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Abstract

This paper studies the structural response of a single degree-of- freedom structure including a fractional deriva-
tive constitutive term. Unlike usual existing models for this kind of structure, the excitation is not necessarily a
Markovian process but it is slowly varying in time, so that a timescale separation is used. Following the general
formulation of the Multiple Timescale Spectral Analysis [1], the solution is developed as a sum of background
and resonant components. Because of the specific shape of the frequency response function of a system equipped
with a fractional viscoelastic device, the background component is not simply obtained as the variance of the
loading divided by the stiffness of the system. On the contrary the resonant component is expressed as a sim-
ple extension of the existing formulation for a viscous system, at least at leading order. As a validation case,
the proposed solution is shown to recover similar results (in the white noise excitation case) as former studies
based on a stochastic averaging approach [2, 3, 4]. A better accuracy is however obtained in case of very small
fractional exponent. Another example related to the buffeting analysis of a linear fractional viscoelastic system
demonstrates the accuracy of the proposed formulation for colored excitation.

Keywords: Caputo fractional derivative, Riemann-Liouville fractional derivative, perturbation analysis,
stochastic averaging, background component, resonant component

1. Fractional Calculus in Mechanics1

Fractional calculus has attracted considerable at-
tention over the last decades in the mechanical and
structural engineering community. In some early
works [5] dealing with the modeling of visco-elastic
damping, a fractional derivative Maxwell model was
used. An experimental demonstration [6] has con-
firmed the appropriateness of this model and fur-
ther trigger scientific curiosity about fractional cal-
culus in mechanics. This model is based on the Rie-
mann—Liouville definition of the fractional deriva-
tive operator

Dαy(t) =
1

Γ(1− α)

tˆ

0

ẏ(t̃)

(t− t̃)α
dt̃ (1)

where α ∈ [0, 1] is the fractional exponent. Some2

other experimental investigations and identification3

techniques have shown that this model is able to accu-4

rately capture the dynamics of visco-elastic systems5

[7, 8, 9]. Also the linearity of this operator (the frac-6

tional derivative of a linear combination is the linear7

combination of the fractional derivatives) makes it8

rather attractive to combine viscoelastic devices with9

others existing features of linear stochastic dynamics10
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[10, 11, 2, 12, 13]. The nonstationary solution of lin-11

ear systems might be expressed in closed form [14],12

which constitutes another reason to use this type of13

model. As soon as nonlinear stochastic dynamical14

systems are considered, the exact solution is usually15

not obtained in closed form, even for wide-band (usu-16

ally white noise) excitation. Approximations similar17

to or derived from the stochastic linearization and18

stochastic averaging methods [15, 16, 17, 18, 19], or19

those based on a Fokker-Planck equation of the pro-20

cess envelope [20] appear to be the most classical ways21

to deal with such problems. Narrow band excita-22

tions and complex dynamical interactions can be sim-23

plified with similar multiple scales approaches [21].24

Other more realistic types of loadings [22] or even25

earthquake loadings of linear and nonlinear systems26

equipped with viscoelastic devices have also been con-27

sidered in [23, 24].28

Beside these approximations of the exact solution29

of the problem, other numerical techniques have been30

proposed to deal with the structural analysis of sys-31

tems with fractional derivatives. In particular, Monte32

Carlo simulation methods are consistently used to33

validate approximations. Also there exist ad hoc sim-34

ulation methods [14] which are computationally effi-35

cient, and methods based on Wiener path integral36

approaches [25, 26, 27, 28]. These techniques, to-37

gether with exact assembling procedures of structural38

analysis [29], or finite element approaches [30, 4, 12],39
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make it possible to study more realistic structures40

composed of several beams and columns, and several41

viscoelastic devices.42

This review of the literature reveals two trends. On
one side, there are simple dynamical systems with
linear (or linearized) behaviour and white noise ex-
citation, which possess closed form solutions. On
the other side, there are numerical techniques to deal
with more realistic loadings (sometimes nonstation-
ary), more realistic structures and/or slight nonlin-
earities. The missing gap in-between is related to the
understanding (via simple analytical solutions) of the
behavior of complex structures subjected to more re-
alistic loadings. As a first step towards this goal,
we consider the stochastic analysis of a linear system
subjected to a low frequency loading specified by its
arbitrary power spectral density. More precisely, we
consider the oscillator governed by

x′′(τ) + 2ξDαx(τ) + x(τ) = u(τ) (2)

where ξ is the dimensionless fractional coefficient and43

u(τ) is a stationary random process with an arbitrary44

power spectral density Su (Ω) with the restriction45

that its characteristic timescale is slow compared to46

the dimensionless natural frequency of the oscillator47

(which is equal to unity). This problem is a dimen-48

sionless version of a classical singe degree-of-freedom49

system with given mass, stiffness and damping, see50

[31] for the details of the scaling. This equation is for51

instance encountered in the analysis of wind-excited52

structures with visco-elastic devices, where the ob-53

jective is to determine the statistics (the variance,54

mainly) of the structural response. The fact that the55

exogenous loading u(τ) could in principle be a non56

Markovian process is a specific contribution of this57

study.58

This problem could be studied by means of the59

usual time domain multiple scales approach, or the60

stochastic averaging approach, but would require the61

consideration of three interacting timescales as well as62

fractional models —similar to those used to simulate63

realizations of wind fields [32],— for the augmented64

state coloring the excitation. This seems possible to65

solve the problem in this way, although no track ev-66

idences of this type of problem has been found in67

the literature. Instead, we take advantage of the lin-68

earity of the problem to derive a simplified solution69

in a frequency domain. It is based on the Multiple70

Timescale Spectral Analysis [1] which seeks the same71

objectives as the stochastic averaging, with slightly72

more versatility as shown next.73

2. The Multiple Timescale Spectral Analysis74

In 1961, Davenport proposed a method to com-75

pute the response of structures to the buffeting ac-76

tion of wind [33], which is known today as the77

Background/Resonant decomposition [34]. In this78

method, the total variance of the response, which cor-79

responds to the area under the power spectral density80

of the response a sketched in Figure 3, is approached81

by the sum of two terms. The first one, the back-82

ground component, corresponds to the quasi-static83

response of the structure and therefore depends on84

the stiffness of the system. The second one, the reso-85

nant component, corresponds to the resonance of the86

structure and is also governed by the damping in the87

system. It is possible to prove that this decomposi-88

tion is valid in the necessary and sufficient condition89

that the two timescales associated with the problem90

of buffeting, i.e. the slow action of wind and the fast91

dynamics of the structure, are well separated. With92

the usual rules of perturbation theories, this trans-93

lates into one order of magnitude at least [35].94

In fact, it turns out that the decomposition pro-95

posed by Davenport in 1961 is just a particular case96

of the Multiple Timescales Spectral Analysis, which97

has been recently formalized by the author [1]. Un-98

der this general terminology, one can find an ad hoc99

version of the computation of integrals with small pa-100

rameters, as typically depicted in Pertubation Meth-101

ods textbooks, e.g. [35]. Indeed, in many applications102

of stochastic dynamics, the integrals to be computed103

(in the frequency domain) feature several small pa-104

rameters. In particular, as soon as the ratio of two105

of the timescales of a problem is a small number, the106

problem is said to feature well separated timescales.107

Although this ratio is the most important small num-108

ber, there are several additional small numbers in en-109

gineering applications: small damping, small nonlin-110

earity, small stochasticity (see for instance [36] where111

four small numbers are identified and their smallness112

is exploited to construct very accurate approximate113

solutions of the problem).114

The Multiple Timescale Spectral Analysis (MTSA)115

is a method to develop simple analytical solutions, or116

at least to reveal the influence of the different prob-117

lem parameters to the various contributions to the118

stochastic response of a system. As stated by its119

name, the MTSA requires the existence of various120

well separated timescales in the problem. We notice121

that this does not really limit the possible field of ap-122

plication and corresponds anyways to usual assump-123

tions formulated in deterministic and stochastic av-124

eraging [37]. The MTSA consists in recognizing the125

existence of these different timescales and consider126

the problem with all these timescales, successively,127

and provide local approximations in the frequency128

domain for the statistical moments associated with129

all of them. The method is rather general and is not130

limited to two timescales, nor to the estimation of the131

variance of the response. It has already been applied132

to the estimation of covariances of modal responses133

in case of multi-degree of freedom structures [38] (al-134

though this was before the general method has been135

fully formalized). In this context, the MTSA provides136
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Figure 1: Sketch illustrating the decomposition of the response to buffeting into a slow background component and a fast resonant
component [33].

a much simpler but very accurate solution for the es-137

timation of the cross-correlation terms in a Complete138

Quadratic Combination, much simpler than the ex-139

act correlation coefficients [39], which are still widely140

used today despite their complexity. The MTSA also141

provides a very simple way to manage non propor-142

tional damping in a deterministic or stochastic con-143

text [31]. It has also given very concise and accurate144

results in the context of non Gaussian loading [40],145

nonstationary loading [41] slightly nonlinear systems146

[36], and oscillators featuring some visco-elastic com-147

ponents [31]. It is not limited to the variance of the148

response. Extensions to the estimation of the skew-149

ness [40] and excess [42] of the response have been150

developed. It is sometimes believed that averaging151

in the frequency domain simply consists in replacing152

the power spectral density of the load by a constant153

value, taken as the ordinate of the power spectral den-154

sity of the load at natural frequency. This is fine for155

most of the problems dealing with the second-order156

moments, as confirmed again in this paper. However,157

this is not true for higher order statistics [40], and this158

is naturally and deductively shown with the Multiple159

Timescale Spectral Analysis. It therefore unifies un-160

der the same format, the necessary steps to deal with161

efficient and accurate solution of stochastic dynamics162

problems in the frequency domain.163

3. Solution of The Problem164

In this paper, the Multiple Timescales Spectral
Analysis is applied to the considered problem, which
demonstrates the ability of the method to deal with
visco-elastic dampers, but also to provide an engi-
neering insight into the different components of the
structural response of a stochastically excited oscil-
lator in the presence of dissipative devices modeled
with fractional derivatives. To do so, let us first con-
sider the Fourier transform of (2)(

1 + 2ξCΩ|α − Ω2 − 2ξiSΩ|α
)
X(Ω) = U(Ω) (3)

where C = cos απ2 and S = sin απ
2 , so that the power

spectral density of the response is given by

Sx(Ω) =
Su(Ω)

(1 + 2ξC |Ω|α − Ω2)
2

+ (2ξS |Ω|α)
2

:= K(Ω)Su(Ω). (4)

This equation defines the kernel K(Ω). The only as-165

sumption required for the method to be applicable166

is that the central frequency β in the loading Su (Ω)167

be much smaller that unity, β � 1 i.e. that the168

stochastic loading is slower that the dynamics of the169

system. This kernel is illustrated in Figure 2 for sev-170

eral values of α. It has some peculiarities: (i) the171

resonance peak located near Ω = ±1 in the viscous172

case (α = 1) regularly moves to higher frequencies as173

α→ 0, i.e. as the fractional derivative term tends to174

correspond to a stiffness term. In the limiting case175

α = 0, the fractional derivative corresponds to a usual176

stiffness term and the peak is located at abscissa177

Ωp =
√

1 + 2ξ ' 1 + ξ; (ii) the frequency response178

function passes trough a common crossing point, at179

abscissa Ω = 1, no matter the fractional exponent α;180

(iii) the intercept is K(0) = 1 provided α 6= 0. As181

α→ 0, a short boundary layer, whose extent is of or-182

der α, develops in the neighborhood of the origin and183

creates the transition from the upper boundK(0) = 1184

to the lower bound K(Ω) ' 1
(1+2ξ)2

. For α → 0, the185

size of this transition zone tends to zero; for α = 0,186

there is no transition anymore and K(0) = 1
(1+2ξ)2

.187

As a result of the fractional powers of Ω appearing
in K(Ω), the response of the system at second order,
its variance, defined as

σ2
x =

+∞ˆ

−∞

Sx(Ω)dΩ, (5)

is unfortunately not available in a simple closed form,188

even for simple forms of Su(Ω). This is all the more189

valid for complex expressions of Su(Ω) corresponding190

non Markovian processes.191
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Figure 2: Representation of the kernel K(Ω) for various values
of the fractional exponent α. Other parameters: ξ = 0.2.

Figure 3 shows some examples of the power spec-192

tral density of the structural response given by (4).193

This function features two distinct types of peaks:194

one in the low-frequency range around Ω ' 0 and195

over a domain whose extent is of order β (the back-196

ground component) and the other in the order-one197

frequency range (the resonant component). They are198

well distinct because β � 1.199

Application of the Multiple Timescale Spectral200

Analysis consists in successively focusing on the dif-201

ferent contributions to the response. In this applica-202

tion, there are only 2 components.203

First, the background component is evaluated by
rescaling the frequency axis Ω with the stretched co-
ordinate ζ defined as Ω = βζ. With this scaling, the
background component develops over a domain of or-
der 1 and, considering the separation of timescales
β � 1, the kernel K [Ω (ζ)]can be approximated by

K̂ [Ω (ζ)] =
1

1 + 4ξCβα |ζ|α + 4ξ2β2α |ζ|2α
. (6)

This is the frequency response function of a lowpass204

fractional filter [43]. The expression Su(Ω)K̂ (Ω) is205

therefore a local approximation of Sx(Ω) in the neigh-206

borhood of the origin, for Ω ∼ β � 1. This approxi-207

mation is represented by dotted lines in Figure 3, for208

α = 0.25 and ξ = 0.2. Using this approximation, the209

background component of the response is expressed210

as211

σ2
x,b =

+∞ˆ

−∞

Su(Ω)K̂ (Ω) dΩ

=

+∞ˆ

−∞

Su(Ω)

1 + 4ξC |Ω|α + 4ξ2 |Ω|2α
dΩ (7)

which is the lowpass fractional filtered energy in the212

loading. For α ' 1 and ξ � 1, the frequency response213

function of this filter tends to unity and214

Background

-2 -1 0 1 210-3

10-2

10-1

100

101

-2 -1 0 1 210-4

10-2

100

102

Resonant

Figure 3: Examples of the power spectral density of the struc-
tural response for various values of the fractional exponent α.
Other parameters: ξ = 0.2, β = 0.05.

lim
α→1,ξ→0

σ2
x,b = 1 (8)

which is the well-known result from linear stochastic215

dynamics.216

Second, the resonant component needs to be devel-
oped. To do so a remainder is constructed by sub-
tracting this first approximation K̂ (Ω) from the orig-
inal function to integrate, that is

r1 =

+∞ˆ

−∞

Sx(Ω)− Su(Ω)K̂ (Ω) dΩ

=

+∞ˆ

−∞

Su(Ω)
(
K (Ω)− K̂ (Ω)

)
dΩ. (9)

The function to be integrated features two symmetri-217

cal peaks which will equally contribute the resonant218

part of the response. So we only only focus on the219

positive peak, then multiply by two. It is possible220

to prove [31] that the peaks (in absolute value) are221

located close to abscissa222

Ωp = 1 + Cξ −
[
α+

(
1

2
− α

)
C2

]
ξ2 +O(ξ2). (10)

The position of the peak is a perturbation of 1 (the223

dimensionless natural frequency) and224
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• for α ' 1, the fractional derivative resembles a225

viscous effect, C = cos απ2 � 1 and the position226

of the peak is very close to 1− ξ2, the peak po-227

sition of the viscously damped system.228

• for α ' 0, C ' 1 and the position of the peak is229

located close to abscissa 1 + ξ; this is consistent230

with existing results obtained with a stochastic231

averaging approach, at least at leading order in232

ξ [18].233

The natural stretched coordinate to focus on the peak234

in the positive region is therefore η defined as235

Ω = 1 + Cξ + ξη2 ⇐⇒ η =
Ω− 1− Cξ

ξ
. (11)

Using this stretching, the integrand in (9) becomes,
after some simplifications [31]

Su(Ω)
(
K (Ω)− K̂ (Ω)

)
' K̂(η)

:=
Su(1 + Cξ)

4ξ2

1

c2η2 + c1η + c0
(12)

where the coefficients c0 = S2 (1 + 2ξαC), c1 =236
1
2ξ(1 + (1− 4α) (1 − 2S2)) and c2 = 1 + 2ξ(1 − α)C.237

This approximation is also represented by dotted238

lines in Figure 3, for α = 0.25 and ξ = 0.2. The ap-239

proximation of the remainder r1, multiplied by two is240

the resonant contribution to the response. It reads241

σ2
x,r = 2

+∞ˆ

−∞

K̂(η)ξdη =
πSu (1 + Cξ)

2ρξ
(13)

where ρ =
√

4c0c2 − c21 = [4 (1 + 2ξC)S2 +242

ord
(
ξ2
)
]1/2. Truncating ρ to its leading order terms243

for consistency with the previous orders of approx-244

imations, the resonant contribution to the response245

finally finally simplifies into246

σ2
x,r =

πSu (1 + Cξ)
2Sξ
√

1 + 2ξC
. (14)

247

To summarize, the background/resonant decompo-
sition of the variance of a linear oscillator with frac-
tional derivatives is given by

σ2
x = σ2

x,b + σ2
x,r = (15)

+∞ˆ

−∞

Su(Ω)

1 + 4ξC |Ω|α + 4ξ2 |Ω|2α
dΩ +

πSu (1 + Cξ)
2Sξ
√

1 + 2ξC
.

(16)

This expression regularly extends the well-known
background resonant decomposition in case of inte-
ger derivative (α = 1, C = 0, S = 1), which is

lim
α→1

σ2
x = 1 +

πSu (1)

2ξ
.

It also shows that, at leading order, the response248

of a fractionally damped oscillator depends on the249

power spectral density of the loading, computed for250

a unique value of the frequency: Ω = 1 + Cξ. This is251

the only way the response depends on the power spec-252

tral density of the loading. With this approximation,253

we show that the Markovianity of the input of this254

system is secondary; in other words, the proposed255

solution is valid no matter the shape of the power256

spectral density (rational fractions of Ω or not).257

4. Validation, illustrations and discussion258

In order to validate the proposed solution, we de-259

termine the response of the oscillator subjected to a260

loading specified by261

Su (Ω) =
0.546

β
(

1 + 1.64 |Ω|β

)5/3
(17)

with β � 1 is a small dimensionless characteris-262

tic frequency. In wind engineering applications, it263

is related to the slow turbulence, compared to the264

natural frequency of the structure. The accuracy of265

the proposed formulation is assessed by comparison266

with a reference result obtained by accurate numer-267

ical integration of the exact power spectral density268

of the response. Integration is performed with the269

adaptive algorithm proposed in Wolfram Mathemat-270

ica [44], with default integration parameters of Ver-271

sion 11.0.1.0.272

Figures 4 and 5 show the variance of the response273

obtained with the proposed formulation (MTSA) and274

by numerical integration of the exact analytical for-275

mulation (Exact). The variance is represented as a276

function of α for given values of ξ, and as a function277

of ξ for given values of α. It is also given for two278

values of β, namely β = 0.01 and β = 0.1. These two279

small numbers correspond to typical values of this280

parameter in buffeting applications.281

In all cases, the proposed formulation (MTSA) pro-282

vides very accurate results, when compared to the283

reference solution (Exact). The smaller β, the more284

accurate. This is consistent with the methodology285

to develop the approximate solution and with the in-286

herent assumptions in the Multiple Timescale Spec-287

tral Analysis. The same observation also holds for ξ288

which also needs to be a relatively small number. In289

fact, this relative smallness can be discussed with this290

example. Indeed, the comparison shows that the pro-291

posed method is very accurate for values of ξ which292

are as large as 1.293

In both figures, the background component σ2
x,b is294

shown with dashed lines. Where the total variance is295

similar to background component σ2
x,b, the resonant296

counterpart to the response is negligible and the re-297

sponse is actually quasi-static. This happens for large298

values of the damping (see Figure 4) or, for given ξ,299
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Figure 4: Variances of the response of the system subjected to
the buffeting type excitation, for β = 0.01 (top) and β = 0.1
(bottom). Represented as a function of the fractional coeffi-
cient ξ. and for various values of the fractional exponent α
(Please see online version for colors)
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for large values of α, i.e. as the behaviour of the300

fractional damper tends to viscosity (see Figure 5).301

5. Conclusions302

In this paper, we have applied the Multiple303

Timescale Spectral Analysis to the structural anal-304

ysis of a linear system equipped with a viscoelastic305

device. The proposed formulation extends the well306

known background/resonant decomposition which is307

usually applied in the field of wind engineering. It308

shows that309

• the background component can be determined310

without any prior knowledge of the dynamics of311

the system; it consists in a fractional filtered ver-312

sion of the input;313

• the power spectral density of the loading just314

enters in the solution of this problem through the315

value of the power spectral density at a frequency316

equal to Ω = 1 + cos απ2 ξ;317

• the resonant component of the response σ2
x,r is318

proportional to the power spectral density;319

• the resonant component of the response σ2
x,r does320

not scale with the inverse of the damping ratio321

anymore (as what would be obtained in the in-322

teger derivative case). It rather scales with the323

inverse of ξ
√

1 + 2ξC. In the limit case α → 1324

(viscous damping), C → 0, the usual scaling is325

recovered326

• the resonant component scales with S−1 =327

csc απ
2 , which tends to infinity as α → 0. This328

results from the fact that there is no damping329

anymore in this limit case, and the dynamic re-330

sponse is unbounded.331

These preliminary results are very promising. Future332

works should combine the developments summarized333

in this paper with other contexts of application of the334

Multiple Timescale Spectral Analysis and consider in335

this way slightly nonlinear systems (with the help of336

a Volterra model) or to multiple degree-of-freedom337

structures equipped with fractional derivative dissi-338

pative devices.339
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