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Résumé  
Rasa3 est une protéine activatrice des  small GTPases  et fait  partie de la 

famille GAP1 qui cible Ras et Rap1. Bien que l’inactivation catalytique ou la 

délétion de Rasa3 en souris résulte en de nombreuses hémorragies et à la 

létalité embryonnaire, la fonction biologique sous-jacente à ces défauts reste 

inconnue. Ici, via une combinaison d’approche in vivo en souris et zebrafish et 

in vitro en HUVECs, nous avons identifié un rôle clé de Rasa3 dans le 

développement vasculaire.  

L’ablation spécifique de Rasa3 dans les cellules endothéliales de la souris 

récapitule complétement le phénotype observé chez les souris Rasa3-/-. Des 

défauts de lumenisation ont été mis en évidence chez les souris où Rasa3 est 

spécifiquement inactivée dans la lignée endothéliale ainsi que dans le 

zébrafish via l’utilisation d’un morpholino.  

In vitro en HUVECs, la déplétion de Rasa3 augmente l’activation de l’intégrine 

β1, l’adhésion des cellules à la matrice extracellulaire entrainant une 

diminution de la migration cellulaire et unblocage de la tubulogenèse. Durant 

la migration, les cellules déplétées pour Rasa3 exhibent des adhésions plus 

larges et plus matures résultant d’une perturbation des processus 

d’assemblage et de désassemblage entrainant une augmentation de leur 

durée de vie. Ces défauts sont dus à une hyperactivation de Rap1 et à un 

blocage dans la signalisation FAK/Src. De plus, la déplétion de Rasa3 

augmente la stabilité des jonctions cellule-cellule résultant en une diminution 

de la perméabilité. Finalement, des défauts d’adhésion et d’étalement des 

péricytes (cellules impliquées dans les interactions hétérotypic avec les 

cellules endothéliales) ont été observés in vivo en souris et in vitro en 

HUVECs.  

L’ensemble de ces résultats indique que Rasa3 est un régulateur critique de 

Rap1 dans les cellules endothéliales en régulant les propriétés d’adhésion et 

la maintenance de l’intégrité du lumen.  
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1. Vascular Development 
The cardiovascular system is the first functional organ that is formed in the 

vertebrate embryo. It plays a crucial role by providing nutrients and oxygen 

to different organs and by evacuating metabolic wastes. The formation of 

this huge and complex network of blood vessels requires two distinct 

mechanisms, called vasculogenesis and angiogenesis. The vascular 

system consists of blood vessels (arteries, veins, arterioles, venules and 

capillaries) and lymphatic vessels. The blood vascular system transports 

blood (containing oxygen, metabolites and carbon dioxide) from the heart 

into the tissues of different organs where exchanges occur and brings it 

back to the heart. On the other hand, the lymphatic system plays a crucial 

role in immunity and drains the lymph (interstitial liquid) from tissues, 

allowing organs’ detoxification. Small blood vessels consist of a monolayer 

of endothelial cells, associated sometimes with pericytes, and surrounded 

by a basal membrane. Larger vessels contain additional layers (muscular 

smooth cells) in order to resist higher pressure 1–6. 

1.1. Vasculogenesis 

During the first steps of embryogenesis, oxygen and nutrients required for growth 

diffuse passively. Rapidly however, with expansion of the embryo, passive 

diffusion is unable to meet the needs for correct development of embryos, leading 

to the formation of a primitive vascular network by vasculogenesis. This 

mechanism (vasculogenesis) is the process by which de novo vessels are formed 
4,5. 

Endothelial and blood cells share a common precursor: hemangioblasts 

derived from mesoderm. Hemangioblasts are precursors of angioblasts 

and hematopoietic cells, which differentiate respectively into endothelial 

cells and blood cells. Once hemangioblasts differentiate into angioblasts, 
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they migrate and coalesce, giving rise to the first blood vessels. The early 

vessels are formed in two distinct places: in the yolk sac (extraembryonic) 

and in the embryo (intraembryonic) 4,7,8.  

Extraembryonic vessel formation is the first sign of vascular system 

formation (Figure 1). Cells derived from mesoderm (hemangioblastes) 

migrate, aggregate and form clusters called blood islands. Cells found at 

the cell periphery of blood islands (angioblasts) later differentiate into 

endothelial cells forming the endothelium while the cells found in the center 

later differentiate into hematopoietic cells. The aggregation of blood islands 

results in the formation of the primitive vascular network necessary for 

providing oxygen and nutrients to the embryo. Once formed, the primitive 

vascular network is further developed by angiogenesis 4,9–11. 

 

 

Figure 1: Illustration of vascular development by vasculogenesis. The 

process by which new vessels are formed de novo is called vasculogenesis. 

Undifferentiated mesoderm cells differentiate into hemangioblasts which 

aggregate into blood islands. The layer of cells found at the periphery of blood 

islands (angioblasts) give rise to endothelial cells while the core cells of blood 

islands differentiate into blood cells. Blood islands then aggregate and finally form 

the primitive vascular network (Adapted from 10). 
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In intraembryonic vessel formation, in contrast to blood island 

development, angioblasts migrate individually then coalesce to form the 

pair of dorsal aortae and the cardinal vein in the absence of hematopoiesis.  

The extra- and intraembryonic vasculatures connect while the embryo is 

still able to obtain oxygen and nutrients by passive diffusion 8,9,12.  

The formation of early vessels is rapidly followed by their differentiation into 

arteries and veins (arteriovenous differentiation) induced by blood flow. 

Arteriovenous differentiation is a crucial process that has long been 

considered to be induced by blood circulation. However, it has been shown 

that endothelial cells from blood islands express some arterial markers 

before blood flow begins 13–15.  

Many regulators of developmental vasculogenesis have been identified 

throughout the years. Fibroblast growth factors (FGFs), in particular FGF2, 

are implicated in the induction of angioblasts from the mesoderm. In 

addition, the Indian hedgehog protein (Ihh) of the hedgehog family is 

required for correct blood island formation. Although its exact role is still 

unknown, the transforming growth factor-β (TGF-β) has also been shown 

to be necessary during vasculogenesis. The master regulators of 

vasculogenesis are the vascular endothelial growth factor (VEGF) and the 

angiopoietins. Indeed, VEGF-A and its receptors VEGFR-1 and VEGFR-2 

are expressed very early during embryonic development. VEGF-A and 

VEGFR-2 are both expressed in blood islands 9,11.  In the past, the 

formation of new vessels in adults was principally attributed to 

angiogenesis. However, different studies have demonstrated that 

vasculogenesis also occurs in adults and requires circulating endothelial 

progenitor cells, though the mechanism is still unclear 8. 
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1.2. Angiogenesis 

Angiogenesis is defined as the process by which new blood vessels are 

formed from pre-existing ones. The primitive plexus formed by 

vasculogenesis is remodeled by angiogenesis, leading to the formation of 

a complex and functional vascular network. Angiogenesis plays a crucial 

role in embryonic development but also in adults, where it can be induced 

during wound healing and the menstrual cycle. Finally, angiogenenic 

processes are also required during the development of tumors and in some 

pathologies such as rheumatoid polyarthritis 1,3,9,16  

Three types of angiogenesis have been observed: sprouting angiogenesis, 

intussusceptive angiogenesis and looping angiogenesis 17. 

a. Sprouting angiogenesis 

Sprouting angiogenesis is the most common angiogenesis process 

observed during embryonic development and tumor growth. This process 

can be divided into different phases (Figure 2). First, vessels are in a 

quiescent state in the absence of pro-angiogenic stimuli. Once pro-

angiogenic signals increase, endothelial cells lose their cell-cell junctions 

and proteases degrade the surrounding extracellular matrix (ECM). Then, 

endothelial cells initiate the formation of the new vessels in the direction of 

pro-angiogenic signals. Once in contact with other vessels, the newly 

formed vessels fuse by anastomosis and are stabilized and matured by the 

deposition of a new ECM and by the recruitment of pericytes. The 

stabilization of the new vessels is followed by a return to the quiescent 

endothelial cell state. The molecular and cellular mechanisms regulating 

sprouting angiogenesis will be described in a following section 3,5,9,16,18–20.  
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Figure 2: Illustration of sprouting angiogenesis mechanism. In the absence 

of stimuli, endothelial cells are maintained in a quiescent state. (A) Increases in 

pro-angiogenic factors such as VEGF-A induce angiogenesis. Some endothelial 

cells (in green) can sprout, becoming motile and invasive. The sprouting requires 

the disassembly of cell-cell junctions and the degradation of the extracellular-

matrix (ECM). (B) The new vessel is guided by a VEGF gradient. Production of 

PDGFβ by the tip cells (in green) results in the recruitment of pericytes along the 

new vessel. (C) Once the tip cell of the new vessel encounters another tip cell, the 

vessels fuse by anastomosis while the lumen forms. (D) The EC-EC junctions and 

EC-pericyte junctions are stabilized, allowing establishment of a continuous lumen. 

Cells then return to a quiescent state and blood flow brings oxygen and reduces 

pro-angiogenic signals (Adapted from 18). 

b. Intussusceptive angiogenesis  

Intussusceptive angiogenesis is the process by which new capillaries are 

formed by the longitudinal division of one capillary into two new functional 

capillaries. Compared to sprouting angiogenesis, intussusceptive 
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angiogenesis is a rapid process and does not require the proliferation of 

endothelial cells or VEGF signaling. Though little is known about its 

regulation, intussusceptive angiogenesis can be divided into different 

phases (Figure 3). First, endothelial cells from opposite sides of the 

capillary wall migrate to the center of the lumen forming the 

“interendothelial transluminal bridge”. Then the cells rearrange themselves, 

inducing perfusion inside the capillary and forming structures called pillars, 

which are covered by pericytes and a basal membrane. Finally, once the 

pillar is formed and stabilized it can orient endothelial cells, allowing pillar 

elongation and continuing the division of the new vessel 16,21,22.  

 

Figure 3: Illustration of intussusceptive angiogenesis. (A) Endothelial cells 

from opposite sides of the capillary migrate centripetally in the lumen. (B)  These 

endothelial cells assemble into structures called pillars after induction of a 

protrusion in the capillary. (C) Stabilized pillars can orient and elongate endothelial 

cells leading to the division of the new vessel (Adapted from 16). 

c. Looping angiogenesis 

Looping angiogenesis (Figure 4), which is independent of VEGF signaling, 

is a rapid process observed during wound healing that requires the 

remodeling and contraction of the extracellular matrix (ECM) by 

myofibroblasts. This remodeling of ECM induces tension that drags vessels 
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from the surrounding vascularized area into the remodeling area (or 

avascular region). The new vessels dragged into the avascular region can 

then elongate using other angiogenic processes 16,23,24.  

 

Figure 4: Illustration of looping angiogenesis.  Fibroblasts migrate and 

differentiate into myofibroblasts (Black) in the ECM around a vascularized region. 

Myofibroblast contraction induces tension inside of the remodeling area, resulting 

in the translocation of the surrounding vessels into the avascular region (Adapted 

from 17). 

1.3. Sprouting angiogenesis: molecular and cellular 
mechanisms 

1.3.1. Induction of sprouting angiogenesis 

At the beginning of embryonic development, oxygen and nutrients are 

assimilated by the embryo via passive diffusion. As the embryo grows, the 

eventual decrease in oxygen supply results in the stabilization of the 

transcription factor HIF-α (hypoxia inducible factor), leading to the 

transcription of its target genes. Among these genes is VEGF-A, the master 

regulator of angiogenic processes. The VEGF (vascular endothelial growth 

factor) family consists of 5 secreted growth factors; VEGF-A, -B, -C, -D and 

the placental growth factor (PGF), that bind 3 tyrosine kinase membrane 

receptors: VEGFR-1, -2 and -3. The following section will focus on VEGF-

A and its receptors, VEGFR1 and VEGFR2 9,11,18,19.  
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VEGF-A can bind both VEGFR-1 and VEGFR-2 receptors, but with higher 

affinity to VEGFR-1. However, sprouting angiogenesis is mediated by the 

kinase activity of the VEGFR-2 receptor after the binding of VEGF-A. 

Indeed, the VEGFR-1 receptor displays weak kinase activity that 

counteracts pro-angiogenic signaling. Moreover, VEGFR-1 can also be 

found as a soluble receptor, VEGFR1s, that sequesters VEGF-A in the 

extracellular medium and prevents its association with VEGFR-2, resulting 

in a decrease in pro-angiogenic signals 9,19,20,25.  

The angiopoietins (Ang1 and Ang2) are soluble factors that bind the Tie2 

receptor expressed by endothelial cells. Ang1 is produced by pericytes or 

vascular smooth muscle cells. The binding of Ang1 to Tie2 results in the 

maintenance of vascular quiescence. However, Ang2 acts as an antagonist 

to Ang1/Tie2 signaling. Indeed, Ang2 is produced by endothelial cells and 

its expression is activated by VEGF-A. Binding of Ang2 to the Tie2 receptor 

is implicated in removing cells from quiescence, inducing sprouting and the 

migration of endothelial cells 9,11,25–27. Fibroblast growth factors (FGF1, 

FGF2 and FGF4) bind to FGF receptors (FGFR1 and FGFR2), lead to 

endothelial cell proliferation and activate matrix metalloproteinases 

(MMPs) that are required for extracellular matrix degradation 25. 

A critical step initiating sprouting angiogenesis is the detachment of mural 

cells (pericytes and vascular smooth muscle cells) from endothelial cells 

and the degradation of the extracellular matrix by MMPs. The binding of 

Ang2 to its receptor Tie2 has been shown to participate in the detachment 

of pericytes. The detachment of mural cells allows the expression of MT-

MMP1, leading to ECM degradation 25,28,29. 
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1.3.2. Mechanism of tip cell and stalk cell selection 

Once pro-angiogenic signals are detected, endothelial cells specialize into 

tip cells, stalk cells and phalanx cells (Figure 5).  

 

Figure 5: Specialization of endothelial cells during sprouting angiogenesis. 

Pro-angiogenic signals (red) induce specialization of endothelial cells. Tip cells 

(violet) have many filopodia and guide the new vessel towards the growth factors. 

Stalk cells (adjacent to tip cells) are proliferative cells that extend the new vessel. 

Phalanx cells stay quiescent in the origin vessel (Adpated from 20). 

The tip cells are mobile cells that lead the neovessel towards the growth 

factors. They are characterized by the presence of many filipodia and do 

not display proliferative capacities. The stalk cells, directly adjacent to the 

tip cells, allow the extension of the new vessel. Unlike tip cells, stalk cells 

have few filopodia, proliferate, maintain their EC-EC junctions and have a 

lumen. Finally, phalanx cells are cells that remain in a quiescent state in 

the origin vessel 3,5,18–20. 

The main signaling pathways implicated in tip and stalk cell selection during 

sprouting angiogenesis are the VEGF and Notch signaling pathways 

(Figure 6).  
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Figure 6: Selection of tip and stalk cells during sprouting angiogenesis. 

Activation of the VEGF signaling pathway leads to the overexpression of Dll4 

ligand by tip cells. Binding of Dll4 with Notch receptors activates Notch signaling 

pathways in stalk cells resulting in inhibition of VEGR-2 expression and promoting 

expression of VEGF-R1. Activation of Notch signaling in stalk cells allows inhibition 

of the tip cell phenotype in these cells. Overexpression of Jagged 1 by stalk cells 

inhibits Notch signaling in the tip cells 20. 

A high concentration of VEGF-A induces tip cell formation. Indeed, VEGF-

A binds its receptor VEGFR2 (expressed by quiescent endothelial cells), 

which leads to the activation of downstream signaling pathways and results 

in filopodia extension and ECM degradation. VEGF signaling is reinforced 
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in tip cells by the overexpression of Neuropilin-1 (NRP1) which acts as a 

receptor for VEGF ligands.  The interaction of VEGF-A with VEGFR2 

induces high expression of the Notch ligand Dll4 in tip cells. In turn, Dll4 

ligand activates Notch signaling in adjacent cells (stalk cells) inhibiting the 

tip cell phenotype in these cells. Indeed, binding of Dll4 to Notch leads to 

the cleavage of its NICD (Notch Intracellular Domain), resulting in inhibition 

of VEGFR-2 expression and promoting VEGFR-1 expression. VEGFR-1 

(membrane and soluble) in stalk cells decreases VEGF signaling by 

sequestering VEGF-A, preventing its interaction with VEGFR2 
3,5,9,16,18,19,25,30. 

Moreover, stalk cells overexpress Jagged 1, another Notch ligand, in order 

to maintain activation of Notch in stalk cells and inactivation of Notch in tip 

cells. Indeed, Jagged 1 competes with the Dll4 expressed by stalk cells, 

inhibiting Dll4/Notch signaling in tip cells due to the weak activation of 

Notch resulting from Jagged1/Notch interactions 19,20,30. 

For long, angiogenic sprouting was considered as a static process with a 

single tip cell leading the growing vessel. However, it has been shown 

recently (in mice and zebrafish) that tip cell/stalk cell phenotypes are not 

irreversible and that endothelial cells can exchange at the tip position 31,32. 

1.3.3. Lumen formation 

During angiogenesis, while the new vessel migrates and elongates towards 

angiogenic signals, it generates a vascular lumen in order to support blood 

flow. Three mechanisms have been proposed for lumen formation: cell 

hollowing, cord hollowing and plasma membrane invagination (Figure 7). 

The first mechanism, cell hollowing (Figure 7 top), is based on the fusion 

of small intracellular vacuoles into larger vacuoles that from a central lumen 
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in the endothelial cell. Then, these central lumina are connected to the 

lumina of adjacent endothelial cells. 33–36. 

The second mechanism, cord hollowing (Figure 7 middle), consists 

of flattening endothelial cells by creating an extracellular space 

between them. This mechanism requires rearrangements of cellular 

junctions and deadhesive proteins. VE-cadherin promotes 

interactions between endothelial cells 33,34,36. 

Moreover, endothelial cells express N-cadherin which increases the VE-

cadherin quantity at EC-EC junctions. PODXL, a glycoprotein of the CD34 

sialomucin family that is localized in vesicles is released by exocytosis at 

cell-cell contacts by a VE-cadherin dependent mechanism. 

The presence of PODXL at cell-cell junctions results in the translocation of 

VE-cadherin at the cell border. Moreover, the negative charge of PODXL 

leads to a repulsion of the apical endothelial cell surfaces, creating a small 

space between them. F-actin is recruited to the apical cell surface bringing 

the necessary force to extend the lumen. The recruitment of F-actin is 

mediated by Moesin, which is phosphorylated by protein kinase C (PKC). 

Finally, VEGF-A activates the ROCK pathway, which is necessary for the 

localization of non-muscle myosin II to the apical cell surface where F-actin 

is enriched, thus allowing correct vascular lumen formation 34,38,39. 
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Figure 7: Different models of vascular lumen formation. Cell hollowing: fusion 

of intracellular vacuoles allowing lumen formation. Cord hollowing: lumen 

formation resulting from rearrangement of EC-EC junctions creating a small space 

between endothelial cells. This process requires VE-cadherin, the glycoprotein 

PODXL, the recruitment of F-actin (by Moesin) and ROCK signaling (activated by 

VEGF-A).  Plasma membrane invagination: lumen expansion by invagination of 

the plasma membrane of endothelial cells (Adapted from 33,37). 

The third mechanism (Figure 7 bottom) was discovered more recently. In 

this mechanism, lumen formation results from invagination of the apical 

membrane of tip cells during sprouting angiogenesis. These invaginations 

are protrusions of the plasma membrane resulting from modification of 
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cytoskeleton composition. The protrusions, called invert blebbing, display 

inverted polarity with the apical membrane, which projects into the cell body 

instead of outside. This process requires haemodynamic forces and 

actomyosin contraction for lumen expansion. Previous studies suggested 

that the cell hollowing mechanism was observed during ISV formation in 

zebrafish. However, a recent study showed that ISV in zebrafish were 

lumenized via plasma membrane invagination 37. 

A fourth mechanism has also been identified, called cavitation. This 

process requires death by apoptosis of cells from the center of a 

multicellular structure. The hollow space left allows lumen formation 40. 

However, no evidence of this process has been found during zebrafish 

development 35.  

1.3.4. Vessel maturation  

The maturation of blood vessels involves the recruitment of mural cells 

(MC) (pericytes and vascular smooth muscle cells) and the deposition of 

the extracellular matrix. The recruitment of mural cells is mediated by four 

different pathways: PDGF-β, Ang1, S1P and TGF-β1 (Figure 8) 41. 

The PDGF-β/PDGFR-β signaling pathway is crucial for the recruitment of 

mural cells along the new vessels. During sprouting angiogenesis, tip cells 

secrete PDGF-β that binds PDGFR-β receptor expressed on mural cells, 

leading to the proliferation and migration of mural cells 3,5,13,25,41,42. 

Once mural cells are recruited along new vessels, they produce Ang1 that 

binds to Tie2 receptors, inducing the quiescence phenotype. The 

Ang1/Tie1 interactions stabilize new vessels by promoting MC-EC and 

ECM-EC interactions. Moreover, binding of Ang1 induces expression of 

HB-EGF in endothelial cells, which promotes mural cell migration after 
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binding to epidermal growth factor receptors (EGFRs) expressed by mural 

cells 3,13,41–43.  

EDG1 receptor, expressed by mural cells and endothelial cells, binds 

sphingosine-1-phosphate (S1P). Activation of S1P/EDG1 signaling in 

endothelial cells increases the production of ECM proteins, facilitating 

mural cell recruitment. Moreover, endothelial S1P/EDG1 signaling 

promotes vessel stability by establishing EC-MC junctions via N-cadherin. 

Additionally, activation of S1P/EDG1 signaling in mural cells facilitates their 

migration around the new vessel 13,41,43. 

The production of TGF-β1 by endothelial cells promotes activation of the 

TGF-β1/ALK5 pathway on mural cells, leading to vessel stabilization by 

stimulating the production of ECM proteins and plasminogen activator 

inhibitor 1 (PAI1). PAI1 acts by preventing degradation of the extracellular 

matrix. Moreover the activation of this pathway also leads to the 

differentiation of mesenchymal cells into mural cells 5,13,25,41–43.  

Finally, EC/MC interactions promote the production of inhibitors of 

metalloproteinases (TIMP2/TIMP3) leading to further stabilization of the 

ECM 44. 
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Figure 8: Different signaling pathways between endothelial cells and mural 
cells implicated in vessel maturation.  (1) and (2) PDGFβ and S1P produced by 

endothelial cells bind PDGFR-β and EDG-1 respectively, promoting their 

differentiation and migration. (3) Ang1/Tie2 interactions mediate vessel stability by 

increasing MC-EC and EC-ECM adhesions. Production of HB-EGF resulting from 

Ang1/Tie2 activation leads to migration and proliferation of mural cells (4) 

TGFβ1/ALK5 pathway stimulates ECM deposition and mesenchymal cell 

differentiation 41. 
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2. Vascular permeability 
The endothelium constitutes a semi-permeable physical barrier that allows 

the exchange of proteins, cells and fluids between the blood and the 

interstitial space. The crucial role of the endothelial barrier is to maintain 

vascular homeostasis. It also regulates different processes such as 

angiogenesis and response to inflammation. For example, during sprouting 

angiogenesis, EC-EC junctions are remodeled allowing migration of 

endothelial cells and initiation of sprouting. Obviously, alterations of the 

endothelium barrier have critical consequences for the organism 45,46.  

The transport through the endothelial barrier of macromolecules, fluids and 

cells is effected either by transcellular (through endothelial cells) or 

paracellular (between endothelial cells) pathways (Figure 9).  

The transcellular pathways transport macromolecules such as albumin 

across the endothelium by vesicular trafficking. These pathways include 

caveolae, vesiculo-vacuolar organelles (VVO) and fenestrations. Caveolae 

are invaginations of the plasma membrane that form vesicles that can 

move through the cell. VVO are fused caveolae vesicles that form a 

channel allowing transport through a single cell. Finally, fenestrations are 

pinched regions of single cells that form pores allowing rapid exchanges.  

The paracellular pathway is mediated by the opening and closing of 

endothelial cell junctions 46–51.  
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Figure 9: Transcellular and paracellular pathways in endothelial cells. 

Transport of cells and macromolecules through endothelial cells can occur either 

by transcellular or paracellular pathways 47. 

The endothelium arises from the association of endothelial cells by 

junctional structures into a monolayer. Although for a long time cell-cell 

junctions were considered only as the attachment sites of endothelial cells, 

it is now recognized that endothelial junctions have not only an architectural 

role but also can control vascular permeability, transmit intracellular signals 

and limit cell growth 45. 

2.1. Molecular organization of endothelial junctions 

Two major types of junctions are found in endothelial cells and are named 

tight junctions (TJs) and adherens junctions (AJs). Other adhesion 

molecules such as PECAM-1 and nectins are also found in the junctional 

complex. Moreover, in addition to cell-cell adhesion, GAP junctions form 

channels between endothelial cells that transport water and ions (Figure 
10)  45,52–54. 

Tight junctions result from the association of different adhesive proteins 

including claudins, occludins, and ZO proteins. Claudins and occludins are 
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transmembrane proteins that mediate homophilic interactions with adjacent 

endothelial cells and ZO-proteins are responsible for connecting claudins 

and occludins to the actin cytoskeleton. Junctional adhesion molecules 

(JAMs) and endothelial selective adhesion molecule (ESAMs) associate 

with TJs and regulate leukocyte transendothelial migration 45,52,55.  

Endothelial cells also express platelet endothelial cell adhesion molecule 

(PECAM), a member of the immunoglobulin family that regulates 

endothelial junctional integrity via homophilic interactions 56. 

Nectin is a member of the immunoglobulin family and associates with both 

AJs and TJs by mediating homophilic interactions. Nectin binds its 

intracellular partner afadin, which in turn connects the junction to the actin 

cytoskeleton. The nectin/afadin complex has been shown to be required 

for adherens junction formation 53,55. 

Adherens junctions constitute about 80% of the total junctions in 

endothelial cells. Vascular endothelial cadherin (VE-cadherin) is the major 

component of adherens junctions and its expression is restricted to 

endothelial cells. VE-cadherin is a transmembrane glycoprotein composed 

of five extracellular domains that are binding sites for calcium and a 

cytoplasmic tail that interacts with intracellular partners allowing connection 

to the actin cytoskeleton. VE-cadherin holds endothelial cells together by 

interacting with dimers of VE-cadherin expressed on adjacent endothelial 

cells and providing strong contacts between endothelial cells. Dimerization 

of VE-cadherin requires the binding of calcium. VE-cadherin interacts via 

its cytoplasmic tail with the AJ proteins p120 catenin, β-catenin and 

plakoglobin. The intracellular partners β-catenin and plakoglobin constitute 

a bridge between VE-cadherin/p120 catenin and the actin cytoskeleton by 

linking to actin-binding proteins such as α-actinin, vinculin or eplin 45,52,57,58. 
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Figure 10: Molecular organization of endothelial junctions. The different 

endothelial junctions consist of transmembrane adhesion proteins associated with 

their intracellular partners. Claudins, occludins, junctional adhesion molecules 

(JAMs) and endothelial cell selective adhesion molecules (ESAMs) compose the 

tight junctions (TJs). ZO1/2 are intracellular components of TJs that make 

connections with the actin cytoskeleton. The main adhesive protein of adherens 

junctions (AJs) is vascular endothelial cadherin (VE-cadherin). VE-cadherin is 

associated with intracellular partners such as p120, β-catenin and plakogkobin, 

which constitute a bridge to the actin cytoskeleton by linking to actin-binding 

proteins such as α-actinin, vinculin or eplin. Nectin, a member of the 

immunoglobulin family, associates with both TJs and AJs. Nectin links to its 

intracellular partner afadin, allowing connection to the actin cytoskeleton. Another 

member of the immunoglobulin family, platelet endothelial cell adhesion molecule 

(PECAM), is expressed by endothelial cells. PECAM is not associated with TJs or 

AJs and is implicated in the regulation of endothelial junctional integrity. VE-

Cadherin is not the only cadherin expressed by endothelial cells.  Neuronal 

cadherin (N-cadherin) is not found at AJs and mediates heterotypic interactions 

between endothelial cells and pericytes (Adapted from 45). 
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The importance of AJs as compared to TJs has been assessed using mice 

with null mutations in different endothelial junction components. VE-

cadherin-/- and β-catenin-/- genotypes are embryonic lethal in mice. VE-

cadherin-/- mice showed large hemorrhages resulting from alterations in 

vessel formation. Β-catenin-/- mice displayed irregular lumina and 

hemorrhages. Analysis of endothelial junctions in these mice revealed 

weaker adherens junctions. Null mutations of claudin-5, occludin and 

PECAM in mice do not lead to embryonic lethality. In these cases no 

vascular defects have been reported. These results illustrate that AJs are 

crucial for the maintenance of the endothelial barrier integrity 45. 

Besides VE-cadherin, endothelial cells also express another cadherin: 

neuronal cadherin (N-cadherin), which mediates heterotypic interactions 

between endothelial cells and pericytes and will be described in a following 

section. 

In this thesis we initially focus our attention on adherens junctions, and 

more precisely on VE-cadherin. Later focus is on VE-cadherin and the 

mechanisms that regulate this protein.  

2.2. VE-cadherin in vascular permeability 

Different mechanisms regulate vascular permeability by opening 

endothelial cell contacts. These mechanisms include the dissociation of the 

cadherin-catenin complex due to tyrosine phosphorylation, the 

disconnection of cadherin-catenin complex from the actin cytoskeleton and 

finally endocytosis of VE-cadherin (Figure 11).  
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a. Dissociation of the VE-cadherin/p120 catenin complex by 
tyrosine phosphorylation 

The cytoplasmic tail of VE-cadherin can be phosphorylated on different 

tyrosine and serine residues. Among these residues, Y645, Y658, Y685, 

Y731 and Y733 seem to be implicated in endothelium barrier integrity. Point 

mutation studies revealed that phosphorylation of Y658 and Y731 lead to 

destabilization of endothelial cell junctions. Moreover, phosphorylation of 

Y645, Y731 and Y733 are required for efficient leukocyte transmigration. It 

has been reported that Y685 phosphorylation is mediated by VEGF 

stimulation 59–63. The binding of VE-cadherin to p120 prevents its 

internalization. However, activation of Src kinase (activation on Y416 and 

deactivation on Y527) in turn leads to phosphorylation of VE-cadherin on 

its Y658 residue. This phosphorylation induces the disruption of the VE-

cadherin-p120 interaction and leads to VE-cadherin internalization 64,65. 

Phosphatases also control vascular permeability. Vascular endothelial 

protein tyrosine phosphatase (VE-PTP) is a transmembrane protein that is 

associated with VE-cadherin. Blocking the dissociation of VE-cadherin/VE-

PTP in mice inhibits increases in vascular permeability. Other 

phosphatases such as PP2A, SHP2 and PTP1 have been reported to 

stabilize EC junctions. These phosphatases maintain VE-cadherin in a 

non-phosphorylated state, which in turn increases the stability of cell-cell 

junctions and decreases endothelial permeability 45,63,65.  

b. Disconnection of the VE-cadherin/p120 catenin complex from 
the actin cytoskeleton 

The opening of endothelial contacts has been shown to be a consequence 

of disconnection of VE-cadherin from the actin cytoskeleton. Once 

activated after VEGF stimulation, FAK can interact with VE-cadherin and 
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phosphorylate β-catenin on Y412. This phosphorylation disrupts the 

interaction between VE-cadherin and β-catenin and leads to the opening 

of EC junctions. Moreover, phosphorylation of VE-cadherin on Y731 after 

VEGF stimulation also results in the dissociation of β-catenin. It has been 

shown that this residue can be phosphorylated by Src kinase 65. 

 

Figure 11: Mechanisms regulating the opening of endothelial cell contacts. 

(1) Dissociation of VE-cadherin/p120 catenin complex. (2) Disconnection of VE-

cadherin/p120 catenin complex from actin cytoskeleton. (3) Endocytosis of VE-

cadherin. These 3 mechanisms lead to the opening of endothelial cell junctions 

(Adapted from 65).  

c. Endocytosis of VE-cadherin 

Finally, VE-cadherin can be internalized and degraded by endocytosis. 

Indeed, phosphorylation of VE-cadherin on S665 mediates the recruitment 

of β-arrestin-2, which in turn induces the internalization of VE-cadherin into 

clathrin-coated vesicles. After VEGF stimulation, Src is activated and 

phosphorylates VAV2, which activates Rac small GTPase. Rac-GTP 
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activates its downstream target, p21-activated kinase (PAK), which 

phosphorylates VE-cadherin on S665. The p120 binding site on VE-

cadherin is localized near S665. Thus, p120 catenin might regulate 

endocytosis of VE-cadherin by preventing phosphorylation of S665 
62,63,65,66.  

2.3. Regulation of vascular permeability by small GTPases 

Different small GTPases have been implicated in the regulation of 

endothelial permeability. The small GTPases Rap1, Rac1 and Cdc42 are 

necessary for stabilization and maintenance of endothelial junctions while 

RhoA activation leads to increased permeability. However, Rac1 has also 

been identified as playing a role in destabilization of the endothelial barrier 

under certain conditions (Figure 12).  

a. Under resting conditions 

As previously mentioned, Rac1, Rap1 and Cdc42 are crucial for 

maintenance and stabilization of endothelial junctions. An increased level 

of cyclic AMP (cAMP) activates Epac, which in turns activates Rap1. Once 

activated, Rap1 acts in different ways to stabilize and maintain endothelial 

junctions. First of all, Rap1 leads to the activation of the small GTPases 

Rac1 and Cdc42 via activation of Vav2 and Tiam1. These two small 

GTPases promote cell-cell junction stabilization 55,66,67.  

Moreover, activated Rap1 and Rac1 inhibit the activity of RhoA by 

activating ArhGAP29 and p190RhoGAP respectively, two inhibitors of 

RhoA. Activation of ArhGAP29 is mediated by Rasip1, a Rap1-effector. 

Krit1, a Rap1 effector, is recruited to VE-cadherin and mediates a decrease 

in RhoA activity in endothelial cells. Rap1/Krit interaction allows the indirect 

binding of Rap1 to adherens junctions. Rap1 can also be activated by PDZ-
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GEF but the mechanism responsible for PDZ-GEF activation is still unclear. 

Rap1 increases stability by recruiting junctional proteins such as 

Afadin/AF6 to the junctions 55,66–69. 

 

Figure 12: Regulation of vascular permeability by small GTPases. (A) 

Stabilization of the endothelial barrier is mediated by the small GTPases Rap1, 

Rac1 and Cdc42. Rap1 acts by activating Rac1 and Cdc42 through Tiam1 and 

Vav2. Rap1 and Rac1 stabilize endothelial junctions by inhibiting RhoA, resulting 

in a decrease of actomyosin contractility. (B) Different agents such as VEGF or 

thrombin increase vascular permeability by modulating the activity of small 

GTPases. Thrombin stimulation leads to activation and inactivation of RhoA and 

Rap1 respectively. VEGF increases permeability by activating Rac1, which leads 

to the internalization of VE-cadherin (Adapted from 66). 

b.  Permeability increasing agents 

Destabilization of the endothelial barrier is induced in response to different 

agents such as VEGF, thrombin, TNFα or EGTA. This destabilization 

results from the modulation of the activity of different small GTPases 

(RhoA, Rap1 and Rac1).  
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Following thrombin stimulation RhoA is activated, leading to the 

inhibition of MLC phosphatase and increasing MLC II 

phosphorylation and actomyosin contractility, thus destabilizing the 

endothelial barrier. Moreover, thrombin stimulation impairs cAMP 

signaling resulting in inactivation of Rap1 and Rac1; these in turn are 

able to inactivate RhoA small GTPase.  

RhoA can also be activated after VEGF stimulation: this results in an 

increase of MLC II phosphorylation and actomyosin contractility. However, 

VEGF stimulation also activates Rac1 via Vav2. Activated Rac1 activates 

its downstream effector PAK1, which phosphorylates VE-cadherin on S665 

resulting in internalization of VE-cadherin and an increase in endothelial 

permeability 55,66,67.  

2.4. Neuronal cadherin (N-cadherin) 

As mentioned previously, VE-cadherin is not the only cadherin expressed 

by endothelial cells. Unlike VE-cadherin, N-cadherin is not endothelial-

specific and is also expressed by other cell types in the vasculature, such 

as pericytes and vascular smooth muscle cells. The importance of N-

cadherin in vascular development was assessed by generating N-cadherin 

null mice (N-cadherin-/-). Like VE-cadherin-/-, the N-cadherin-/- genotype is 

embryonic lethal in mice (embryos die at mid-gestation). Specific 

inactivation of N-cadherin in endothelial cells showed that N-cadherin acts 

upstream of VE-cadherin. Indeed, reduced expression of VE-cadherin was 

found in N-cadherin-/- mice. However, another study lead to different results 

in HUVECs, in which inactivation of N-cadherin did not affect the 

expression of VE-cadherin 70–72. 
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The expression of VE-cadherin and N-cadherin seem to be comparable in 

endothelial cells. However, while VE-cadherin is localized in adherens 

junctions, N-cadherin is dispersed along the cell membrane 73.  

N-cadherin and VE-cadherin have a similar structure and interact with the 

same intracellular partners. However, these two cadherins have different 

functions within the endothelium. While VE-cadherin mediates EC-EC 

junctions, N-cadherin seems to mediate heterotypic interactions between 

endothelial cells and pericytes. N-cadherin is crucial for the maturation and 

stabilization of blood vessels 74,75. 

Compared to VE-cadherin, the mechanisms by which N-cadherin is 

regulated are much less studied. S1P (sphingosine-1-phosphate) has been 

identified as crucial for maturation of blood vessels. Indeed, impaired S1P 

signaling results in a mislocalization of N-cadherin within EC-pericyte 

junctions 76.  

The recruitment of pericytes during vascular development occurs after mid-

gestation. However, N-cadherin-/- mice die at mid-gestation, suggesting 

that N-cadherin might have another role in addition to the maturation of EC-

pericyte junctions. It has been shown that as well as VE-cadherin, N-

cadherin is able to inhibit cell growth and apoptosis. Only N-cadherin was 

found to induce cell motility 65,77. 
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3. Actin cytoskeleton: crucial for migration and 
adhesion 

During sprouting angiogenesis, tip cells need to migrate towards the pro-

angiogenic signal in order to form the new vessel. Migration is an important 

process that can be divided into different steps. First, cells sense stimuli 

and display protrusions at the leading edge resulting from actin 

polymerization. The attachment of these protrusions to the extracellular 

matrix forms focal adhesions (FAs) which are connected to stress fibers (F-

actin). Then, the contraction of stress fibers generates tension to pull the 

cell body forward. Finally, cell migration requires the disassembly of FAs 

and stress fibers at the cell rear in order to move. A strict regulation of actin 

cytoskeleton dynamics is necessary for proper migration and adhesion of 

endothelial cells during angiogenesis 78–80.   

Actin is the most abundant cytoskeleton protein in cells and can be found 

in two different states: the globular monomeric state of 43 kDa (G-actin) 

and the filamentous actin state (F-actin) resulting from assembly 

(polymerization) of G-actin monomers. The G-actin monomer contains 

three different domains: a barbed end (+ end), a central ATP/ADP binding 

domain and a pointed end (- end) 81.  

The assembly of G-actin monomers leads to the formation of a polarized 

actin filament. Actin polymerization is a process that can be divided into 

three phases (Figure 13). The first one, nucleation, consists of the 

assembly of three monomers into a trimer via an ATP-dependent 

mechanism. The second phase, elongation, consists of preferential 

incorporation of G-actin monomers at the barbed end of the nascent 

filament, allowing actin filament growth. Finally the third phase, called 
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steady-state, occurs when the addition of G-actin-ATP to the barbed end 

equals the dissociation of G-actin-ADP from the pointed end 81,82. 

 

Figure 13: Actin filament polymerization. Nucleation allows association of G-

actin monomers into a G-actin trimer by nucleation factors. Once nucleated, the 

actin filament is elongated by addition of G-actin monomers to the barbed end (B) 

until reaching a steady-state where association and dissociation of actin 

monomers to the barbed and pointed ends respectively are equal (Adapted from 
82).  

Because spontaneous association of G-actin monomers is instable and 

slow, initiation of actin polymerization requires nucleation factors. Three 

classes of actin nucleation factors have been identified: the Arp2/3 

complex, spir proteins and formins (Figure 14). 

The Arp2/3 complex (Actin-related protein 2/3) is composed of 7 proteins 

and binds the barbed end of G-actin trimers. This interaction stabilizes the 

G-actin trimers, allowing initiation of actin polymerization. However, the 

Arp2/3 complex requires previous activation by WASP/WAVE family 

proteins. Besides its role in the formation of new actin filaments from G-

actin trimers, the Arp2/3 complex can bind a pre-existing actin filament and 

generate a branched actin filament structure. While the new actin filament 

elongates, the Arp2/3 complex remains attached to the pointed end (- end) 

of the filament 82–85. 
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Figure 14: Different classes of actin nucleation factors. The Arp2/3 complex 

allows formation of actin filaments by stabilizing G-actin trimers and by binding the 

barbed end of pre-existing filaments, creating a branched network of actin 

filaments. Formins are dimeric structures that remain attached to the barbed end 

as it elongates. Spire proteins nucleate actin filaments by stabilization of a G-actin 

tetramer (Adapted from 82). 

Formins display two conserved regions, called formin homology domain 1 

and 2 (FH1 and FH2). All formins act as dimers resulting from dimerization 

of their FH2 domain. The interaction with actin is mediated by binding to 

the barbed end through the FH2 domain. After nucleation, unlike the Arp2/3 

complex, formins remain associated with the barbed end of actin filament 

during elongation and do not generate branched actin filament structures. 

Some formins are able to bundle actin filaments. The presence of formins 

at the barbed end of an actin filament inhibits association with capping 

proteins, preventing actin depolymerization. The FH1-domain associates 

with profilin increasing elongation of actin filaments 81,82,86.  



Chapter 1: Introduction 
________________________________________________ 

 

31 
 

Spire proteins are characterized by the presence of four Wasp homology 2 

motifs (WH2) responsible for actin nucleation. Each WH2 motif is able to 

bind a G-actin monomer, allowing elongation of an actin filament from a G-

actin tetramer. Similar to formins, actin filaments resulting from spire-

nucleation are not branched 82,87.  

Actin nucleation factors are not the only proteins implicated in actin 

polymerization.  Capping proteins can associate either with the barbed end 

(Gelsolin) or the pointed end (CapZ and CapG). Cap proteins regulate 

filament length by blocking addition of new G-actin monomers. They also 

allow specifically directed elongation of actin filaments. Indeed, only 

uncapped actin filaments can elongate. Moreover, Gelsolin is able to 

induce a cut in the actin filament and remains attached to the barbed end 

(+ end) preventing its repolymerization 81,84. 

ADF/cofilin (actin depolymerization factor) is responsible for 

depolymerization and severing of actin filaments. Indeed, ADF/cofilin 

increases depolymerization at the pointed ends of actin filaments by 

removing G-actin-ADP. ADF/cofilin generates new barbed ends by 

severing pre-existing actin filaments. Reversible phosphorylation on a 

serine residue of ADF/cofilin regulates its activity. The protein is activated 

after dephosphorylation 81,84,88,89.  

ADP/ATP exchange of G-actin is mediated by profilin. The G-actin-ADP 

removed from the pointed end by ADF/cofilin is converted into G-actin-

ATP-cofilin that can be reintroduced at the barbed end 81,88,89. 
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3.1. Actin structures 

As mentioned previously, in order to migrate towards the attractant cells 

become polarized and generate protrusions at the leading edge that 

adhere to the substrate (ECM). This is followed by deadhesion and 

contraction at the cell rear to pull the cell body forward. This process 

requires the formation of three major actin cytoskeleton structures: 

filopodia, lamellipodia and stress fibers (Figure 15) 90–92. 

 Filopodia and lamellipodia are protrusive structures that sense and drive 

migration while stress fibers are contractile structures that contract the 

whole cell. 

 

Figure 15: The three actin-based structures involved in endothelial cell 

migration.  Filopodia (left) and lamellipodia (middle) are protrusive structures 

found at the leading edge. Stress fibers (right) constitute the contractile structure 

of the endothelial cell (Adapted from 93). 

3.1.1. Lamellipodia 

Lamellipodia form a “Y branched” actin filament network at the leading 

edge during cell migration. After nucleation, the barbed ends of elongating 

filaments are directed to the leading edge and push the cell membrane 
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forward. The main mode of actin filament assembly in lamellipodia is via 

the Arp2/3 complex. The Arp2/3 complex is activated by the WAVE 

complex, which is itself activated by the small GTPase Rac1. Until recently, 

it was considered to be well established that Arp2/3 complex activation was 

mediated by the WAVE complex in a Rac1-dependent manner. However, 

it has been shown that the Arp2/3 complex can also be activated by N-

WASP, which is downstream of the small GTPase Cdc42 92,94,95.  

3.1.2. Filopodia 

Filopodia are finger-like structures rising from the lamellipodia at the 

leading edge. They are constituted of parallel actin filaments organized in 

bundles that sense the cell environment. The elongation of filopodia is 

mediated by formins and the Ena/Vasp complex. Indeed, these proteins 

remain attached to the barbed end during filament growth and are found at 

the top of the filopodia. The mechanism by which filopodia elongation 

occurs is well described. However, the mechanism initiating the formation 

of filopodia is still debated. It is not clear if filopodia are nucleated only by 

formins or if the Arp2/3 complex also plays a role. However, the nucleation 

process requires the activation of the small GTPase Cdc42 92,96,97. 

3.1.3. Stress fibers  

Stress fibers are actomyosin bundles (abundant in endothelial cells) 

composed of 10 to 30 actin filaments. These actin filaments exhibit anti-

parallel arrangements and are cross-linked together by α-actinin and 

myosin II. The actomyosin bundles are indispensable for producing the 

necessary forces for cell movement and are often linked to focal adhesions 

connecting the extracellular matrix to the actin cytoskeleton 81,92,95.  
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Different types of stress fibers can be found in the cell depending on their 

subcellular localization. Dorsal stress fibers are attached to focal adhesions 

only at one end. These stress fibers do not contain myosin II and are 

therefore non-contractile structures. Ventral stress fibers are the most 

abundant stress fibers observed in the cell. They are characterized by 

actomyosin bundles attached at each end to a focal adhesion. These fibers 

constitute the major contractile machinery of the cell and are located at the 

posterior side of the cell. Unlike dorsal and ventral stress fibers, transverse 

arcs are not directly attached to focal adhesions and are found just behind 

the lamella. Transverse arcs are curved actomyosin bundles and their 

association with dorsal stress fibers confers contractile forces. The last type 

of stress fiber was discovered recently and is called the perinuclear actin 

cap. It is found above the nucleus and regulates nuclear shape during 

interphase 98,99. 

The assembly of stress fibers requires the activation of the small GTPase 

RhoA. Once activated, RhoA can activate its downstream targets ROCK 

and the formin mDia1. The activation of mDia1 provides the nucleating 

activity required for stress fiber formation. ROCK activation leads to the 

phosphorylation of MLCII by inhibiting MCLII phosphatase, resulting in an 

increase of actomyosin contractility 98,99.  

It is noteworthy to mention that mechanisms of cell migration are different 

in 2D systems vs 3D in vivo. It is still not established that stress fibers and 

lamellipodia exist in vivo. They might be artefacts of 2D migration systems, 

which are the systems that have been the most largely used to study cell 

migration 100,101. 
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3.2. Integrins: Adhesion receptors 

In order to migrate, cells have to make contact with components of the ECM 

such as fibronectin and collagen. These contacts are mediated by 

adhesion receptors called integrins.  

Integrins are heterodimeric transmembrane structures composed of a large 

extracellular domain, a transmembrane domain and a short cytoplasmic 

tail. 24 different integrins have been identified depending on the 

association of the 18 α and 8 β subunits. Integrin receptors mediate both 

cell-cell and cell-ECM adhesions and are considered the master regulators 

of cell adhesion to the extracellular matrix. The non-covalent association of 

the N-terminal (extracellular) domain of the α and β subunits forms the 

ligand binding site (Figure 16) 102,103. 

Two different types of interaction have been observed in integrin signaling: 

inside-out and outside-in signaling. During inside-out signaling, an 

intracellular activator binds the β subunit, which induces changes in integrin 

conformation leading to increased affinity for extracellular ligands. Inside-

out signaling controls adhesion to the extracellular matrix (Figure 16 right) 
102,104,105. 
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Figure 16: Inside-out and outside-in integrin signaling.  Inside-out signaling 

(right). Binding of talin (intracellular activator) to the β subunit induces 

conformational modification of integrin, leading to its activation and increasing its 

affinity for extracellular ligands. Outside-in signaling (left). Integrin clustering 

results from the binding of extracellular ligands, allowing intracellular signal 

transduction (Adapted from 105).  

In outside-in signaling, the binding of an extracellular ligand changes 

integrin conformation, leading to the clustering of integrins and allowing 

intracellular signal transduction (Figure 16 left)  

Talin plays a key role in integrin activation by binding to the β subunit of 

integrins. Attachment of cells to the ECM induces integrin clustering on the 

cell surface. The cytoplasmic domain of the clustered integrins allows 

recruitment of adaptor proteins that form focal adhesions 106–108.  

3.3. Adhesion assembly, maturation and disassembly 

Once integrins are activated, more than 50 proteins are recruited 

transiently to the site of the nascent adhesions. Different types of proteins 

can be found, including integrin-binding proteins such as Talin; adaptor 

proteins such as vinculin, paxillin and α-actinin; and kinases such as the 

FAK/Src complex. Indeed, integrins do not possess intrinsic activity and the 

FAK/Src complex leads to signal transduction by phosphorylation of 

downstream targets. All of these proteins allow connection of the cell to the 

ECM by creating strong linkages to the actin cytoskeleton. This interaction 

(EC-ECM) provides tension that allows the cell to move during migration 
109–112.  

Adhesions are highly dynamic structures. The master regulator of adhesion 

turnover is the FAK/Src complex (Schematic overview of FAK/Src signaling 
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pathways in Figure A in Annex 1). FAK is recruited to the site of adhesion 

once integrins are activated. FAK is activated by autophosphorylation and 

binds the Src kinase which in turn phosphorylates FAK, leading to a fully 

activated FAK/Src complex. This complex phosphorylates a series of 

downstream targets such as paxillin, Erk and p130-Cas 113,114.  

As mentioned previously, actin polymerization is regulated by the Rho 

small GTPase family. The different Rho GTPases are also implicated in the 

regulation of adhesion dynamics. Once activated, FAK phosphorylates 

p130-Cas, which recruits Crk. Crk then activates the small GTPase Rac1. 

Once phosphorylated by FAK, paxillin is able to activate Cdc42 by 

activating the Cdc42 activator PKL. Rac1 and Cdc42 activity are required 

during the first phases of cell spreading. During early spreading, FAK 

phosphorylates p190RhoGAP, which inhibits RhoA and keeps RhoA 

activity low, relieving cytoskeletal tension. However, RhoA is activated 

during late spreading with the formation of stress fibers and the maturation 

of focal adhesions 115–118.  

Although the molecular events that lead to focal adhesion disassembly are 

not well understood, key regulators have been identified 109,119,120  

Microtubules play a critical role in adhesion disassembly. Extension of 

microtubules to the site of the adhesion triggers the disassembly 120. 

FAK is involved in both assembly and disassembly processes. However, 

FAK deficiency has a more significant impact on disassembly than on 

assembly. Indeed, in the absence of FAK an accumulation of mature focal 

adhesions is observed. The autophosphorylation of FAK (Tyr397) is a 

crucial event that leads to the subsequent phosphorylation of its kinase 

domain, allowing full kinase activity. Moreover, the phosphorylation of FAK 
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on Tyr397 allows the recruitment of dynamin, which is implicated in the 

internalization of integrins during adhesion disassembly. M-caplain is a 

protease that plays a role in adhesion disassembly by cleaving proteins 

such as FAK, paxillin and Talin. It seems that cleaving some components 

of focal adhesions can facilitate the internalization of integrins 120. 

Moreover, Webb showed via analysis of adhesion dynamics that in addition 

to FAK, Src, paxillin, Erk, p130-Cas and MLCK were implicated in the 

disassembly process 121.   

Different types of structures have been described according to their 

content, localization, size and lifetime: nascent adhesions, focal complexes 

(FXs), focal adhesions (FAs) and fibrillar adhesions (FBs) (Figure 17). 

Transitions between these 3 types of adhesion depend on actomyosin 

contraction and actin polymerization. 

Nascent adhesions are formed at the cell periphery via a Rac-dependent 

mechanism and do not require myosin II. These structures can rapidly 

disassemble (t1/2 ~ 60 seconds) or mature into focal complexes via Rac- 

and myosin II-dependent mechanisms. FXs are small dot-like structures 

found at the lamellipodia-lamella boundary that are not connected to stress 

fibers. FXs can turnover rapidly (t1/2 ~ seconds to minutes) or mature into 

larger adhesions called focal adhesions. FX to FA maturation requires 

myosin II but also the small GTPase RhoA. FAs are connected to stress 

fibers, bringing mechanical tension for cell migration. Finally mature FAs 

are stable (t1/2 minutes to hours) and can mature into fibrillar adhesions that 

are located in the cell body and are the most stable adhesions found in the 

cell (t1/2 hours). From FAs, maturation of FBs requires contractile forces 

contributed by myosin II 118,122–124.  
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Figure 17: Representation of different adhesion complexes. Nascent 

adhesions (1) are formed in the leading edge and rapidly mature into focal 

complexes via a Rac-dependent mechanism. Focal complexes (2) are dot-like 

structures found at the lamellipodia-lamella boundary and can elongate 

centripetally and mature into larger focal adhesions (3) connected to stress fibers. 

Finally, focal adhesions mature into fibrillary adhesions (4) that are the most stable 

adhesions found in the cells (Adapted from 122). 
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4. The Ras Superfamily of Small GTPases 

4.1. Introduction 

Small GTPases are low molecular weight proteins (20-30 kDa) that act as 

binary molecular switches by alternating between an inactive GDP-bound 

form and an active GTP-bound form, allowing signal transduction. These 

proteins regulate multiple processes including proliferation, cytoskeleton 

dynamics, adhesion, migration, membrane trafficking, apoptosis, survival 

and polarity.  The Ras superfamily of small GTPases comprises over 150 

human members divided into 5 families based on their functional and 

sequence similarities. These 5 families are Ras, Rho, Ran, Rab and Arf 

(Figure 18). Briefly, Ras family members play critical roles in cell 

proliferation, differentiation, survival and apoptosis. Rho family members 

are considered to be regulators of cytoskeleton dynamics while the Ran 

protein regulates nucleocytoplasmic transport. Finally, Rab and Arf family 

members are involved in the regulation of vesicular trafficking 125–127. 

 Human 

genes 

Described 

isoforms 

Function 

Ras 36 39 Cell proliferation, differentiation, survival, apoptosis, 

cell-cell adhesion, cell-matrix adhesion 

Rho 20 22 Cytoskeletal dynamics, cell shape, adhesion, polarity 

Rab 61 63 Membrane and protein traffic 

Arf 27 30 Vesicular trafficking, endocytosis and exocytosis 

Ran 1 1 Nucleocytoplasmic transport 

 

Figure 18: The Ras superfamily of small GTPases and their known functions 

(Adapted from 125). 
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4.2. Structure and regulation of small GTPases  

All members of the Ras superfamily share a conserved domain composed 

of six β-strands surrounded by 5 α-helices making a 20 kDa “G-domain”. 

Five conserved motifs forming five polypeptide loops are located around 

the nucleotide-binding site and called G1 - G5 (the G-boxes). Moreover, 

structural features conserved in all small GTPases are the switch I and 

switch II regions, where major conformational changes take place upon 

GTP binding and hydrolysis. The switch I region is called the “effector 

region” and changes its conformation upon exchange of GTP and GDP. 

The switch II region plays an important role in nucleotide exchange by 

GEFs and in stimulating GTP hydrolysis by GAPs (Figure 19) 128,129. 

 

Figure 19: Structure of the G-domain of Ras superfamily small GTPases 

(Adapted from 128). 

Small GTPases display high-affinity binding for GTP and GDP and have 

low intrinsic GTP hydrolysis and GDP/GTP exchange activities.  The 

activity of small GTPases (GDP/GTP cycle) is regulated by the opposing 

action of guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs). GEFs act by increasing GDP dissociation in 
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favor of GTP, leading to the activation of the small GTPase while GAPs 

increase GTP hydrolysis, leading to the inactivation of the protein. Once 

activated, small GTPases bind a variety of effectors, activating them and 

allowing signal transduction (Figure 20). Besides GEFs and GAPs, some 

small GTPases (Rho and Rab families) are also regulated by a third class 

of proteins called guanine nucleotide dissociation inhibitors (GDIs). These 

proteins act by masking the C-terminal hydrophobic tail of the small 

GTPases (maintaining the proteins in an “off” state) in the cytosol 

preventing membrane localization and interaction with effectors 125,130,131.  

 

Figure 20: The GDP/GTP cycle. Regulation of the GDP/GTP cycle by GEFs, 

GAPs and GDIs. Small GTPases are activated by exchange of GDP to GTP by 

GEFs and inactivated by GTP hydrolysis stimulated by GAPs. GDIs maintain the 

small GTPase in an inactive state. Specific GEFs and GAPs regulate the different 

families of small GTPases (Adapted from 131). 



Chapter 1: Introduction 
________________________________________________ 

 

43 
 

Another common characteristic of most small GTPases is post-

translational modification of the C-terminal region by lipids, leading to 

localization to the membrane where they can be active. Indeed, most of the 

Ras and Rho members display a tetrapeptide sequence (CAAX) that can 

be recognized by farnesyltransferase and geranyl-geranyltransferase I, 

which add farnesyl or geranylgeranyl groups respectively and lead to 

membrane localization of the proteins 125,132.  

It is noteworthy that even if they are still associated with membranes, some 

small GTPases are not modified by lipids (e.g. RhoBTB, Miro). Moreover, 

some of them are not modified by lipids and are not bound to membranes 

(e.g. Rerg and Ran) 125.  

Because Rasa3 targets are the small GTPases Rap1 and Ras, the 

following introduction will focus on these proteins, members of the Ras 

family.  

4.3. Ras small GTPases 

There are 3 Ras genes that code for 4 different Ras proteins: H-Ras 

(Harvey-Ras), N-Ras (Neuroblastoma-Ras) and the two splice variants K-

Ras4A (Kirsten-Ras) and K-Ras4B (Kirsten-Ras). These proteins share 

80% amino acid sequence identity including a conserved effector domain 

in the N-terminal, and differ almost exclusively in their C-terminal tails 

(known as the Hypervariable Region) 133.  

As previously mentioned, Ras proteins must be localized at the cellular 

membrane in order to be active and carry out their biological functions. To 

achieve this purpose, inactive cytosolic Ras precursors undergo a series 

of post-translational modifications allowing membrane localization. The first 

modification of Ras isoforms consists of a farnesylation of cysteine 186 in 
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the CAAX box, targeting Ras isoforms to the surface of the endoplasmic 

reticulum. H-Ras, N-Ras and K-Ras4A farnesylation is followed by 

palmitoylation of the cysteine residue adjacent to cysteine 186 of the CAAX 

box. H-Ras is palmitoylated on both Cys181 and Cys184 while N-Ras and 

K-Ras4A are monopalmitoylated. Unlike farnesylation, palmitoylation is a 

reversible reaction allowing the cell to modify Ras proteins’ subcellular 

localization. H-Ras and N-Ras, once palmitoylated, can be found at the 

plasma membrane and in the Golgi.  On the other hand, K-Ras4B lacks a 

site for palmitoylation and the mechanism by which it reaches the plasma 

membrane has not been clearly identified. However, the lysine-rich region 

found in the hypervariable region of K-Ras4B is involved in membrane 

anchoring of the protein via interaction with the phospholipids of the plasma 

membrane 132,134. 

In order to assess the function and the redundancy of the Ras isoforms, 

mouse models have been generated. H-Ras and N-Ras knockout mice are 

viable, fertile and do not display any developmental defects 135. However, 

H-Ras and N-Ras double-knockout mice are still viable and fertile but the 

number of adults is lower than expected, indicating a potential overlap 

between H-Ras and N-Ras function 135. On the other hand, K-Ras knockout 

is embryonic lethal in mice. These mice died at midgestation (E12.5) and 

presented heart abnormality, fetal liver defects and anemia. Specific K-

Ras4A isoform knockout mice grow normally and were identical to wild-

type control mice indicating that K-Ras4A is not essential 136. 
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Activation of Ras 

As mentioned previously, the guanine nucleotide exchange factors (GEFs) 

increase GDP dissociation in favor of GTP, allowing Ras activation. In 

recent years many GEFs have been identified that activate the small 

GTPase Ras. We focus here on the 3 major classes of Ras-GEFs: Sos, 

Ras-GRFs and Ras-GRPs 137,138.  

There are two isoforms of Sos: Sos1 and Sos2. These GEFs activate H-

Ras, N-Ras and K-Ras but also act as GEFs for the small GTPase Rac. 

Sos isoforms consist of a CDC25 domain (also called the Ras-GEF 

domain) associated with a Ras exchange motif (REM). Sos1 and Sos2 

contain (in addition to the CDC25 domain and REM) a Dbl homology 

domain (DH) and a pleckstrin homology domain in the C-terminal. 

Activation of Ras by Sos is well characterized. Sos is associated in the 

cytosol with Grb2 adaptor protein via its SH3 domain in resting conditions. 

Upon receptor tyrosine kinase activation, the Grb2-Sos complex is 

recruited to the membrane via attachment of the SH2-Grb2 domain to the 

cytoplasmic domain of the activated receptor, increasing the proximity of 

Sos to the Ras small GTPase so activation can occur 139,140. Another 

mechanism to activate Ras with the Grb2-Sos complex results from G-

protein-coupled receptor activation, leading to the activation of PYK2 

tyrosine kinase, which binds Src tyrosine kinase. Once phosphorylated by 

Src, PYK2 associates with the Grb2-Sos complex and activates the Ras 

small GTPase 141. 

Like Sos, proteins in the second major class of Ras-GEFs, Ras-GRFs 

(including Ras-GRF1 and Ras-GRF2) possess a REM-CDC25 domain 

associated with a DH-PH domain. Ras-GRFs contain an additional PH 

domain in the N-terminal followed by a calmodulin-binding motif (IQ) 138. 
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These GEFs act on both Ras and Rac small GTPases. Unlike with Sos, 

Ras activation via Ras-GRFs is mediated by the activation of N-methyl-D-

aspartate glutamate ligand-gated ion channel receptors (NMDARs) or G-

protein-coupled receptors leading to the accumulation of calcium2+ in the 

cytosol. This Ca2+ promotes Ca2+ activation by calmodulin (CAM) 

association with the IQ domain of Ras-GRFs, leading to Ras activation. 

Finally, Ras-GRPs (Ras-GRP1, 2, 3 and 4), besides the REM-CDC25 

domain in the N-terminal region, contain two tandem Ca2+ binding EF 

hands and a DAG/phorbol ester region called the C1 domain in the C-

terminal. In this case, activation of the PLC-linked G-protein coupled 

receptors leads to the hydrolysis of PIP2 into DAG and IP3. DAG 

production allows activation of Ras by binding Ras-GRPs (1, 3 and 4) to 

the membrane through the C1 domain. Regarding Ras-GRP2 (two splice 

variants were described), it is known that its C1 domain does not bind DAG. 

It is still not well understood how exactly Ras-GRP2 is associated with the 

cellular membrane. Moreover it has been shown that both Ras-GRP2 and 

Ras-GRP3 activate both Ras and Rap1 small GTPases 142. 

Once activated, Ras activates a series of downstream signaling pathways 

(Figure 21). The most characterized pathways are the ERK mitogen-

activated protein kinase (MAPK) and PI3K-AKT pathways which will be 

described in the following section. 
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Figure 21: Overview of Ras signaling pathways after Ras activation. Once 

activated, Ras leads to the activation of multiple signaling pathways. These 

pathways are involved in proliferation, differentiation, apoptosis and senescence. 

Of all the signaling pathways, the Ras/Raf/MEK/ERK and the PI3K/Akt pathways 

are the best characterized. Moreover, activated Ras activates a series of GEFs 

that regulate other small GTPases such as Rac, Ral and Rab (Adapted from 133). 

Activated Ras promotes recruitment of Raf (a serine/threonine kinase) to 

the plasma membrane, leading to Raf’s activation via a series of 

phosphorylations by other serine/threonine kinases (PAK, SRC). Once 

activated, Raf itself phosphorylates and activates the complex MEK1/2 

(serine/threonine/tyrosine kinases) which phosphorylates and activates 

ERK1/2 (serine/threonine kinases). The phosphorylation of ERK leads to 

its activation and nuclear translocation 143. Once in the nucleus, ERK 

phosphorylates a series of transcription factors (Elk1, c-Jun, c-Fos) that 
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induce expression of genes implicated in proliferation, differentiation, 

apoptosis and senescence processes. 

Phosphatidylinositol-3-kinase (PI3K) is a heterodimeric protein with a 

regulatory subunit of 85 kDa (p85) and a catalytic subunit of 110 kDa 

(p110). Once activated, Ras binds and activates the catalytic subunit p110. 

PI3K acts by converting phosphatidylinositol 4,5-bisphosphate (PIP2) into 

phosphatidylinositol 3,4,5-trisphosphate (PIP3). Active PI3K leads to the 

accumulation of PIP3 at the plasma membrane, allowing Akt recruitment 

via binding to PIP3 by its pleckstrin homology domain. Akt is then 

phosphorylated and activated by the phosphoinositide-dependent kinases 

PDK1 and PDK2. After activation, Akt translocates to the nucleus where it 

affects the activity of a series of transcriptional regulators such as CREB, 

E2F and NF-κB  133,144. It is noteworthy that some Ras effectors function as 

GEFs for other small GTPases. Indeed, Tiam1 and RalGEF are GEFs for 

Rac and Ral small GTPases respectively. Moreover, Ras effector Rin1 has 

been described as a GEF for the Rab5 small GTPase 138.  

Ras-GAPs increase the hydrolysis activity of small GTPases leading to 

their inactivation. Unlike Ras-GEFs, these proteins and how they regulate 

small GTPases are less characterized. However, the majority of GAPs 

contain an arginine (called an arginine finger) that stabilizes a glutamine 

residue (61) within the G-protein, facilitating nucleophilic attack during GTP 

hydrolysis 145. These proteins are more characterized in the case of cancer, 

when they have lost their GAP activity or are insensitive to mutant active 

Ras. For example, P120 RasGAP is insensitive to mutant Ras, and the loss 

of function of Neurofibromin increases Ras activity 138. The Ras-GAPs also 

include the four members of the RasGAP1 subfamily, which includes the 

GAP Rasa3 (see Rasa3 section). 
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4.4. Rap1 small GTPases  

Rap1 possesses two distinct isoforms: Rap1a and Rap1b, which are the 

products of two different genes located on chromosomes 1 and 12 

respectively. These proteins share 95% sequence identity. Indeed, Rap1a 

and Rap1b differ only by 9 amino acid residues at the C-terminal of the 

proteins 146. At first, Rap1 was identified as an antagonist to Ras due to the 

homology of the effector binding region. As such, Rap1 could compete with 

Ras-signaling by sequestering Ras-effectors such as Raf, resulting in 

inactivation of Ras signaling pathways. This hypothesis has recently been 

called into question by studies showing common signaling pathways 

between the two small GTPases 146–148. 

Like Ras, Rap1 requires a post-translational modification of its CAAX 

region (hypervariable region (HVR)) in order to be localized at intracellular 

and plasma membranes where it can be active. This modification consists 

of addition of a geranylgeranyl group on the cysteine of the CAAX region 

by geranyl-geranyltransferase I 125. 

The role of Rap1 isoforms has been assessed by generating mouse 

models. First, deletion of either Rap1a or Rap1b leads to a partial 

embryonic lethality. Indeed, Rap1a-/- or Rap1b-/- mice display bleeding and 

edema around embryonic day E12.5. Rap1a-/- or Rap1b-/- adult 

homozygous mice can be obtained but with low efficiency, hence the term 

“partial embryonic lethality”. On the other hand, full Rap1a-/- Rap1b-/- 

knockout is embryonic lethal in mice due to major malformations between 

E8.5-E10 149. Because bleeding could explain embryonic lethality due to 

vascular defects, mice with specific deletion of Rap1a or Rap1b in 

endothelial cells were generated. In both cases, no embryonic lethally was 

observed. However, deletion of Rap1a and Rap1b together specifically in 
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the endothelial lineage leads to embryonic lethality due to hemorrhages 

between E10.5 and E12.5, suggesting a possible redundancy of Rap1 

isoform function 150. Both Rap1a and Rap1b isoforms were shown to have 

a critical role in angiogenic processes such as migration and sprouting 151. 

Compared to Rap1a, the Rap1b isoform is highly expressed in endothelial 

cells (around 90% of total Rap1) 152. Moreover, Rap1a is localized at 

endothelial cell junctions as a pool while Rap1b localization is more 

cytoplasmic, in the perinuclear region 146. 

Activation of Rap1 

Currently, six major classes of Rap1 GEFs have been identified: C3G, 

Epac proteins, Ras-GRPs, PDZ-GEF and the atypical GEFs DOCK4 and 

Phospholipase C epsilon (Figure 22) 153. Rap-GEFs can be activated 

following stimulation of various receptors such as receptor tyrosine 

kinases, cytokine receptors, G-protein-coupled receptors and cell-

adhesion molecules. Like Ras-GEFs, all the Rap-GEFs display a CDC25 

catalytic domain preceded by a Ras exchange motif (REM) 154. 

The Epac family comprises 3 members (Epac1, Epac2 and Repac (related 

to Epac)). These proteins contain the classic REM/CDC25 domains 

characteristic of GEFs, a Ras association domain (RA), and a 

Dishevelled/Egl-10/pleckstrin (DEP) domain (necessary for membrane 

localization) followed by a cyclic nucleotide binding domain (CNB). Epac2 

displays a second CNB in the N-terminal. The third member of the family, 

Repac, contains only the catalytic region (REM-RA-CDC25). Epac1 and 2 

require cAMP binding in order to activate Rap1 and Rap2 155. 

The PDZ-GEF family (PDZ-GEF1 and 2) is characterized by the presence 

of a PDZ domain, the REM and CDC25 domains, a Ras association domain 
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(RA) and a region related to the cyclic nucleotide binding domain (RCNB) 

in the N-terminal 156. As well as the Epac family, PDZ-GEFs activate both 

Rap1 and Rap2. The mechanism by which these proteins are activated is 

still not clear. A main difference between the PDZ-GEF protein family 

members is the RA domain. Indeed, the RA domain of PDZ-GEF1 interacts 

with active Rap1 while the RA domain of PDZ-GEF2 interacts with active 

M-Ras 156. 

C3G was the first Rap-GEF identified and seems to be active only on Rap1. 

The protein contains the characteristic REM-CDC45 region and a proline-

rich sequence in the N-terminal that allows binding to the SH3 domain of 

the adaptor protein Crk.  After stimulation, the C3G-Crk complex 

translocates to the plasma membrane and the activation of C3G is 

mediated by its phosphorylation on tyrosine residue 504 by different 

kinases (Src, c-Abl, Hcl and Fyn) 157. 

The structures of Ras-GRPs were previously described in the Ras small 

GTPases section. As a reminder, among the four members of the Ras-

GRP family, only Ras-GRP2 and Ras-GRP3 (also called CalDAG-GEF1 

and CalDAG-GEF3 respectively) activate both Rap and Ras small 

GTPases.  

Dock4 is qualified as an atypical GEF by the fact that it lacks the 

characteristic REM and CDC25 domains. Instead, it contains a Dock 

domain in the C-terminal that is responsible for Rap1 binding at the plasma 

membrane. This protein activates the small GTPases Rap1 and Rac 145. 

Phospholipase C epsilon (PLCε) acts as both a Rap1-GEF and a Rap1-

effector. Indeed, PLCε contains the catalytic domain CDC25 but also a Ras 

association domain (RA). It continues to activate Rap1 when Rap1 is 

already active, acting as a positive feedback loop 145. 
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Over the years, the involvement of Rap1 in cellular adhesion and in cell-

cell junction formation has been largely documented 69,145,153,154.  

 

Figure 22: overview of Rap1 signaling patways.  Once stimulated by an extra-

cellular stimulus, receptors (RTK, GPCR) activate Rap-GEFs (orange) which in 

turn activate Rap small GTPase (blue). Rap-GAPs (grey) inactivate Rap small 

GTPase. Rap effectors (purple) are involved in many signaling pathways, such as 

cell-cell junction formation, cell adhesion and actin cytoskeleton organization 

(Adapted from 145).  

RapL is a direct effector of Rap1. It has been shown in T cells that active 

Rap1 interacts with RapL, leading to the binding of RapL to integrin αLβ2 

and resulting in its activation. Moreover, RapL is expressed and associated 

with Rap1 in endothelial cells. Active Rap1 controls cell migration, probably 

by removing RapL from microtubules 145,158.  
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Integrin activation by Rap1 was also observed after binding to the 

serine/threonine kinase PDK1. Indeed, PDK1 promotes β1 integrin 

activation by regulation of Rap1 activation 159. On the other hand, Riam 

stimulates β1 and β2 integrins after binding to active Rap1. Moreover Riam 

is found in a complex with ADAP and SKAP-55 which are necessary for 

Rap1 recruitment at the plasma membrane. Then, Riam interacts with 

profilin, a protein known to regulate actin dynamics 160,161. 

The Rap1 effector Krit plays a major role in the regulation of endothelial 

cell-cell junctions. In endothelial cells, Krit is localized to microtubules. 

Active Rap1 induces release of Krit from the microtubules to the plasma 

membrane, and particularly to cell-cell junctions (via an unknown protein) 

where it can bind junction proteins such as AF-6 (Afadin), β-catenin, VE-

cadherin or HEG1 receptor. Moreover, it has been shown that Krit, once 

released from microtubules, interacts with ICAP-1 and releases it from 

integrin β1, which induces integrin β1 activation 149,153,162.  

As mentioned previously, Rap1 controls processes such as cell adhesion 

and cell-cell junction formation. Rap1-activated activates some GEFs and 

GAPs targeting other small GTPases, in particular the Rho family (Cdc42, 

Rac1 and RhoA), known to play a critical role in actin remodeling. Indeed, 

active Rap1 activates the Rac-GEFs Tiam and Vav2. By an unknown 

mechanism, Rap1 mediates CDC42 activation through the activation of the 

CDC42-GEF FRG. Finally, requiring PI3K activity, active Rap1 activates 

the Rho-GAP Arap3 resulting in Rho inhibition 161  

The Rho GTPase family is essential to control cytoskeleton organization 

and adhesion assembly. Briefly, RhoA promotes actin stress fiber and focal 

adhesion assembly. CDC42 promotes filopodium formation and Rac1 

promotes lamellipodium formation 125. 
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Rap-GAPs are much less characterized in comparison to Rap-GEFs. 

However a series of GAPs were identified as interacting with Rap: 

Rap1GAP, SPAR, Spa-1, the GAP1 family (Rasa3, Rasa4 and RasaL (see 

Rasa3 section)) and SynGAP. 

Unlike Ras proteins, Rap proteins do not contain the glutamine (61) residue 

which is stabilized by the arginine finger of the Ras-GAPs, but instead 

display a threonine residue (61). Moreover, instead of an arginine finger, it 

is an “asparagine thumb” that is used by Rap-GAPs to position the water 

molecule allowing nucleophilic attack during GTP hydrolysis. This tiny 

difference makes the regulation between Rap and Ras activity more 

specific 145. 

Rap1GAPs (Rap1GAP1 and Rap1GAP2) contain a GoLoco region (in 

addition to the GAP domain) allowing the binding of active Gα in response 

to activation of a G-protein-coupled receptor. This interaction results in the 

translocation of Rap1GAPs to the plasma membrane where they can 

inactivate Rap1 154.  

Spa-1 and SPAR proteins (SPAR1, 2 and 3) are Rap-GAPs characterized 

by the presence of a PDZ domain (protein-protein interaction domain), 

allowing interaction with other proteins possessing this domain such as 

transmembrane receptors, in which case they can locally inactivate Rap1 

(and Rap2) 145,154.  

SynGAP (active on both Rap1 and Ras) was found to be regulated by 

Ca2+/calmodulin-dependent kinase II 138. 
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4.5. Ras and Rap1 in cancers 

Ras genes (H-Ras, N-Ras and K-Ras) were the first oncogenes identified 

in human cancers. In approximately 30% of tumors Ras proteins are 

mutated. Most of the time Ras genes display single missense mutations 

that result in amino acid substitutions leading to constitutively active Ras-

GTPs. Indeed, these mutations damage the intrinsic GTP hydrolysis 

activity of Ras small GTPases as well as the efficiency of GAP proteins. K-

Ras mutations represent 85% of all Ras mutations in human cancers while 

N-Ras and H-Ras represent respectively 12% and 3%. The most mutated 

residues are glycine 12 (G12), glycine 13 (G13) and glutamine 61 (Q61). 

Specific mutations were found preferentially between the Ras isoforms. 

G12 mutation represents 83% of all K-Ras mutations. Q61 mutation 

represents 61% in N-Ras. On the other hand, the 3 mutations G12, G13 

and Q61 are found equally in H-Ras (around 30% each) 148,163,164.  

By contrast, mutations in Rap1 have rarely been examined in human 

cancers. However, a study conducted on myelodysplastic syndrome (MDS) 

patients revealed that in 29 patients, only one presented two mutations in 

Rap1B (G12R and K42R) and zero in Rap1A 165. 

Ras/Rap1GAPs catalyze the GTP hydrolysis of Ras/Rap1-GTP leading to 

their inactivation. The loss of GAPs would be expected to increase 

Ras/Rap activation. The best characterized case of a GAP no longer 

deactivating Ras concerns the Ras-GAP neurofibromin. Indeed, germline 

mutations or deletion of the NF1 gene result in neurofibromatosis type 1 

(the development of tumors called neurofibromas). Moreover, studies 

showed that this gene was mutated or inactivated in a series of cancers 

such as leukemia, glioblastoma and lung adenocarcinoma. In sporadic 

cancers it has been shown that NF1 can be inactivated either by genetic 
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loss or proteasomal degradation. Other Ras-GAPs, DAB2IP and Rasal2, 

were found inactivated by epigenetic silencing in different tumors (lung, 

breast and prostate). Unlike Ras proteins (which are usually directly 

mutated), Ras-GAPs seem to be inactivated by non-genetic mechanisms 

such as epigenetic silencing, proteasomal degradation and transcriptional 

repression 166,167. 
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5. RASA3: RAS p21 protein activator 3 
 

RASA3 (GAPIII, R-Ras GAP or GAP1IP4B) belongs to the GAP1 

subfamily, which is composed of 4 members: RASA2 (or GAP1m), RASA4 

(or CAPRI), RASAL (or RASAL1) and RASA3. All the members of the 

GAP1 subfamily function as dual GAPs (GTPase-activating proteins) for 

Rap1 and Ras small GTPases 168. 

5.1. RASA3 expression / structure / cellular localization 

The human and mouse genes comprise 24 exons and generate 4191 bp 

and 4402 bp transcripts respectively. These transcripts encode an 834 

amino acid protein with a molecular weight of 96 kDa. Northern blot and 

western blot analyses revealed that Rasa3 mRNA and protein expression 

are ubiquitous, with especially high expression in the brain and spleen 169–

172. 

The RASA3 protein consists of two C2 domains (C2A and C2B) at the N-

terminal end of the protein, a highly conserved central catalytic GAP 

domain (active on Rap1 and Ras but not on Rac, Rho or Rab family 

members) and a pleckstrin homology (PH) domain followed by a Bruton 

tyrosine kinase (Btk) motif at the C-terminal end of the protein, called the 

PH/Btk domain (Figure 23) 168,173. 

Usually, C2 domains allow membrane association and/or activation of the 

protein via phospholipid binding motifs upon elevation of the intracellular 

free calcium concentration ([Ca2+]i). P.J Cullen revealed that the C2 

domains of RASA3 (as well as RASA2) do not contain the C2 conserved 

motif implicated in calcium-dependent phospholipid binding. An increase in 
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([Ca2+]i) does not affect the binding of phospholipids to C2 domains of 

RASA3 168,174. Moreover, deletion of the C2A or C2B domain doesn’t alter 

RASA3 membrane localization 169. Currently, the biological role of Rasa3 

C2 domains remains unclear. 

 

Figure 23: RASA3 gene and protein structure. The top panel represents the 

DNA structure consisting of 24 exons. The bottom panel represents the different 

domains of the RASA3 protein with their known functions (Adapted from 175). 

The PH/Btk domain regulates RASA3 localization at the cellular plasma 

membrane via binding to phosphoinositides. This domain binds, with high 

affinity, PIP3 (phosphatidylinositol 3,4,5-trisphosphate), IP4 (inositol-

1,3,4,5-tetrakisphosphate) and  PIP2 (phosphatidylinositol 4,5 

bisphosphate) 169,174,176. At its N-terminal region, the PH/Btk domain 

contains the core sequence KKR (residues 599 to 601) constituting a 

positively charged cluster of amino acids. Point mutations of the KKR core 

sequence that neutralize the positive charge within the PH/Btk domain 

result in decreased IP4 binding 174. Moreover, these same point mutations 

affect the cellular localization of RASA3, leading to its accumulation in the 

cytosol 169. These results suggest that RASA3 localization might be 
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regulated by the competition of IP4 and phospholipid binding. Because the 

PIP2-binding site within the RASA3 PH/Btk domain overlaps the IP4-

binding site, PIP2 is the most probable candidate 177. The hypothesis is that 

once IP4 is generated, RASA3 could be displaced from the plasma 

membrane to the cytosol. However, the accuracy of this hypothesis 

remains uncertain due to the fact that contradictory results have been 

observed. Indeed, Maréchal showed translocation of RASA3 from the 

plasma membrane to the cytosol after treatment with ATP or cell-

permeable IP4 ester 178. On the contrary, no dissociation of RASA3 from 

the plasma membrane was observed by Cullen following histamine 

treatment  174.  

For many years, it was accepted that the PH/Btk domain of RASA3 was 

responsible for its plasma membrane localization. However, identification 

of a missense mutation (G125V) in the RASA3 gene of the scat mouse (a 

spontaneous, autosomal recessive mutant from the BALB/cBy inbred 

mouse strain) conflicts with preceding studies 172. This missense mutation 

(a G-to-V transversion) is located in exon 5 of the RASA3 gene (between 

the C2A and C2B domains) and affects RASA3 localization, resulting in 

accumulation of the protein in the cytosol. Blanc revealed that G125 is 

highly conserved across metazoans and that the G125V mutation would 

modify function. This result is quite surprising because as mentioned 

above, deletion of the C2A or C2B domain doesn’t affect the membrane 

localization of RASA3. Notably, the plasma membrane localization of 

GAP1 family members RASAL and CAPRI is regulated by their C2 domains 

in a calcium dependent manner 176. 
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5.2. RASA3 functions in vitro and in vivo 

The first knock-out mouse model for RASA3 was described by Iwashita 171. 

These mice express a catalytically inactive truncated RASA3 protein. Exon 

11 and 12 (an arginine located in exon 12 is critical for GAP activity) were 

replaced by a neomycin cassette, leading to the production of a RASA3 

protein lacking 88 amino acids. All RASA3-/- mice died during embryonic 

life between E12.5 and E13.5 from massive subcutaneous and 

intraparenchymal bleeding. On the contrary, all RASA3+/- mice grew 

normally and survived until adulthood. Because some E12.5 homozygous 

embryos presented massive hemorrhages from the brain, blood vessels 

were examined by electron microscopy. The development of adherens 

junctions between capillary endothelial cells was reduced in homozygotes 

compared with heterozygotes or wild-type mice 171.  

A positive correlation between the downregulation of RASA3 and neurite 

outgrowth of PC12 (rat pheochromocytoma) cells has been observed 171. 

Indeed, Iwashita found that mRNA and protein levels of RASA3 were 

reduced following NGF (nerve growth factor) treatment in PC12 cells. 

Transfection of RASA3 cDNA and a dominant negative H-Ras (N17) 

suppressed neurite outgrowth of PC12 cells. Taken together, these results 

revealed that downregulation of RASA3 is necessary for R-Ras activation, 

which appears crucial for neurite outgrowth of PC12 cells. 

A yeast two-hybrid screen of a GH4ZR7 cDNA library allowed the 

identification of RASA3 as a Gαi binding protein. In GH4ZR7 cells, depletion 

of RASA3 blocked dopamine D2S-induced inhibition of TRH-(thyrotropin-

releasing hormone) and induced ERK1/2 activation. These results indicate 

that RASA3 binds Gαi proteins, causing inhibition of Gq-induced 

Ras/ERK1/2 activation 179. 
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Walker investigated the relationship of RASA3 and intracellular free Ca2+ 

concentration ([Ca2+]i) in HeLa cells 180. Indeed, as mentioned above, 

RASA3 is able to bind IP4 and regulation of [Ca2+]i has been linked to a 

potential role of IP4. However, overexpression and depletion of RASA3 

both failed to produce any effect on [Ca2+]i following histamine stimulation 
180. 

RASA3 has been identified as a PIP3-binding protein in human platelets, 

acting as a key regulator of integrin αIIbβ3 outside-in signaling 181. Recently, 

RASA3 was shown to act downstream of integrin αIIbβ3 by inactivating 

Rap1. In this pathway, PIP3 generated by integrin-mediated PI 3-kinase 

activity inhibits RASA3 Rap1GAP activity, leading to Rap1 activation and 

cell spreading 181. 

In 1990 Peters described a new autosomal recessive mouse mutation scat 

(severe combined anemia and thrombocytopenia) 182. Homozygous mice 

show a cycling phenotype alternating between crisis and remission 

episodes, with crisis episodes characterized by severe anemia and 

thrombocytopenia. The first crisis episode starts in utero, lasts until 

postnatal day 9 and is followed by a remission phase, in which the 

phenotype reverts to normal for the homozygous mice that survive (there 

is 10-15% mortality after the first crisis). This remission phase is transient 

and followed by a second crisis leading to the death of 94% of the 

remaining mice by postnatal day 30. As mentioned previously, Blanc 

identified a missense mutation (G125V) in the RASA3 gene leading to 

RAZA3 protein mislocalization in the cytosol and associated with an 

increase in active Ras. Defective erythropoiesis and megakaryopoiesis 

were observed in scat mice during crisis episodes 172.  
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Irradiated adult SCID (Severe Combined Immune Deficient) mice 

reconstituted with E12.5 liver from RASA3-/- embryos were generated in 

order to study the impact of a catalytically inactive form of RASA3 on the 

hematopoietic system 183.  This mouse model allows bypassing of the 

embryonic lethality reported in RASA3-/- mice by Iwashita. Most 

homozygous mice (20/24) died within 14 months after reconstitution, 

presented defects during megakaryopoiesis and thrombocytopenia, and 

were predisposed to develop pre-leukemia. Development, adhesion, 

motility, actin cytoskeleton and capacity to differentiate into proplatelets 

were all altered in megakaryocytes from SCID RASA3-/- mice. Molina 

showed that these megakaryocyte alterations were associated with an 

increase in active Rap1 and a constitutive activation of inside-out and 

outside-in integrin signaling 183.  

Importantly, there are phenotypic differences between SCID RASA3-/- mice 

and scat mice (RASA3 G125V mutation). Indeed, G125V mutation leads to 

a mislocalization of RASA3 in the cytosol and mice present a cyclic 

phenotype 172 which is not observed in RASA3-/- mice (with catalytically-

inactive RASA3 protein) 183. Moreover, Molina was unable to detect any 

erythropoiesis defects in scat mice. At this time, the reasons for these major 

phenotypic differences between RASA3-/- and RASA3scat/scat mice are not 

known. However, the relocalization of RASA3 protein to the cytosol 

observed in RASA3scat/scat mice might offer an explanation. Indeed, the 

presence of RASA3 in the cytosolic compartment may create a new 

function for RASA3, leading to the cyclic phenotype observed in scat mice. 

Another missense mutation (H794L) in the RASA3 gene was identified in 

a thrombocytopenic mouse strain, hlb381 (RASA3hlb) 184. Interestingly, 

peripheral platelet counts were significantly higher in these mice compared 
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to that observed in other RASA3 knockout/mutated mice 172,183. Moreover, 

compared to WT cells, RASA3 expression was strongly reduced in lysates 

from RASA3hlb/hlb platelets, providing a unique model for studying platelet 

functions. These platelets exhibited an increase in active Rap1 along with 

integrin αIIbβ3 activation. The thrombocytopenia was attributed to an 

increase in platelet clearance rather than impairment of platelet production. 

These results identified RASA3 as a negative regulator of platelet 

activation that operates by antagonizing the Rap1 activation that is 

mediated by the RAP-GEF CalDAG-GEFI 184. 

5.3. Role of RASA3 in disease 

RASA3 has been found mutated in several tumors including in colon, 

bladder and renal cancers 185,186. Moreover, RASA3 expression is 

downregulated in rat bladder tumors and in human and dog colorectal 

cancer cells 187,188. Tang et al. identified RASA3 as a potential colorectal 

tumor suppressor gene. Indeed, cell growth of HCT116 cells (and other 

colorectal cancer cells) was induced after reducing RASA3 expression via 

siRNA 187. As discussed in the small GTPases section, Ras small GTPase 

is the most mutated protein found in human cancers (around 30%) 189. 

These mutations render Ras constitutively active (GTP-bound), leading to 

Ras pathway activation in the absence of extracellular stimuli. As 

mentioned previously, GAPs inactivate small GTPases by increasing GTP 

hydrolysis. However, even in mutant Ras cancers in which the intrinsic 

activity of GAPs is not altered, the inactivation of GAP members constitutes 

an alternative mechanism to hyperactivate Ras in tumors. Although none 

of the members of the GAP1 family have yet been found to be inactivated 

in cancers, Neurofibromin 1 (GAP) is a characteristic example of a protein 

that can lose its GAP activity, resulting in hyperactivation of Ras 189,190.  
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6. Zebrafish: in vivo model for vascular 
development  

6.1. Introduction 

The zebrafish (Danio rerio) is a small tropical fish used as an in vivo model 

for studying different processes such as embryogenesis and vascular 

development. The attractiveness of the zebrafish as an in vivo model 

comes from its numerous advantages.  

First, zebrafish organs are similar at anatomical, physiological and 

molecular levels to those of humans. Additionally, their short generation 

time and small size allow their maintenance at high densities within the 

laboratory. Females can produce large quantities of eggs. These eggs are 

fecundated by males and develop externally, allowing analysis during early 

vascular development. Zebrafish embryos are transparent until 7 days 

post-fertilization (dpf) and the addition of phenylthiourea prolongs this 

transparency until up to 14 dpf 191,192. 

More and more zebrafish transgenic lines have been created through the 

years. In order to analyze embryonic processes during zebrafish 

development, the Tg(fli1:EGFP)y1 line was generated (Figure 24). In this 

line green fluorescent protein (GFP) is specifically expressed in endothelial 

cells, facilitating analysis of zebrafish vasculature during development 
193,194.  
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Figure 24: Representation of zebrafish transgenic line Tg(fli1:EGFP)y1 at 3 
days post-fertilization (dpf). Expression of GFP specifically in endothelial cells 

allows visualization of zebrafish vessels during vascular development. (Scale bar 

= 500 µm) (Adapted from 193). 

Using microinjection of morpholinos or generation of knock-out fish, it is 

easy to perform analyses of protein function. Moreover, zebrafish have the 

ability to survive a few days with major cardiovascular defects. Indeed, the 

small size of zebrafish embryos allows oxygen distribution by passive 

diffusion and can permit relatively normal development of embryos even 

with severe defects 195,196. 

The life of a zebrafish can be divided into different stages. Embryo state (0 

– 72h) is followed by larva state (3 – 29 days). The juvenile state starts at 

30 days and lasts until 90 days, when fish are considered to be mature 

adults. Zebrafish live on average 3 to 4 years and can be bred up until they 

are 2 years old 195. 

6.2. Vascular development of the zebrafish 

As in mammals, vascular development in zebrafish is divided into two 

stages. Initially vessels are formed by vasculogenesis, then extension of 

these vessels occurs by angiogenesis.  

Vasculogenesis in zebrafish 

The first two vessels formed in zebrafish are the dorsal aorta (DA) and the 

posterior cardinal vein (PCV). These vessels are formed by vasculogenesis 

and result from the coalescing of angioblasts. Formation starts at 14-18 

hours post-fertilization (hpf) and lasts until 28-30 hpf, at which point the DA 

and PCV are functional and lumenized.  



Chapter 1: Introduction 
________________________________________________ 

 

66 
 

VEGF and Notch signaling pathways have been identified as crucial for 

arterial and venous specification. Moreover, before the DA and PCV are 

formed, zebrafish angioblasts express either EphrinB2 or EphrinB4, which 

result in the formation of arteries or veins respectively 197,198.  

Angiogenesis in zebrafish 

During zebrafish development, several vessels are formed by 

angiogenesis. Some of them are formed via the extension of the DA and 

PCV. The major vessels studied in zebrafish are the intersegmental 

vessels (ISVs), the sub-intestinal vessels (SIV) and the caudal vein plexus 

(CVP). The ISVs are the vessels analyzed during this PhD and the 

following section will focus on the development of these particular vessels 
199–201.   

The formation of ISVs consists of two successive waves of angiogenic 

sprouting from the DA and PCV (Figure 25). The first wave starts at around 

24 hpf from the DA and forms arterial ISVs. Endothelial cells sprout from 

the DA and grow dorsally until reaching the dorsal roof where they connect 

to anterior and posterior neighbors. This fusion leads to the formation of 

the Dorsal Longitudinal Anastomotic vessel (DLAV). ISVs are formed from 

each lateral side of the embryos, leading to the formation of two distinct 

DLAVs. The second wave of angiogenic sprouting starts from the PCV at 

around 32 hpf. Endothelial cells sprouting from the PCV either connect to 

an existing arterial ISV, transforming it into venous ISV, or fuse at the 

midline to form the first lymphatic vessel 197,199. 
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Figure 25: Representation of ISV and DLAV formation. Top image represents 

a part of the zebrafish trunk vasculature. Endothelial cells sprout from the DA at 

22 hpf and migrate towards the dorsal line where they connect with adjacent 

endothelial cells to form the DLAV. At 32 hpf the second wave of sprouts from the 

PCV fuses with pre-existing ISVs, turning them into venous ISVs. ISVs and DLAVs 

are functional and lumenized at 48 hpf. PCV: posterior cardinal vein; DA: dorsal 

aorta; DLAV: dorsal longitudinal anastomotic vessel; SV: segmental vein; SA: 

segmental artery (Adapted from 197). 

As opposed to the endothelial cells sprouting from the DA, those sprouting 

from the PCV do not reach the dorsal line. Finally, vessels are functional 

and fully lumenized at 48 hpf 197,199. The different molecular mechanisms of 

sprouting angiogenesis (VEGF/Notch signaling) and the different 

processes by which vessels can be lumenized were discussed in the 

vascular development section. 

FMNL3, a member of the formin family, was identified as a critical 

cytoskeletal regulator of endothelial cell elongation. Depletion of FMNL3 in 

zebrafish led to ISVs defects. Sprouting of the ISV occurred but ECs failed 

to elongate 202
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Rasa3 is a member of the GAP1 family and has the ability to control both Ras 

and Rap1 small GTPases. Mice expressing inactive mutants of Rasa3 die 

during mid-embryonic life and display many hemorrhages and severe 

thrombocytopenia 171,183,184. However, biological function of Rasa3 underlying 

these defects remains unclear. 

The embryonic bleeding and mortality can be potentially explained by low 

levels of platelets. Mice with specific inactivation of Rasa3 in megakaryocyte 

lineage display megakaryocyte alterations and severe thrombocytopenia, as 

expected 183. However, these mice were obtained at Mendelian ratios and were 

viable, although with reduced life span. 

Another study from Stefanini et al reported that the hemorrhagic phenotype in 

mice where Rasa3 is inactivated specifically in megakaryocyte lineage are 

much less severe compared to full Rasa3-/- mice. These authors suggested 

that embryonic bleeding and lethality resulting from Rasa3 inactivation might 

be related to its function in a different cell compartment from megakaryocyte 

lineage. We speculated that this cell compartment might be the endothelial 

lineage. Indeed, endothelial defects might explain the hemorrhagic phenotype 

leading to the embryonic lethality observed in full Rasa3-/- mice 184. 

The vascular system plays an essential role by delivering oxygens and 

nutrients to all tissues in the body. Angiogenesis, formation of new blood 

vessels from pre-existing ones, is a crucial process that allows formation of a 

complex vascular system.  

Here, in collaboration with Patricia Molina Ortiz (laboratory of Stephane 

Schurmans), we analyzed Rasa3 function in endothelial lineage using in vivo 

(mice and zebrafish) and in vivo (HUVECs) approaches. All mice experiments 

were performed by Patricia Molina Ortiz while experiments in zebrafish and 

HUVECs were conducted by Tanguy Orban, Maud Martin and Audrey Habets.
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1. Rasa3 is expressed in endothelial cells (ECs) 

Before investigating the angiogenic functions of Rasa3 in ECs, it was 

necessary to examine its expression in these cells. Indeed, studying the 

role of Rasa3 in angiogenic properties had not been done previously. 

Regarding the expression profile of Rasa3, we see that the protein is 

expressed ubiquitously throughout the body with a predominance in the 

brain. In order to validate the choice of our in vitro model, human umbilical 

vein endothelial cells (HUVECs), we examined the mRNA and protein 

expression levels of Rasa3 in different endothelial cell lines and in HeLa 

cells. The relative Rasa3 mRNA expression (Figure 26A) and the protein 

expression level of Rasa3 (Figure 26B) showed that the protein is well 

expressed in endothelial cells. For subsequent experiments we decided to 

continue with the HUVECs as our in vitro model. 

 

Figure 26: Expression of Rasa3 in different endothelial cell lines. Rasa3 

expression was examined by RT-qPCR (A) and western blot (B) analysis in 

different endothelial cell lines and HeLa cells. HUVEC (Human Umbilical Vein 

Endothelial Cell); HMEC (Human Microvascular Endothelial Cell); HDMEC 

(Human Dermal Microvascular Endothelial Cell) and HeLa (Henrietta Lacks, 

cancer cell line). 
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To assess the role of Rasa3 in the angiogenic properties of ECs, we 

designed two small interfering RNA (siRNA) that efficiently reduced its 

expression in HUVECs. The efficiency of Rasa3 siRNA was checked by 

RT-qPCR and Western blot. In both cases (Figure 27A and 27B) we 

observed that expression of Rasa3 mRNA and protein is reduced after 

transfection with siRNA targeting Rasa3. 

Importantly, we then checked whether these siRNAs affected the viability 

or proliferative capacity of the cells. As showed in Figures 27C and 27D, 
the siRNAs targeting Rasa3 didn’t drastically affect the viability or 

proliferation of the cells.  

 

Figure 27: Rasa3 siRNAs reduced Rasa3 expression and didn’t affect 

viability or proliferation properties of ECs. HUVECs were transfected with 

siRNA targeting Rasa3 or non-related siRNA (siCtl). Seventy-two hours after 
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transfection, RNA and protein were extracted and analyzed by RT-qPCR (A) and 

western blot (B) respectively. GAPDH was used as an internal control for RT-

qPCR and Actin was used as a loading control for western blot. (C) Seventy-two 

hours after transfection, control and Rasa3-depleted cells were submitted to a 

viability assay (MTS) as described in the methods section. (D) Twenty-four hours 

after transfection control and Rasa3-depleted cells were counted and seeded with 

the same number for each condition. Forty-eight and seventy-two hours post-

transfection, HUVECs were harvested and counted (p values are shown, One 

sample t-test). 

2. Loss of Rasa3 affects endothelial angiogenesis 
and tube formation 

Once the siRNA efficiency was validated, we analyzed the impact of Rasa3 

inactivation on angiogenic activity via a tubulogenesis assay (matrigel 

assay). This test is based on the capacity of the cells to form a vascular-

like network. Forty-eight hours after transfection, Ctl and Rasa3-depleted 

cells were seeded on a matrigel matrix, which is enriched in growth factors 

and allows the formation of tubes by ECs. As showed in Figures 28A and 
28B left, silencing of Rasa3 expression using two independent siRNAs 

impaired drastically the formation of vascular-like structure. Quantifications 

(Figures 28A and 28B right) consisted of measuring the cumulative tube 

length of the network using the siRNA control condition as reference 

(100%).  In order to discriminate the capacity to form from the capacity to 

maintain a vascular-like network we performed time-lapse microscopy of a 

matrigel assay. We observed that Rasa3-deficient HUVECs initially formed 

branched networks but these branches were unstable, leading to rapid 

collapse of the network.  
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Figure 28: Depletion of Rasa3 impairs tubulogenesis in HUVECs. (A) 

Representative micrographs of a tube-like formation assay in matrigel using 

HUVECs treated with siControl or with siRasa3#1. Images are representative of 3 

independent experiments.  Bar = 100 µm. Histograms represent mean ± SD of 

relative tubulogenesis of capillary-like structures measured in five different fields 

from 3 independent experiments. The p values are shown (One sample t-test). (B) 

Same as (A) using a second siRasa3. 

The matrigel assay has the disadvantage that the tubes of the vascular-like 

network do not display a real lumen. Moreover, it has been shown that the 

matrigel matrix, due to its enrichment in growth factors, is able to induce 

formation of vascular-like networks from cell lines not expected to be able 

to form them, such as fibroblasts. We decided to additionally perform a 3-

dimensional spheroid assay to support a role of the Rasa3 protein in 

tubulogenesis.  

Twenty-four hours after transfection, control and Rasa3-depleted HUVECs 

were harvested in order to form spheroids. The next day, spheroids were 
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harvested and embedded into a collagen matrix in order to allow the 

extension of sprouts. We observed (Figure 29A) that depletion of Rasa3 

using two independent siRNAs impaired the extension of sprouts out of the 

spheroids. Quantification (Figure 29B) revealed that Rasa3 depletion 

reduced the number of sprouts extending from the spheroids. 

 

Figure 29: Rasa3 is necessary for endothelial sprouting. (A) Representative 

micrographs of a spheroid sprouting assay with HUVECs treated with siControl or 

with 2 different siRasa3 (siRasa3#1 and siRasa3#2).This experiment is 

representative of 3 independent experiments. Bar = 100 µm. (B) Histogram 

represents number of sprouts per spheroid measured on 22 and 15 spheroids, for 

siRasa3#1 and siRasa3#2 respectively. The p values are shown (Student’s t-test). 

Patricia Molina Ortiz generated mice expressing a catalytically inactive 

form of Rasa3 specifically in the endothelial cells (R3f/f iEC-Cre). The 

effects of EC Rasa3 inactivation on capillary formation were also analyzed 

in an ex vivo model of adult aortic ring in which lumenized endothelial 

outgrowth emerging from mouse aortic explants can be examined. 

Inactivation of Rasa3 was achieved by daily tamoxifen IP injection of adult 

R3f/f iEC-Cre mice for 3 consecutive days, then aortas were isolated, placed 
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in a 3D collagen I matrix and analyzed at day 5. Compared to control R3f/f 

mice, the capacity of the aortic endothelium from R3f/f iEC-Cre mice to form 

neovessels was dramatically impacted, with neovessels severely reduced 

in number (Figure 2B in Annex 2). Altogether, these results validate a 

critical role of the Rasa3 protein in angiogenic processes. 

3. Knockdown of Rasa3 in zebrafish induces 
tubulogenesis defects in the trunk vasculature 

As mentioned previously, Patricia Molina Ortiz generated mice expressing 

a catalytically inactive form of Rasa3 specifically in the endothelial cells. 

These mice recapitulate completely the phenotype of Rasa3 full-knockout 

mice. When she analyzed more precisely the retinal vascular plexus, she 

observed that these vessels often displayed constricted regions and lacked 

a continuous lumen (Figure 2C in Annex 2). In order to corroborate the 

results obtained in mice, we decided to analyze the lumenization processes 

using a second in vivo model and taking advantage of the zebrafish model 

(Danio rerio). First, in order to assess the role of Rasa3 in vascular 

development, we designed a translation-blocking morpholino (ATG-

blocking). This morpholino targets the start codon of Rasa3 mRNA, 

preventing its translation into protein. Using 2.5ng/µl of Rasa3 morpholino 

(corresponding to 1.31 pg of morpholino), we observed partial reduction of 

Rasa3 expression, demonstrating the efficiency of the morpholino (Figure 
30A). In this study we used the transgenic line Tg(fli1a:eGFP)y1, which 

allows visualization of vascular development via expression of GFP protein 

by endothelial cells. Before conducting any phenotyping analysis, we 

ensured that our morpholino concentration wasn’t toxic and didn’t affect the 

global morphology of the fish. Rasa3 morpholino was injected into one-cell 

stage zebrafish embryos at 2.5ng/µl. As shown in Figure 30B, forty-eight 
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hours after injection Rasa3 morphant embryos didn’t display any general 

morphological alterations allowing analysis of potential defects in vascular 

development.  

 

Figure 30: Rasa3 morpholino reduced Rasa3 expression and didn’t affect 

general embryo morphology. (A) Detection of Rasa3 level in lysates from 

Control (Ctl) and Rasa3 morphant embryos. GAPDH was used as a loading 

control. (B) General morphology of Ctl and Rasa3 morphant embryos. 

It is well established in the literature that the primitive circulatory loop 

(consisting of the dorsal aorta (DA) and the posterior cardinal vein (PCV)) 

of the zebrafish is formed by vasculogenesis. This primitive circulatory loop 

later extends into a complex vascular network via angiogenesis. To 

corroborate the lumenization defects observed in mice, we decided to 

focus our attention on the lumenization of intersomitic vessels (ISVs). 

These vessels constitute the most documented example of sprouting 

angiogenesis in zebrafish and are easily observable under the microscope. 

As mentioned in the introduction section, the formation of these vessels is 

a two-step process consisting of two sprouting waves, from the DA and the 

PCV at 22 and 32 hpf respectively, leading to the creation of the dorsal 

longitudinal anastomotic vessel (DLAV).  
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We first analyzed the lumenization of ISVs at 48 hpf, a time when these 

vessels are fully formed and lumenized. Representative confocal images 

are presented in Figure 31A. We observed that knockdown of Rasa3 by 

injecting a specific morpholino was associated with thinner ISVs and DLAV. 

Quantification consisted of counting the percentage of lumenized ISVs at 

48 hpf for 10 ISVs/embryos in 50 embryos/condition. We showed that the 

percentage of lumenized ISVs was reduced in Rasa3 morphant embryos 

compare to control embryos (Figure 31B left). We excluded a potential 

developmental delay by doing the same quantification on 25 

embryos/condition at 72hpf (Figure 31B right) at which time we observed 

exactly the same results.  
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Figure 31: Knockdown of Rasa3 in zebrafish induces tubulogenesis defects 

in the trunk vasculature. (A) Tg(fli1a:eGFP)y1 embryos were injected with 

control morpholino (MoCtl) or with morpholino targeting Rasa3 (MoRasa3). 

Confocal pictures of the trunk vasculature were taken at 48 hpf. Ctl embryos 

present normal ISVs and DLAVs with open lumen (arrow head) whereas Rasa3 

morphant embryos show thinner, non-lumenized vessels (arrows). Bars = 50 mm. 

ISV, intersegmental vessel; DLAV, dorsal longitudinal anastomotic vessels. (B) 

Quantification of lumenized ISVs in Ctl and Rasa3 morphant embryos at 48 (left) 

and 72 hpf (right). The p values are shown (Fisher’s exact test). Results are mean 

from 10 ISVs/embryo in 50 embryos at 48 hpf and 25 embryos at 75 hpf. (C) Heart 

rates in 32 Ctl and 30 Rasa3 morphant embryos. Histograms are mean ± SD from 

35 embryos. The p value is shown (Student’s t-test). 

These lumenization defects prompted us to analyze the cardiac rhythm of 

Rasa3 morphants. Possibly, fish presenting lumenization defects could 

compensate for these defects by increasing their cardiac rhythm. To do so, 

we counted heartbeats per minute in control and Rasa3 morphant embryos 

and we observed that Rasa3 knockdown resulted in an increase in cardiac 

rhythm that could be a compensatory mechanism for these circulatory 

defects (Figure 31C). 

4. Depletion of Rasa3 increases adhesion and 
decreases migration of ECs 

Although the exact molecular mechanism of vascular lumen formation and 

stabilization is still controversial, a common theme is the importance of EC 

migration/adhesion properties. To understand how Rasa3 might control 

vascular lumenization, we assessed the ability of Rasa3-silenced HUVECs 

(siRasa3 HUVECs) to migrate randomly using a scratch-wound assay. We 

found (Figure 32) that downregulation of Rasa3 correlated with a 



Chapter 3: Results 
_____________________________________________________ 

 

80 
 

significant decrease in HUVEC migratory capacity using 2 independent 

siRNAs targeting Rasa3. Using phase contrast microscopy we showed that 

control and Rasa-depleted cells didn’t display any directionality defects 

(Figure B in Annex 1), meaning that the migration delay previously 

observed might be due to stronger adhesion of the cells to the substrate.  

 

Figure 32: Depletion of Rasa3 decreases migration of ECs. In a scratch-wound 

migration assay, the recolonized area was analyzed at 8 hours in HUVECs 

transfected with siControl or one of two different siRasa3. The means ± SD of 3 

independent experiments are presented, relative to the siControl condition. The p 

values are shown (One sample t-test). 

Cell migration is a process that relies heavily on assembly and disassembly 

of EC-ECM (extracellular matrix) focal contacts. We thus assessed the 

ability of Rasa3-depleted cells to attach to major extracellular matrix 

components. We found that knockdown of Rasa3 was associated with a 

significant increase in cell adhesion onto fibronectin On the contrary, 

adhesion onto vitronectin, laminin and collagen were unaffected (Figures 
33A and 33B).  
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Figure 33: Depletion of Rasa3 increases adhesion of ECs. (A) Effects of 

Rasa3-silencing on HUVEC adhesion onto fibronectin, collagen, vitronectin or 

laminin. Bars = 100 µm. Representative micrographs of an adhesion assay with 

HUVECs treated with siControl or siRasa3. Images are representative from 3 to 5 

independent experiments. (B) Histograms are mean ± SD of 3 independent 

experiments. The p values are shown (One sample t-test). 

Integrins are heterodimeric proteins composed of an α and β subunit and 

are the major protein implicated in EC/ECM interactions. Using an antibody 

specific to the clustered form (active form) of the β1 integrin, we found that 

the enhanced adhesion of siRasa3 HUVECs was associated with a 

significant increase in β1 integrin clustering. This result was observed by 

immunofluorescence (Figure 34A) and by FACS analysis (Figure 34B). 
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We ensured that the total level of β1 integrin was unchanged in Rasa3-

depleted cells compared to control cells (Figure 34C). Interestingly, the 

enhanced clustering of β1 integrin was also observed in sprouts from R3f/f 

iEC-Cre aortic explants (Figure 4B in Annex 2). 

 

Figure 34: Increased β1 integrin activity in Rasa3-depleted cells. Activation of 

β1 integrin was analyzed in HUVECs transfected with siControl or siRasa3 by 

confocal microscopy (A) and FACS analysis (B) using an antibody specific for 

clustered β1 integrin. Representative images are shown. Bars = 50 µm. (B) 

Histogram represents mean ± SD of clustered β1 integrin mean fluorescence 

intensity (MFI) from 3 independent experiments. The p value is shown (Student’s 

t-test). (C) Immunodetection of total integrin β1 levels by Western blotting on total 

extracts from HUVECs transfected with control or Rasa3 siRNA. GAPDH was used 

as a loading control.  
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5. Rasa3 is required for normal adhesion turnover 

We then wanted to understand how Rasa3-depleted cells adhered more to 

the substrate. Cell-ECM adhesions found at membrane protrusions are 

usually divided into two types, depending on their maturation stage. The 

first adhesions to appear are nascent adhesions (NA) and focal complexes 

(Fx), which are highly unstable small dot-like structures that form at the 

lamellipodium and lamellipodium-lamellum interface. While most of the Fx 

are unstable, a few elongate centripetally and mature into larger (area > 

1µm2) focal adhesions (FAs) connected to actin filaments (F-Actin). We 

analyzed focal adhesions with immunofluorescence, using paxillin as a 

specific marker of adhesions.  

Knockdown of Rasa3 resulted in profound alterations in the pattern of EC-

ECM adhesions. As demonstrated in Figure 35A, Rasa3-depleted cells 

spread onto fibronectin displayed a higher proportion of large FAs, which 

were localized more centripetally, whereas the number of small adhesions 

at the cell periphery was notably reduced. Different quantification methods 

were used in order to confirm these alterations. First, we analyzed the 

average size of all adhesions and observed that this number was higher in 

the siRasa3 HUVECs (Figure 35B).  
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Figure 35: Rasa3 inactivation results in an accumulation of mature focal 

adhesions (FAs) in Fibronectin-plated HUVECs. (A) Adhesions were analyzed 

by confocal microscopy in Fibronectin-plated HUVECs transfected with siControl 

or siRasa3 using an anti-Paxillin antibody (green). F-actin was visualized using 

Phalloidin (red). Representative images are shown. Bars = 10µm. (B) Histogram 

represent the average sizes of all adhesions in 35 siControl- and 33 siRasa3-

treated cells. The p values are shown (Student’s t-test). 

We then created size categories for adhesions: small (0.2-0.5 µm2), 

medium (0.5-1 µm2) and large (>1 µm2). We showed that depletion of 

Rasa3 resulted in an increase in large adhesions and a decrease in small 

adhesions compared to control cells (Figure 35C). Finally, in order to 

determine whether large FAs were closer to the center, a ratio was 

established (Figure C in Annex 1 for method). This ratio consisted of the 

measure of the distance of all adhesions > 1 µm2 from the center of the cell 

to the adhesion divided by the distance of all adhesions > 1 µm2 from the 

cell center to the cell periphery (Figure 35D). This ratio is smaller in Rasa3-

depleted cells meaning that adhesions are closer to the center and then 

more mature. 
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Figure 35: Rasa3 inactivation results in an accumulation of mature focal 

adhesions (FAs) in Fibronectin-plated HUVECs (rest). (C) Histograms 

represent size distributions of paxillin-positive adhesions in 35 siControl- and 33 

siRasa3-treateds cells. Adhesions were classified into three size categories: (0.2-

0.5 µm2), (0.5-1 µm2) and (>1 µm2). The p values are shown (Student’s t-test). (D) 

Quantification of the ratio of the distance between the cell center and the mature 

focal adhesion (>1 µm2) versus the distance between the cell center and the cell 

periphery (n = 244 and n = 343 for siCtl and siRasa3, respectively). The p value is 

shown (Student’s t-test). 

We performed the same experiment during VEGF-driven migration of ECs 

(which also involves activation of the integrin signaling pathway). 

Interestingly, depletion of Rasa3 again promoted accumulation of larger 

and more mature adhesions (Figure 36A). Here again we analyzed the 

average size of all the adhesions (Figure 36B) and created size categories 

in order to analyze proportions (Figure 36C).  
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Figure 36: Rasa3 inactivation results in an accumulation of mature focal 

adhesions (FAs) in VEGF-treated HUVECs.  (A) Adhesions were analyzed by 

confocal microscopy in VEGF-treated HUVECs transfected with siControl or 

siRasa3 using an anti-Paxillin antibody (green). Representative images are shown. 

Bars = 25µm. (B) Histogram represent the average size of all the adhesions in 21 

siControl and 23 siRasa3-treated cells. The p values are shown (Student’s t-test). 

(C) Histograms represent size distribution of paxillin-positive adhesions in 21 

siControl- and 23 siRasa3-treated cells. Adhesions were classified into three size 

categories: (0.2-0.4 µm2), (0.4-1 µm2) and (>1 µm2). The p values are shown 

(Student’s t-test).  
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Deletion of Rasa3 results in an accumulation of larger FAs, indicating a 

potential defect in adhesion turnover. To analyze precisely the dynamics of 

adhesion assembly and disassembly during EC migration, we performed 

total internal reflection fluorescence microscopy on migrating GFP-paxillin 

positive HUVECs and acquired GFP-paxillin signals at 120 second 

intervals over 10 hours. We focused our analysis on FAs maturing just 

below the lamella, which appeared both larger and longer lived in siRasa3 

cells (Figure 37A). We measured changes in Paxillin-GFP over time to 

evaluate assembly and disassembly, and we determined parameters of FA 

dynamics as described in Methods section. The red and green lines in 

Figure 37B are respectively a logistic fit of the assembly and an 

exponential fit of the adhesion experiment shown. Adhesion lifetimes were 

defined by fluorescence intensity above the half-maximum of the fit (Figure 
37B). Assembly and disassembly rates of FA were significantly decreased 

in siRasa3 HUVECs. As a result, FA lifetime was increased about twofold 

in the absence of Rasa3 (Figure 37C).  
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Figure 37: Rasa3 is required for normal adhesion turnover. (A) Time-lapse 

sequences of paxillin-GFP dynamics in migrating HUVECs transfected with control 

or Rasa3 siRNA. (B) Graphs represent turnover dynamics in one representative 

adhesion experiment in control and Rasa3-depleted cells. Maximum intensity 

projections over the 200 minutes time-lapse sequences are shown as three-frame 

running averages. The red and green lines are respectively a logistic fit of the 

assembly and an exponential fit of the disassembly phase. Adhesion lifetimes are 

indicated by dashed arrows and defined by fluorescence intensity above the half-

maximum of the fit. In the adhesion experiment shown, assembly (0.0041/s in 

control versus 0.0033/s in Rasa3-depleted cells) and disassembly (0.0010/s in 

control versus 0.0004/s in Rasa3-depleted cells) rate constants were decreased in 

Rasa3-depleted cells, as compared with control cells. A lag between the assembly 

and the disassembly was only observed in Rasa3-depleted cells. FA lifetime was 

increased in Rasa3-depleted cells (105 minutes) compared to control cells (32 

minutes) (C) Analysis of adhesion assembly rates, disassembly rates and lifetimes 

in 35 and 34 adhesions from control and Rasa3-depleted migrating HUVECs, 

respectively. The p values are shown (Wilcoxon – Mann Whitney test).  
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Altogether, our data demonstrate that Rasa3 is important to regulate EC-

ECM adhesion dynamics and stability. The accumulation of mature FAs in 

Rasa3-depleted cells results from a decrease of assembly and 

disassembly rates leading to a stronger adhesion of the cells to the 

substrate, affecting the angiogenic properties of the cells. 

6. Depletion of Rasa3 impairs activation of the 
FAK-Src complex. 
We then decided to look at signaling pathways that could explain the 

different defects that we observed. We focused our attention on the 

activation of the FAK-Src complex, whose activation is triggered by cell 

adhesion to a substrate. By initiating local tyrosine phosphorylation events, 

the FAK-Src signaling module is a master regulator of adhesion dynamics. 

This prompted us to investigate FAK/Src signaling in siRasa3 HUVECs. In 

agreement with decreased turnover of adhesion dynamics, we observed 

that reduction of Rasa3 expression was associated with diminished 

activation of FAK and Src following HUVEC adhesion onto fibronectin 

(Figure 38A). Supporting these observations, knockdown of Rasa3 was 

correlated with reduced phosphorylation of the downstream FAK/SRC 

targets paxillin and ERK (Figure 38B). 
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Figure 38: Rasa3 depletion impairs activation of FAK-Src complex in 

Fibronectin-plated HUVECs. (A) Detection of FAK and Src phosphorylation 

levels in lysates from fibronectin-plated siControl- and siRasa3-transfected cells 

by western blotting. Total FAK and Src levels respectively were used as controls. 

Quantifications are shown as the ratio of phospho-specific signal to total protein 

signal, relative to control HUVECs. (B) Detection of ERK and Paxillin 

phosphorylation levels in lysates from fibronectin-plated siControl- and siRasa3-

transfected cells by western blotting. Total ERK and Paxillin levels respectively 

were used as controls. Quantifications are shown as the ratio of phosphor-specific 

signal to total protein signal, relative to control HUVECs. (A) and (B) Results are 

expressed as means ± SD from 3 independent experiments. The p value are 

shown (One sample t test). 

We previously showed that Rasa3 depletion lead to an accumulation of 

mature FAs following adhesion onto fibronectin but also following VEGF 

stimulation (Figure 36A). We also investigated FAK/Src signaling in 

siRasa3 HUVECs following VEGF stimulation. Here again, we observed a 

complete downregulation of FAK/Src complex activation (Figure 39A) as 

well as the FAK/Src targets phosphorylated paxillin and ERK (Figure 39B). 
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Importantly, impaired FAK activation was also observed in ECs of aortic 

ring sprouts from tamoxifen-treated R3f/f iEC-Cre mice (Figure D in Annex 

1). 

 

Figure 39: Rasa3 depletion impairs activation of the FAK-Src complex in 

VEGF-treated HUVECs. (A) Detection of FAK and Src phosphorylation levels in 

lysates from VEGF-treated siControl- and siRasa3-transfected cells by western 

blotting. Total FAK and Src levels respectively were used as controls. 

Quantifications are shown as the ratio of phospho-specific signal to total protein 

signal, relative to control HUVECs. (B) Detection of ERK and Paxillin 

phosphorylation levels in lysates from fibronectin-plated siControl- and siRasa3-

transfected cells by western blotting. Total ERK and Paxillin levels respectively 

were used as controls. Quantifications are shown as the ratio of phosphor-specific 

signal to total protein signal, relative to control HUVECs. (A) and (B) Results are 

expressed as means ± SD from at least 3 independent experiments. The p values 

are shown (Student’s t-test). 
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7. Rasa3 regulates EC cytoskeleton plasticity 

In addition to dynamic contacts with the underlying ECM, lumen 

morphogenesis also requires profound plasticity of the EC cytoskeleton, in 

order to support cell shape changes associated with expansion of the 

luminal compartment 203. Tubulin acetylation is an indicator of stabilized 

microtubules. We observed in siRasa3 HUVECs plated onto fibronectin 

compared to control cells a significant decrease in tubulin acetylation, 

indicating that Rasa3 depletion correlates with destabilized microtubules 

(Figure 40A).  In addition, we observed an increase in the level of actin 

stress fibers (Figure 40B), which are known to suppress acetylation.  

Because a decrease in tubulin acetylation and an increase in polymerized 

actin stress fibers may indicate increased actomyosin contractility, we 

examined nonmuscle myosin IIA activity. We found that cells lacking Rasa3 

displayed a higher level of phosphorylated MLCII (Figure 40C). Moreover, 

decreased tubulin acetylation and increased stress fibers were observed in 

sprouts from R3f/f iEC-Cre mouse aortic explants (Figure 5D in Annex 2), 

supporting the idea that Rasa3 is important for EC cytoskeleton 

architecture. 
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Figure 40: Rasa3 controls EC cytoskeleton plasticity. (A) Detection of tubulin 

acetylation levels in lysates from fibronectin-plated siControl- and siRasa3-

transfected cells by western blotting. Total tubulin (Tot-tub) levels were used as 

control. Tubulin acetylation was quantified (lower) as the ratio of acetylated tubulin 

signal to the total tubulin signal, relative to control HUVECs. Results are expressed 

as mean ± SD from 3 independent experiments. The p value is shown (One sample 

t-test) (B) and (C) Representative confocal microscopy images of control (siCtl) 

and Rasa3-depleted (siRasa3) HUVECs plated on fibronectin and stained for F-

actin (phalloïdin; red) (B) and phospho-MLC (Green) (C). Nuclei are stained with 

Hoechst (blue). Bars are 50µm. Quantifications of F-actin and phospho-MLC 

signals were performed on 26 cells from 3 independent experiments and are 

expressed as corrected mean fluorescence intensities (MFI). Results are 

expressed as mean ± SD from 3 independent experiments. The p value are shown 

(Student’s t-test). 
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8. Rasa3 depletion resulted in Rap1 
hyperactivation  

Rasa3 is a dual GAP acting on both Rap1 and Ras small GTPases. Recent 

findings showed that Rasa3 controls Rap1 but not Ras activation in 

megakaryocytes 183 184. On the contrary, Blanc identified a missense 

mutation (G125V) in the RASA3 gene of scat mice that leads to a 

mislocalization in the cytosol of RASA3 protein and is associated with an 

increase in active Ras. We assessed the levels of these active small 

GTPases in ECs lacking Rasa3. Decreasing Rasa3 expression in HUVECs 

significantly increased active Rap1 levels (Figure 41A), but had no effect 

on Ras levels (Figure 41B).  

 

Figure 41: Rap1 is activated upon depletion of Rasa3. (A) The densitometric 

quantification of active Rap1 detected by western blotting on protein extracts from 

siControl and siRasa3 HUVECs is expressed as mean ± SD from 3 independent 

experiments. RLU: Relative Luminescence Unit. The p value is shown (One 

sample t-test). (B) The densitometric quantification of active Ras detected by 

western blotting on protein extracts from siControl and siRasa3 HUVECs is 

expressed as means ± SD from 3 independent experiments. RLU: Relative 

Luminescence Unit. The p value is shown (One sample t-test). 
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These observations were also confirmed in vivo in mice expressing a 

catalytically inactive form of Rasa3 specifically in the endothelial cells. 

Arteries, veins and plexus of R3f/f iEC-Cre retina displayed dramatically 

higher levels of active Rap1. Moreover, analysis of aortic sprouts from R3f/f 

and R3f/f iEC-Cre aortic explants also showed that deletion of Rasa3 was 

correlated with significantly higher levels of active GTP-bound Rap1 

(Figure 6B in Annex 2). 

9. Rasa3 depletion stabilizes endothelial VE-
cadherin-based cell-cell junctions. 
Rap1 is involved in the activation of β1-integrins in ECs and plays a key 

role in integrin-dependent angiogenic functions of ECs such as sprouting, 

migration and adhesion 149, all of which are affected by Rasa3 depletion in 

ECs. In addition, Rap1 is known to promote stability of endothelial VE-

cadherin-based cell-cell junctions 69. ECs display two types of VE-cadherin 

containing junctions 204. Junctions of the first type localize linearly along 

cell-cell borders and are considered stable adherens junctions (AJs). 

Junctions of the second type appear as short linear structures that are 

almost orthogonal to the cell-cell borders and are remodeling junctions 

called focal AJs (FAJs). The impact of Rasa3 depletion on proportions of 

VE-cadherin-containing junctions was evaluated using a specific VE-

cadherin antibody by immunofluorescence (Figure 42A). Quantification of 

the total length of FAJs in single cells relative to the total junction length 

revealed that siRasa3 HUVECs had a reduced proportion of FAJs, 

indicating that cell-cell junctions are more stable when Rasa3 is knocked 

down, consistent with increased Rap1 activity (Figure 42B). 
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Figure 42: Inactivation of Rasa3 increases stability of VE-Cadherin-based 

cell-cell junctions. (A). Effect of Rasa3-silencing on endothelial cell junctions. 

Adherent junctions were analyzed by confocal microscopy in HUVECs transfected 

with siControl or siRasa3 using an anti-VE-cadherin antibody (green). 

Representative images are shown. Bars = 10 µm. (B) Histograms are mean ratio 

of FAJ length to total junction length per cell. Results are from 30 cells. The p value 

is shown (Student’s t-test).  

In line with this, we evaluated the stability of cell-cell junctions after 

treatment with EGTA, a destabilizing agent that acts by chelating calcium. 

To do so, siControl and siRasa HUVECs were seeded on coverslips 

followed the next day by 5 minutes of EGTA treatment. 

Immunofluorescence was performed using anti-VE-cadherin antibody. We 

observed that junctions of Rasa3-knockdown HUVECs were more resistant 

to the cell-cell junction-destabilizing agent EGTA than those of control cells 

(Figure 43). Whereas VE-cadherin was completely internalized in control 

cells after 5 minutes of EGTA treatment, it was still partially localized at the 

cell membrane in siRasa3 HUVECs, indicating more resilient cell-cell 

junctions.  
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Figure 43: Inactivation of Rasa3 increases stability of VE-Cadherin-based 

cell-cell junctions after EGTA treatment. VE-cadherin internalization was 

analyzed by confocal microscopy using an anti-VE-cadherin antibody (green) in 

control and Rasa3-depleted cells after an EGTA treatment (4 mM). Bars = 50µm 

To reinforce the idea that cell-cell junctions are more stable in Rasa3-

deficient HUVECs, we performed an EGTA-induced vascular permeability 

assay by assessing solute flux across an EC monolayer. Briefly, an insert 

was placed in a 24-well plate defining a top and a bottom chamber. The 

test is based on the capacity of FITC-Dextran (a fluorescent molecule) to 

pass from the top to the bottom chamber through a confluent monolayer of 

HUVECs, depleted or not for Rasa3. We observed that after EGTA 
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treatment, vascular permeability is reduced when Rasa3 is knocked down, 

validating a higher stability for these junctions (Figure 44). No significant 

differences were observed in absence of EGTA treatment between the 2 

conditions. 

 

Figure 44: Rasa3 inactivation is associated with a decrease of permeability.  

Effect of Rasa3-silencing on endothelial permeability after an EGTA treatment (4 

mM). Results are mean quantification of FITC-dextran ± SD from 4 independent 

experiments and relative to EGTA-treated control cells. The p values are shown 

(non-treated cells: Student’s t-test; EGTA-treated cells: One sample test). 

VE-cadherin interaction with p120 prevents internalization and degradation 

of VE-cadherin. VE-cadherin can be phosphorylated on different residues 

and phosphorylation on the residue tyrosine 658 disrupts the interaction 

with p120, leading to its internalization. Moreover it has been shown that 

the phosphorylation of this residue (Y658) is mediated by Src. Through 

phosphorylation of VE-Cadherin, Src has emerged as a prominent 

mediator of VE-cadherin-mediated AJ destabilization and vascular 

permeability 62.  



Chapter 3: Results 
_____________________________________________________ 

 

99 
 

 

We previously showed (Figure 38A) that reduction of Rasa3 expression 

was associated with diminished activation of FAK and Src following 

HUVEC adhesion onto fibronectin or VEGF treatment. Consistent with our 

previous observations of their more stable cell-cell junctions, siRasa3 

HUVECs showed reduced phosphorylation of VE-cadherin Y658 and Src 

activation (Figure 45A and 45B).  
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Figure 45: Rasa3 inactivation reduces VE-cadherin internalization. (A) 

Detection of VE-cadherin and Src phosphorylation levels in total lysates from non-

treated and EGTA-treated siControl- and siRasa3-transfected cells by western 

blotting with phospho-specific antibodies. Total VE-cadherin and Src levels 

respectively were used as controls. (B) Histograms consist in the ratio of 

phosphorylated protein signal to the total protein signal, relative to control 

HUVECs. Results are expressed as means ± SD from 4 independent experiments. 

The p values are shown (non-treated cells: One sample t-test; EGTA-treated cells: 

Student’s t-test). 

Altogether, these results revealed that Rasa3 depletion increases cell-cell 

junctions’ stability due to an accumulation of VE-cadherin at the cell 

membrane, resulting from a decrease of phosphorylation by Src that 

prevents its internalization.  

10. Inactivation of Rap1 rescues the Rasa3-
depleted phenotypes 

We previously showed that decreasing Rasa3 expression in HUVECs 

significantly increased active Rap1 levels but had no effect on R-Ras 

levels. In order to test whether suppression of Rap1 by Rasa3 played a role 

during EC lumen formation, we inhibited Rap1 activity in siRasa3 HUVECs. 

Rap1 membrane localization where it is active results from a 

posttranslational modification mediated by the geranylgeranyltransferase 

enzyme. This enzyme is inhibited by the Rap1 inhibitor GGTI298, which 

does not affect the activity of R-Ras (The other target of Rasa3). Using the 

Rap1 inhibitor GGTI298, the tubulogenesis defects of siRasa3 HUVECs 

were completely reverted (Figure 46A).  
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Even if GGTI298 is considered a specific inhibitor of Rap1 by the scientific 

community, as mentioned above, this inhibitor inhibits the 

geranylgeranyltransferase enzyme.  To further validate our results, we 

prevented Rap1 hyperactivation with siRNAs. Rap1 possesses 2 isoforms, 

Rap1a and Rap1b, both independently targetable using specific siRNAs.  

The efficiency of siRNAs was checked by RT-qPCR. We observed 

that expression of Rap1a and Rap1b mRNA were reduced after 

transfection with siRNAs targeting Rap1a and Rap1b respectively 

(Figure 46B).  

We then performed the tubulogenesis assay after preventing Rap1 

hyperactivation using suboptimal concentrations of either Rap1a or Rap1b 

siRNAs. Neither siRap1a nor siRap1b alone had an effect on in vitro 

tubulogenesis of control HUVECs. However, siRap1b, but not siRap1a, 

almost completely rescued the tubulogenesis defects in Rasa3 deficient 

HUVECs (Figure 46C).  

Representative images from Figure 46A and 46C are shown in Figure E 

and F respectively in Annex 1. 
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Figure 46: Inactivation of Rap1 rescues the Rasa3-depleted phenotypes. (A) 

Quantification of capillary-like network formation in siControl vs siRasa3 HUVECs 

treated or not with GGTI298 (10 µM). Results are expressed as mean ± SD 

cumulative length of capillary-like structures measured in 5 different fields per 

experiment from 3 independent experiments, relative to non-treated siControl 

HUVECs. The p value are shown (Student’s t-test). (B) HUVECs were transfected 

with siRNA targeting Rap1A, Rap1B or non-related siRNA (siCtl). Seventy-two 

hours after transfection, RNA and protein were extracted and analyzed by RT-

qPCR. GAPDH was used as an internal control. (C) Quantification of capillary-like 
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network formation in siControl vs siRasa3 HUVECs co-transfected with siRap1A, 

siRap1B or a second control siRNA. Results are expressed as mean ± SD 

cumulative length of capillary-like structures measured in 5 different fields per 

experiment from 3 independent experiments, relative to double siControl HUVECs. 

The p values are shown (Student’s t-test).  

We were also able to partially rescue the migration delay observed with 

Rasa3-depleted cells by using the Rap1 inhibitor GGTI298 (Figure 46D). 

Rescue experiments were also performed in vivo in zebrafish. We showed 

that inactivation of Rasa3 by a specific morpholino targeting Rasa3 in 

zebrafish altered ISV lumenization (Figure 31A). In line with this, Control 

and Rasa3 morphant embryos were treated with Rap1 inhibitor GGTI298 

from 40hpf until 48hpf and the same quantifications as in Figure 31B were 

made. The lumen defects were partially rescued in the presence of the 

Rap1 inhibitor (Figure 46E).  

 

Figure 46: Inactivation of Rap1 rescues the Rasa3-depleted phenotypes 

(rest).  (D) In a scratch-wound migration assay, the recolonized area was analyzed 

at 8 hours in HUVECs transfected with siControl or siRasa3 and treated or not with 

GGTI298 (10 µM). The mean ± SD of 3 independent experiments are presented, 

relative to the siControl condition. The p values are shown (One sample t-test). (E) 
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Rescue experiment using GGTI298 (10 µM). Quantification of lumenized ISVs in 

Ctl and Rasa3 morphant embryos at 48hpf. Results are mean from 10 

ISVs/embryo in 35 embryos. The p values are shown (Fisher's exact test). 

Moreover, Rap1 inhibition by treatment with GGTI298 increased by almost 

three-fold the number of sprouts from R3f/f iEC-Cre aortic explants, while it 

dramatically reduced the sprouting ability of control R3f/f aortic rings (Figure 

7B in Annex 2). 

The majority of the results presented above were published in January 

2018 in the journal PLoS Genetics. 
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11. Endothelial depletion of Rasa3 increases EC-
Pericyte interactions 

While characterizing blood vessels in R3f/f iEC-Cre mouse retinas, Patricia 

Molina Ortiz noticed that surrounding pericytes often display an altered 

morphology. Because pericytes are known to participate in vessel stability, 

she investigated this phenotype further. Alterations of pericyte morphology 

were evidenced in R3f/f iEC-Cre mouse retinas by rounder nuclei, 

suggesting a decrease in pericyte spreading over the abluminal surface of 

the vessels (Figure G left in Annex 1). Supporting this, the relative contact 

area between pericytes and arterial endothelial cells was significantly 

reduced, whereas the number of pericytes per endothelial cell surface was 

increased in R3f/f iEC-Cre mouse vessels (Figure G right in Annex 1). 

 
Based on these observations, we suspected that adhesion between 

pericytes and Rasa3-null ECs might be perturbed. To test this, we adapted 

an in vitro assay in which normal pericytes were left adhering for 30 minutes 

onto a confluent layer of siRasa3-treated HUVECs. After 30 minutes, a 

higher number of pericytes had attached to the monolayer of Rasa3-

depleted ECs, suggesting excessive adhesion between ECs and pericytes 

(Figure 47A).  

In order to recapitulate the pericyte spreading defects observed in vivo in 

mice, we adapted the previous assay by letting pericytes adhere for 8 hours 

on top of a Rasa3-deficient confluent monolayer before performing 

immunofluorescence. Pericytes left adhering on Rasa3-depleted ECs 

showed reduced spreading, as indicated by a lower number of branches 

(Figure 47B). Altogether, these observations indicate that Rasa3-deficient 
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HUVECs exhibit increased heterotypic adhesion properties, which prevent 

normal spreading and coverage by pericytes. 
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Figure 47: Rasa3 is involved in EC-pericyte interactions. (A) Effects of 

silencing Rasa3 in HUVECs on pericyte adhesion. Representative 

immunofluorescence images of pericytes labeled with Celltracker (Thermofisher 

C2925, green) and left to adhere for 30 minutes on a confluent monolayer of 

siRasa3-treated HUVECs. After washing, attached pericytes were quantified. Bars 

= 100 µm. Histogram represents mean ± SD of the number of pericytes per image 

from 7 independent images per experiment from 4 independent experiments. The 

p value is shown (One sample t-test). (B) Representative immunofluorescence 

images (upper) of pericytes labeled with Celltracker and spread 8 hours on a 

confluent monolayer of siRasa3-treated HUVECs, labeled with anti-CD31 antibody 

(red). Binary cell masks (lower) were analyzed with ImageJ. Quantification of 

pericyte spreading is shown as mean ± SD (histogram) of pericytes (n=300) with 

1-4 or >5 branches from 3 independent experiments. The p value are shown 

(Student’s t-test). 

HUVECs express VE-cadherin and N-cadherin, two members of the 

superfamily of cadherins. VE-cadherin is endothelial specific, but N-

cadherin is expressed in different cell types and is the cadherin 

predominantly expressed in vascular smooth muscle cells (VSMC) and 

pericytes. Currently, a model suggests that VE-cadherin mediates 

homotypic adhesion between endothelial cells, while N-Cadherin mediates 

contact between endothelial cells and mural cells (pericytes) 77,205. We 

decided to analyze expression of these two cadherins in Rasa3-depleted 

cells along with β-catenin. 

By western blot analysis, using confluent control and Rasa3-depleted cells, 

we observed that N-cadherin expression was significantly higher following 

Rasa3 depletion compared to control cells (Figure 48A). On the contrary, 

no significant differences were observed regarding the expression of VE-

cadherin or β-catenin (Figure 48A). This experiment was repeated using 



Chapter 3: Results 
_____________________________________________________ 

 

108 
 

non-confluent ECs (“sparse cells”) or confluent cells treated with VEGF. In 

both cases we obtained the same results, indicating that these 

observations were not dependent on cell confluency.  
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Figure 48: N-cadherin expression is increased upon Rasa3 depletion. (A) 

Detection of N-cadherin, VE-cadherin and β-catenin levels in lysates from 

confluent siControl- and siRasa3-transfected cells by western blotting.  

Quantifications are shown as the ratio of specific signal to control protein signal 

(HSP60), relative to control HUVECs. (B) N-cadherin and Rasa3 expression were 

examined by RT-qPCR using confluent control and siRasa3-transfected HUVECs. 

GAPDH was used as an internal control. 

Higher N-cadherin expression was also observed by RT-qPCR after Rasa3 

depletion (Figure 48B). Moreover, sprouts from R3f/f iEC-Cre mouse aortic 

explants also displayed increased N-cadherin (Figure H in Annex 1). 

Because N-cadherin is a target of β-catenin 77, we hypothesized that 

increased expression of N-cadherin could be the result of an increase in β-

catenin activation. We first analyzed β-catenin localization using 

cytoplasmic/nuclear fractionation. As represented in figure 49A, β-catenin 

localization was not altered after Rasa3 depletion. Indeed, the same 

proportion of cytoplasmic and nuclear β-catenin were found in control and 

Rasa3-depleted cells.  
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Figure 49: Inactivation of Rasa3 doesn’t affect β-catenin localization or 
expression of β-catenin target genes. (A) A cytoplasmic/nuclear lysis was 

performed on confluent HUVECs transfected with siControl or siRasa3 and β-

catenin localization was analyzed by western Blot. GAPDH was used as a specific 

control of the cytoplasmic fraction while Histone H3 was used as a specific control 

of the nuclear fraction. (B) Expression analysis by RT-qPCR of β-catenin target 

genes using confluent control or Rasa3-depleted HUVECs. 

Moreover, we checked expression of β-catenin target genes by RT-qPCR 

and no significant differences were observed in Rasa3-depleted cells 

compared to control cells (Figure 49B). These results suggested that the 

higher N-cadherin expression observed did not result from stronger β-

catenin activation. 
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Rasa3 controls turnover of endothelial cell 
adhesion and vascular lumen integrity by a Rap1-
dependent mechanism 
Different groups have shown that mice expressing inactive mutants of 

Rasa3 die during mid-embryonic life 171,183,184. These mice displayed 

hemorrhages and severe thrombocytopenia resulting from developmental 

defects during megakaryopoiesis. Because low levels of platelets could 

potentially explain embryonic bleeding and mortality, Patricia Molina Ortiz 

generated mice specifically inactivated for Rasa3 in the megakaryocyte 

lineage. These mice displayed megakaryocyte alterations and severe 

thrombocytopenia but surprisingly, mice were obtained at Mendelian ratios 

and were viable even if a reduced lifespan was observed 183.   

An independent study conducted by Stefanini and peers reported similar 

observations.  They observed that the hemorrhagic phenotype was much 

less severe in mice where Rasa3 is specifically inactivated in the 

megakaryocytes lineage compared to full Rasa3-/- mice. These results 

suggest that the embryonic bleeding and lethality associated with Rasa3 

inactivation might be related to its function in a cell compartment different 

from megakaryocyte lineage 184.  

Patricia Molina Ortis generated mice with specific deletion of Rasa3 in 

endothelial cells. These mice recapitulate exactly the phenotype observed 

in full Rasa3-/- mice indicating that Rasa3 is required during mice embryonic 

development.  

In our study we showed by using a combination of in vitro cell biology 

approaches and loss of function studies in mouse and zebrafish, we 

identified a key role for Rasa3 in the maintenance of vascular integrity in 
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vertebrates. The use of zebrafish for analyzing Rasa3 function has been 

performed already by Blanc et al 172. They noticed severe 

thrombocytopenia as it was observed previously in mice. However, the role 

of Rasa3 in vascular development was not investigated in zebrafish in the 

study from Blanc et al.  

We first showed that Rasa3 protein was expressed in ECs. Rasa3 mRNA 

and protein expression are rather ubiquitous even if some studies pointed 

out a highly expression in brain and spleen 169–172. 

We analyzed further the importance of Rasa3 in angiogenic processes 

using in vitro (HUVECs) and in vivo (zebrafish) models. In both models we 

observed that a deletion of Rasa3 impaired angiogenic processes 

validating results observed by Patricia Molina Ortiz in mice expressing a 

catalytically inactive form of Rasa3. Indeed, in absence of Rasa3, in vitro 

endothelial cells are unable to maintain a vascular-like network (matrigel 

assay) or forming structures called sprout out of spheroids.  

In zebrafish, we focused our attention on ISVs formation and quantified the 

percentage of lumenized ISVs compared to non-lumenized ISVs in control 

and Rasa3 morphant embryos using Tg(fli1eGFP)y1. Performing a 

microangiography, which consists in injecting fluorescent dye (such as 

dextran) into the sinus venosus, would allow the detection of zebrafish 

vasculature in order to confirm our lumenization defects. Moreover, 

analysis of heart rate should be analyzed in unsedated embryos since 

tricaine has an effect on cardiac rhythm. 

Morpholinos are known to have off-target effects on zebrafish embryos 

development. We should repeat our experiments using a second 

morpholino. Moreover, rescue experiment should be performed by co-
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injecting Rasa3 morpholino with human Rasa3 mRNA which is not affected 

by the morpholino. In order to exclude potential off-target effects due to the 

morpholino, Rasa3 knockout fish should be generated using the CRISPR 

technique 206–208. 

It would be interesting to extend our analysis of zebrafish vasculature in 

Rasa3 morphant embryos. Development of sub-intestinal vessel (SIV) and 

caudal vein plexus (CVP) are well described in the literature and are easy 

to analyze using Tg(fli1eGFP)y1 193,194. 

The caudal vein plexus (Figure 50) is generated by sprouting angiogenesis 

from the PCV (active angiogenesis). It starts around 26 hpf, angiogenic 

sprouts from the PCV migrate towards the avascular environment (ventral 

region of the zebrafish embryo). The primordial vein plexus is formed at 30 

hpf and angiogenic rate slows down in this region. The primordial vein 

plexus continues to mature, remodel and is lumenized by 36 hpf. The CVP 

is fully formed and functional at 48 hpf. Regarding molecular regulators of 

CVP formation, unlike ISVs that formation is regulated by VEGF-a, CVP 

formation is regulated by the bone morphogenetic protein (BMP). BMP 

activates the small GTPase Cdc42 through Arhgef96 that stimulates 

Formin-like 3 which in turn promotes filopodia extensions allowing CVP 

formation 209–211. 

The sub-intestinal vessels (Figure 50) are responsible for vascularization 

of digestive system. The formation of these vessels by angiogenesis is still 

poorly understood. It starts at 32 hpf by ventral sprouting of angioblasts 

from the PCV. Around 41 hpf, avascular loops are formed resulting from 

the fusion of adjacent sprouts. SIV plexus is completely formed and 

functional at 72 hpf. VEGF and BMP signaling have been identified as 

molecular pathways implicated in SIV formation 201,212. 
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Figure 50: Representation of the caudal vein plexus (CVP) and the sub-

intestinal vessels in zebrafish Tg(fli1:EGFP)y1 transgenic line at 72 hpf. 

Preliminary results (Figure I in Annex 1) revealed that CVP formation was 

affected in Rasa3 morphant embryos. The process by which lumenization 

occurs in this structure is still unclear. However, lumenization requires 

proper migration and adhesion of endothelial cells. CVP alterations 

observed following Rasa3 depletion using a morpholino are consistent with 

decreased migration and increased adhesion observed in vitro in HUVECs. 

The observation of vascular lumen defects in both mice and zebrafish 

showed that Rasa3 is essential to maintain normal blood vessel 

tubulogenesis and vascular integrity in vivo. Numerous studies have 

documented that vascular lumen instability or occlusions often lead to 

hemorrhages and mid-or late gestation embryonic lethality 34,213–215. 
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Cellular migration and adhesion are key processes required during 

angiogenesis. Indeed, sprouting angiogenesis requires cytoskeleton 

remodeling of endothelial cells in order to migrate. Expression of Rasa3 in 

endothelium is not surprising since it has already been showed that Rasa3 

regulates these two processes, migration and adhesion, in 

megakaryocytes 183. Reduced migration and increased adhesion were 

observed in endothelial cells following Rasa3-depletion resulting from 

accumulation of mature focal adhesions. These results could be indicative 

of general effect of Rasa3 on migration and adhesion processes.  

Using siRNA targeting Rasa3 we showed that Rasa3 implication in 

angiogenic processes was crucial and that its deletion impacted migration 

and adhesion properties of endothelial cells. As utilization of siRNAs has 

been shown to have off-target effect on cells 216, we confirmed our results 

using a second siRNA targeting Rasa3 and obtained similar results. Only 

matrigel, spheroid, scratch wound and adhesion assays were performed 

with the second siRNA. In order to exclude any off-target effects on cells, 

all experiments should be repeated with the second siRNA. 

Rasa3 has the ability to control both Ras and Rap1 smallGTPases in vitro 
176. In vivo, the specificity of Rasa3 towards Ras and Rap1 remains unclear. 

Scat mice, bearing the G125V mutation in Rasa3 presented increased Ras 

activity in erythrocytes, which could explain the delayed erythropoiesis 

phenotype 172. In megakaryocytes and platelets of mice, Rasa3 deletion 

leads to upregulation of Rap1 activity without affecting Ras activity 183,184.  

Here we showed that absence of Rasa3 in ECs correlates with increased 

Rap1 in vivo (mice) and in cultured endothelial cells (HUVECs). By 

contrast, no effect was observed on active Ras levels when Rasa3 was 

knockdown in HUVECs.  
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Importantly, even if Rap1 activity was not tested in zebrafish, inhibition of 

Rap1 using the GGTI298 inhibitor partially rescued lumen defects in vivo 

indicating a probable hyperactivation of Rap1 in zebrafish when Rasa3 is 

knockdown. A rescue of tubulogenesis defects was also observed in vitro 

using GGTI298 inhibitor or specific siRNAs targeting Rap1.  

Rap1 exists as two isoforms, Rap1a and Rap1b, within endothelial cells. 

Rap1b is the most abundant isoform (90% of total Rap1) and is more 

present in the cytoplasm 152 while Rap1a is localized at EC-EC junctions 
146. Moreover, Rap1b is required for proper endothelial cell-cell junction 

formation. Inactivation of Rap1b in HUVECs reduces 90% of total Rap1 

and residual Rap1 (likely Rap1a) failed to localize to endothelial junctions. 

Besides its localization, the role of Rap1a isoform is still unclear 217. In 

zebrafish, Rap1b is indispensable for vascular integrity. Indeed, 

inactivation of Rap1b using a morpholino resulted in brain hemorrhages 217.  

As previously stated, we have been able to rescue tubulogenesis defects 

in vitro by targeting Rap1b isoform using specific siRNA. No rescue was 

observed using siRNA targeting Rap1a. These results were not surprising 

considering the high expression of Rap1b compared to Rap1a in 

endothelial cells and its role in ECs junction formation. Co-injection of 

Rasa3 morpholino with Rap1b morpholino should be performed in the 

future in order to rescue lumen defects in vivo via another way than using 

Rap1 inhibitor GGTI298. 

These observations identify Rap1, specifically the Rap1b isoform, and not 

Ras as the main target of Rasa3 in ECs. This is consistent with the idea 

that Rap1 and Ras largely act in different signaling pathways and are 

selectively regulated by specific GAPs and GEFs in vivo 161. 
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Rap1 signaling has been associated with multiple aspects of vascular 

development and endothelial cell biology 149. As for other cell types, Rap1 

is predominantly involved in the control of integrin- and cadherin-mediated 

adhesion dynamics in endothelial cells 218,219. In mice, EC specific 

inactivation of Rap1 leads to hemorrhages and vascular rupture. More 

interestingly, these mice exhibit microvessel dilatation 220. In cultured 

endothelial cells, depletion of Rap1 diminishes adhesion to the ECM, 

promotes VE-cadherin-based cell-cell junction remodeling and increases 

endothelial permeability 221,222. These effects have been partlially linked to 

the role of Rap1 in the regulation of integrin β1 affinity and clustering 149. 

All these described Rap1 functions are entirely consistent with the 

phenotype of Rasa3-depleted HUVECs, which exhibit Rap1 

hyperactivation and concomitantly increase in β1 integrin clustering and 

decrease in focal adhesion dynamics, permeability and cell-cell junction 

remodeling.  

Remarkably, decreasing the expression of Rap1 annihilates EC 

tubulogenesis in vitro, similarly to depleting Rasa3. This supports the idea 

that tube formation relies on a tight balance of EC adhesion dynamics and 

places Rasa3-Rap1 signaling as a critical hub in this process.  

We showed that Rasa3 regulates EC cytoskeleton plasticity. Cytoskeleton 

remodeling is a crucial step in order to support cell shape change during 

expansion of luminal compartment. We observed that depletion of Rasa3 

resulted in an increase in actin stress fiber levels and in non-muscle myosin 

IIA (MLCII) activity. It is known that an increase of RhoA small GTPase 

activity is associated with an increase of actin stress fibers and MLCII 

activity 99. Once activated, RhoA activates its downstream effector ROCK 

which in turn inhibits MLC phosphatase leading to an increase of MLCII 
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phosphorylation. Our in vitro data indicate that the small GTPase RhoA 

might be activated following Rasa3 depletion. Hyperactivation of RhoA was 

observed in vivo by Patricia Molina Ortiz in mice expressing a catalytically 

inactive form of Rasa3 (Figure J in Annex 1). We have already shown that 

Rasa3 depletion was associated with a hyperactivation of Rap1 small 

GTPase in vitro and in vivo. However both Rap1 and RhoA hyperactivation 

would be surprising since Rap1 has been identified as a negative regulator 

of RhoA activity. Indeed, different studies showed that Rap1 inhibits RhoA 

by activating RhoGAPs such as ARAP3 219,223. Nevertheless, increased 

RhoA activity in absence of Rasa3 could be explained by the low activity of 

the FAK/Src module observed. The Src kinase is responsible for the 

phosphorylation of different RhoGAPs such as p190RhoGAP, RhoGAP3, 

RhoGAP5, RhoGAP42 or RhoGAP32 224. Therefore reduced GAP activity 

of these proteins in Rasa3-depleted cells could explain the hyperactivation 

of RhoA. We tested the phosphorylation of P190RhoGAP and no 

differences were observed between control and Rasa3-depleted cells (data 

not shown). Analysis of phosphorylation levels of these proteins in control 

and Rasa3-depleted cells should be performed in the future.  

A recurrent theme in the field of endothelial tubulogenesis is the 

coordinated control of adhesion processes and cytoskeleton dynamics of 

ECs 225. In the model of cord hollowing, the initial VE-cadherin-based AJs 

between ECs relocalize laterally to allow initial opening of the lumen 34. It 

is likely that accumulation of VE-cadherin-based EC-EC junctions towards 

the cord periphery is achieved through VE-cadherin internalization at the 

apical cell surface and recycling at the lateral positions, requiring 

coordinated VE-cadherin phosphorylation events 226. 



Chapter 4: Discussion and perspectives 
_____________________________________________________ 

 

119 
 

In this regard, our observation that Rasa3-depleted HUVECs exhibit stable 

VE-cadherin-based AJs and decreased phosphorylation of VE-cadherin 

Y658 is consistent with a lower FAK/Src signaling, as both kinases have 

been extensively documented to promote EC junction turnover 114,120,227. 

Moreover, our results are consistent with those observed by Gore et al in 

HUVECs. They showed that Rap1b is required for suitable endothelial cell-

cell junction formation. Rap1b siRNA-treated HUVECs monolayers 

displayed less stable VE-cadherin-based AJs 217. 

In this study we have only focused our attention on VE-cadherin Y658 

phosphorylation. Cytosolic part of VE-cadherin displays different tyrosine 

residues that have been identified as phosphorylation sites for different 

kinases. Further analysis of VE-cadherin should be investigated in order to 

highlight crucial phosphorylation sites implicated in Rasa3-Rap1 signaling. 

Y685 and Y731 are two residues that are directly phosphorylated by the 

Src kinase. Phosphorylation of S665 requires the activation of Src even if 

it doesn’t mediate direct phosphorylation of the residue 60. In view of our 

results, decreased FAK/Src activity in Rasa3-depleted cells, we should 

expect a decrease of phosphorylation on these different sites in absence 

of Rasa3. 

VE-cadherin Y658 phosphorylation disrupts its interaction with p120 and 

leads to VE-cadherin internalization. Co-immunoprecipation of VE-

cadherin-p120 should further confirm higher stability of VE-cadherin-based 

AJs in Rasa3-depleted HUVECs. The phosphorylation of VE-cadherin on 

Y731 disrupts its interaction with β-catenin 60. Co-immunoprecipitation of 

VE-cadherin-β-catenin should also be performed. We expect stronger 

interactions between VE-cadherin/p120 and VE-cadherin/β-catenin in 

Rasa3-depleted cells reflecting higher stability of AJs. 
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In this research we only investigated VE-cadherin-based AJs. However, 

EC-EC junctions comprise also tight junctions (TJs). It should be interesting 

to analyze the stability of TJs in Rasa3-depleted cells. Analysis of TJs 

stability can be done by performing immunofluorescences (+- EGTA) and 

staining TJs specific markers such as ZO-1, occludin or claudin 228.  

VE-cadherin also influences actin cytoskeleton remodeling, which is 

required for the EC shape changes necessary to accommodate the growth 

of the luminal compartment. VE-cadherin signaling thus plays a critical role 

in vascular tubulogenesis as illustrated by the lumenization defects 

observed in VE-cadherin deficient mice and zebrafish 229,230.  

Lumen expansion also requires ECs to establish dynamic contacts with the 

underlying ECM. Loss of β1 integrin during development of the mouse 

vascular network prevents lumen formation in medium and small sized 

arteries 213. In contrast, excessive stability of EC-ECM adhesions impairs 

ISVs lumenization in zebrafish 231.  When Rasa3 is deleted in HUVECs, 

turnover of β1 integrin-dependent EC adhesion is impaired and EC-ECM 

based adhesion contacts accumulate. Together with our observations 

here, it is thus becoming evident that a tight regulation of adhesion 

complexes between ECs and the ECM is required to allow vascular lumen 

formation and maintenance. 

Recent observations support the existence of crosstalk between integrin-

based cell-matrix and cadherin-based cell-cell contacts. Both of which may 

operate separately on lumen formation or stabilization 213,232,233. Strikingly, 

a number of these studies have converged on Rap1, thus placing this small 

GTPase at the crossroads of multiple outside-in and inside-out adhesion 

signaling pathways 231. 
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Finally, we shed light on the critical function of Rasa3, a poorly 

characterized protein in vascular development. The first and main cause of 

embryonic lethality associated with Rasa3 inactivation appears to be 

excessive activation of Rap1, which leads to dysregulation of EC-adhesion 

properties and signaling.  

As a result, Rasa3 depleted ECs are unable to integrate and coordinate 

integrin and VE-cadherin signaling, preventing formation of a functional 

lumen. Our results thus uncovered an important but previously unknown 

coordinator of multiple adhesion processes during vascular tubulogenesis 

(Figure 51). 
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Figure 51: Model for Rasa3 control on endothelial lumen formation. Rap1 

inactivation by Rasa3 GAP activity regulates activation of β1 integrin- and VE-

cadherin-based adhesions. Following integrin activation, Rasa3 inactivates Rap1 

to allow turnover of integrin- and VE-cadherin-based adhesions, via the FAK/Src 

signaling module. Failure to turnover and recycle EC-ECM and junctional adhesion 

complexes between EC results in vascular tubulogenesis defects. 
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Rasa3 controls endothelial cell and pericyte 
interactions 

The maturation of blood vessels is required for good functioning of vascular 

system. This implies the recruitment of pericytes and deposition of new 

basal membrane 13. Patricia Molina Ortiz observed alterations of pericytes 

in R3f/fiEC-Cre mice. These observations were supported in vitro in 

siRasa3-treated HUVECs where pericytes adhered more and spread less 

around a confluent monolayer of HUVECs. 

Endothelial cells express VE-cadherin and N-cadherin. While VE-cadherin 

is endothelial specific, N-cadherin is also expressed in pericytes. The 

current model suggests that N-cadherin mediates contact between 

endothelial cells and pericytes. Here we observed an upregulation of N-

cadherin expression in Rasa3-depleted HUVECs. Similar observations 

were obtained in vivo in mice. These results are consistent with our 

phenotype. Excessive N-cadherin lead to increase of EC-pericyte 

interactions and prevent spreading of pericytes.  

N-cadherin is a target of β-catenin transcription factor 77. However, we have 

not been able to observe upregulation of target genes of β-catenin in 

absence of Rasa3. Moreover β-catenin nuclear localization was not 

affected following Rasa3 depletion. These results suggested that increase 

of N-cadherin expression does not result from stronger β-catenin 

activation. A β-catenin activity assay would exclude any implication of β-

catenin in this process and should be performed in the future.  

Rap1 has been found hyperactivated following Rasa3 depletion. 

Implication of Rap1 in regulation of EC-EC and ECM-EC adhesions is well 

described in the litterature. However, to our knowledge, there is no 
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evidence that Rap1 signaling was involved in pericyte-EC interactions. The 

only link between Rap1 and N-cadherin was observed in neurons where 

Rap1 upregulate membrane localization of N-cadherin 234. Knowing this, it 

could be possible that an equivalent mechanism regulates the membrane 

localization of N-cadherin in endothelial cells. Thus, an increase of Rap1 

activity would lead to an increase of N-cadherin expression which is 

consistent with the phenotype observed in Rasa3-depleted cells. 

Rap1 implication in EC-pericyte interactions must be validated in the future 

by doing rescue experiments using Rap1 inhibitor GGTI298 or specific 

siRNAs targeting Rap1a or Rap1b.  

Recruitment of pericytes around vessels in zebrafish starts at 3dpf 44. It 

would be interesting to analyze pericytes recruitment in Rasa3 morphant 

embryos in order to validate mice observations. In addition, the 

implementation of rescue experiments in zebrafish is easier compared to 

mice.  Indeed, inhibitors can simply add to zebrafish medium and do not 

require injection. 

S1P1 mediates vessel stabilization by placing the N-cadherin at plasma 

membrane 76. We have already excluded the implication of S1P/S1P1 

signaling in Rasa3-depleted cells. No differences in term of activation of 

S1P1 signaling were detected in following Rasa3 depletion (data not 

shown). 

Together with EC-ECM and EC-EC adhesion defects, abnormalities in 

pericyte coverage might contribute to vascular instability and occlusions 

observed in Rasa3 KO mice. However, the mechanism by which Rasa3 

controls endothelial cell-pericyte interactions remains unclear. 
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GAP1 family members display distinct non 
redundant functions 

Different studies on GAP1 family members identified distinct functions for 

these proteins. The GAP1 family comprises Rasa2, Rasa3, Rasa4 and 

RasaL. Besides Rasa2, every member of the GAP1 family has the ability 

to control both Ras and Rap1 small GTPases in vitro 176. 

Like Rasa3, Rasa2 is ubiquitously distributed. Rasa4 is predominantly 

expressed in the spleen and the lymphe nodes while RasaL is largely found 

in thyroid and adrenal glands 235. 

Rasa2 is the least studied member of GAP1 family and the only one acting 

on Ras and not on Rap1. Nowadays, no knockout mice for Rasa2 have 

been described. Rasa2 was found mutated in 5% of melanomas (analysis 

performed on 501 melanomas) and 27% of these mutations result in a loss 

of function. Downregulation of Rasa2 resulted in excessive activation of 

Ras that was associated with reduced patient survival. Authors concluded 

that loss of Rasa2 acts as a melanoma driver  236. 

Rasa4-deficient mice are viable and appear to be normal. However, 

Rasa4-deficient mice are more susceptible to bacterial infection resulting 

from impaired phagocytosis in macrophages 237. Depletion of Rasa4 in 

human mammary epithelial cells promotes cell transformation implicating 

Rasa4 as a tumor suppressor 238. Additionally, Rasa4 is silenced in juvenile 

myelomonocytic leukemia due to hypermethylation of CpG islands 239.  

RasaL-deficient mice are viable and grow normally. However, these mice 

are susceptible to liver fibrosis. Reduced RasaL expression was found in 

different cancers such as colon, gastric, liver, bladder, thyroid cancers 
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which indicated that RasaL may act as a tumor suppressor 240,241. RasaL is 

also reduced through CpG methylation in many human cancers 242. 

These studies revealed that the different members of GAP1 family have 

distinct non redundant physiological function and Rasa3 seems to be the 

only member implicated in regulation of vascular development. 

Therapeutic implications 

Different studies showed that Rasa3 expression was downregulated in 

different cancer cells.  These results suggested that Rasa3 could act as a 

tumor suppressor gene 185–187.  Here, using a combination of in vitro and in 

vivo approaches, we showed that specific inactivation of Rasa3 protein in 

endothelial cells decreases angiogenic processes. Then, besides its role in 

cancer cells, the inactivation of Rasa3 could have an anti-angiogenic role 

in endothelial cells.      

The next step of this study would be to analyze the role of Rasa3 protein in 

tumoral angiogenesis. Patricia Molina Ortiz obtained preliminary results in 

mice showing that specific inactivation of Rasa3 in endothelial cells 

reduces the development of tumors (tumors size smaller in absence of 

Rasa3). She observed that vasculature was reduced inside the tumors 

from mice expressing an inactive form of Rasa3 in endothelial cells. (Figure 

K in Annex 1). 

The role of Rasa3 in tumoral angiogenesis should be confirmed using the 

zebrafish model following Rasa3 depletion with a morpholino. Indeed, 

Nicoli et al developed a method to study tumor angiogenesis in zebrafish 

called the zebrafish/tumor xenograft angiogenesis assay 243. This method 

is based on the injection of mammalian tumor cells into the perivitelline 

space of zebrafish embryos at 48 hpf.  Tumor grafts induce a neovascular 
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response coming from the developing sub-intestinal vessels (SIV) 243,244. 

Moreover, in the case of new Rasa3 inhibitor being created, the 

zebrafish/tumor xenograft model may represent a suitable model for testing 

it as a novel angiogenesis inhibitor.  
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In this study, using a combination of in vivo (mice and zebrafish) and in 

vitro (HUVECs) approaches, we identify for the first time a key role of 

Rasa3 in the maintenance of vascular integrity in vertebrate. Inactivation of 

Rasa3 is associated with a hyperactivation of Rap1 smallGTPase in vitro 

and in vivo. 

We showed that Rasa3 depletion in endothelial cells affects EC-EC, EC-

ECM and EC-pericyte adhesions. These adhesions defects prevent 

formation of a patent lumen and result in occluded blood vessels in mice 

and zebrafish.  

Here we identify a critical function of Rasa3 in the endothelial lineage and 

highlight the causes of embryonic lethality observed in full Rasa3-/- mice. 
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1. Cell culture and siRNA transfection 

Human Umbilical Vein Endothelial Cells (HUVECs) were obtained from 

Lonza and grown at 37°C, in 5% CO2, in endothelial basal medium (EBM) 

supplemented with epidermal growth factor (10ng/ml), gentamicin 

(50µg/ml), amphotericin B (50ng/ml), bovine brain extract (12µg/ml), 

hydrocortisone (1µg/ml), 10% Fetal Bovine Serum (FBS, Gibco), and 1% 

antibiotics (penicillin and streptomycin) (Lonza). SiRNA transfections in 

HUVECs were performed using the GeneTrans 2 reagents (MoBiTec) 

according to the manufacturer’s protocol. Briefly (for a 6well condition), 1µl 

of siRNA (100µM) is mixed with 24µl of Diluent B (Tube 1). In parallel, 3.5µl 

of GeneTrans (transfection reagent) is mixed with 21.5µl of DEMEM 

medium without serum (Tube 2). After 5 minutes the content of tube 1 is 

introduced in tube 2 and incubate 5 minutes at room temperature. Finally 

the mix is dropped on the cells and the medium is changed after 4 hours of 

incubation at 37°C. 

Human Brain Vascular Pericytes (HBVPs) were obtained from Sciencell 

Research Laboratories and grown on poly-L-lysine (2 µg/cm2) (Sciencell 

Research Laboratories) coated flasks at 37°C, in 5% CO2, in pericyte 

medium (Sciencell Research Laboratories) supplemented with 10% Fetal 

Bovine Serum (FBS, Gibco), 1% pericyte growth supplement and 1% 

penicillin /streptomycin solution. 

Control siRNA and siRNA targeting Rasa3, Rap1A and Rap1B were 

purchased from Eurogentec and presented in Table 1. 
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siRNA Sequence 5’  3’ 
siControl (SR-CL000-005) 

siRasa3#1 GCGCTTTGGGATGAAGAAT 
siRasa3#2 CCTGAAGTTTGGAGATGAA 
siRap1A GCAAGACAGTGGTGTAACT 
siRap1B GTCTGCTTTGACTGTACAA 

Table 1:  siRNA sequences 

2. Antibodies and Reagents 
Primary antibodies used in this study are listed in Table 2.  

Antibody Company Reference 
Rasa3 Santa Cruz sc-166442 
Paxillin BD BioSciences   610051 
Phospho-paxillin  Cell Signaling  2541S 
Rap1 Cell Signaling 8825S 
FAK Abcam ab72140 
phosphoFAK  Thermo-fisher 44-624G 
ERK  Cell Signaling 9102s 
PhosphoERK Cell Signaling 9101s 
SRC Cell Signaling 2123 
PhosphoSRC Cell Signaling 2101S 
VE-cadherin  Santa Cruz sc-9989 
Phospho- VEcadherin Invitrogen 44-1144G 
B1 integrin  EMD Millipore   MAB-1965 
Activated B1 integrin  BD Pharmigen 550531 
GAPDH SantaCruz  sc-166545 
pMLC2 Cell Signaling 3674 
Alpha-tubulin  Sigma T6199 
Acetyl alpha-tubulin  EMD Millipore   MABT868 
Ras Cell Signaling 8832S 
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Phalloidin (F-Actin) 

conjugated to Alexa Fluor® 

568 dye 

Thermo-fisher A12380 

 

CD31 Dako M0823 
N-cadherin BD transduction Lab 610920 
Β-catenin Santa Cruz sc-7199 
HSP60 Enzo ADI-SPA-806-F 
Histone H3 Santa Cruz sc-8654 
Actin Santa Cruz sc-1616 

Table 2: List of primary antibodies. 

DAPI, FITC-Dextran (FD405) and Rap1 inhibitor GGTI298 (G5169) were 

obtained from Sigma. VEGF (#100-20) was from Peprotech. Laminin 

(23017-015) and collagen (A1048301) were from Invitrogen, vitronectin 

(cc080) was from Millipore and fibronectin (33010018) was from Gibco.  

3. qRT-PCR 

RNA was extracted with NucleoSpin RNA Kit (Macherey-Nagel) according 

to manufacturer’s protocol and reverse-transcribed with random primers 

(Thermo Fisher Scientific). qRT-PCR was performed on lightCycler 480 

(Roche) using SYBR Green as probe. mRNA quantification was done with 

the 2-deltadeltaCt method using GAPDH as housekeeping gene for 

normalization. Primers used during this study are presented in Table 3. 

Target 

gene 
Forward primer Reverse primer 

Rasa3 TTCCGAGGAAACTCACTGGC TCAGTGATGGCGTGGAAGAC 
GAPDH TTGCCATCAATGACCCCTTCA CGCCCCACTTGATTTTGGA 
Rap1A GGATACTGCAGGGACAGAGC CCCTGCTCTTTGCCAACTAC 
Rap1B GGGAAGGAACAAGGTCAAAA ATGACTTTTTGCGAGCCTTC 
N-cadherin ATTGGACCATCACTCGGCTTA CAGGTTCCACTTGAGCTTGTTC 
Cyclin D1 ATGTTCGTGGCCTCTAAGATGA CAGGTTCCACTTGAGCTTGTTC 
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IL8 ATGACTTCCAAGCTGGCCGTGG

CT 
TCTCAGCCCTCTTCAAAAACTT

CTC 
Table 3: Primers sequences. 

4. Tube formation assay (Matrigel Assay) 

Forty-eight hours after transfection, HUVECs were subjected to the 

matrigel assay. This angiogenic test is based on the capacity of the cells to 

form a vascular-like network. 220µl of Matrigel Basement Membrane Matrix 

(BD Bioscience) were coated in 12 wells 3 hours before harvesting the cells 

and then 50 x 103 cells were cultivated on it for 16h. Quantification was 

done by measuring the cumulative tube length in three random microscopic 

fields using imageJ software. 

5. Sprouting assay (Spheroid Assay) 

Twenty-four hours after transfection, HUVECS were harvested, counted, 

mixed in methylcellulose matrix (20%) (Sigma) and EBM medium (80%) 

and introduced into round bottom 96wells plate (100µl per well) in order to 

form spheroids of more or less 500 cells. The next day, spheroids were 

carefully harvested, resuspended in 1ml of methylcellulose and mixed with 

1ml of 10X M199 (Sigma), 80% collagen (Gibco), 2% Hepes (1M) and 

NaOH 0.1M to get a pH around 6.9 and 7.4 (keep the mix on ice before 

mixing with spheroids). 1 ml of the mixture is added in 24 wells, incubated 

for 30 min at 37°C and 100µl of EBM medium is added into each well before 

incubating the plate overnight in the 37°C incubator. Quantification of 

angiogenic activity was done by counting the number of sprouts of at least 

5 spheroids/condition using ImageJ Software.  
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6. Wound healing (Scratch Wound Assay) 

Seventy-two hours after transfection, a confluent monolayer of HUVECs 

was scraped in order to create a cell free zone. Pictures were taken directly 

after the scrappage and 8 hours after it. Quantification of cell migration was 

done by measuring the percentage of recolonized area 8 hours after injury 

using ImageJ Software.  

7. Permeability Assay  
One day after transfection, 6 x 104 HUVECs were plated onto insert 

(FisherBioblock W2127C) precoated with fibronectin (50µg/ml) defining a 

top and a bottom chamber. Seventy-two hours after transfection, the 

medium was changed in both chambers and cells were treated with 

medium containing EGTA (4mM) and FITC-Dextran (1mg/ml) for 30min. 

Samples from the bottom chamber were analyzed by measuring the 

fluorescence at 492nm. Insert without cells and insert without addition of 

FITC-dextran were used respectively as positive and negative control.  

8. Adhesion Assay  

One day before doing the adhesion assay, 6x 5µl of each substrate were 

placed carefully in the center of a 96 wells and incubated overnight at 4°C. 

PBS-CaCl2 (1mM) is used as negative control. The next day, 100µl of 

blocking solution (For 100ml of blocking solution: 50ml Tris 1M pH6.8, 

2.22ml NaCl 5M, 0.25ml CaCl2 2M, 1g BSA, up to 100ml with deionized 

water) were added into each well and incubated for 30min. Seventy-two 

hours after transfection, HUVECs were harvested (in RPMI medium + 0.1% 

BSA + ITS (Invitrogen 41400045) 1/100), counted with trypan blue  and 20 

000 per well were incubated in fibronectin- (50µg/ml), collagen 1- 
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(50µg/ml), vitronectin- (10µg/ml), or laminin-precoated (50µg/ml) 96 wells 

plate for 30min. The cells were washed until nothing left adhere on the 

PBS-CaCl2 condition, and then stained with crystal violet (20% methanol 

+ 0.5% crystal violet) for 5 min at room temperature. The plate was washed 

several times with water and dry at room temperature. In order to release 

the crystal violet of the cells, 100µl of release solution (50% ethanol, 50% 

NaAc 0.1M) were added into each well and incubated 15 min at room 

temperature. Relative adhesion is measured by reading absorbance at 560 

nm after release of incorporated dye.  

9. Zebrafish 
The Tg(fli1a:eGFP)y1 line, where endothelial cells express the GFP, was 

used in this study and maintained conforming to EU regulations on 

laboratory animals. Knockdown experiments were performed by injecting 

embryos at the one-cell stage with 2.5 ng of Control (Ctl) or Rasa3 

morpholino. Ctl (5’-CCTCTTACCTCAGTTACAATTTATA-3’) and Rasa3 

(5’-AAGCCCTTCTTCTTCGACCGCCATG-3’) morpholinos were 

purchased from Genetools. The injected embryos were placed in E3 

medium and incubated at 28°C. Around 24 hpf (hours post fertilization), E3 

medium was replaced with E3 medium + PTU (1-phenyl-2-thiourea) in 

order to prevent pigmentation of embryos. Phenotype analysis consisted 

of percentage of ISVs (Intersegmental Vessels) lumenized from 10 ISVs 

per embryo.   Confocal and white light pictures were taken on living 

embryos using respectively a Zeiss confocal microscope and a 

stereomicroscope at 48 hpf. For the rescue experiment, the Rap1 inhibitor 

(GGTI298 10µM) was added to the E3 medium at 40 hpf until 48 hpf when 

the quantification were made. Heart rates of embryos were measured on 
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sleeping embryos using a binocular microscope. The embryos were 

anesthetized in E3 medium + tricaine at a final concentration of 0.16mg/ml 

10. SDS-PAGE and Western blotting 

HUVECs cells were harvested and total extracts were obtained by lysing 

cells in Laemmli buffer containing 50mM of Dithiothreitol (DDT) by 

scrapping the plate. Lysates were sonicated for 5 seconds and boiled for 

10 minutes. For zebrafish proteins extraction, 30 embryos were collected 

and euthanized with tricaine. Embryos were washed with Ringer solution 

(116mM NaCl, 2.9mM KCl, 5mM HEPES, adjusted to pH 7.2) in order to 

remove the yolk and incubated 30min at -80°C (after removing the Ringer 

solution). Embryos were then triturated with a syringe in Lysis buffer (10mM 

TRIS pH 7.4, 2% Triton X100 + proteases inhibitors) and incubate for 30 

minutes at 4°C on wheel.  After centrifugation, the supernatant was 

collected and stored at -80°C. SDS-PAGE and Western blot analysis were 

performed according to standard procedures and developed with ECL 

detection kit (GE Healthcare Bio-Sciences). Quantification of bands 

intensity was determined with ImageJ Software. 

11. Rap1/Ras smallGTPases activity assay 
Seventy-two hours after transfection, HUVECS were seeded 30 minutes 

on fibronectin (50µg/ml) and Rap1 and Ras activity were measured using 

Active Rap1 (#8818) and Active Ras detection (#8821) kit from Cell 

Signaling following the manufacturer’s guidelines. Briefly, cell lysate was 

incubated for 1 hour on rotation at 4°C with GST-RalGDS-RBD (Rap1) or 

GST-Raf1-RBD (Ras) and glutathione agarose beads. Bound active Rap1 

or Ras were eluted from the beads and analyzed by western blotting using 

respectively Rap1 or Ras antibody.  
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12. FACS analysis 

Seventy-two hours after transfection, cells were washed three times in 

blocking solution (PBS 1% FBS) and incubated for one hour with the anti-

activated β1 integrin primary antibody. Cells were then washed with 

blocking solution and incubated with a FITC-conjugated secondary 

antibody. After washing, the expression of the clustered β1 integrin was 

quantified by flow cytometry using FACScan Cytometer (Becton 

Dickinson).  

13. Confocal imaging analysis  

In adhesion experiments, HUVECs were seeded for 30 minutes onto 

fibronectin-coated coverslips, 72 hours after siRNA transfection. In VEGF 

treated experiments, HUVECs were seeded 48 hours after siRNA 

transfection and, the next day, were treated during 5 minutes with VEGF 

(50ng/ml) and processed for imaging. For EGTA-treated experiments, 

HUVECs were seeded 24 hours after siRNA transfection in order to have 

a confluent monolayer of cells. Two days after, cells are treated for 5 

minutes in with EGTA (4mM) and processed for imaging. For confocal 

analysis, cells were fixed in 4% paraformaldehyde or 100% methanol, 

permeabilized in 0.1% Triton X-100, blocked in BSA and incubated 

overnight with the appropriate primary antibodies. Samples were then 

incubated with the corresponding Alexa-conjugated secondary antibodies 

(Invitrogen) and, after washing, mounted with Mowiol. All images were 

acquired with a Nikon A1 confocal microscope. The average size and the 

adhesion size distribution of focal adhesions were measured using the 

“analyze particles” plugin of ImageJ Software. Quantification of the ratio of 

the length between the center and the mature focal adhesion versus the 
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ratio length between the center and the cell periphery was done manually 

after isolation of mature focal adhesion (>1µm2) using the “analyze 

particles” plugin of ImageJ Software. Quantifications of F-actin (phalloidin) 

and phospho-MLC2 signals were performed using ImageJ Software with 

this method (https://sciencetechblog.com/2011/05/24/measuring-cell-

fluorescence-using-imagej/). Quantification of the total length of FAJs 

(focal adherens junctions) in single cells relative to the total junction length 

were performed manually using ImageJ Software.  

14. Focal Adhesion Dynamics  
HUVECs were co-transfected with siRNA and paxillin-GFP. Focal adhesion 

dynamics were analyzed using time-laps TIRF (total internal reflection 

fluorescence) microscopy. Live-cell TIRF imaging was performed on a 

Nikon Eclipse Ti-E inverted microscope equipped with perfect focus 

system, CFI apo TIRF 100x oil objective (Nikon), a QuantEM 512SC 

EMCCD camera (photometrics, Roper Scientific), a TI-TIRF-E motorized 

TIRF illuminator (Nikon) and a stage top incubator maintaining 37°C and 

5% CO2 (Tokai hit). Images were captured every 120 seconds over 10 

hours. Quantifications were performed as described by Stehbens and 

Wittman 245. 

15. Adhesion/Spreading Pericytes Assay 

On the same day than HUVECs transfection, HBPVs are stained with 

celltracker green (C2925 invitrogen). Briefly, cells were cultivated in serum-

free Pericyte medium supplemented with celltracker green (10µM) for 40 

minutes and then replaced with Pericyte medium 10% serum. Forty-eight 

hours after transfection, HUVECs were harvested and seeded in order to 

have a confluent monolayer on the next day. Seventy-two hours after 
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staining HBPVs were harvested, counted and 5000 were added on the 

confluent monolayer of HUVECS for 20 minutes. After 2 washes, HBPVs 

left on the monolayer of HUVECS were counted from 7 different field under 

microscope. For rescue experiment, GGTI298 (10µM) was added to the 

medium 2 hours before doing the experiment. The protocol of the 

Spreading Pericytes Assay was the same than the Adhesion Pericytes 

Assay except that the HPBVs were left spread 8 hours before performing 

an immunofluorescence staining endothelial cells with CD31 primary 

antibody. For quantification, the number of branches of 300 pericytes per 

condition were done using Nikon A1R microscope. 

16. Nuclear/cytoplasmic fractionation 

Seventy-two hours after transfection, confluent HUVECs are harvested in 

PBC. The procedure must be done on ice. Cell pellet is triturated 5 times 

with ice-cold 0.1% NP40-PBS. Keep an aliquot as the whole cell sample. 

Spin the remainder for 10 seconds and transfer the supernatant to new 

tube. The supernatant is the cytoplasmic fraction. Resuspend the pellet 

with ice-cold 0.1% NP40-PBS, spin the tube for 10 seconds and discard 

supernatant. Repeat this step twice. The nuclear pellet is resuspended and 

sonicated in Laemmli sample buffer. 

17. Statistical analysis 

Graph values are presented as mean +/- standard deviation from at least 

three independent experiments. Statistical analysis were performed with 

Graphpad Prism. The test used for each experiment is described in the 

corresponding legend. For each test, a difference of P-value<0.05 was 

considered significant (*: p<0.05; **: p<0.01; ***: p<0.001).     
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Figure A: FAK/Src signaling pathways. Once activated by integrins or tyrosine 

kinase receptors, FAK/SRC complex transduces signals through the activation of 

different intracellular signaling pathways such as PI-3K or MAPK. Activation of FAK 

leads to the activation of some small GTPases such as Rac leading to FA 

rearrangement. (Adapted from 246) 
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Figure B: Rasa3-depleted cells didn’t display any directionality defects. A 

directionality index of 1 represents completely directional movement in a straight 

line perpendicular to the wound edge and a directionality index of 0 represents 

totally random cell movement. Directionality index were calculated using imageJ 

software. 

 

Figure C: How the ratio in Figure 35D is calculated. Using ImageJ software, all 

adhesions >1 µm2 are isolated. The center of the cell is marked approximatively. 

The distance of all adhesions > 1 µm2 from the center of the cell to the adhesion 

(a) and the distance of all adhesions > 1 µm2 from the cell center to the cell 

periphery are calculated (p). The ratio is a divided by p 
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Figure D: Depletion of Rasa3 impairs activation FAK in vivo. 

Immunofluorescence analysis of aortic ring sprouts from R3f/f and R3f/f iEC-Cre 

mice stained for the IB4 endothelial marker (lower) and with an anti-phospho-FAK 

antibody (upper). 

 

Figure E: Representative images from Figure 46A (Matrigel). Representative 

images of a tube-like formation assay in matrigel using ctl or siRasa3-HUVECs 

treated or not with Rap1 inhibitor (GGTI298). 
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Figure F: Representative images from Figure 46C (Matrigel). Representative 

images of a tube-like formation assay in matrigel using ctl or siRasa3-HUVECs 

treated or not with siRap1a or siRap1b. 

 

Figure G: Alterations of pericyte morphology in R3f/f iEC-Cre mouse retinas. 
(Left) Immunofluorescence analysis of retinas from R3f/f and R3f/f iEC-Cre mice 

stained for the IB4 endothelial marker and with an anti-NG2 antibody (pericyte 

marker). (Right) Quantification of pericytes per endothelial cell surface. 
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Figure H: N-cadherin expression is increased upon Rasa3 depletion in mice. 

Immunofluorescence analysis of aortic ring sprouts from R3f/f (wild type) and R3f/f 

iEC-Cre mice stained for the IB4 endothelial marker and with an anti-N-cadherin 

antibody. 

 

Figure I: Rasa3 depletion reduces loop formation at CVP (caudal vein 

plexus). (Left) Tg(fli1a:eGFP)y1 embryos were injected with control morpholino 

(MoCtl) or with morpholino targeting Rasa3 (MoRasa3). Pictures of CVP were 

taken at 48 hpf. (Right) Quantification of loop formation at CVP. Histograms are 

mean ± SD from 25 embryos. The p value is shown (Student’s t-test). 
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Figure J: RhoA is activated upon depletion of Rasa3 in vivo. Quantification of 

active RhoA-GTP mean fluorescence intensity (MFI) in veins of R3f/f and R3f/f iEC-

Cre newborn retinas. 

 

Figure K: Subcutaneous injection of LLC1 cells in R3f/f and R3f/f iEC-Cre mice. 

(Left) Analysis of tumor size in R3f/f and R3f/f iEC-Cre mice 15 days after injection 

(Right) Analysis of tumor vasculature using FITC-Dextran dye.  
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Abstract
Rasa3 is a GTPase activating protein of the GAP1 family which targets R-Ras and Rap1.
Although catalytic inactivation or deletion of Rasa3 in mice leads to severe hemorrhages
and embryonic lethality, the biological function and cellular location of Rasa3 underlying
these defects remains unknown. Here, using a combination of loss of function studies in
mouse and zebrafish as well as in vitro cell biology approaches, we identify a key role for
Rasa3 in endothelial cells and vascular lumen integrity. Specific ablation of Rasa3 in the
mouse endothelium, but not in megakaryocytes and platelets, lead to embryonic bleeding
and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out
mice. Reduced plexus/sprouts formation and vascular lumenization defects were observed
when Rasa3 was specifically inactivated in mouse endothelial cells at the postnatal or adult
stages. Similar results were obtained in zebrafish after decreasing Rasa3 expression. In
vitro, depletion of Rasa3 in cultured endothelial cells increased β1 integrin activation and
cell adhesion to extracellular matrix components, decreased cell migration and blocked
tubulogenesis. During migration, these Rasa3-depleted cells exhibited larger and more
mature adhesions resulting from a perturbed dynamics of adhesion assembly and disas-
sembly which significantly increased their life time. These defects were due to a hyperacti-
vation of the Rap1 GTPase and blockade of FAK/Src signaling. Finally, Rasa3-depleted
cells showed reduced turnover of VE-cadherin-based adhesions resulting in more stable
endothelial cell-cell adhesion and decreased endothelial permeability. Altogether, our
results indicate that Rasa3 is a critical regulator of Rap1 in endothelial cells which controls
adhesions properties and vascular lumen integrity; its specific endothelial cell inactivation
results in occluded blood vessels, hemorrhages and early embryonic death in mouse, mim-
icking thus the Rasa3-/- mouse phenotype.
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Author summary
Because it delivers oxygen and nutriments to every tissue in the body, the vascular system
is essential to vertebrate life. Blood vessels consist of a layer of interconnected endothelial
cells delineating a luminal space through which blood �ows. Formation of vascular
lumens is a critical step in vascular development, as vessels should allow unrestricted
blood �ow while absorbing the pressure from cardiac activity yet retaining �exibility to
adapt to homeostatic needs. Our current knowledge of how lumens are established and
maintained is still modest and has come essentially from in vitro systems. Here, using a
combination of loss of function studies in mouse and zebra�sh and in vitro cell biology
approaches, we show that Rasa3, a GTPase activating protein of the GAP1 family, controls
Rap1 activation, endothelial cell adhesion and migration as well as formation of vascular
lumens. We also found that inactivation of Rasa3 speci�cally in mouse endothelial cells
lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype
observed in full Rasa3 knock-out mice.

Introduction
Blood vessels consist of a layer of interconnected endothelial cells (ECs) delineating a luminal
space through which blood �ows. Our current knowledge of how lumens are established and
maintained is still modest and has come essentially from in vitro systems. Only recently, stud-
ies have investigated vascular lumen formation in vivo: adhesion to surrounding extracellular
matrix (ECM), remodeling of EC-EC junctions and actin cytoskeleton-driven cell shape
changes are common themes in this complex process [1]. �rough loss-of-function experi-
ments, these studies also identi�ed several molecular regulators crucial for lumenogenesis,
including cell surface and polarity proteins, kinases and phosphatase, actin interactors and reg-
ulators, EC-ECM adhesion proteins and small GTPase signaling components [2–11].

�e small GTPase superfamily, which includes the Ras, Rho, Ran, Rab and Arf families, is
composed of proteins that act as molecular switches in important signaling pathways. �ese
pathways, which relate to cell proliferation and survival, cell-matrix and cell-cell adhesion,
and cytoskeleton dynamics are critical for normal development and physiology and, when
deregulated, cause severe life-threatening syndromes and pathologies. Small GTPases activity
is controlled by the antagonistic actions of activating guanine exchange factors (GEFs) and
repressing GTPase-activating proteins (GAPs). Rasa3 (GAP1IP4BP, R-Ras GAP) is a member
of the GAP1 subfamily of Ras GAPs and is known to function as a dual GAP for Rap1 and
R-Ras small GTPases [12,13]. While R-Ras has been extensively studied due to its involvement
in cancer, Rap1 has recently attracted a lot of attention due to its central role in development
and morphogenesis of higher organisms, especially in the cardiovasculature [14].

Mouse models have con�rmed a critical role for Rasa3 during development and di�er-
entiation. Mice homozygous for the scat (severe combined anemia and thrombocytopenia)
mutation in the Rasa3 gene exhibit successive episodes of severe bleeding associated with
embryonic and postnatal mortality [15]. Massive hemorrhages are also observed in Rasa3-/-

embryos expressing a catalytically inactive Rasa3 protein and are associated with death at
embryonic day (E) 12.5 to E13.5 [16]. We and others reported that loss-of-function of Rasa3
was associated with a severe thrombocytopenia, providing a possible explanation for the
embryonic hemorrhages and lethality [15,17,18]. �e thrombocytopenic syndrome was attrib-
uted to hyperactivation of Rap1-dependent signaling upstream of αIIbβ3 integrin stimulation,
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resulting in defects during megakaryopoiesis and/or circulating platelet activation [17,18]. How-
ever, compared to full Rasa3-/- mice, the hemorrhagic phenotype and embryonic lethality were
much less severe in mice in which Rasa3 was deleted speci�cally in the megakaryocyte lineage,
suggesting that they might be caused by defects in a di�erent cell type [18]. Here, we tested the
hypothesis that embryonic bleeding and lethality associated with Rasa3 inactivation relate to its
important function in endothelial cells and vascular development. We report that mice with
endothelial-speci�c deletion of Rasa3 exhibited severe hemorrhages and embryonic death, reca-
pitulating the Rasa3-/- mouse phenotype. By contrast, Rasa3 inactivation speci�cally in megakar-
yocytes caused a severe thrombocytopenia but no embryonic lethality. We also show that lack of
Rasa3 in ECs is associated with hyperactivation of Rap1 GTPase signaling, deregulation of
EC-ECM and EC-EC adhesions and of endothelial tube morphogenesis. Our study thus identi-
�es Rasa3 as a critical regulator of Rap1 activity, adhesion processes and tubulogenesis in ECs.

Results
Rasa3 inactivation in EC results in severe bleeding and embryonic death
In order to explore the functions of Rasa3 in ECs in vivo, we generated a Rasa3�ox/+ (R3f/+)
mutant mouse in which two intronic LoxP sites were introduced upstream of exon 11 and
downstream of exon 12 in the Rasa3 gene (Fig 1A). Exons 11 and 12 of the Rasa3 gene were
speci�cally targeted, as previously described by Iwashita et al. [16]. Deletion of these two exons
should lead to the production of a 88 amino acids-truncated catalytically inactive Rasa3 pro-
tein, if stable. Doing so, we were sure to inactivate the Rasa3 gene and to reproduce the embry-
onic lethality of Rasa3-/- mice. Crossing R3f/+ with PGK-Cre mice generated R3Δ/+ mice with a
full body heterozygous deletion of exons 11 and 12, which encodes residues 315–402 of the
RASA3 GAP domain. Intercrosses between R3Δ/+ mice failed to yield any live R3Δ/Δ newborns
(S1 Table). At E12.5, all R3Δ/Δ embryos displayed widespread hemorrhages, indicative of
abnormalities in the vascular or coagulation systems (Fig 1B). When analyzed by Western blot,
R3Δ/Δ embryos revealed that homozygous deletion of exon 11 and 12 of the Rasa3 gene resulted
in the absence of the Rasa3 protein (Fig 1B). Since in our hands deletion of Rasa3 speci�cally
in megakaryocytes and platelets was not associated with embryonic lethality or hemorrhages
(S1 Table and S1 Fig), we investigated whether this phenotype is observed when Rasa3 is in-
activated in ECs. We generated R3f/+ Cdh5(PAC)-CreERT2 (R3f/+ iEC-Cre) mice by crossing
R3f/f mice with mice expressing the Cre recombinase under the control of a tamoxifen-induc-
ible, EC-speci�c promoter. R3f/f iEC-Cre mice were obtained by intercrossing R3f/+ iEC-Cre
mice. To achieve EC-speci�c homozygous inactivation of Rasa3, female R3f/f mice were bred
with male R3f/f iEC-Cre mice. Intraperitoneal (ip) injections of tamoxifen in pregnant female
R3f/f mice at E8.5, E9.5 and E10.5 correlated with embryonic lethality and absence of Rasa3
mutant newborns (S1 Table). Genotyping of E12.5 embryos revealed deletion of Rasa3 exons
11 and 12 in embryos that were positive for the Cre recombinase (Fig 1C). As was previously
observed with the R3Δ/Δ deletion, the lethal phenotype resulting from EC-speci�c deletion of
Rasa3 was 100% penetrant and consistently associated with massive bleeding (S1 Table and Fig
1C). In contrast, sibling R3f/f embryos lacking the Cre recombinase transgene did not show
any vascular defects.

EC speci�c inactivation of Rasa3 induces blood vessel lumenization defects
in vivo
In order to investigate the function of Rasa3 in ECs, we looked at postnatal retinal angiogene-
sis. Vascularization of the retina starts at postnatal day 0 (P0) and continues until P7-P10. R3f/f
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Fig 1. Whole embryo or endothelial-speci�c inactivation of Rasa3 induces severe bleeding and lethality in E12.5 embryos. A. �e mouse Rasa3 gene
structure (boxes denote exons, and exons in blue indicate the coding regions) with the corresponding protein domains, C2 (C2), the GAP-related domain
(GRD) and the pleckstrin homology domain (PH), are represented. LoxP site insertions in the �oxed (f) allele are indicated (red box). �e post-
recombination delta (Δ) allele is represented. B. (Le�) Immunodetection of Rasa3 and γ-Tubulin by Western blotting on extracts isolated from 5 E12.5
embryos from an R3Δ/+ mice intercross. (Right) Genotyping of embryos described at the le� by PCR ampli�cation of the genomic region between the
LoxP sites (f) or of the delta Rasa3 allele. E2 embryo is R3Δ/Δ, E1, E4 and E5 are R3Δ/+ embryos and E3 is the R3f/f embryo (E3). Results are representative
of 5 separate experiments. C. Uterine horns of a R3f/f female at E12.5 a�er crossing with a R3f/f iEC-Cre male, and ip injected with tamoxifen (center).
Eight embryos were genotyped for the Cre transgene and the R3Δ allele (le�). Only embryos positive for the Cre transgene have the R3Δ allele (E1, E2, E3
and E7) and present severe bleeding (right). Results are representative of 10 separate experiments.

https://doi.org/10.1371/journal.pgen.1007195.g001
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and R3f/f iEC-Cre newborns received tamoxifen at P1, P2 and P3 via intragastric administra-
tion and retinal vascularization was analyzed at P5. As expected, tamoxifen led to the deletion
of exon 11–12 of the Rasa3 gene (R3Δ) speci�cally in R3f/f iEC-Cre pups (Fig 2A). Body weight
of control R3f/f and mutant R3f/f iEC-Cre pups were similar, indicating that EC deletion of

Fig 2. Endothelial deletion of Rasa3 results in defects in retinal vascularization. A. Experimental design of deletion of Rasa3 in R3f/f and R3f/f iEC-Cre pups
via tamoxifen (tmx) intragastric (ig) injections at P1, P2 and P3. At P5, the R3Δ allele was only detected in Cre-positive R3f/f newborns. Lower panels:
genotyping of 4 mice by PCR for the Cre transgene (above) and the Rasa3Δ allele (below) detection. When the Cre transgene is present, the Rasa3Δ allele
appears, indicating the deletion of exons 11 and 12 of the Rasa3 gene. �e genotype of the 4 mice is indicated on the right. B. Immuno�uorescence analysis of
R3f/f and R3f/f iEC-Cre retinal plexus stained for the IB4 endothelial cell marker (upper images). Representative images of 4 independent experiments are
shown. Bars = 50 μm. (Graphs) Quanti�cation of cumulative length (le�), number of branches (center) and area (right) of retinal vascular plexuses from
tamoxifen-treated R3f/f and R3f/f iEC-Cre newborns. Data are represented as mean ± SEM. C. Immuno�uorescence analysis of retinas from R3f/f and R3f/f

iEC-Cre newborns using an endothelial (IB4, green) and a pericyte (NG2, red) marker. Representative images of twisted regions (arrows) in R3f/f iEC-Cre veins
are shown. (Lower panel) Orthogonal reconstructions of confocal Z-stack in one representative R3f/f iEC-Cre vein showing luminal occlusion. Nuclei were
stained with DAPI (blue). D. Representative images of arteries in retinas of R3f/f and R3f/f iEC-Cre pups. (Lower panel) Orthogonal reconstructions of confocal
Z-stack in one representative R3f/f iEC-Cre artery with luminal occlusion. �e lumen is outlined with a white dotted line in the control. Bars are 50 μm. �e p
values are shown (Unpaired t-test).

https://doi.org/10.1371/journal.pgen.1007195.g002
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Rasa3 had no major impact on postnatal growth until P5 (S2A Fig). Vascular expansion in the
retina was assessed by measuring the radial progression of the vascular plexus a�er staining
with the EC marker isolectin B4 (IB4). We observed no signi�cant di�erence in the radial
extension of the retinal vasculature network between R3f/f and R3f/f iEC-Cre pups (S2B Fig).
However, vascular networks from mutant mice showed reduced complexity, compared to
control mice (Fig 2B). �is was con�rmed by quantifying the cumulative vessel length, the
number of branches and the total vascularized area of the retinal plexus, which were all signi�-
cantly lower in R3f/f iEC-Cre mice as compared with controls (Fig 2B, lower graphs).

A�er P3, the immature retinal vascular plexus extends and remodels into a hierarchical net-
work, in which arteries and veins can be clearly identi�ed. Interestingly, veins in retinas from
R3f/f iEC-Cre mice exhibited reduced diameters (S2C Fig). In addition, these vessels o�en dis-
played constricted regions and lacked a continuous lumen (Fig 2C). Arteries of R3f/f iEC-Cre
mouse retinas appeared grossly normal (Fig 2D), although their diameters were signi�cantly
increased, compared to R3f/f mice (S2D Fig). Careful examination revealed frequent lumen
occlusions (Fig 2D, orthogonal view). �e lack of arterial lumen correlated with abnormal EC
shape, which appeared cuboidal in R3f/f iEC-Cre mice (Fig 2D, arrows). Interestingly, lumeni-
zation defects were also observed in a zebra�sh model. Knockdown of Rasa3 by injection of a
speci�c morpholino in the EC speci�c reporter line Tg(�i1a:eGFP)y1didn’t a�ect the global
morphology of the �sh, but was associated with thinner intersegmental vessels (ISVs) and dor-
sal longitudinal anastomotic vessels (DLAVs) (S3A–S3C Fig). �e lumen was o�en lacking in
these vessels (S3D Fig). We also observed increased heart rate in Rasa3 morphants, which
could be a compensatory mechanism for these circulatory defects (S3E Fig).

Loss of Rasa3 a�ects endothelial angiogenesis and tube formation in vitro
and in vivo
Vascular remodeling and lumenization are dependent on physical forces exerted by blood �ow
[19]. To examine the e�ects of Rasa3 disruption outside of any potential perturbation of hemody-
namic forces, we assessed the ability of human umbilical vein endothelial cells (HUVECs) de�-
cient for Rasa3 to form capillary-like networks in vitro. Silencing of Rasa3 expression using two
independent siRNA dramatically impaired formation of a continuous vascular-like network (S4A
and S4B Fig), although it did not impact on HUVEC viability or proliferation (S4C and S4D Fig).
Time-lapse microscopy showed that whereas Rasa3-de�cient HUVECs initially formed branched
networks, the branches were hypocellular and unstable leading to rapid collapse of the network
(S1 Movie). Similar observations were made in a 3-dimensional spheroid assay, in which downre-
gulation of Rasa3 severely impaired extension of sprouts out of the spheroid (Fig 3A). �e e�ects
of EC Rasa3 inactivation on capillary formation were also analyzed in an ex vivo model of adult
aortic ring in which lumenized endothelial outgrowth emerging from mouse aortic explants can
be examined. Inactivation of Rasa3 was achieved by daily tamoxifen ip injection of adult R3f/f

iEC-Cre mice for 5 consecutive days and isolated aortas were placed in a 3D collagen I matrix.
Compared to control R3f/f mice, the capacity of the aortic endothelium from R3f/f iEC-Cre mice
to form neovessels was dramatically impacted, with neovessels severely reduced in number and
length (Fig 3B). A�er 12 days culture, endothelial sprouts from control R3f/f aortas exhibited a
large and well-de�ned lumen. In contrast, the large majority of the few sprouts that grew out of
the R3f/f iEC-Cre explants had a signi�cantly reduced or closed lumen (Fig 3C).

Lack of Rasa3 correlates with reduced EC adhesion turnover
Although the exact molecular mechanism of vascular lumen formation and stabilization is still
controversial, a common theme is the importance of EC adhesion properties. To understand
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how Rasa3 might control vascular lumenization, we assessed the ability of Rasa3-silenced
HUVECs (siRasa3 HUVECs) to attach to major extracellular matrix (ECM) components. We
found that knockdown of Rasa3 was associated with a signi�cant increase in cell adhesion
onto �bronectin (S5A Fig). In contrast, adhesion onto vitronectin, laminin or collagen was
una�ected. �e enhanced adhesion of siRasa3 HUVECs to �bronectin was associated with a
signi�cant increase in β1 integrin clustering (Fig 4A and S5B Fig). Interestingly, the enhanced
clustering of β1 integrin was also observed in sprouts from R3f/f iEC-Cre aortic explants (Fig
4B). Because excessive integrin clustering may re�ect alterations in focal contact dynamics
[20], we decided to further investigate the dynamics of adhesions in siRasa3 HUVECs. First,
we examined cell migration, a process that relies heavily on assembly and disassembly of

Fig 3. Rasa3 is necessary for endothelial sprouting and lumenization capacities. A. Representative micrographs of a spheroid sprouting assay with
HUVECs treated with siControl or with 2 di�erent siRasa3 (siRasa3#1 and siRasa3#2). �is experiment is representative of 3 independent experiments.
Bar = 100 μm. Histogram represents number of sprouts per spheroid measured on 22 and 15 spheroids, for siRasa3#1 and siRasa3#2 respectively. �e p
values are shown (Student’s t-test). B. Representative bright �eld images of R3f/f and R3f/f iEC-Cre aortic rings a�er 12 days of 3D collagen I-matrix
culture in the presence of VEGF (10 ng/ml). New sprouts are highlighted in red. Images are representative of 5 independent experiments. (Lower graphs)
Quanti�cation of sprout number per aortic ring (le�) and sprout length (right) in aortic rings isolated from R3f/f and R3f/f iEC-Cre mice C.
Immuno�uorescence analysis of R3f/f and R3f/f iEC-Cre aortic ring sprouts stained for the IB4 (green) endothelial and NG2 (red) pericyte marker. Nuclei
were stained with DAPI (blue). Images are representative orthogonal reconstructions of confocal Z-stack showing collapsed lumen in R3f/f iEC-Cre aortic
ring sprout. Lumens are outlined with a white dotted line. Bars = 5 μm. (Graph) Percentage of sprouts with a lumen in R3f/f and R3f/f iEC-Cre aortic
rings. Data are represented as mean ± SEM of 3 independent experiments. �e p values are shown (Unpaired two-tail t-test).

https://doi.org/10.1371/journal.pgen.1007195.g003
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EC-ECM focal contacts (FCs). Using a scratch-wound assay, we found that downregulation of
Rasa3 correlated with a signi�cant decrease in HUVECs migratory capacity, supporting the
idea that FC dynamics might be perturbed following Rasa3 silencing (S6A Fig). Cell-ECM
adhesions found at membrane protrusions are usually divided into two types, depending on
their maturation stage. �e �rst adhesions to appear are nascent adhesions (NA) and focal
complexes (Fx), which are small dot-like structures forming at the lamellipodium and lamelli-
podium-lamellum interface. While most of the Fx are unstable, a few will elongate centripetally
and mature into larger (area > 1μm2) focal adhesions (FAs). Knockdown of Rasa3 resulted in
profound alterations in the pattern of EC-ECM adhesions, as detected by labeling the FC com-
ponent paxillin. Compared to control siRNA-treated HUVECs (siControl HUVECs), siRasa3
cells spreading onto �bronectin had a higher proportion of large FAs, which were localized
more centripetally, whereas the number of small adhesions at the cell periphery was notably
reduced (S6B and S6C Fig). Interestingly, depletion of Rasa3 also promoted accumulation of
larger and more mature adhesions during VEGF-driven migration of ECs (S6D Fig).

To analyze precisely the dynamics of adhesion assembly and disassembly during EC migra-
tion, we performed total internal re�ection �uorescence (TIRF) microscopy on migrating GFP-
paxillin positive HUVECs. We focused our analysis on FAs maturing just below the lamella,
which appeared both larger and longer lived in siRasa3 cells (S2 Movie). We measured changes
in Paxillin-GFP over time to evaluate functions for assembly and disassembly, and we deter-
mined parameters of FA dynamics, as described in Methods (Fig 4C). Assembly and disassem-
bly rates of FA were signi�cantly decreased in siRasa3 HUVECs (Fig 4D). As a result, FA
lifetime was increased about twofold in the absence of Rasa3 (Fig 4D). Altogether, our data dem-
onstrate that Rasa3 is important to regulate EC-ECM adhesion dynamics and stability. By initi-
ating local tyrosine phosphorylation events, the FAK-Src signaling module is a master regulator
of adhesion dynamics. �is prompted us to investigate FAK/Src signaling in siRasa3 HUVECs.
In agreement with decreased turnover of adhesion dynamics, we observed that reduction of
Rasa3 expression was associated with diminished activation of FAK and Src following HUVECs
adhesion onto �bronectin (Fig 5A) or VEGF stimulation (S7A Fig). Supporting these observa-
tions, knockdown of Rasa3 correlated with reduced phosphorylation of the downstream FAK/
Src targets paxillin (Fig 5A and S7A Fig). Importantly, impaired FAK activation was also
observed in EC of aortic ring sprouts from tamoxifen-treated R3f/f iEC-Cre mice (S7B Fig).

Rasa3 regulates EC cytoskeleton plasticity
In addition to dynamic contacts with the underlying ECM, lumen morphogenesis also requires
profound plasticity of EC cytoskeleton, in order to support cell shape changes associated with
expansion of the luminal compartment [21]. Tubulin acetylation, indicative of stabilized microtu-
bules, was signi�cantly reduced in siRasa3 HUVECs plated on �bronectin, when compared with
siControl HUVECs (Fig 5B). In addition, we observed an increase in actin stress �ber level and in
nonmuscle myosin IIA activity, which are known to suppress tubulin acetylation (Fig 5C). Obser-
vation of stress �bers in 3D cell culture systems such as the ring aortic assay is notoriously less
conspicuous than in 2D cell culture. Nevertheless, we also observed decreased tubulin acetylation
and increased stress �bers in sprouts from tamoxifen-treated R3f/f iEC-Cre mouse aortic explants,
supporting the idea that Rasa3 is important for EC cytoskeleton architecture (Fig 5D).

Defects associated with Rasa3 depletion are mediated by Rap1
hyperactivation
Based on our recent �nding that in megakaryocytes Rasa3 controls Rap1 but not R-Ras activa-
tion [17], we assessed the levels of these active small GTPases in ECs lacking Rasa3. Decreasing
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Rasa3 expression in HUVECs signi�cantly increased active Rap1 levels (Fig 6A), but had no
e�ect on R-Ras levels (S8 Fig), as reported in megakaryocytes. Analysis of aortic sprouts from
R3f/f and R3f/f iEC-Cre aortic explants also showed that deletion of Rasa3 correlated with sig-
ni�cantly higher levels of active GTP-bound Rap1 (Fig 6B). �ese observations were also con-
�rmed in vivo, as active Rap1 levels were dramatically higher in arteries, veins, and plexus of
R3f/f iEC-Cre retina, compared to R3f/f retina (Fig 6C).

Rap1 is involved in the activation of β1-integrins in ECs and plays a key role in integrin-
dependent angiogenic functions of ECs such as sprouting, migration and adhesion [14], all of
which are a�ected by Rasa3 depletion in ECs. In addition, Rap1 is known to promote stability
of endothelial VE-cadherin-based cell- cell junctions [22]. ECs display two types of VE-cad-
herin containing junctions [23]. Junctions of the �rst type localize linearly along cell-cell bor-
ders and are considered as stable adherens junctions (AJs). Junctions of the second type
appear as short linear structures that are almost orthogonal to the cell-cell borders and are
remodeling junctions called focal AJs (FAJs). Quanti�cation of the total length of FAJs in sin-
gle cells relative to the total junction length revealed that siRASA3 HUVECs had a reduced
proportion of FAJs, indicating that cell-cell junctions are more stable when Rasa3 is knock-
down, consistent with increased Rap1 activity (S9A Fig). In line with this, we found that junc-
tions of Rasa3 knockdown HUVECs were more resistant to the cell-cell junction-destabilizing
agent EGTA than those from control cells. Whereas VE-cadherin was completely internalized
in control cells a�er 5 min of EGTA treatment, it still partially localized at the cell membrane
in siRasa3 HUVECs, indicative of more resilient cell-cell junctions (S9B Fig). In addition,
EGTA-induced vascular permeability was also reduced in Rasa3-de�cient HUVECs, as mea-
sured by assessing solute �ux across an EC monolayer (S9C Fig). �rough phosphorylation of
VE-cadherin, Src has emerged as a prominent mediator of VE-cadherin-mediated AJ destabi-
lization and vascular permeability [24]. Consistent with their more stable cell-cell junctions,
siRasa3 HUVECs showed reduced phosphorylation of VE-cadherin Y658 and Src activation
(S9D Fig).

In order to test whether suppression of Rap1 by Rasa3 played a role during EC lumen for-
mation, we inhibited Rap1 activity in siRasa3 HUVECs. Tubulogenesis defects of siRasa3
HUVECs were completely reverted upon treatment with the Rap1 inhibitor GGTI298 (Fig 7A,
le� graph). �ese results were further con�rmed when Rap1 hyperactivation was prevented
with suboptimal concentrations of either Rap1a or Rap1b siRNAs. Neither siRap1a nor siR-
ap1b alone had an e�ect on in vitro tubulogenesis of control HUVECs. However, siRap1b, but
not siRap1a, almost completely rescued the tubulogenesis defects in Rasa3 de�cient HUVECs
(Fig 7A right graph). Rap1 inhibition by treatment with GGTI298 increased by almost three-
fold the number of sprouts from R3f/f iEC-Cre aortic explants, while it dramatically reduced
the sprouting ability of control R3f/f aortic rings (Fig 7B). More importantly, inhibition of

Fig 4. Depletion of Rasa3 impairs EC adhesion turnover. A-B. Activation of β1 integrin was analyzed in HUVECs transfected with control or
Rasa3 siRNA (A) and in R3f/f and R3f/f iEC-Cre aortic ring sprouts (B) by confocal microscopy using an antibody speci�c for clustered β1 integrin.
Representative images are shown. Bars = 50 μm. Histograms represent mean ± SD of clustered β1 integrin mean �uorescence intensity (MFI) from
3 independent experiments. �e p values are shown (Student’s t-test). C. Time-lapse sequences of paxillin-GFP dynamics in migrating HUVECs
transfected with control or Rasa3 siRNA. �e regions indicated are shown at higher magni�cation. Graphs represent turnover dynamics in one
representative adhesion experiment in control and Rasa3-depleted cells. Maximum intensity projections over the 200 min time-lapse sequences
are shown as three-frame running averages. �e red and green lines are respectively a logistic �t of the assembly and an exponential �t of the
disassembly phase. Adhesion lifetimes are indicated by dashed arrows as de�ned by �uorescence intensity above the half-maximum of the �t. In
the adhesion experiment shown, assembly (0,0041/s in control versus 0,0033/s in Rasa3-depleted cells) and disassembly (0,0010/s in control versus
0,0004/s in Rasa3-depleted cells) rate constants were decreased in Rasa3-depleted cells, as compared with control cells. A lag between the assembly
and the disassembly was only observed in Rasa3-depleted cells. Lifetime was increased in Rasa3-depleted cells (105 min), as compared with control
cells (32 min). D. Analysis of adhesion assembly rates, disassembly rates and lifetimes in 35 and 34 adhesions from control and Rasa3-depleted
migrating HUVECs, respectively. �e p values are shown (Wilcoxon—Mann Whitney test).

https://doi.org/10.1371/journal.pgen.1007195.g004
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Rap1 also increased the number of sprouts from R3f/f iEC-Cre aortic rings that show a visible
lumen (Fig 7C). Moreover, in the zebra h model, the lumen defects were also partially res-
cued in presence of the GGTI298 Rap1 inhibitor (S3F Fig). Altogether, these observations
demonstrate that Rasa3 controls endothelial lumenization by regulating Rap1 dependent
signaling.

Discussion
Here, using a combination of in vitro cell biology approaches and loss of function studies in
mouse and zebra , we identify a key role for Rasa3 in the maintenance of vascular integrity
in vertebrates. We show that deletion or knockdown of Rasa3 in ECs is associated with hyper-
activation of the small GTPase Rap1 and deregulation of EC adhesion properties. When Rasa3

Fig 5. Rasa3 controls EC cytoskeleton plasticity. A. Detection of FAK, Src, Paxillin (Pax) and ERK phosphorylation levels in lysates from
nectin-plated control and siRasa3-transfected cells by Western blotting. Total FAK, Src, Paxillin and ERK levels respectively were used as

control. Quanti cations are shown as the ratio of phospho-s c signal over total protein signal, relative to control HUVECs. B. Detection of
tubulin acetylation levels in lysates from ronectin-plated control and siRasa3-transfected cells by Western blotting. Total tubulin (Tot-tub) levels
were used as control. Tubulin acetylation was d (lower) as the ratio of acetylated tubulin signal over the total tubulin signal, relative to
control HUVECs. Results are expressed as mean ± SD from 3 independent experiments. C. Representative confocal microscopy images of control
(siCtl) and Rasa3-depleted (siRasa3) HUVECs plated on ronectin and stained for F-actin (phallodin; red) and phospho-MLC (Green). Nuclei
are stained with Hoechst (blue). Bars are 50μm. ations of F-actin and phospoho-MLC signals were performed on 26 cells from 3
independent experiments and are expressed as corrected mean uorescence intensities (MFI). Results are expressed as mean ± SD from 3
independent expriments. D. orescence analysis of sprouts from R3f/f and R3f/f iEC-Cre aortic ring stained for the IB4 (blue) and
acetylated tubulin (upper) or phalloidin (lower panel) in green. Nuclei are stained with DAPI (red). Representative images of 3 independent
experiments are shown. Bars = 50 μm. ) Quanti ation of acetylated tubulin (upper) and Phalloidin (lower) mean uorescence intensity
(MFI). Data are presented as mean ± SEM of 10 sprouts per group in 3 independent experiments. e p values are shown (Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007195.g005

Fig 6. Rap1 is activated upon depletion of Rasa3. A. e densitometric ation of active Rap1 detected by
Western blotting on protein extracts from siControl and siRasa3 HUVECs is expressed as means ± SD from 3
independent experiments. RLU: Relative Luminescence Unit. B. ation of active Rap1-GTP mean orescence
intensity (MFI) in aortic ring (n = 10) sprouts from R3f/f and R3f/f iEC-Cre mice (n = 10). Data are epresented as
mean ± SEM. C. ation of active Rap1-GTP mean ence intensity (MFI) in arteries, veins and plexus of
R3f/f and R3f/f iEC-Cre newborn retinas (n 8). Data are represented as mean ± SEM. e p values are shown
(Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007195.g006
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is deleted or knocked down, turnover of β1 integrin-dependent EC adhesion is impaired and
EC-ECM basal adhesion contacts accumulate. In addition, EC-EC adhesions are stabilized,
leading to decreased endothelial permeability. �ese adhesion defects prevent formation of a
patent lumen and result in occluded blood vessels, hemorrhages and early embryonic death in
EC-restricted Rasa3 KO mice.

We and others have shown that mice expressing inactive mutants of Rasa3 die during mid-
embryonic life and display hemorrhages and severe thrombocytopenia resulting from develop-
mental defects during megakaryopoiesis [16–18]. Because low levels of platelets could poten-
tially explain embryonic bleeding and mortality, we generated mice speci�cally inactivated for
Rasa3 in the megakaryocyte lineage (R3f/f PF4-Cre). As expected, these mice display megakar-
yocyte alterations and a severe thrombocytopenia. Surprisingly, R3f/f PF4-Cre newborn mice
were obtained at Mendelian ratios and were viable, although with reduced life span (S1 Fig
and S1 Table). A recent study from Stefanini et al. independently reported similar observa-
tions. However, these authors observed that the hemorrhagic phenotype in R3f/f PF4-Cre
embryos was much less severe than in R3-/- embryos, suggesting that embryonic bleeding and
lethality associated with Rasa3 inactivation might relate to its function in a cell compartment
di�erent from the megakaryocyte lineage. Here, we show that EC-speci�c deletion of Rasa3
results in the same lethal phenotype as in full R3-/- embryos, indicating that the speci�c

Fig 7. Inactivation of Rap1 rescues the Rasa3-depleted phenotypes. A. Quanti�cation of capillary-like network formation in siControl vs siRasa3 HUVEC
treated or not with GGTI298 (le�) or co-transfected with siRap1A, siRap1B or a second control siRNA (right). Results are expressed as mean ± SD cumulative
length of capillary-like structures measured in 5 di�erent �elds per experiment from 3 independent experiments, relative to non-treated siControl HUVECs (le�)
or to double siControl HUVECs (right), respectively. B. Number of sprouts growth out from R3f/f and R3f/f iEC-Cre aortic rings a�er 8 days of culture in the
presence or absence of the Rap1 inhibitor GGTI298. A minimum of 10 aortic rings were analyzed per group in 3 independent experiments. C. Representative
orthogonal reconstruction images of confocal Z-stacks from R3f/f and R3f/f iEC-Cre aortic ring sprouts, in the presence or absence of the Rap1 inhibitor GGTI298,
stained for the IB4 (green) endothelial and nuclei DAPI (blue). Lumens are outlined with a white dotted line. Bars = 5 μm. Graph represent the mean ± SEM of the
percentage of lumenized sprouts from R3f/f and R3f/f iEC-Cre aortic rings cultured in the same conditions as in panel B. �e p values are shown (Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007195.g007
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requirement for Rasa3 during mouse embryonic development is largely linked to its function
in the developing vascular endothelium. EC Rasa3 is thus essential to maintain normal blood
vessel tubulogenesis and vascular integrity in vivo. Numerous studies have documented that
vascular lumen instability or occlusions o�en lead to hemorrhages and mid- or late gestation
embryonic lethality [3,25–27].

Rasa3, like every member of the GAP1 GTPase family besides Rasa2, has the ability to con-
trol both R-Ras and Rap1 small GTPases in vitro [13]. In vivo, the speci�city of Rasa3 towards
R-Ras or Rap1 remains unclear. Scat mice, bearing the G125V mutation in Rasa3 show
increased R-Ras activity in erythrocytes, which could explain the delayed erythropoiesis phe-
notype [15]. In megakaryocytes and platelets, we and others have shown that Rasa3 deletion
leads to upregulation of Rap1 activity without a�ecting R-Ras activity [17,18]. Here, we show
that the absence of Rasa3 in ECs correlates with increased Rap1 activity in vivo and in cultured
endothelial cells. By contrast, no e�ect was observed on active R-Ras levels when Rasa3 was
knockdown in the later cells. Importantly, inhibition of Rap1 using the GGTI298 inhibitor or
speci�c siRNA rescued adhesion and tubulogenesis defects. �ese observations thus identify
Rap1, and not R-Ras, as the main target of Rasa3 in ECs and are consistent with the idea that
Rap1 and R-Ras largely act in di�erent signaling pathways and are selectively regulated by spe-
ci�c GAPs and GEFs in vivo [28].

Rap1 signaling has been associated with multiple aspects of vascular development and
endothelial cell biology [14]. As for other cell types, Rap1 is predominantly involved in the
control of integrin and cadherin-mediated adhesion dynamics in endothelial cells [29,30]. In
mice, EC speci�c inactivation of Rap1 leads to hemorrhage and vascular rupture. More inter-
estingly, these mice exhibit microvessel dilation [31]. In cultured endothelial cells, depletion of
Rap1 diminishes adhesion to the ECM, promotes VE-cadherin-based cell-cell junction remod-
eling and increases endothelial permeability [32,33]. �ese e�ects have been partly linked to
the role of Rap1 in the regulation of integrin β1 a�nity and clustering [14]. All these described
Rap1 functions are entirely consistent with the phenotype of Rasa3-depleted HUVECs, which
exhibit Rap1 hyperactivation and concomitantly increase in β1 integrin clustering and
decrease in focal adhesion dynamics, permeability and cell-cell junction remodeling. Remark-
ably, decreasing expression of Rap1 annihilates EC tubulogenesis in vitro, similarly to deplet-
ing Rasa3 [33]. �is supports the idea that tube formation relies on a tight balance of EC
adhesion dynamics and identi�es Rasa3-Rap1 signaling as a critical hub in this process.

A recurrent theme in endothelial tubulogenesis is the coordinated control of adhesion pro-
cesses and cytoskeleton dynamics of ECs [34]. In the model of cord hollowing, the initial VE-
cadherin-based AJs between ECs relocalize laterally to allow initial opening of the lumen [26].
It is likely that accumulation of VE-cadherin-based EC-EC junctions towards the cord periph-
ery is achieved through VE-cadherin internalization at the apical cell surface and recycling at
the lateral positions, requiring coordinated VE-cadherin phosphorylation events [35]. In this
regard, our observation that Rasa3-depleted HUVECs exhibit stable VE-cadherin-based AJs
and decreased phosphorylation of VE-cadherin Y658 is consistent with their lower FAK/Src
signaling, as both kinases have been extensively documented to increase VE-cadherin phos-
phorylation and promote EC junction turnover. VE-cadherin also in�uences actin cytoskele-
ton remodeling, which is required for the EC shape changes necessary to accommodate the
growth of the luminal compartment. VE-cadherin signaling thus plays a critical role in vascu-
lar tubulogenesis, as illustrated by the lumenization defects observed in VE-cadherin-de�cient
mice and zebra�sh [36,37].

Lumen expansion also requires ECs to establish dynamic contacts with the underlying
ECM. Loss of β1 integrin during development of the mouse vascular network prevents lumen
formation in medium and small sized arteries [3]. In contrast, we have previously shown that
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excessive stability of EC-ECM adhesions impairs ISV lumenization in zebra�sh [4]. Together
with our observations here, it is thus becoming evident that a tight regulation of adhesion com-
plexes between ECs and the ECM is required to allow vascular lumen formation and mainte-
nance. Recent observations support the existence of crosstalk between integrin-based cell-
matrix and cadherin-based cell-cell contacts, both of which may operate separately on lumen
formation or stabilization [3,38,39]. Strikingly, a number of these studies have converged on
Rap1, thus placing this small GTPase at the crossroads of multiple outside-in and inside-out
adhesion signaling pathways [40].

�e developmental consequences of EC Rasa3 ablation in mice, as dissected in this study,
shed light on the critical function of this poorly characterized protein in vertebrate develop-
ment. �e �rst and main cause of embryonic lethality associated with Rasa3 inactivation
appears to be excessive activation of Rap1, which leads to dysregulation of EC adhesion prop-
erties and signaling. As a result, Rasa3-depleted ECs are unable to integrate and coordinate
integrin and VE-cadherin signaling, preventing formation of a functional lumen. Our results
thus uncovered an important but previously unknown coordinator of multiple adhesion pro-
cesses during vascular tubulogenesis (Fig 8). Better understanding of the intricate molecular
networks linked to vascular lumen formation should pave the way towards new vascular-tar-
geted therapies.

Fig 8. Model for Rasa3 control on endothelial lumen formation. Rap1 inactivation by Rasa3 GAP activity regulates
activation of β1 integrin- and VE-cadherin-based adhesions. Following integrin activation, Rasa3 inactivates Rap1 to
allow turnover of integrin- and VE-cadherin-based adhesions, via the FAK/Src signalling module. Failure to turnover
and recycle EC-ECM and junctional adhesion complexes between EC results in vascular tubulogenesis defects. �in
black arrows indicate signalling pathways. �e two-way thin black arrow indicates the interaction between the FAK/
Src signalling module and the VE-cadherin signalling pathway.

https://doi.org/10.1371/journal.pgen.1007195.g008
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Methods
Ethics statement
Studies on mice were conducted according to internationally-accepted standards. Mice studies
were authorized by the Animal Care Use and Review Committee of the University of Liege
(approval numbers: 1517, 1628 and 1902).

Mice
Rasa3�ox/+ (R3f/+) mice with exons 11 and 12 of the Rasa3 gene �anked by LoxP sites were gen-
erated by inGenious Targeting Laboratory, Inc. R3f/+ mice were crossed with PGK-Cre mice to
generate R3Δ/+ mice as well as with PF4-Cre mice for megakaryocytes and platelets deletion
and with Cdh5(PAC)-CreERT2 (or iEC-Cre) mice for deletion in EC in the presence of tamox-
ifen [41]. All mice were housed in an animal facility with a 12 h light/12 h dark cycle and had
free access to food and water throughout the study period.

Tamoxifen treatments
For studies on embryos, plugged female R3f/f mice were ip injected at E8.5 and E10.5 with
tamoxifen. For retinal angiogenesis studies in R3f/f and R3f/f iEC-Cre newborns, intragastric
administration of tamoxifen was performed at P1, P2 and P3, according to Pitulescu et al [42].
For aortic ring studies in adult mice, 10 week-old R3f/f and R3f/f iEC-Cre mice were ip injected
with tamoxifen for 5 consecutive days. A�er tamoxifen treatment, DNA recombination was
assessed by PCR detection of the R3Δ allele on tail DNA.

Antibodies and reagents
A list of the primary and secondary antibodies used in this study is presented in S2 Table.
TRITC-phalloidin served for F-actin staining (Molecular Probes). DAPI and FITC-Dextran
(FD405) were obtained from Sigma. Detection of active GTP-bound Ras and Rap1 in HUVECs
was performed with Cell Signaling kits (#8821 and #8818, respectively). �e low molecular
Rap1 inhibitor GGTI298 was from Sigma. Control (SR-CL000-005) and Rasa3 (5’-GCGCTT
TGGGATGAAGAAT-3’ and 5’CCTGAAGTTTGGAGATGAA-3’) siRNAs were purchased
from Eurogentec. Tamoxifen was from Sigma, VEGF was from Peprotech, �bronectin and col-
lagen I were from Gibco, vitronectin was from Millipore and laminin was from Invitrogen.

Whole mount newborn retina assay
For whole mount retina immuno�uorescence, we proceeded as Pitulescu et al [42]. Eyes were
�xed in 4% paraformaldehyde in PBS at 4˚C overnight and washed in PBS. Retinas were dis-
sected, permeabilized in PBS, 1% BSA, 0.5% Triton X-100 at 4˚C overnight, rinsed in PBS,
washed twice in PBlec (PBS, pH 6.8, 1% Triton-X100, 0.1 mM CaCl2, 0.1 mM MgCl2, 0.1 mM
MnCl2), and incubated in biotinylated isolectin B4 (Sigma- Aldrich), 20 μg/ml in PBlec at 4˚C
overnight. A�er �ve washes in PBS, samples were incubated with streptavidin conjugates
(Alexa-488, -594, or -647; Molecular Probes) diluted 1:400 in PBS, 0.5% BSA, 0.25% Triton X-
100 at room temperature for 3 h. A�er washing and a brief post�xation in paraformaldehyde,
the retinas were either �at-mounted using Prolong (Molecular 2 probes) or processed for mul-
tiple labeling. DAPI (1:5000, 20 mg/ml, Sigma) was used for nuclear staining. Flat-mounted
retinas were analyzed by confocal laser scanning microscopy using a Nikon A1 microscope.
Images were processed using ImageJ. Fields of views at the sprouting vascular front of the reti-
nal vascular network, including regions of capillary-sized vessels directly adjacent to radial
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arterioles, were captured using a 40x objective lens. For quanti�cation, at least four �uorescent
images/retinas were taken from 8 mice per group.

Aortic ring assay
For aortic ring ex vivo culture assay, we proceeded as Baker et al [43]. Freshly dissected aortas
isolated from 12 week-old mice were placed in ice-cold OptiMEM, cleaned of fatty tissue
under a dissecting microscope, and rinsed in ice-cold OptiMEM three times to remove resid-
ual blood before they were sliced into 0.5-mm-thick rings, using a surgical scalpel. �e rings
were starved overnight at 37˚C in a 5% CO2 humidi�ed incubator before they were embedded
in 50 μl of Collagen I matrix. Matrix was overlaid with 100 μl of OptiMEM supplemented with
Glutamine, 10% FBS and antibiotics. New sprouts from the rings were induced by adding
VEGF (10 ng/ml) to the culture medium for 12 days, with medium change every 2 days. �e
outgrowth and branching activity of endothelial tubes were counted using a Nikon inverted
microscope. A minimum of twelve rings per genotype were used for each assay and each assay
was repeated at least 4 times. Aortic rings were immunostained according to Baker et al. 5.
Brie�y, aortic rings were �xed in 4% paraformaldehyde in PBS and washed in PBS. A�er, they
were permeabilized in PBS, 1% BSA, 0.5% Triton X-100 at 4˚C overnight, rinsed in PBS,
washed twice in PBlec (PBS, pH 6.8, 1% Triton-X100, 0.1 mM CaCl2, 0.1 mM MgCl2, 0.1 mM
MnCl2), and incubated in biotinylated isolectin B4 (Sigma- Aldrich), 20 μg/ml in PBlec at 4˚C
overnight. A�er �ve washes in PBS, samples were incubated with streptavidin conjugates
(Alexa-488, -594, or -647; Molecular Probes) diluted 1:400 in PBS, 0.5% BSA and 0.25% Triton
X-100 at room temperature for 3 h. A�er washing and a brief post-�xation in paraformalde-
hyde, the aortic rings were either �at-mounted using Prolong (Molecular probes) or processed
for multiple labeling. DAPI (Sigma) served for nuclear staining. Flat mounted aortic rings
were analyzed by confocal laser scanning microscopy using a Nikon A1 microscope.

Blood platelets quanti�cation
Eight to twelve week-old male mice were bled under sodium pentobarbital anesthesia from the
retro-orbital plexus in EDTA containing tubes. Blood platelets were quanti�ed with a Cell Dyn
3500 analyzer (Abott Diagnostic).

Zebra�sh
Knockdown experiments were performed by injecting embryos at the one-cell stage with 2.5
ng of Control (Ctl) or Rasa3 morpholino. Ctl (5’-CCTCTTACCTCAGTTACAATTTATA-3’)
and Rasa3 (5’-AAGCCCTTCTTCTTCGACCGCCATG-3’) morpholinos were purchased
from Genetools. �e injected embryos were placed in E3 medium and incubated at 28˚C. Con-
focal pictures were taken on living embryos using a Zeiss confocal microscope at 48 hpf (hours
post fertilization). �e Tg(�i1a:eGFP)y1 �sh were maintained conforming to EU regulations
on laboratory animals. For the rescue experiment, the GGTI298 (10 μM) was added to the E3
medium at 40 hpf until 48 hpf when the quanti�cation was made.

HUVEC culture and siRNA transfection
Human Umbilical Vein Endothelial Cells (HUVECs) were obtained from Lonza and grown at
37˚C, in 5% CO2. SiRNA transfections in HUVECs were performed using the GeneTrans 2
(MoBiTec) reagents according to the manufacturer’s protocol.
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Tube formation assay
48 hours a�er transfection, HUVECs were subjected to the Matrigel assay as described Martin
et al, 2008 [44]. 50 x 103 cells were cultivated for 16 h on 220 μl of Matrigel Basement Mem-
brane Matrix (BD Bioscience). Quanti�cation was done by measuring the cumulative tube
length in three random microscopic �elds using ImageJ so�ware.

Wound healing
72 h a�er transfection, a con�uent monolayer of HUVECs was scraped in order to create a cell
free zone. Quanti�cation of cell migration was done by measuring the percentage of recolo-
nized area 8h a�er injury using the ImageJ so�ware.

Adhesion assay
72 h a�er transfection, HUVECs were incubated in �bronectin-, collagen 1-, vitronectin-, or
laminin-precoated coverslips for 30 min. �e cells were washed and stained with crystal violet.
Relative adhesion is measured by reading absorbance at 560 nm a�er release of incorporated
dye.

Focal adhesion dynamics
Focal adhesion dynamics and quanti�cations were performed as described by Stehbens and
Wittman [45]. HUVECs were co-transfected with siRNA and paxillin-GFP. Focal adhesion
dynamics were analyzed using time-laps TIRF (total internal re�ection �uorescence) micros-
copy. Live-cell TIRF imaging was performed on a Nikon Eclipse Ti-E inverted microscope
equipped with perfect focus system, CFI Apo TIRF 100X oil objective (Nikon), a QuantEM
512SC EMCCD camera (photometrics, Roper Scienti�c), a TI-TIRF-E motorized TIRF illumi-
nator (Nikon) and a stage top incubator maintaining 37˚C and 5% CO2 (Tokai hit). Images
were captured every 120 seconds over 10 h.

Permeability assay
One day a�er transfection, 6 x 104 HUVECs were plated onto insert (FisherBioblock W2127C)
precoated with �bronectin. �e insert de�ned a top and a bottom chamber. A�er transfection
(72h), the medium was changed in both chambers, and cells were treated with a medium con-
taining EGTA (4mM) and FITC-Dextran (1mg/ml) for 30 min. Samples from the bottom
chamber were analyzed by measuring the �uorescence at 492nm.

Confocal imaging analysis
For lumen quanti�cation, orthogonal reconstructions of the Z-stacks were generated. ImageJ
was used for quanti�cation of �uorescence intensity, distances and surfaces. In adhesion
experiments, HUVECs were seeded for 30 min onto �bronectin-coated coverslips, 72h a�er
siRNA transfection. In VEGF treated experiments, HUVECs were seeded 48 h a�er siRNA
transfection and, the next day, were treated during 5 min with VEGF (50 ng/ml) and processed
for imaging. For EGTA-treated experiments, HUVECs were seeded 24 h a�er siRNA transfec-
tion in order to have a con�uent monolayer of cells. Two days a�er, cells are treated for 5 min
with EGTA (4 mM) and processed for imaging. For confocal analysis, cells were �xed in 4%
paraformaldehyde or 100% methanol, permeabilized in 0.1% Triton X-100, blocked in BSA
and incubated overnight with the appropriate primary antibodies. Samples were then incu-
bated with the corresponding Alexa-conjugated secondary antibodies (Invitrogen) and, a�er
washing, mounted with Mowiol. All images were acquired with a Nikon A1 confocal
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microscope. �e average size and the adhesion size distribution of focal adhesions were mea-
sured using the “analyze particles” plugin of ImageJ so�ware. For in vivo and ex vivo experi-
ments, Z-sections were acquired for precise structure and �uorescence intensity analyses with
ImageJ. All images in the same experiment were acquired and analyzed in the same
conditions.

SDS-PAGE and western blotting
Cells were harvested and total extracts were obtained by lysing cells in Laemmli bu�er contain-
ing 50mM of Dithiothreitol (DDT). SDS-PAGE and Western Blot analysis were performed
according to standard procedures and developed with ECL detection kit (GE Healthcare Bio-
Sciences). Quanti�cation of bands intensity was determined with ImageJ so�ware.

FACS analysis
72 hours a�er transfection, cells were washed three times in blocking solution (PBS 1% FBS)
and incubated for one hour with the anti-activated β1 integrin primary antibody. Cells were
then washed with blocking solution and incubated with a FITC-conjugated secondary anti-
body. A�er washing, the expression of the clustered β1 integrin was quanti�ed by �ow cytome-
try using FACScan Cytometer (Becton Dickinson).

Statistics. Statistical analyses were performed with Graphpad Prism 3.0. �e test used for
each experiment is described in the corresponding legend. For each test, a di�erence of
P< 0.05 was considered signi�cant.

Supporting information
S1 Fig. Severe thrombocytopenia but no embryonic lethality in R3f/f PF4-Cre mice in
which Rasa3 is speci�cally inactivated in megakaryocytes and platelets. A. Immunodetec-
tion of Rasa3 and γ-Tubulin by Western blotting on washed-platelet extracts isolated from
blood of R3f/f (1) and R3f/f PF4-Cre (2). Image is representative of 5 independent experiments.
B. Survival curve of R3f/f (n = 11) and R3f/f PF4Cre (n = 8) mice over a period of 50 weeks. �e
p value is shown (Log-rank (Mantel-Cox) test). C. Blood platelet counts in adult R3f/f (n = 8)
and R3f/f PF4-cre (n = 8) mice. Data are represented as mean ± SEM. �e p value is shown
(Unpaired t-test). D. Quanti�cation of megakaryocytes present in the spleen of R3f/f (n = 6)
and R3f/f PF4-Cre (n = 6) mice. Data are represented as mean ± SEM; the p value is shown
(Unpaired t-test).
(TIF)

S2 Fig. Deletion of Rasa3 in R3f/f iEC-Cre newborns by daily tamoxifen injections results
in vascular defects. A. Quanti�cation of R3f/f (n = 18) and R3f/f iEC-Cre (n = 8) newborn
body weight at P5 a�er tamoxifen treatment. B. Representative image of R3f/f (n = 18) and R3f/

f iEC-Cre (n = 8) newborn retina vasculature, stained with the IB4 (green) endothelial marker.
�e blue line and the white arrow indicate the total length and the vascular front of the vascu-
lar network, respectively. Bars = 2 mm. Quanti�cation of the radial outgrowth of the retinal
network is shown. C-D. Quanti�cation of the vein (C) and arteries (D) diameter in P5 new-
born retinas of R3f/f (n = 8) and R3f/f iEC-Cre (n = 8) newborns. Data are represented as
mean ± SEM. �e p values are shown (Unpaired t-test).
(TIF)

S3 Fig. Knockdown of Rasa3 in Zebra�sh induces tubulogenesis defects in the trunk vascu-
lature. A. Detection of Rasa3 level in lysates from Control (Ctl) and Rasa morphant embryos.
GAPDH was used as control. B. General morphology of Ctl and Rasa3 morphant embryos. C.
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Tg(�i1a:eGFP)y1 embryos were injected with control morpholino (MoCtl) or with morpho-
lino targeting Rasa3 (MoRasa3). Confocal pictures of the trunk vasculature were taken at 48
hpf. Ctl embryos present normal ISVs and DLAVs with open lumen (arrow head) whereas
Rasa3 morphant embryos show thinner, non-lumenized vessels (arrows). Bars = 50 mm. ISV,
intersegmental vessel; DLAV, dorsal longitudinal anastomotic vessels. D. Quanti�cation of
lumenized ISVs in Ctl and Rasa3 morphant embryos at 48 and 72 hpf. �e p values are shown
(Fisher’s exact test). Results are mean from 10 ISVs/embryo in 50 embryos at 48hpf and 25
embryos at 72hpf. E. Heart rates in 32 Ctl and 30 Rasa3 morphant embryos. Histograms are
mean ± SD from 35 embryos. �e p value is shown (Fisher’s exact test). F. Rescue experiment
using GGTI298 (10 μM). Quanti�cation of lumenized ISVs in Ctl and Rasa3 morphant
embryos at 48hpf. �e p values are shown. Results are mean from 10 ISVs/embryo in 35
embryos.
(TIF)

S4 Fig. Deletion of Rasa3 impairs tubulogenesis in HUVECs. A. Immunodetection of Rasa3
and Actin by Western blotting on total extracts from HUVECs transfected with a control
siRNA or two di�erent Rasa3 siRNAs (siRasa3#1 and siRasa3#2). B. Representative micro-
graphs of a tube-like formation assay in Matrigel using HUVECs treated with siControl or
with two di�erent Rasa-siRNA (siRasa3#1 and siRasa3#2). Images are representative of 3
independent experiments. Bar = 100 μm. Histograms represent mean ± SD of relative tubulo-
genesis of capillary-like structures measured in �ve di�erent �elds from 3 independent experi-
ments. �e p values are shown (One sample t-test). C. Histograms represent mean relative cell
viability ± SD in siCTL or siRasa3-treated HUVECs from 3 independent experiments. D. His-
tograms represent mean cell number of siRasa3#1 at indicated time points a�er seeding and
relative to the number of cells in siCTL-treated HUVECs. Results are from at least 3 indepen-
dent experiments. �e p values are shown in B, C and D (Student’s t-test).
(TIF)

S5 Fig. Depletion of Rasa3 increases adhesion and decreases migration of ECs. A. E�ects of
Rasa3-silencing on HUVEC adhesion onto Fibronectin, Collagen, Vitronectin or Laminin.
Bars = 100 μm. Representative micrograph of an adhesion assay with HUVECs treated with
siCTL or siRasa3. Images are representative from 3 to 5 independent experiments. Histograms
are mean ± SD of 3 independent experiments. �e p values are shown (Student’s t-test). B.
Immunodetection of total integrin β1 levels by Western blotting on total extracts from
HUVECs transfected with control or Rasa3 siRNA (related to the experiment described in Fig
5A). Actin was used as a loading control.
(TIF)

S6 Fig. Rasa3 is required for normal adhesion turnover. A. In a scratch-wound migration
assay, the recolonized area was analyzed at 5h in HUVECs transfected with siControl or two
di�erent siRasa3. �e means ± SD of 3 independent experiments are presented, relative to the
siControl condition. �e p values are shown (One sample t-test). B. Adhesions were analyzed
in Fibronectin-plated HUVECs transfected with siControl or siRasa3 by confocal microscopy
using an anti-Paxillin antibody. Histograms represent size distribution of paxillin positive
adhesions in 35 control and 33 siRasa3-treated cells. Adhesions were classi�ed into three size
categories: (0.2–0.5 μm2), (0.5–1 μm2) and (> 1 μm2). �e p values are shown (Student’s t-
test). C. Adhesions were analyzed in Fibronectin-plated HUVECs transfected with siControl
and siRasa3 by confocal microscopy using an anti-Paxillin antibody (green). F-actin is visual-
ized using Phalloidin (red). Representative images are shown. Bars = 10 μm. Quanti�cation of
the ratio of the length between the center and the mature focal adhesion (> 1 μm2) versus the
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length between the center and the cell periphery (n = 244 and n = 343 for siCTL and siRasa3,
respectively). �e p value is shown (Student’s t-test). D. Adhesions were analyzed in VEGF-
stimulated HUVECs transfected with siControl and siRasa3 as described in (B) in 21 control
and 23 siRasa3-treated cells. �e p values are shown (Student’s t-test).
(TIF)

S7 Fig. Depletion of Rasa3 impairs activation of the FAK-Src complex. A. Detection of
FAK, Src, Paxillin (Pax) and ERK phosphorylation levels in lysates from VEGF-stimulated,
control and siRasa3-transfected HUVECs by Western blotting with phospho-speci�c antibod-
ies. Total FAK, Src, Paxillin and ERK levels were respectively used as control. Phosphorylation
levels of FAK, Src, Paxillin and ERK were quanti�ed by densitometry as the ratio of phospho-
speci�c signal over the total protein signal, relative to control HUVECs. Results are expressed
as means ± SD from at least 3 independent experiments. �e p values are shown (Student’s
t-test). B. Immuno�uorescence analysis of aortic ring sprouts from R3f/f and R3f/f iEC-Cre
mice stained for the IB4 endothelial marker (lower) and with an anti-phospho-FAK antibody
(upper). Representative images of minimum 5 sprouts per genotype in 3 independent experi-
ments are shown. Bars = 50 μm. Quanti�cation of anti-phosphoFAK mean �uorescence inten-
sity (MFI) ± SEM (n = 5). �e p value is shown (Unpaired t-test).
(TIF)

S8 Fig. Rasa3 knockdown in HUVECs has no e�ect on active R-Ras level. �e densitometric
quanti�cation of active R-Ras detected by Western blotting on protein extracts from siControl
and siRasa3 HUVECs is expressed as means ± SD from 3 independent experiments. RLU: Rel-
ative Luminescence Unit. �e p value is shown (Student’s t-test).
(TIF)

S9 Fig. Depletion of Rasa3 stabilizes endothelial VE-Cadherin-based cell-cell junctions. A.
E�ect of Rasa3-silencing on endothelial cell junctions. Adherent junctions were analyzed in
HUVECs transfected with siControl and siRasa3 by confocal microscopy using an anti-VE-
cadherin antibody (green). Representative images are shown. Bars = 10 μm. (Right) �e signal
was quanti�ed. Histograms are mean ratio of FAJ length versus the total junction length per
cell. Results are from 30 cells. �e p value is shown (Student’s t-test). B. VE-cadherin internali-
zation was analyzed by confocal microscopy using an anti-VE-cadherin antibody (green) in
control and Rasa3-depleted cells a�er an EGTA treatment (4 mM). Bars = 50μm C. E�ect of
Rasa3-silencing on endothelial permeability a�er an EGTA treatment (4 mM). Results are
mean quanti�cation of FITC-dextran ± SD from 4 independent experiments and relative to
EGTA-treated control cells. �e p values are shown (non-treated cells: Student’s t-test; EGTA-
treated cells: One sample test). D. Detection of VE-cadherin and Src phosphorylation levels in
total lysates from non-treated and EGTA-treated sicontrol and siRasa3-transfected cells by
Western blotting with phospho-speci�c antibodies. Total VE-cadherin and Src levels respec-
tively were used as control. Results are expressed as means ± SD from 4 independent experi-
ments, relative to control HUVECs. �e p values are shown (non-treated cells: One sample t-
test; EGTA-treated cells: Student’s t-test).
(TIF)

S1 Table. Endothelial speci�c or full deletion of exons 11–12 of the mouse Rasa3 gene dur-
ing embryonic life results in embryonic death. Newborns were genotyped 21 days a�er bird
by PCR.
�Plugged R3f/f females were ip injected with 5 mg of tamoxifen at E8.5, E9.5 and E10.5. Statis-
tics (Student’s t-test): ���: P< 0.001.
(DOCX)
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S2 Table. Antibodies used in the manuscript.
(DOCX)

S1 Movie.�e ability of control HUVECs and HUVECs de�cient for Rasa3 to form capil-
lary-like networks was investigated in vitro by time-lapse microscopy. Silencing of Rasa3
expression using siRNA dramatically impaired formation of a continuous vascular-like net-
work. Indeed, whereas Rasa3-de�cient HUVECs initially formed branched networks, the
branches were hypocellular and unstable leading to rapid collapse of the network.
(MP4)

S2Movie. Analysis of the dynamics of adhesion assembly and disassembly by TIRFmicros-
copy on migrating GFP-paxillin positive HUVECs depleted or not for Rasa3. �e analysis
was focused on FAs maturing just below the lamella, which appeared both larger and longer
lived in siRasa3 HUVECs than in siControl HUVECs.
(MP4)
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Abstract

Rasa3 is a GTPase activating protein of the GAP1 family which targets Ras and 
Rap1. Although catalytic inactivation or deletion of Rasa3 in mice leads to severe 
hemorrhages and embryonic lethality, the biological function and cellular location 
of Rasa3 underlying these defects remains unknown. Here, using a combination 
of loss of function studies in mouse (in collaboration with Patricia Molina Ortiz and 
Stephane Schurmans) and zebrafish as well as in vitro cell biology approaches, 
we identify a key role for Rasa3 in endothelial cells and vascular lumen integrity. 

Specific ablation of Rasa3 in the mouse endothelium, but not in megakaryocytes 
and platelets, lead to embryonic bleeding and death at mid-gestation, 
recapitulating the phenotype observed in full Rasa3 knock-out mice. Vascular 
lumenization defects were observed when Rasa3 was specifically inactivated in 
mouse endothelial cells at the postnatal or adult stages. Similar results were 
obtained in zebrafish after decreasing Rasa3 expression using a morpholino. In 
vitro, depletion of Rasa3 in cultured endothelial cells (HUVECs) increased β1 
integrin activation and cell adhesion to extracellular matrix components resulting 
in decreased cell migration and blocked tubulogenesis. During migration, these 
Rasa3-depleted cells exhibited larger and more mature adhesions resulting from 
a perturbed dynamics of adhesion assembly and disassembly which significantly 
increased their life time. These defects were due to a hyperactivation of the Rap1 
GTPase and a downregulation of FAK/Src signaling. Moreover, Rasa3-depleted 
cells showed reduced turnover of VE-cadherin-based adhesions resulting in 
more stable endothelial cell-cell adhesion and decreased endothelial 
permeability. Finally, pericytes (cells implicated in heterotypic interactions with 
endothelial cells) adhere more and spread less around a confluent monolayer of 
Rasa3-depleted HUVECs.

Altogether, our results indicate that Rasa3 is a critical regulator of Rap1 in 
endothelial cells which controls adhesions properties and vascular lumen 
integrity; its specific endothelial cell inactivation results in occluded blood vessels, 
hemorrhages and early embryonic death in mouse, mimicking thus the full 
Rasa3-/- mouse phenotype.




