestion
 - Pour une vache laitière de 650 kg produisant 20 kg de lait
 - Pour une vache allaitante de 700 kg en vitesse de croisière



Ensilage herbe 2018: ingestibilité



Ensilage herbe 2018: VEM par jour

Ensilage herbe 2018: DVE par jour

2ème conclusion: ingestion du fourrage

Vache laitière

- Les ensilages d'herbe ne peuvent satisfaire les besoins en énergie et en protéines des animaux
- Besoin d'une complémentation pour l'animal

Vaches allaitantes

- Des ensilages d'herbe peuvent satisfaire les besoins en énergie et en protéines des animaux
- Certains ensilages d'herbe ne peuvent satisfaire les besoins en énergie et en protéines des animaux
- Besoin d'une complémentation pour l'animal

Valeurs des fourrages

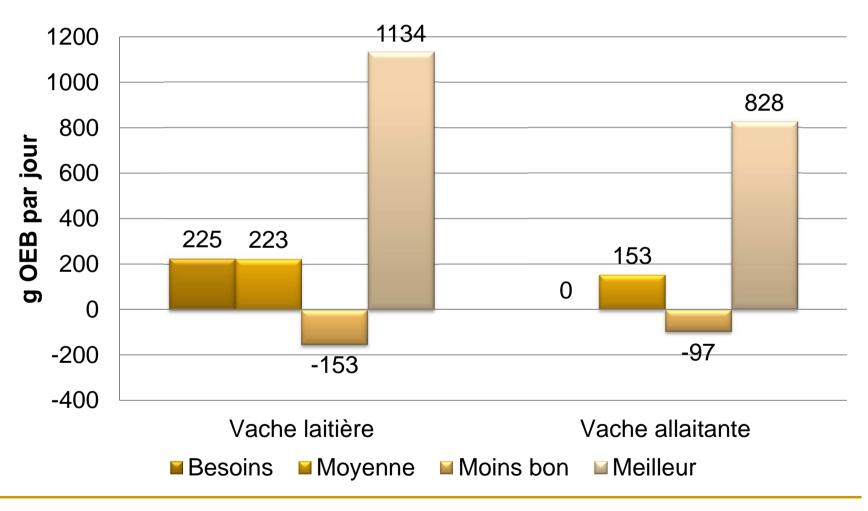
Pour le fonctionnement du rumen

Fonctionnement du rumen

- Système DVE
 - Vérifier que l'N n'est pas limitant pour le fonctionnement du rumen
 - Activités de fermentations
 - Cellulolyse très dépendante de la concentration en NH₃ dans le rumen
 - Synthèse des protéines microbiennes (fraction importante des DVE)
 - □ Besoin en NH₃ et en acides aminés
 - Valeur OEB de la ration

Valeur OEB des aliments

- Azote et énergie pour les microorganismes
 - NH₃ et MOF pour la synthèse microbienne
 - OEB : « Onbestendige Eiwit Balans »
 - « NH₃ MOF »
- Une contribution positive
 - Les protéines dégradables dans le rumen
 - MREN = Microbieel RE dat wordt gevormd uit in de pens beschikbaar N
- Une contribution négative
 - La MOF
 - MREE = Microbieel RE dat wordt gevormd uit in de pens beschikbare Energie
- La différence entre les deux pour chaque aliment
- Somme pondérée de la valeur de chaque aliment pour la ration



Normes OEB pour les animaux

- Pas de norme au sens stricte
- Théorie OEB ration = 0
 - □ OEB 7 implique urée lait et urine → voire alcalose ?
 - OEB < 0 implique déficit d'ingestion ? ...
- Pratique
 - □ OEB journalier > 0 : 150 à 300 g/jour
 - Ok vache laitière
 - OEB journalier proche de 0, voire négatif
 - ? Vache allaitante
 - OEB très proche de 0 voire < 0 pour taurillons en croissance intensive

Ensilage herbe 2018: OEB par jour

3ème conclusion: OEB du rumen

- Vaches laitières
 - Excès et carences généralisés
 - Besoin d'une complémentation pour le rumen
- Vaches allaitantes
 - Excès et carences fréquents
 - Besoin d'une complémentation pour le rumen
- Complémentation
 - Apport d'N dégradable si OEB < 0
 - Apport de MOF si OEB > 0

Importance de la structure

- Profiter des avantages des ruminants, dont
 - Valorisation des hydrates de carbone de structure
 - Synthèse des protéines microbiennes
- Maintenir un pH compatible avec le fonctionnement des microorganismes
 - AGV acidifient le milieu ruminal
 - Risque de limiter le fonctionnement des bactéries
 - Rumination produit de la salive qui tamponne le pH du rumen

Importance de la structure

- Acidification fonction
 - Importance de la MOF/kg MS
 - Quantité de MOF par jour
 - Dynamique de la fermentation de la MO
 - Rapide vs lent
- Production salivaire
 - Temps de rumination : de moins de 10 minutes à plus de 60 minutes/kg MS!
 - Rôle des « fibres » dans les aliments
 - Fibres chimiques vs fibres physiques

Importance de la structure

- Densité énergétique élevée de la ration
 - VEM/kg MS
 - MOF/kg MS et MO by-pass
 - Souvent au détriment de la structure
- Grand nombre d'indicateurs
 - VEM et MOF/kg MS
 - Amidon et sucres fermentescibles
 - Fibres chimiques : cellulose, NDF, ADF, ...
 - Fibres physiques : taille des particules, fourrage long
 - Paramètres qualifiant la dynamique de la MOF

Besoins du rumen

- Structure chimique et physique
 - Limite l'ingestion mais favorise la rumination
 - Rumination
 - Salivation : pH du rumen
 - Réduction de la taille des particules
 - Valeur cible : de l'ordre de 1/kg MS chez la vache laitière et 0,6/kg MS chez la vache allaitante selon le système belge
 - Ensilage d'herbe par kg MS
 - Moyenne = 3,51
 - Min = 2,2
 - Max = 4,3

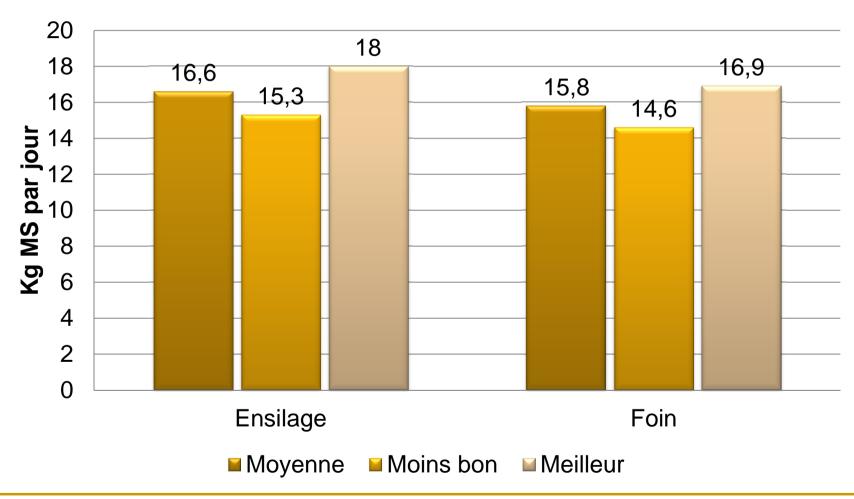
4ème conclusion: structure

Ok!

Et les foins?

Foin 2018 (N = 20)

	Moyenne
MS (%)	87
VEM (kg MS)	728
DVE (g/kg MS)	52
OEB (g/kg MS)	-41
MAT (g/kg MS)	84
NDF (g/kg MS)	628
Cellulose (g/kg MS)	322
Cendres (g/kg MS)	76



Foin 2018 (N = 20)

	Moyenne	CV (%)	Valeur minimale	Valeur maximale
MS (%)	87	2	84	89
VEM (kg MS)	728	8	641	831
DVE (g/kg MS)	52	23	36	73
OEB (g/kg MS)	-41	35	-64	-7
MAT (g/kg MS)	84	31	48	138
NDF (g/kg MS)	628	7	515	686
Cellulose (g/kg MS)	322	10	269	372
Cendres (g/kg MS)	76	20	52	109

Ensilage et foin 2018: ingestibilité chez la vache laitière

Conclusions pour les ensilages

- Les ensilages d'herbe de 2018
 - Ne peuvent satisfaire les besoins d'une vache laitière produisant 20 kg de lait
 - Peuvent ou ne peuvent pas satisfaire les besoins des vaches allaitantes
- Les ensilages d'herbe de 2018
 - Induisent des carences ou des excès d'N dégradable dans le rumen
- Les ensilages d'herbe de 2018 demandent
 - Un tri au sein des exploitations
 - Les meilleurs pour les animaux qui les méritent
 - Une complémentation pour les animaux
 - Une complémentation pour leur rumen

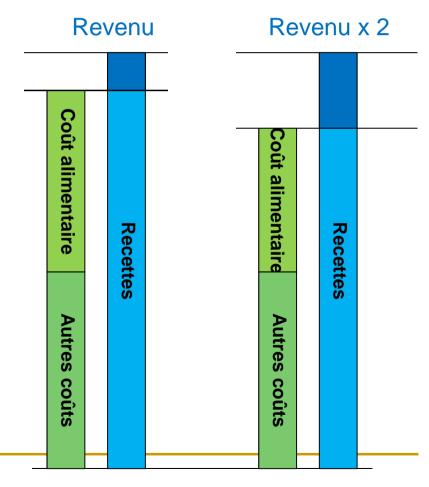
Conclusions pour les foins

- Cf. les ensilages d'herbe tenant compte
 - Valeurs énergétique et protéique plus faibles
 - Ingestion moindre

L'autonomie alimentaire

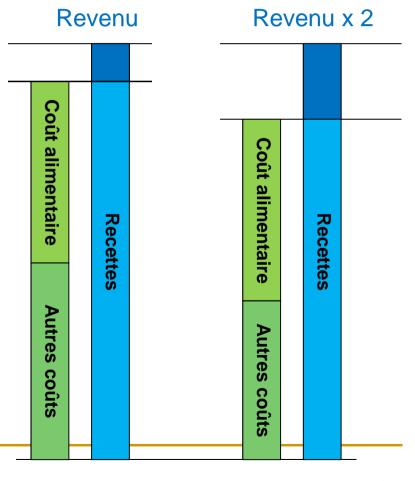
L'autonomie alimentaire

- Capacité de l'exploitation agricole de produire un maximum d'aliments nécessaires pour réaliser les objectifs de production animale
 - Aliments produits/Aliments consommés
 - Valeur comprise entre 0 et 100 %
- Quelles sont les motivations ?
 - Economiques
 - Maîtrise des risques confiance du consommateur
 - Convictions personnelles
 - Réglementaires


Motivations économiques

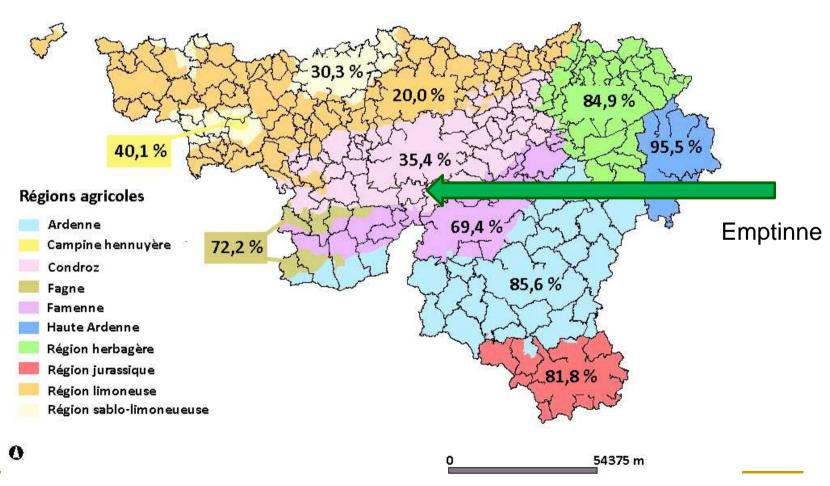
- Tallon d'Achille des productions animales
 - Approvisionnement en matières premières alimentaires
- Frais d'alimentation/coût de production
 - Le cours des matières premières est élevé
 - Et le restera probablement ...
- Réduire les frais alimentaires
 - Un automatisme pour maintenir le revenu ?

Impact de la réduction des coûts alimentaires sur le revenu


- Soit une exploitation
 - Coût alimentaire = 50% des coûts totaux
 - Revenu = 10 % des recettes
 - Quel est l'impact sur le revenu d'une réduction de 10 % des coûts alimentaires ?

Impact de la réduction des coûts alimentaires sur le revenu

- Impact non négligeable
- Même impact en réduisant les autres coûts!
 - Chaque « détail » compte sur la rentabilité
 - Prendre les bonnes décisions
- Diminuer son risque d'exposition à la volatilité des prix


L'autonomie alimentaire

- Bon levier pour réduire les coûts alimentaires
 - Selon l'importance des coûts alimentaires dans les coûts totaux
- A nuancer selon
 - Les conditions pédoclimatiques de l'exploitation
 - Le niveau des performances animales
 - La nature et l'origine des aliments consommés
- Quelle est la situation et quelles sont les possibilités d'amélioration ?

Prairies en Wallonie

Proportion des sufarces enherbées par rapport à la S.A.U. pour les régions agricoles de Wallonie (d'après Stabel, données 2013)

Les fourrages – les bovins

- Le ruminant pour la production de lait et de viande est l'animal qui peut
 - Le plus facilement s'émanciper des graines
 - Le mieux valoriser les fourrages et les coproduits des industries agro-alimentaires
- Tendre vers l'autonomie alimentaire via les fourrages
 - Production massale des fourrages
 - Quantité vs qualité
 - Ajuster la valeur alimentaire des fourrages produits aux besoins des animaux
 - Vache allaitante vs vache laitière
 - Jeune bétail : croissance demandée
 - Ajuster les productions animales aux fourrages produits
 - « en garder sous la pédale » avec les moins bons fourrages ?

Quelle complémentation ?

L'animal et son rumen

La gamme du possible pour solutionner

Quantité insuffisante

Problème d'ingestion

Insuffisance de VEM

Insuffisance de DVE

La complémentation

La complémentation des vaches

- Faire tourner le rumen
 - MOF = matière organique fermentée dans le rumen
 - □ OEB => 0
 - Pas de problème avec les produits herbagers
 - ... en principe!
- VEM/kg MS ration
 - Céréales, betteraves fourragères, pulpes de betteraves, ensilages de maïs, céréales immatures ...
 - Risque
 - Excès de MOF pour le rumen via les VEM « Rumen »
 - Acidose!
 - Favoriser alors les VEM « Intestin »

La complémentation des vaches

- Faire tourner le rumen
- VEM/kg MS ration
- DVE/kg MS ration
 - Tourteaux protéiques, protéagineux
 - Drêches de brasserie, gluten feed
 - Luzerne, trèfle violet
 - Valeur OEB de la ration : environnement, urée lait, ...

La complémentation des vaches

- Faire tourner le rumen
- VEM/kg MS ration
- DVE/kg MS ration
- VEM/kg MS et DVE/kg MS ration :
 - Mélange de céréales et de protéagineux
 - Schilfers de colza et de lin
 - Graines traitées de colza et de lin

Compléments sur une base herbe

Aliments	VEM	DVE	OEB
Betteraves fourragères	++	-	+
Pulpes betteraves	++	±	++
Ensilage maïs	+(+)	-	+
Epis broyés complets	++	-	+
Céréales grains	++	-	+
Céréales immatures	(+)	-	++
Protéagineux	+	+	-
Ensilage légumineuse	-	+	-
Oléagineux	++	-	-
Tx oléagineux	+	++	-

Quelles quantités?

- Fonction
 - Du fourrage de base
 - De la performance animale demandée
- Règles du ruminant
 - □ Cf. infra
- Règle économique
 - □ Input/output en €
- Règles nutritionnelles
 - Métiers du Feed
- Au cas par cas ≠ recettes culinaires

Ration à 900 VEM et 80 g DVE

Part dans la ration		
Ensilage herbe*	Complément	
50 %	50 %	
60 %	40 %	
70 %	30 %	
80 %	20 %	

^{*}Ensilage d'herbe à 813 VEM et 60 g DVE par kg MS

Ration à 900 VEM et 80 g DVE

Part dans	s la ration	Valeur du c	complément
Ensilage herbe*	Complément	VEM/kg MS	DVE/kg MS
50 %	50 %	990	100 alimentaire
60 %	40 %	1030	110
70 %	30 %	1100 Métions	130 du feed
80 %	20 %	1250	160

^{*}Ensilage d'herbe à 813 VEM et 60 g DVE par kg MS

Mes conclusions

- L'autonomie alimentaire réclame en priorité de revisiter les fourrages produits sur l'exploitation
 - Qualité et disponibilité
 - L'autonomie passe d'abord par l'agronomie
- La complémentation est obligatoire
 - Si les fourrages ne sont pas disponibles en quantité
 - Si la qualité des fourrages n'est pas adaptée aux performances des animaux
- Autonomie alimentaire sur le ou les compléments est tributaire de la région agricole
 - Beaucoup de souplesse en polycultures
 - Nettement moins de souplesse en régions herbagères

