

First results in the use of milk MIR spectra in the detection of lameness in Austrian dairy cows

Axelle Mineur

Co-promoters:

Pr. Nicolas Gengler (GxABT)

Pr. Johann Sölkner (BOKU)

Supervisor:

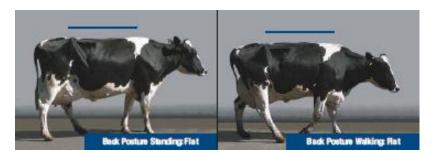
Dr. Christa Egger-Danner (ZuchtData)

2017-09-21

Prevalence

- Varies greatly across farms (Austria and abroad)
 - On average: 20 40%
 - Certain farms: > 75%
- Many environmental factors
 - Pasture
 - Tie- or free-stall
 - ...

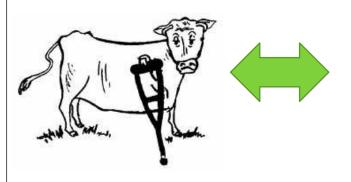
Importance of lameness



Locomotion scoring

- Assessment of lameness
- Many systems
- Based on levels
- Differences in:
 - Gait
 - Back arch

- For this research
- ⇒ Sprecher *et al.*, 1997

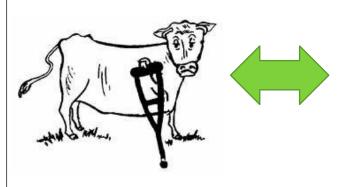

Trained staff!

Objective

Assess the possibility of using milk composition to detect and predict potential lameness.

Lameness, metabolic disorders & milk composition Theory

METABOLIC DISORDERS


Body fat mobilization –
 Ketosis

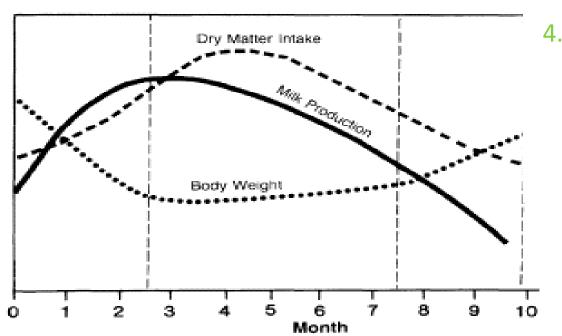
 Sub Acute Ruminal Acidosis

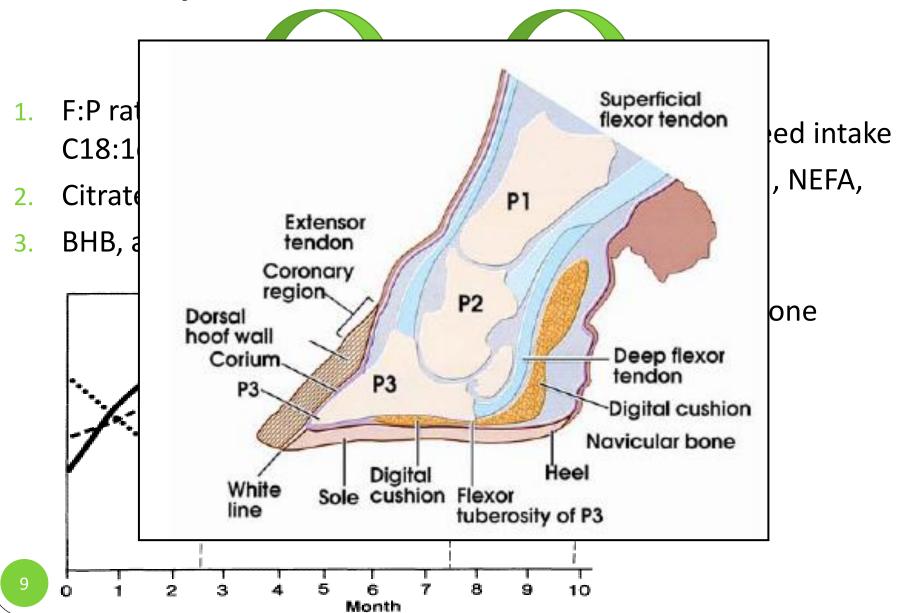
Lameness, metabolic disorders & milk composition Theory

METABOLIC DISORDERS

Body fat mobilization –
 Ketosis

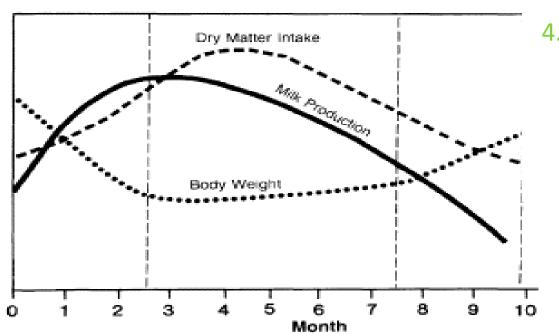
 Sub Acute Ruminal Acidosis


Body fat mobilization - Ketosis

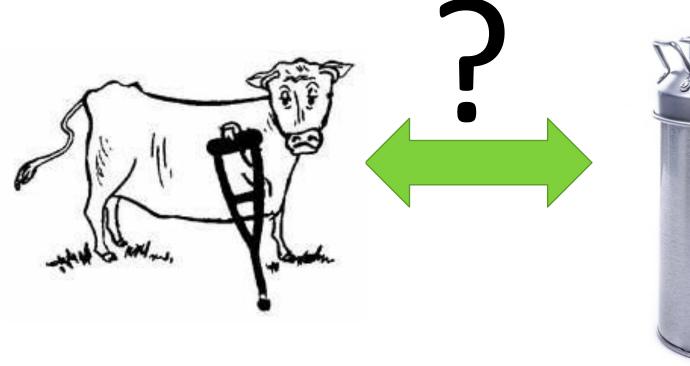

- F:P ratio ≠, NEFA,
 C18:1cis9
- 2. Citrate
- 3. BHB, acetone

- 1. Smaller feed intake
- 2. F:P ratio ⊄, NEFA, C18:1cis9
- 3. Citrate
- 4. BHB, acetone

Body fat mobilization - Ketosis


Body fat mobilization - Ketosis

- F:P ratio ≠, NEFA,
 C18:1cis9
- 2. Citrate
- 3. BHB, acetone



- 1. Smaller feed intake
- 2. F:P ratio √, NEFA, C18:1cis9
- 3. Citrate
- 4. BHB, acetone

Lameness & milk composition

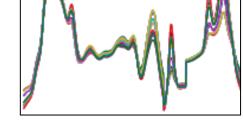
Practice

Mid-infrared (MIR) spectroscopy

Milk samples



MIR analysis



MIR spectra

- Prediction
 - Major milk components
 - Fat
 - Protein
 - Urea
 - Lactose

Reference values

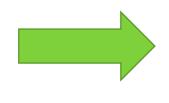
MIR spectroscopy

Milk samples

MIR analysis

MIR spectra

- Prediction
 - Major milk components
 - Novel components
 - BHB, Acetone
 - Citrate
 - Fatty acids

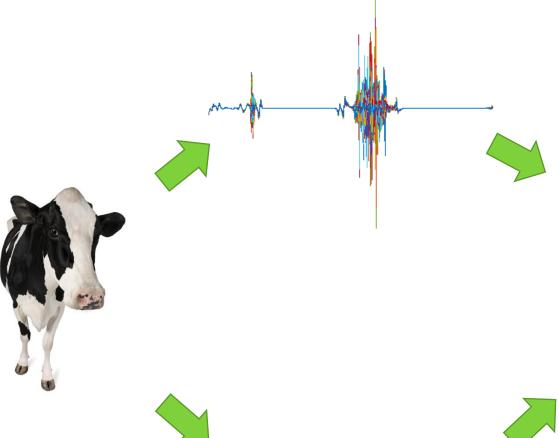


MIR spectroscopy

Milk samples

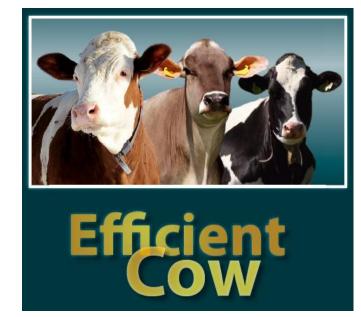
MIR analysis

MIR spectra


- Prediction
 - Major milk components
 - Novel components
 - Lameness

Reference values

Need of relevant data



"Efficient Cow" data

- July to December 2014
- FOSS instruments (FTIR-MIR)

RINDERZUCHT AUSTRIA (ZAR)

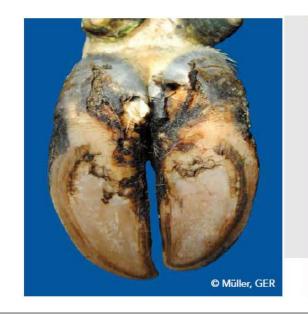
- 9324 records (3895 cows, 122 farms)
- Classification
 - Sound = locomotion scores 1, 2
 - Lame = locomotion scores 3, 4, 5
 - 8% of lame cows

Calibrations using PLS-DA

- Calibration
 - 2/3 of records
- Validation
 - 1/3 of records
- Sensitivity = true positives
 - Truly lame
 - Locomotion scores: 3, 4, 5
- Specificity = true negatives
 - Truly sound
 - Locomotion scores: 1, 2

- All data
 - 11 latent variables (LV)

ALL*	Sensitivity (%) (lame)	Specificity (%) (sound)
Calibration	63	63
Validation	60	62


Subsets

- Breed (% of lame records, locomotion score 3, 4, 5)
 - Brown Swiss: 5.6%, Simmental: 6.5%, Holstein: 9.5%
 - 11 LV

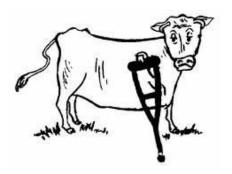
ALL subset		Sensitivity (%)	Specificity (%)
		(lame)	(sound)
Simmental	Calibration	(71) +8	(62) -1
	Validation	(62) +2	(59) -3
Brown Swiss	Calibration	(68) -5	(70) +7
	Validation	(67) +7	(63) +1
Holstein	Calibration	(68) +5	(70) +7
	Validation	(43) -17	(71) +9

- Best result
 - Very specific lesion: Heel horn erosion

ALL subset	Sensitivity (%) (lame)	Specificity (%) (sound)
Calibration	(88) +15	(93) +20
Validation	(85) +15	(91) +19

Conclusions

- Interesting results of calibration
 - More research needed to confirm results


- Great variability complex trait
 - Causes: potential opposite effects on milk composition
 - Breeds: difference predisposition to lameness
 - Parities: reflecting development and age differences
- More data needed => cover variability

Perspectives and ideas for future research

- Classical + Innovative data
 - Dairy cow performance
 - MIR, vet, hoof, sensor data

- Definition of novel traits
 - Lameness
 - Metabolic disorders

Perspectives and ideas for future research

- Genetic studies
 - Genetic variabilities
 - Correlations with other traits

- Collaboration with breeding association (AWÉ)
 - Wellness index => genomic evaluation services

First results in the use of milk MIR spectra in the detection of lameness in Austrian dairy cows

Axelle Mineur

Additional tables and figures

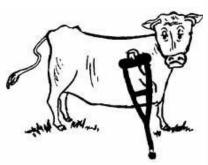
Axelle Mineur

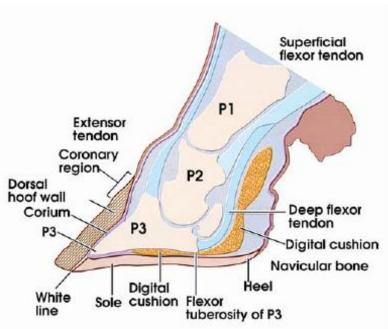
Acknowledgements

ZAR

- CRA-W
 - Training
 - Dr. Grelet

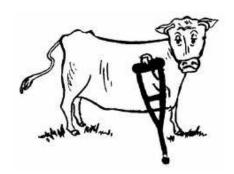
- BOKU
 - Pr. Sölkner


- Zuchtdata
 - Dr. Egger-Danner
 - Dr. Köck


- Gembloux Agro-Bio Tech
 - Pr. Gengler

Sub Acute Ruminal Acidosis

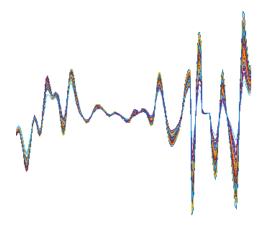
- 1. Rumen pH
- 2. Bacteria in blood
- 3. Laminitis
- 4. F:P ratio \



Hypocalcaemia

- Ca deficiency
- Hoof horn quality \
- Weakness
- Claw lesions

Luckily:

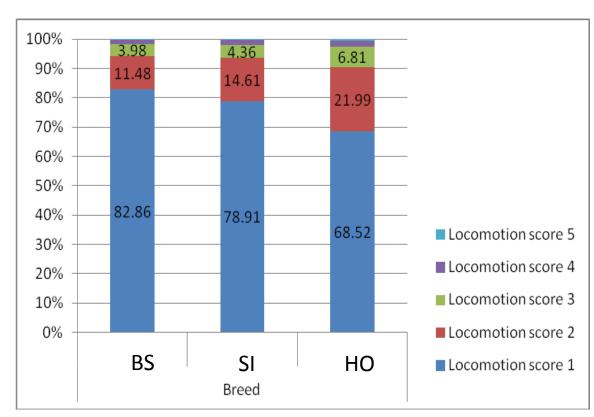


RINDERZUCHT AUSTRIA (ZAR)

Calibrations using PLS-DA*

- Classic MIR
 - Spectra
 - ⇒ Sound or lame
 - Subsets

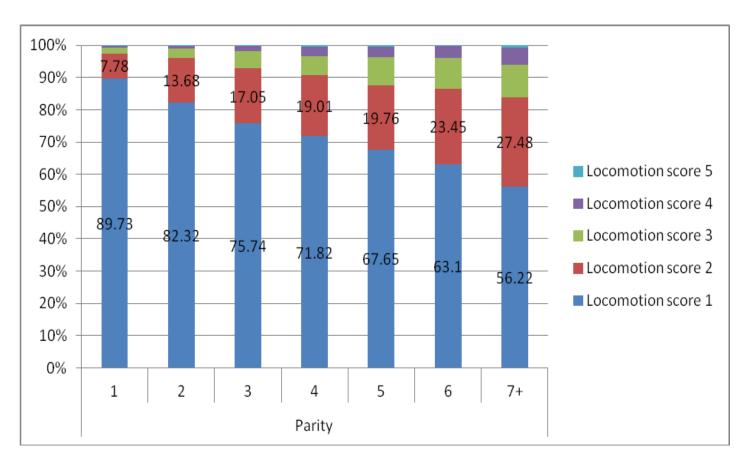
MIR predicted traits



Breed (% of lame records, locomotion score 3, 4, 5)

Brown Swiss: 5.6%

Simmental: 6.5%


Holstein: 9.5%

Parity (% of lame records, locomotion score 3, 4, 5)

• Heifers: 2.49%

• 7+ lactations: 16.3%

Parity (% of lame records, locomotion score 3, 4, 5)

• Heifers: 2.49%

• 7+ lactations: 16.3%

• 11 LV

ALL subset		Sensitivity (%) (lame)	Specificity (%) (sound)
Heifer (lact 1)	Calibration	(73) +10	(67) +4
	Validation	(56) -4	(65) +3
Young (lact 1 or 2)	Calibration	(71) +8	(59) -4
	Validation	(49) -11	(58) -4
Old (lact >2)	Calibration	(68) +5	(60) -3
	Validation	(60) =	(61) -1

- Complex relationship
 - Lameness
 - Milk composition
- Often better for specificity (sound) than sensitivity (lame)