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Abstract

To know whether the optimal scale of production has been reached is valu-
able information for producers. To date, scale efficiency measurements have
only been suggested for the entire production process. For multi-output pro-
ducers, more detailed results are required. Hence, in this paper, we show how to
provide such information at the output level. Attractively, our output-specific
scale efficiency measurements are nonparametric in nature, they take the eco-
nomic objective of the producers into account, they can be defined without
observing the input prices, and they are easy to interpret and to use in prac-
tice. We apply our methodology to a sample of more than 3300 US electricity
plants from 1998 to 2012, producing up to 10 types of electricity. We show that,
while there is a scale improvement at the total electricity generation level, this
is not the case for each of the 10 types of electricity. Also, we demonstrate
that, in general, renewable electricity presents better scale of production than
non-renewable electricity. Finally, we highlight the importance of multi-output
plants in the US electricity sector, and show that this type of plant is preferable
for the production of non-renewable electricity, while single-output plants are
preferable for renewable electricity.
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1 Introduction

Assessing the optimal scale of a production process is not a new topic in both the
economic literature and the production theory. Indeed, the concept of scale efficiency
could already be found in the works of Hanoch (1975), Panzar and Willig (1977), For-
sund and Hjalmarsson (1979), Banker (1984), Banker, Charnes, and Cooper (1984),
Fére and Grosskopf (1985), Banker and Thrall (1992), Forsund (1996), and Golany
and Yu (1997). More recent works include those of Simar and Wilson (2002), Forsund
and Hjalmarsson (2004), Krivonozhko et al (2004), Zelenyuk (2006, 2016), Podinovski,
Forsund, and Krivonozhko (2009), and Peyrache (2013). These works have the inves-
tigating of scale efficiency of the entire production process in common. Or in other
words, their methods indicate whether optimal scale is reached for the aggregate pro-
duction level. In this paper, we suggest a technique that also provides scale efficiency
results for individual output.

Our motivation to provide output-specific scale efficiency results is two-fold. On
the one hand, by considering output-specific indicators, the realism and the discrimi-
natory power of the model are naturally increased. The realism is increased since the
links between the inputs and the outputs can be modelled by allocating the inputs
to the output-specific production processes.! The discriminatory power is increased
since output-specific optimization behaviours could be assumed. On the other hand,
for multi-output producers, knowing whether the optimal scale is reached for each
output separately is clearly additional relevant information; useful when choosing
their strategy or when deciding how to allocate the inputs.

Our scale efficiency measurements are specially designed to take the economic
objective of the producers into account. In particular, we assume that they are cost
minimizers (the following is easily extended to profit or revenue maximizations). Cost
minimization fits with many settings and applications, and is, by definition, a nec-
essary condition for profit maximization. Our model is rooted in the nonparametric
cost evaluation models initiated by Afriat (1972), Hanoch and Rothschild (1972),
Diewert and Parkan (1983) and Varian (1984). That is, we impose very few struc-

'For example, employees allocated to specific output production, machines used only to produce
certain outputs. For more discussion on the allocation of inputs to outputs, refer, for example,
to Fare and Grosskopf (2000), Salerian and Chan (2005), Despic, Despic and Paradi (2007), Fére,
Grosskopf and Whittaker (2007), Tone and Tsutsui (2009), and Cherchye, De Rock, and Walheer
(2015).



tures on the production process and, therefore, only the following data are required:
outputs, inputs, and input prices. The distinguishing feature of our methodology is
that by modelling each output separately, we naturally give the option to assess scale
efficiency at the output level. Finally, as the observation of the input prices is rather
restrictive for some applications, we also provide alternative definitions of our scale
efficiency concepts without this assumption.

We apply our methodology to the case of US electricity plants. The Environmental
Protection Agency of the US developed a plant-level database for 1998 to 2012. For
each plant, the coal, oil, gas, nuclear, other fossil, wind, solar, geothermal, hydro,
and biomass electricity generations are specified. As such, by distinguishing between
10 different types of electricity generation, this database offers a unique opportunity
to apply our methodology. In particular, the very detailed data allow us to evaluate
scale efficiency of both the individual and aggregate electricity generation levels, and
to make a distinction between multi- and single-output producers. Therefore, we can
investigate whether multi- or single-output producers are preferable for each of the 10
types of electricity generation. This is valuable information for managers, regulators,
and policy makers when deciding how to allocate the production of electricity and
how to design the plants.

Moreover, our methodology offers two extra advantages in this context. On the
one hand, it gives the option to allocate the inputs to each electricity generation
type. In particular, renewable electricity is not produced by the use of fuel, while
non-renewable electricity generation requires this production factor. As such, our
methodology, which recognizes the links between production factors and electricity
generation, is particularly useful as it increases the realism of the modelling of the
plant production process. On the other hand, while the data for the production factors
and electricity generation are available for the plant level, the input prices are only
available at the state level. Thus, our methodology that works with partial /without
input price data is also very attractive for that reason.

The rest of this paper unfolds as follows. Section 2 presents the methodology. In
Section 3, we apply the methodology to the case of the US electricity plants from
1998 to 2012. Section 4 provides conclusions.



2 Methodology

We consider that we observe producers that are cost minimizers. In particular, we
assume that they use P inputs, x € RY, to produce Q outputs, y € Rg. We denote
the input price vector by w € Ri . Firstly, we assume that we observe these input

prices. This will be relaxed afterwards.

Output-specific framework. The distinguishing feature of our scale efficiency
measurements is that we make a clear distinction between aggregate and individual
outputs.? In particular, let us denote the g-th entry of y by 4. As such, we will define
scale efficiency measurements for both y and y?. To achieve this goal, we model each
output separately by its own production process, captured by input requirement set

defined as follows for output g:
I(y?) = {x? ¢ Ri | x? can produce y?}. (1)

Cost evaluation does not require us to make strong assumptions about those sets.
In fact, we follow Varian (1984) and only assume that those sets are nested: producing
less outputs cannot lead to using more inputs.® In this context, x4 € Ri denote the
inputs used to produce the output g. In fact, those inputs are connected to the
aggregate inputs (in x). Some inputs could be used to produce certain outputs (for
example, employees, machines). That is, these inputs are allocated to specific output
production processes. Next, some inputs could be used to produce all the outputs
(for example, infrastructure, capital), i.e. these inputs are not allocated to specific

output production processes. Formally, we have:

(x), = (x'), + ..., (x9),, if input p is allocated, (2)
(x), = (x9),, if input p is not allocated. (3)

Attractively, the distinction between allocated and non-allocated inputs provides
a unifying framework that is consistent not only with production models integrating

information on the internal production structure, but also with more standard pro-

2For more discussion about efficiency analysis in output-specific frameworks, refer to Cherchye
et al (2013) for the cost setting, and Cherchye, De Rock, and Walheer for the profit setting.
319(y9) is nested if: y? > y¢ = I9(y?) C I9(y?).



duction models (i.e. models that do not consider allocated inputs). As a final remark,
note that the non-allocated inputs could also be interpreted as public good (they are
non-rival and non-exclusive to the output production processes), and, therefore, they
give rise to economies of scope in the production process (See Panzar and Willig
(1981) and Nehring and Puppe (2004)).

As the output-specific inputs x? could be different from the inputs x, nothing
guarantees that their price should be the same. As such, let us denote the prices of
the output-specific inputs by w? € ]Ri. Note that, in general, while the input prices
could be observed, the output-specific input prices are not. The relationships between
the inputs and the output-specific inputs also imply specific relationships between
their prices. These prices coincide with the aggregate prices for allocated inputs.
Next, for non-allocated inputs these prices must add up to the aggregate prices. As
explained previously non-allocated inputs could be interpreted as public good. As
such, the output-specific prices have a similar interpretation as Lindahl prices that,
by definition, sum up to the aggregate prices. In that case, the output-specific input
prices capture the economies of scope of the production processes. Taking together,

we obtain:
(w?), = (wW),, if input p is allocated, (4)

Q
Z(wq)p = (W),, if input p is not allocated. (5)
q=1

As a final remark, note that the actual cost of the producers could be rewritten ex-
clusively by output-specific counterparts: w'x = Zqul w7 x9, where w?x9 represents

the cost of output q.

Cost evaluation. The starting point of the scale efficiency evaluation is the mini-
mal cost for each output ¢:

Ci(y?, w,w?) = min w?x" 6

(y )= min (6)

C9(y?, w,w?) selects the minimal input vector, in the input requirement set 1(y?),

to produce the output quantity y? given the input prices w?. C(y?, w, w?) < w?'x9,

and C?(y?, w,w?) = w?x? means that output ¢ is produced with minimal cost,



revealing cost efficiency, while C?(y?, w, w?) < w?x9 reflects potential cost savings.
Note that, the minimal costs C?(y?, w,w?) depend on the input price w, making
them interdependent. This is rather intuitive, since the unobserved output-specific
input prices depend on the input prices (see (4) and (5)).

Attractively, as explained before, by summing the output-specific costs, we obtain

the cost for the aggregate production level. This also holds for the minimal costs:
Q
Cly, w,w',...,w9) =Y Cy", w,w). (7)
q=1

Clearly, the property of the costs at the aggregate output level are the same as
their respective output-specific counterparts. Firstly, C4(y?, w, w9) < w?x?, implies
that C(y,w,w!,...,w?9) < w'x, i.e. at the aggregate output level, the minimal
cost is bounded by the actual cost. Next, if each output is produced with mini-
mal costs, i.e. Cy?, w,w?) = wix? for all ¢, then C(y,w,w',...,w?9) = w'x,
i.e. the actual cost coincides with the minimal cost. Finally, if at least one out-
put is produced inefficiently, i.e. C?(y?, w,w?) < w?x? for at least one ¢, we have
Cly,w,wh ..., w?9) < wx.

In practice, minimal costs can be computed using linear programs. This is partic-
ularly attractive since linear programs are easily solved. As noticed previously, the
output-specific minimal costs are, by definition, interdependent as the unobserved
output-specific input prices depend on the input prices. Attractively, we could com-
pute all the output-specific minimal costs by solving only one program. In fact, it
suffices to evaluate the minimal costs for the aggregate output level. In particular,

for every producer ¢ operating at (y;,x;) with input price wy, the minimal cost C; is



obtained as follows (LP-1):

C, = max E Cy
Ct,. ,CQ€R+ _
wtl7 Wy E]RQ

s.t. Vg € {1,...,Q}, the following holds:
(C-1): Cf < wix? for all s: y? > 1t
(C-2): (Wq) = (wy), for p an allocated input,

(C-3): Z wi), » for p a non-allocated input.

In words, (C-1) picks, for every output ¢, the minimal cost C{ when comparing
the evaluated producer ¢ to the dominating producers (i.e. those that produce more
outputs than y/). Note that it is why we have to impose that the input requirement
sets are nested, otherwise we can only compare producer ¢ to producers that produce
exactly the same output quantity. (C-2) and (C-3) make sure that the unknown
output-specific input prices are correctly specified (see (4) and (5)). As a final remark,
it could seem counter-intuitive to maximize a cost function. In fact, the maximization
selects the most favourable output-specific input prices (notion of shadow prices). See

also our discussion below when input prices are assumed unobserved.

Scale efficiency. Our previous definition of the technology, captured by the input
requirement sets 19(y?), does not assume any particular structure in terms of returns-
to-scale. As such, variable returns-to-scale was implicitly assumed. To test formally
for scale efficiency, we first have to define minimal costs for both the aggregate and
output-specific levels under the hypothetical assumption of constant returns-to-scale.*
Let us denote the input requirement set satisfying the hypothetical assumption of
constant returns-to-scale as I° I(y?). It is straightforward to define the minimal costs

with respect to those sets. In fact, it suffices to use I7(y?) instead of I%(y?) in (6):

Ci(y!, w,w') = min w7x% (8)
xaeTa(ya)

The interpretation of 6q(yq ,w,w?) is analogous to the interpretation of C9(y?, w, w?),

474(y7) satisfies constant returns-to-scale if: Vk € RS :x9 € I (y7) = kx? e I(ky).



the only difference is that the cost (in)efficient behaviour is evaluated when assuming
constant returns-to-scale. Note also, that by definition 5‘1(?/1, w,w?) < Cy?, w,wi).
It reflects that the input requirement set under constant returns-to-scale is, in gen-
eral, greater than the input requirement set under variable returns-to-scale, or in
other words, that I7(y?) is included in 19(y?).%.
We obtain our scale efficiency index for output ¢ and for the aggregate production
level as follows:
q(q4 q
SE1(y?, w, w?) = % (9)
Cly,w,wh,...,wQ) B Zqul Ca(yt, w, wi)

SE(y,w,w',...,w?) = = .
(y ) C(y? W? W17 A 7WQ) Zqul Cq(yq7 W7 Wq)

(10)

As éq(yq, w,w?) < Cly?, w,w?), SE9(y?, w,w?) is, in general, smaller than 1. A
value of one indicates scale efficiency behaviour. When SE?(y?, w, w?) < 1, it reveals
scale inefficiency, which could be due to decreasing or increasing returns-to-scale.’ As
for the output-specific value, SE(y, w,w!, ..., w%) = 1 reflects scale efficiency, while
a value smaller than one implies more scale inefficiency behaviour. Attractively, in
that case, the source(s) of inefficiency could be found simply by looking at the values
of the SEY(y?, w,w?). As a final remark, note that our definition of scale efficiency at
the aggregate production level is coherent with the one of Fare and Grosskopf (1985).
The only difference is that we base our measurement on output-specific technologies.

The linear program for the minimal costs under the hypothetical assumption of
constant returns-to-scale has a structure that is formally analogous to the one of
(LP-1). In particular, for every producer ¢t operating at (y;, x;) with input price wy,

the minimal cost under the hypothetical assumption of constant returns-to-scale is

5T4(y7) is directly related to I9(y9), since :fq(yq) = {A\(x?) € I1(\y?),YA > 0}.

6In practice, it is enough to evaluate the minimal cost when assuming non-increasing returns-
to-scale and compare to C?(y?, w,w?). If they are equal, scale inefficiency is due to decreasing
returns-to-scale. Otherwise, scale inefficiency is due to increasing returns-to-scale.



obtained as follows (LP-2):

Q
Cy = max E Ci
CL,...CReR
wtl,...,thERg

s.t. Vg € {1,...,Q}, the following holds:
(C-1): Gf < wi (¢ix!) for all s = (¢fy2) > o,

g=1

(C-2) : (w}), = (wy), for p an allocated input,
Q

(C-3): Z(Wf)p = (wy), for p a non-allocated input,
q=1

(C-4) : ¢! =inf{C€RJ | Cyl >y}

(LP-2) is very similar to (LP-1) except that the input-output of the dominating
producers are rescaled by the factor (?. In fact, this factor is present exactly to take
the hypothetical assumption of constant returns-to-scale into account in the linear
program. This is captured by the restriction on the set of the possible value of (7.
Note that, (LP-2) coincides with (LP-1) if (¢ = 1,Vq,Vs, i.e. no rescaling of the
input-output.” We end this part by one important remark: there is an interesting
relationship between scale efficiency at both levels.® In fact, scale efficiency at the
aggregate level could be obtained as a weighted sum of the scale efficiencies at the

output-specific level where the weights are the output-specific minimal cost shares:

Q

C(y1 q

SE(Y7W7W1,-..7WQ):Z Q (Y7W7W)
g=1 Zq:l Ci(y, w, wi)

SEY(y?, wi, w?). (11)

Input price availability. As it is defined, our aggregate and output-specific scale
efficiency indicators depend on the observation of the input price vectors (w). In the
following we relax this assumption. We believe that it is particularly attractive since

we can keep the advantage of basing our indicators on economic objective without

"Note that other returns-to-scale assumptions are easily implemented by replacing ]Rar by
(0,1],[1,00) for the decreasing or increasing returns to scale assumption, respectively. For more
details, see also Petersen (1990) and Bogetoft (1996) in a technical nonparametric setting. Also,
note that for (C-4), we assume that, if it is not possible to find such a {7 (i.e. the solution is the
empty set), then (9 = 400, i.e. no constraints are put on the minimal costs.

8Zelenyuk (2016) obtains a similar result in a group aggregation context based on revenue max-
imization.



facing the disadvantage of observing the input prices. As done before for the output-
specific input prices, we choose the input prices that maximize the minimal costs (i.e.
the shadow prices). As such, we evaluate the producers in the best possible way in
the absence of true input price information, which gives the benefit of the doubt to

the producers. We obtain:

Q
Cly,w, = C(y?, w?) = max Cl(y?, w,w?) 12
(y q:zl (y ma {Z (v, } (12)
Q ~ ~
g=1 WGR g=1

As the computed input prices are the most favourable, the minimal cost C(y, w!,. ..

and C (y,w!,...,w?) provide upper bounds for the minimal costs when the input
prices are assumed observed. Importantly, since no input prices are available, the
constraints on the output-specific input prices in (4) and (5) are irrelevant. The al-
ternative definitions of scale efficiency are obtained by plugging-in the new definitions
of the minimal costs (12) and (13) in (9) and (10). Attractively, we can also evaluate
those minimal costs by linear programs. For every producer ¢ operating at (y;, X;),

the minimal cost C, is obtained by solving (LP-3):

C; = max E Cq
C,},...,CQGR+ —
wtl,...,wt E]RQ

s.t. Vg € {1,...,Q}, the following holds:
(C-1) : CF < wi (¢x7) for all s : (C7y2) > f,
(C-2): I =inf{C €RY [ Cyl >y}

/
w,x; = 1.

As explained previously, when input prices are not observed, no constraints (except
that they have to be non-negative) are put on the output-specific input prices. A
common way to proceed, that dates from the work of Charnes, Cooper and Rhodes
(1978), is to normalize the actual cost to unity (i.e. wix; = 1). The normalization is

used to make the computed minimal costs comparable, i.e. the benchmark value is

10



1.9 The minimal costs C; are obtained, for every producer ¢, by setting (¢ = 1,Vq, Vs
in (LP-3). Finally, note that extra constraints on the computed prices could easily
be added in (LP-3). For example, lower and upper bounds could be included, as it is
the case in our Application where we use state-level input prices as lower and upper
bounds for the unknown plant-level input prices (See Section 3 for more details).

Those extra constraints are added to increase the realism of the computed prices.

3 Application

We apply our methodology to the case of the US electricity plants. Investigating the
scale optimality, building on a cost minimization behaviour, of electricity plants has
already been considered by several authors. See, for example, Christensen and Greene
(1976), Nelson (1985, 1989), Krautmann and Solow (1988), Nemoto et al. (1993),
Burns and Weyman-Jones (1996) Filippini (1996), Considine (2000), Filippini and
Wild (2001), Kleit and Terrell (2001), Maloney (2001), Rhine (2001), Hiebert (2002),
Fraquelli et al. (2005), Kopsakangas-Savolainen and Svento (2008), Akkemik (2009),
Arcos and De Toledo (2009), Assaf, Barros and Managi (2011), Kumbhakar et al
(2015), Ajayi, Weyman-Jones, and Glass (2017).!9 The cost minimizing framework is
mostly chosen in this context as the output side of the production process is rather
exogenous to the plant (fixed, in a sense, by the demand), while the plants can still
control the input side given the electricity generation. As such, the input side is
rather endogenous to the plants. This implies that cost minimization is preferable to
profit or revenue maximization in this context.

The distinguishing feature of our methodology is to consider each type of electricity
separately, instead of modelling only the aggregate electricity generation. As such,
our analysis, while remaining consistent with the previous works, offers the advantage
to provide more detailed results, without making extra assumptions on any aspect of
the production process. Moreover, our methodology offers two extra advantages in

this context. One, it allows us to allocate the inputs to each electricity generation

9Note that any value could, in principle, be used for the normalization, 1 is more convenient and
commonly used in this case.

ONote that in several works other methods are used to compute the cost functions (such as a
stochastic frontier model). In principle, these alternative methods could be extended to include
output-specific indicators. The advantages of the nonparametric model are its easy use and that no
strong assumptions are required about the production process. See our discussion of (1).

11



type, by explicitly recognizing the links between production factors and electricity
generation. In particular, it is clear that renewable electricity is not produced by the
use of fuel, while non-renewable electricity generation is. Two, our methodology also
works with partial input price data. This is very attractive in this context as, while
the data for the production factors and electricity generation are available for the
plant-level, the input prices are only available at the state-level.

We tackle two important questions in this empirical part. Firstly, we compute
scale efficiency of 10 types of electricity generations: coal, oil, gas, nuclear, other
fossil, wind, solar, geothermal, hydro, and biomass. This is attractive since it is
not obvious that the scale performances are the same for each type of electricity
production. Moreover, our sample consists of more than 3300 plants over a large
period (1998-2012), meaning that our results are trustworthy. Next, we investigate
whether multi- or single-output producers are preferable for each of the 10 types
of electricity generation. We believe that the answers to these two questions are
valuable information for managers, regulators, and policy makers when deciding how
to allocate the production of electricity and how to design the plants.

To present our empirical application, we first define the production process of
the plants. Next, we present our data and highlight the importance of multi-output
producers in the US. Afterwards, we present the scale efficiency results. Finally, we

provide the shadow prices for the inputs.

Data and plant production process. We use data of the eGRID system devel-
oped by the Environmental Protection Agency in the US. In particular, we use all
the databases available between 1998 and 2012 (there are no databases available after
2012). Unfortunately, the databases are not provided for each year but for nine years:
2012, 2010, 2009, 2007, 2005, 2004, 2000, 1999, and 1998. There are also two more
databases in 1996 and 1997, but the input labels are different; thus, we do not take
those two extra databases into account. This results in a sample of 3389 plants.

As explained in the Introduction, the first distinguishing feature of our empir-
ical analysis is that we model each type of electricity separately. Each plant can
produce up to 10 types of electricity: coal, oil, gas, nuclear, other fossil, wind, so-
lar, geothermal, hydro, and biomass (in fact, the maximum is 10 and the average is
1.40 on the period). We have @) = 10. As done by the eGRID system, we regroup

the ten types of electricity into two categories: renewable (wind, solar, geothermal,

12



hydro, and biomass) and non-renewable (coal, oil, gas, nuclear, other fossil). By sum-
ming the ten types of electricity generation, we obtain the total electricity generation.
Therefore, we obtain three levels of comparison: ten types of electricity generation
(coal, oil, gas, nuclear, other fossil, wind, solar, geothermal, hydro, and biomass), two
aggregate categories (renewable and non-renewable), and the total generation.

While the output side of the production process is described in much detail by the
eGRID system, the input side is not so detailed. Indeed, only the fuel consumption
is provided by eGRID system. Fortunately, we could proxy the missing inputs (such
as infrastructure, labour, etc.) by the nameplate capacity, provided by the eGRID
system. This strategy has already been used, for example, by Tone and Tsutsui
(2011), Sarkis and Cordeiro (2012), Cherchye , De Rock, and Walheer (2015), and
Walheer (2017, 2018) in a similar context. We have two inputs, i.e. P = 2. An
attractive feature of our technique, as discussed previously, is that it gives the option
to allocate the inputs to the outputs. In this context, this is particularly relevant as
the fuel input is clearly not used to produce the renewable electricity. We summarize
the production process of a typical plant in Figure 1.

We end this part by two remarks. Firstly, no data for the input prices are reported
for the plants by the eGRID system. Nevertheless, the Environmental Protection
Agency provides price data for the states. As such, we use those prices to increase
the realism of the computed prices. In particular, we use the plant-level prices as
lower and upper bounds for the unknown plant-level prices. The goal of these bounds
is to avoid trivial and/or unrealistic prices (as too close to zero or too large). See
our discussion at the end of Section 2 for more details. Next, as the data for the
number of boilers and generators are also provided by the eGRID system, we could
incorporate them as extra inputs. This is done in, for example, Sarkis and Cordeiro
(2012). In that case, P = 4. As the results are very similar and for the sake of

simplicity, we present the case with two inputs, i.e. P = 2.

Descriptive statistics and importance of the multi-output plants. We present
the descriptive statistics in Table 1. The first part of Table 1 (top) gives the averages,
medians, and maxima for the total, non-renewable, and renewable electricity gener-
ation for the period. Clearly, plants produce more non-renewable than renewable
electricity for the period. This is confirmed by both the averages and the medians.

Moreover, as highlighted by the maxima, the largest plants are those producing non-
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Figure 1: Production process of the electricity plants
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renewable electricity. Next, renewable electricity generation represents around 10%
of the total electricity production, and this percentage is more or less constant for the
period. The second part of Table 1 (bottom) presents the relative importance of each
type of electricity. It reveals that coal electricity generation represents around 50%
of the total electricity generation for the period, while nuclear electricity generation
represents around 25%, gas electricity generation represents around 10%, and hydro
electricity generation represents slighlty less than 10%. For non-renewable electricity,
the coal and oil electricity generation are decreasing, while the gas and nuclear are

increasing. For renewable electricity, they are all more or less stable for the period.

14



%6€°0 %200 %80°0 %aST'T %668 %040 %CE 61 %Syct WIV'E | %VE'ES
8TTI6 LVLL8Y 11¢9¢ LSVTG 8GLVET 0¢4cae G8699€0T | I8¥cSE ¢40C6 | LGECETE | 8661
%6€°0 %200 %80°0 WLET %898 %94°0 %V 0¢ WILCT %60°C | %SVCs
8CEV6 L099LY 165994 18984 6vach T GIS8YC 8¥CE0CIT | 69¢19€ L2EES | OILV60E | 6661
%9¢€°0 %200 %600 %eET %LE L %05°0 %99°0¢ %LOET WLL'T | %TIES
ITT¥6 09808¥% 8¥¥ LS 80679 9410¥1 6T44TC 069VGSTT | 99€9.LE Ve8YL | 8GCEETE | 000C
%S€0 %2070 %60°0 Wiv'1 %ET'L %LV 0 %68°1¢ %IL6 WGGE | %EGGS
S8TOTOT V8vvIY 9¢614 LLT09 00TOVT 8¢9450¢ LOGELSTT | LS9076¢ GGyc6 | 1€9¢1€E | ¥00T
%ve0 %200 %80°0 %81 %Ve 'L %499°0 WLETT %866 %8CC | %6L°GS
88COTT Gco0vy LEVSY G8LCS 66€0€T €9180¢ 69LTILTT | 90€E0€E eIyv6 | 0¢ve8ee | S00C
%ve0 %200 %600 %ace'T %6499 %190 %ET'TT %6601 WYL'T | %89G
Geve0l GRI8CY G8Y9V L0929 0cLcET GG988T V616€1CT | 0TI8CE V891G | 7.L9V6EE | LOOT
%9€°0 %2070 %60°0 WLET %00°8 %59€°0 %50 7e WLETT %eC’T | %60°€S
98V.LL ¢e0vey VITTY G8¥44 cLSvel 079T1G GL6TI9TCT | 68Vcle ereee | 600896¢ | 600¢
%49€0 %200 %60°0 %9€°T %9¢€°L %4€°0 WLV €T %CI'TT WYT'T | %VIVS
8TC6L 9€94cy 16€TY Pyiva 6G.8¢CT 98100¢ 88IVLICT | 694LCE I8GCE | ¥ORICTE | OTOC
%8¢°0 %200 %6070 %09°T %IL'8 %6¢€°0 %LITVC %9041 Wr80 | %Ve8y
Ge998 V.LI8CY L20TV 8L0VS eroyer 9¢c1ce 8EO6EVLIT | 9E€TT6E ¢90€G | ¢C¥L69¢C | ¢10G
[PULIOY)00K) IR[0G puIp\ | sseworg | OIpPAH | [ISSO I0U)() | Ied[onN sen) O [e0) | Ieax
%LTTT 09€8€01C | TE0LY | VPGEEC | G¥OTOCOE 0871 €GTIV.LAT | GVOTOC0E | €LCTIR | €ISTVOT | 8661
%V0°Cl vE€CLI6VC | TETIY | VOOVEC | CLGGTVOE 0099€T PIE06ST | ¢L9GTVOE | TLOT8 | TOVEIOT | 6661
%Se 0T GVLS9LTC | ¥EOVY | ©ELLOC | TLGO8EOE 1e8eET GLIIVIT | TLSO8EOE | ¥PLLL | TCLESOT | 000C
%1001 CCILI68T | €TGLE | S8LIGT | 609¢TI8C V1ccOT 1L09¢9T | 609¢TI8¢ | 16829 | VL6EVOT | #00C
%V8'6 8YOvLy0c | €9TTIV | S€916T | 9¥VL08SC 9eVIcT ¢e9eVIT | 9PPLO8SEC | 96699 | 699LG0T | S00¢
%16 G6¥cEITC | 9609€ | LCILLT | T6EC8LIC 16¢S0T GVESYIT | T6€C8L9C | TPI8G | 94LYS0T | L00C
%1601 €61.860¢ | ¢¥90¥ | 860C6T | TS8TIN0E €6cv.L 08GV67T | TS8TI90€ | 0¥89S | 0LCTL6 | 600C
%eT 0T GLLTGEST | 8L60¥ | E€VFIST | GE6661T€ L8VC8 099474l | GE666TTE | LCLT9 | ¥L8LGG | OT0OC
%6611 VLITIVIC | 0C98E | 690T0C | 9T6EC6TE 880¢L €EATCyT | 9T6EEOIE | LO6VS | T66CE6 | GI0G
08RIU00IOJ XN URIPSJN | 98RISAY XN URTPOIN odrIoAy XRIA URIPSA | 98RIoAY
AJIOL1109[0 O[eMOUdY] AJIOLI109[0 O[eMOUY-UON £31011999[0 [B)0], e

od£y 10d uoryeIoUsd A10LI)0070 Jo odejuanIod pue (AAJN) So13s1ye)s oATYdLIDSO(] T 9[qR],

15



Table 2 presents the descriptive statistics for the input side of the production
process. While the fuel consumption slowly decreases for the period, the nameplate
capacity increases. It means that plants are becoming bigger. This is also confirmed

by the rise of the number of generators and boilers.

Table 2: Production factors

Year | Boilers | Generators | Nameplate capacity Fuel
(number) | (number) (MW) (MMBtu)
2012 1.15 3.68 247 10488370
2010 1.17 3.40 246 11607583
2009 1.16 3.38 245 11103202
2007 0.65 3.38 241 12593262
2005 1.00 3.38 241 12795503
2004 0.99 3.42 241 12894084
2000 0.61 2.75 230 13474571
1999 0.59 2.73 230 13237346
1998 0.58 2.06 229 13249417

As explained in the Introduction, the second distinguishing feature of our empiri-
cal analysis is that we differentiate between multi- and single-output plants. To justify
the importance of this distinction in this context, we present in Table 3, the proportion
of multi-output producers for the total, non-renewable, and renewable electricity gen-
eration, and the percentage of electricity produced and production factors used by the

multi-output plants. While the percentage of multi-output producers decreases from

Table 3: Importance of the multi-output producers

Year Total Non-Renewable | Renewable Production factors
Multi | Prod | Multi | Prod | Multi | Prod | Namplate capacity | Fuel
2012 | 31% | 60% | 54% 66% 16% | 12% 59% 90%
2010 | 33% | 64% | 56% 70% 17% | 13% 61% 92%
2009 | 32% | 63% | 55% 68% 17% | 12% 60% 92%
2007 | 34% | 67% | 57% 2% 16% | 14% 64% 93%
2005 | 35% | 68% | 60% 73% 16% | 12% 65% 94%
2004 | 34% | 67% | 59% 2% 16% | 12% 63% 92%
2000 | 39% | 68% | 66% 73% 18% | 13% 67% 92%
1999 | 38% | 67% | 65% 73% 18% | 12% 65% 92%
1998 | 37% | 67% | 64% 74% 16% | 11% 65% 92%

almost 40% to 30% over the period, they are important as they produce around 60%
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of the total electricity, and represent 60% of the nameplate capacity and 90% of the
fuel consumption. This importance is higher for non-renewable electricity generation
as more than 50% of the producers are multi-output producers, and they represent
around 70% of the production of this type of electricity. Both these numbers decrease
over the period. For the renewable electricity production, the multi-output producers
represent around 16% of the number of producers, and generate around 12% of the
electricity. Both these numbers are stable over the period.

In Table 6 in the Appendix, we give the number of producers for each of the
10 types of electricity generation, and the proportion of multi-output producers. A
first observation is that the proportion of multi-output producers is very high for
the coal and solar electricity generation, as they represent more than 90% of the
producers. Next, they represent around 70% of the producers for the oil, gas, and
biomass electricity generation. The majority of producers of nuclear, hydro, and wind
electricity generation are single-output producers, while there are no multi-output
producers for the geothermal electricity generation. Finally, note that the proportion
of multi-output producers is slowly decreasing for every type of electricity generation,

except for solar electricity generation.

Scale efficiency results. The previous descriptive analysis has set the stage by
revealing the main characteristics of the US production plants, and the importance
of the multi-output plants. In this part, we present the results of the scale efficiency
scores. Those scores are computed using (LP-3) for every plant. We also add extra
constraints on the prices as discussed before. We use three tools to present our
results without losing too much information. Indeed, we have the scale efficiency
scores for the 3389 plants for the 10 outputs and the nine years. In particular, an
obvious choice is to give the averages and the medians for each year. While these
two statistics give a good first approximation of the change of scale efficiency, relying
only on the averages and medians to conclude if the scale efficiency has improved or
not could be restrictive in this context. Namely, because of the size of our sample.
As such, a more formal way to check the existence of an improvement is to make use
of the two-sample Kolmogorov-Smirnov test (KS test). This is a nonparametric test
that checks whether the distributions of two samples are equal or not. In our context,
we calibrate the test to check whether an improvement exists, i.e. if the distribution

has moved to the right. As such, we also provide the p—values of the two-sample
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KS test. If the p—value is smaller than 5%, we can reject the null hypothesis, and
conclude that the distribution has moved to the right implying an improvement of
scale efficiency. The results for the total, non-renewable, and renewable electricity
generations are shown in Table 4. For each type of electricity generation, we consider
three cases: all the producers, the multi-output producers, and the single-output

producers.

Table 4: Averages, Medians, and Kolmogorov-Smirnov p—values
Year Total Non-Renewable Renewable
All ‘ Multi ‘ Single | All ‘ Multi ‘ Single | All ‘ Multi ‘ Single
2012 0.58 | 0.50 | 0.62 | 049 | 048 | 0.51 | 0.67| 0.57 | 0.69

2010 061 057 | 0.64 | 051 | 054 | 048 |0.72] 0.69 | 0.72
2009 053 054 | 0.53 | 047 | 0.51 041 |0.61 | 0.68 | 0.59
2007 046 | 0.56 | 0.40 | 054 | 054 | 054 | 0.37] 0.62 | 0.32
2005 0.60 | 0.60 | 0.60 | 0.57 | 0.57 | 0.57 | 0.63 | 0.70 | 0.61
2004 0.55 | 0.57 | 0.54 |052] 053 | 051 |0.58] 0.70 | 0.56
2000 0.58 | 0.61 0.55 [0.58 | 0.58 | 0.56 | 0.58 | 0.71 0.55
1999 0.51 | 0.58 | 0.47 | 057 | 0.57 | 0.57 | 045 | 0.58 | 0.42
1998 052 058 | 048 | 054 | 056 | 0.51 | 049 | 0.66 | 0.46
2012 062 0.53 | 0.69 | 048 | 0.51 046 | 0.71 | 0.60 | 0.73
2010 0.70 | 0.64 | 0.72 | 0.53| 0.58 | 0.46 | 0.76 | 0.76 | 0.76
2009 0.57 | 0.61 0.56 |0.491] 055 | 037 |0.62| 0.76 | 0.60

2007 046 | 0.60 | 036 | 054 | 055 | 053 |0.28 | 0.71 0.22
2005 0.63| 0.66 | 0.61 |0.62| 063 | 0.59 | 0.63| 0.78 | 0.62
2004 057 0.64 | 0.55 | 0.55| 058 | 048 | 0.57| 0.77 | 0.55

2000 0.58 | 0.70 | 0.52 | 0.64| 0.66 | 0.56 | 0.54 | 0.77 | 0.51
1999 051 065 | 041 |0.63| 0.64 | 058 |0.40 | 0.64 | 0.35
1998 051 0.66 | 039 |0.63| 0.63 | 058 |0.39| 0.73 | 0.38

2012 > 1998 | 0.00 | 0.01 0.00 |0.00 | 0.02 | 0.00 |0.00| 0.99 | 0.00
2012 > 2010 | 0.00 | 0.01 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.97 1.00
2010 > 2009 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 0.00 | 0.00 | 0.61 0.00
2009 > 2007 | 0.00 | 0.19 | 0.00 |0.34| 0.17 | 0.90 | 0.00 | 0.00 | 0.00
2007 > 2005 | 0.94 | 0.03 | 0.84 |0.00| 0.03 | 0.00 |0.82| 099 | 0.83
2005 > 2004 | 0.00 | 0.00 | 0.00 |0.00| 0.00 | 0.00 |0.00| 045 | 0.00
2004 > 2000 | 0.00 | 1.00 | 0.00 |[0.96 | 1.00 | 0.17 | 0.00 | 0.20 | 0.00
2000 > 1999 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00
1999 > 1998 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.25| 0.89 | 0.21

Firstly, we can conclude that there is an improvement of scale efficiency over

the period for the total electricity generation. Except for 2007, the averages and
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medians have increased, and the p—values of the KS test are close to zero. The
same conclusion holds if we take only the multi- or the single-output producers into
account. Note that the averages have decreased for the multi-output producers, but
the p—values of the KS test are close to zero. This reveals the usefulness of this test in
our context. Next, non-renewable electricity generation shows a slight improvement,
while the improvement on renewable electricity generation is rather high. This is
confirmed by the p—values of the KS test. Again, similar results hold when looking
only at the multi- and single-output producers. Next, two important rankings seem
present in Table 4. One, renewable electricity generation seems to present higher
scale efficiency than non-renewable electricity. Two, single-output producers seem
less efficient on non-renewable electricity, but more efficient on renewable than multi-
output producers. The differences are more pronounced for renewable electricity
generation. To formally check those two observations, we again make use of the KS

test. The results are available in Table 5.

Table 5: Kolmogorov-Smirnov p—values

Year | Renewable > Non-renewable Multi > Single
All | Multi Single Total | Non-renewable | Renewable

2012 | 0.00 | 0.00 0.00 0.00 0.00 0.00
2010 | 0.00 | 0.00 0.00 0.00 0.32 0.07
2009 | 0.00 | 0.00 0.00 0.09 0.36 0.20
2007 | 0.00 | 0.00 0.00 0.14 0.02 0.74
2005 | 0.00 | 0.00 0.00 0.00 0.01 0.13
2004 | 0.00 | 0.00 0.00 0.00 0.00 0.32
2000 | 0.00 | 0.00 0.00 0.00 0.00 0.38
1999 | 0.00 | 0.00 0.00 0.15 0.00 0.26
1998 | 0.00 | 0.00 0.00 0.06 0.00 0.24

Our first observation about the relationship between renewable and non-renewable
electricity generation is clearly confirmed, as the KS test p—values are all close to zero,
implying that the distribution of renewable electricity is always larger than that for
non-renewable electricity. Our second observation is also confirmed. Indeed, the
majority of the KS test p—values are close to zero for the total and non-renewable
electricity, but not for the renewable electricity. As such, multi-output producers are
justified for non-renewable electricity, while single-output producers are preferred for
renewable electricity.

Finally, we present in Tables 7, 8, and 9 (available in the Appendix), the averages,
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medians, and KS test p—values of the scale efficiency scores for each type of electricity
generation. We give below the main findings. Firstly , the averages and medians for
the nuclear generation are the highest, and, as shown by the KS test p—values, they
are increasing. The performance of the three other types of non-renewable electricity
generation (i.e. coal, oil, and gas) are decreasing; this explains the relative worse per-
formances for non-renewable electricity generation discussed previously. Then, there
are high scores in hydro electricity generation (and increasing), biomass electricity
generation (and decreasing), and wind electricity generation (and increasing), which
explains the better performances for renewable electricity generation highlighted be-
fore.

When comparing single- and multi-output producers, it is clear that single-output
producers perform better for hydro, biomass, and wind electricity generation, which
explains the better performances of this type of producer for renewable electricity.
The performances of the single-output plant for geothermal electricity generation are
also high, but slowly decreasing. Note that no results are presented for geothermal
electricity generation for the multi-output plants as only single-output plants produce
that type of electricity. Interestingly, the performances of the multi-output producers
are higher for solar electricity generation. For non-renewable electricity, the multi-
output producers perform better for nuclear, coal, gas, and oil electricity generation;
but as discussed previously, the differences are more pronounced for renewable gen-

eration.!!

Shadow prices. We end our application by providing the shadow prices. As ex-
plained previously, one of the advantages of the suggested methodology for scale
efficiency is that it works when prices are not or partially available. For our US plant
context, this is attractive as only the state-level input prices are provided by the En-
vironmental Protection Agency of the US. We provide in Table 6 the average shadow
prices when assuming variable returns-to-scale. Note that similar results could be
obtained when assuming constant returns-to-scale, but since the latter assumption is
more restrictive, we rely on the former. This also reveals that assumptions about the
technology should be well motivated as they have an impact on the results. As done

previously for the scale efficiency results, we make a distinction between renewable

"Those results are also confirmed by KS tests. For the sake of compactness (i.e. 10 types of
electricity for nine years), we do not present those results in the paper, but they are available by
request from the author.
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and non-renewable electricity generation, and between single- and multi-output pro-
ducers. The shadow prices for nameplate capacity are given in dollar per MW, and
for fuel in dollar per MMBtu.

Table 6: Shadow prices for nameplate capacity and fuel
Year | All | Non-Renewable | Renewable
Multi ‘ Single | Multi ‘ Single
2012 | 6.51 | 5.52 5.8 6.81 6.83
2010 | 7.73 | 6.65 6.81 8.01 7.86
2009 | 8.08 | 7.52 7.65 8.56 | 845
2007 | 8.09 | 7.52 7.64 8.56 | 8.45
2005 | 6.41 | 6.35 6.21 6.99 | 6.84
2004 | 5.42 | 5.31 5.22 5.68 | 5.76
2001 | 5.51 | 5.45 5.62 5.62 5.71
1999 | 5.5 | 5.31 5.54 5.63 | 5.64
1998 | 5.81 | 5.22 5.32 6.01 5.98

2012 | 3.09 | 3.01 3.12 - -
2010 | 3.85 | 3.84 3.86 - -
2009 | 3.86 | 3.7 4.01 - -
2007 | 4.63 | 4.4 4.71 - -
2005 | 5.63 | 5.56 2.65 - -
2004 | 445 | 44 4.48 - -
2004 | 545 | 5.32 4.98 - -
1999 | 5.64 | 5.61 5.67 - -
1998 | 5.21 | 5.19 2.23 - -

As explained in detail in Section 2, the shadow prices represent the most favourable
prices in the absence of price information. As such, they are not the estimators of
the true unknown prices, and have thus to be interpreted carefully. Nevertheless,
they not only provide interesting useful information for the managers of the plants,
but also for policy-makers and regulators. At this juncture, we point out that, in
general, estimating the production cost of the plants is not an easy task. In the US,
the Environmental Protection Agency is putting much effort into estimating these
costs.'? The provided shadow prices could help in that task.

An initial observation is that the price of nameplate capacity for the producers
of renewable electricity is, on average, higher than the price for the producers of

non-renewable electricity. This could be explained as it is the only input used by

12See the following website for more detail: www.eia.gov/outlooks/capitalcost.
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the producers of renewable electricity. Next, on average, the prices of the single-
output producers are higher for both inputs than those of the multi-output producers.
This might be explained by the presence of economies of scope. Indeed, a reason for
producing more than one type of electricity is to obtain a decrease of the average total
cost (see also our discussion of (3)). The smaller input prices might be interpreted in

that sense.

4 Conclusion

In this paper, we have shown how to provide scale efficiency indicators at the output-
level. This is particularly attractive for multi-output producers since it represents
valuable information. Moreover, our output-specific scale efficiency measurements
are nonparametric in nature, they take the economic objective of the producers into
account, they can be defined without observing the input prices, and they are easy
to interpret and to use in practice.

We have applied our methodology to the case of the US electricity plants. Using
the plant-level database developed by the Environmental Protection Agency of the
US, we evaluated the scale efficiency of more than 3300 US electricity plants from
1998 to 2012 for 10 different types of electricity generation (coal, oil, gas, nuclear,
other fossil, wind, solar, geothermal, hydro, and biomass). We show that, while there
is a scale improvement at the total electricity generation level, this is not the case for
each of the 10 types of electricity. Also, we demonstrated that, in general, renewable
electricity presents better scale of production than non-renewable electricity. Next, we
highlighted the importance of the multi-output plants in the US electricity sector, and
show that those plants are preferable for the production of non-renewable electricity,

while single-output plants are preferable for renewable electricity.
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