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Abstract

To know whether the optimal scale of production has been reached is valu-

able information for producers. To date, scale efficiency measurements have

only been suggested for the entire production process. For multi-output pro-

ducers, more detailed results are required. Hence, in this paper, we show how to

provide such information at the output level. Attractively, our output-specific

scale efficiency measurements are nonparametric in nature, they take the eco-

nomic objective of the producers into account, they can be defined without

observing the input prices, and they are easy to interpret and to use in prac-

tice. We apply our methodology to a sample of more than 3300 US electricity

plants from 1998 to 2012, producing up to 10 types of electricity. We show that,

while there is a scale improvement at the total electricity generation level, this

is not the case for each of the 10 types of electricity. Also, we demonstrate

that, in general, renewable electricity presents better scale of production than

non-renewable electricity. Finally, we highlight the importance of multi-output

plants in the US electricity sector, and show that this type of plant is preferable

for the production of non-renewable electricity, while single-output plants are

preferable for renewable electricity.
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1 Introduction

Assessing the optimal scale of a production process is not a new topic in both the

economic literature and the production theory. Indeed, the concept of scale efficiency

could already be found in the works of Hanoch (1975), Panzar and Willig (1977), For-

sund and Hjalmarsson (1979), Banker (1984), Banker, Charnes, and Cooper (1984),

Färe and Grosskopf (1985), Banker and Thrall (1992), Forsund (1996), and Golany

and Yu (1997). More recent works include those of Simar and Wilson (2002), Forsund

and Hjalmarsson (2004), Krivonozhko et al (2004), Zelenyuk (2006, 2016), Podinovski,

Forsund, and Krivonozhko (2009), and Peyrache (2013). These works have the inves-

tigating of scale efficiency of the entire production process in common. Or in other

words, their methods indicate whether optimal scale is reached for the aggregate pro-

duction level. In this paper, we suggest a technique that also provides scale efficiency

results for individual output.

Our motivation to provide output-specific scale efficiency results is two-fold. On

the one hand, by considering output-specific indicators, the realism and the discrimi-

natory power of the model are naturally increased. The realism is increased since the

links between the inputs and the outputs can be modelled by allocating the inputs

to the output-specific production processes.1 The discriminatory power is increased

since output-specific optimization behaviours could be assumed. On the other hand,

for multi-output producers, knowing whether the optimal scale is reached for each

output separately is clearly additional relevant information; useful when choosing

their strategy or when deciding how to allocate the inputs.

Our scale efficiency measurements are specially designed to take the economic

objective of the producers into account. In particular, we assume that they are cost

minimizers (the following is easily extended to profit or revenue maximizations). Cost

minimization fits with many settings and applications, and is, by definition, a nec-

essary condition for profit maximization. Our model is rooted in the nonparametric

cost evaluation models initiated by Afriat (1972), Hanoch and Rothschild (1972),

Diewert and Parkan (1983) and Varian (1984). That is, we impose very few struc-

1For example, employees allocated to specific output production, machines used only to produce
certain outputs. For more discussion on the allocation of inputs to outputs, refer, for example,
to Färe and Grosskopf (2000), Salerian and Chan (2005), Despic, Despic and Paradi (2007), Färe,
Grosskopf and Whittaker (2007), Tone and Tsutsui (2009), and Cherchye, De Rock, and Walheer
(2015).
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tures on the production process and, therefore, only the following data are required:

outputs, inputs, and input prices. The distinguishing feature of our methodology is

that by modelling each output separately, we naturally give the option to assess scale

efficiency at the output level. Finally, as the observation of the input prices is rather

restrictive for some applications, we also provide alternative definitions of our scale

efficiency concepts without this assumption.

We apply our methodology to the case of US electricity plants. The Environmental

Protection Agency of the US developed a plant-level database for 1998 to 2012. For

each plant, the coal, oil, gas, nuclear, other fossil, wind, solar, geothermal, hydro,

and biomass electricity generations are specified. As such, by distinguishing between

10 different types of electricity generation, this database offers a unique opportunity

to apply our methodology. In particular, the very detailed data allow us to evaluate

scale efficiency of both the individual and aggregate electricity generation levels, and

to make a distinction between multi- and single-output producers. Therefore, we can

investigate whether multi- or single-output producers are preferable for each of the 10

types of electricity generation. This is valuable information for managers, regulators,

and policy makers when deciding how to allocate the production of electricity and

how to design the plants.

Moreover, our methodology offers two extra advantages in this context. On the

one hand, it gives the option to allocate the inputs to each electricity generation

type. In particular, renewable electricity is not produced by the use of fuel, while

non-renewable electricity generation requires this production factor. As such, our

methodology, which recognizes the links between production factors and electricity

generation, is particularly useful as it increases the realism of the modelling of the

plant production process. On the other hand, while the data for the production factors

and electricity generation are available for the plant level, the input prices are only

available at the state level. Thus, our methodology that works with partial/without

input price data is also very attractive for that reason.

The rest of this paper unfolds as follows. Section 2 presents the methodology. In

Section 3, we apply the methodology to the case of the US electricity plants from

1998 to 2012. Section 4 provides conclusions.
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2 Methodology

We consider that we observe producers that are cost minimizers. In particular, we

assume that they use P inputs, x ∈ RP
+, to produce Q outputs, y ∈ RQ

+. We denote

the input price vector by w ∈ RP
+. Firstly, we assume that we observe these input

prices. This will be relaxed afterwards.

Output-specific framework. The distinguishing feature of our scale efficiency

measurements is that we make a clear distinction between aggregate and individual

outputs.2 In particular, let us denote the q-th entry of y by yq. As such, we will define

scale efficiency measurements for both y and yq. To achieve this goal, we model each

output separately by its own production process, captured by input requirement set

defined as follows for output q:

Iq(yq) = {xq ∈ RP
+ | xq can produce yq}. (1)

Cost evaluation does not require us to make strong assumptions about those sets.

In fact, we follow Varian (1984) and only assume that those sets are nested: producing

less outputs cannot lead to using more inputs.3 In this context, xq ∈ RP
+ denote the

inputs used to produce the output q. In fact, those inputs are connected to the

aggregate inputs (in x). Some inputs could be used to produce certain outputs (for

example, employees, machines). That is, these inputs are allocated to specific output

production processes. Next, some inputs could be used to produce all the outputs

(for example, infrastructure, capital), i.e. these inputs are not allocated to specific

output production processes. Formally, we have:

(x)p = (x1)p + . . . , (xQ)p, if input p is allocated, (2)

(x)p = (xq)p, if input p is not allocated. (3)

Attractively, the distinction between allocated and non-allocated inputs provides

a unifying framework that is consistent not only with production models integrating

information on the internal production structure, but also with more standard pro-

2For more discussion about efficiency analysis in output-specific frameworks, refer to Cherchye
et al (2013) for the cost setting, and Cherchye, De Rock, and Walheer for the profit setting.

3Iq(yq) is nested if: yq ≥ yq′ =⇒ Iq(yq) ⊆ Iq(yq
′
).
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duction models (i.e. models that do not consider allocated inputs). As a final remark,

note that the non-allocated inputs could also be interpreted as public good (they are

non-rival and non-exclusive to the output production processes), and, therefore, they

give rise to economies of scope in the production process (See Panzar and Willig

(1981) and Nehring and Puppe (2004)).

As the output-specific inputs xq could be different from the inputs x, nothing

guarantees that their price should be the same. As such, let us denote the prices of

the output-specific inputs by wq ∈ RP
+. Note that, in general, while the input prices

could be observed, the output-specific input prices are not. The relationships between

the inputs and the output-specific inputs also imply specific relationships between

their prices. These prices coincide with the aggregate prices for allocated inputs.

Next, for non-allocated inputs these prices must add up to the aggregate prices. As

explained previously non-allocated inputs could be interpreted as public good. As

such, the output-specific prices have a similar interpretation as Lindahl prices that,

by definition, sum up to the aggregate prices. In that case, the output-specific input

prices capture the economies of scope of the production processes. Taking together,

we obtain:

(wq)p = (w)p, if input p is allocated, (4)

Q∑
q=1

(wq)p = (w)p, if input p is not allocated. (5)

As a final remark, note that the actual cost of the producers could be rewritten ex-

clusively by output-specific counterparts: w′x =
∑Q

q=1 wq′xq, where wq′xq represents

the cost of output q.

Cost evaluation. The starting point of the scale efficiency evaluation is the mini-

mal cost for each output q:

Cq(yq,w,wq) = min
xq∈Iq(yq)

wq′xq. (6)

Cq(yq,w,wq) selects the minimal input vector, in the input requirement set Iq(yq),

to produce the output quantity yq given the input prices wq. Cq(yq,w,wq) ≤ wq′xq,

and Cq(yq,w,wq) = wq′xq means that output q is produced with minimal cost,
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revealing cost efficiency, while Cq(yq,w,wq) < wq′xq reflects potential cost savings.

Note that, the minimal costs Cq(yq,w,wq) depend on the input price w, making

them interdependent. This is rather intuitive, since the unobserved output-specific

input prices depend on the input prices (see (4) and (5)).

Attractively, as explained before, by summing the output-specific costs, we obtain

the cost for the aggregate production level. This also holds for the minimal costs:

C(y,w,w1, . . . ,wQ) =

Q∑
q=1

Cq(yq,w,wq). (7)

Clearly, the property of the costs at the aggregate output level are the same as

their respective output-specific counterparts. Firstly, Cq(yq,w,wq) ≤ wq′xq, implies

that C(y,w,w1, . . . ,wQ) ≤ w′x, i.e. at the aggregate output level, the minimal

cost is bounded by the actual cost. Next, if each output is produced with mini-

mal costs, i.e. Cq(yq,w,wq) = wq′xq for all q, then C(y,w,w1, . . . ,wQ) = w′x,

i.e. the actual cost coincides with the minimal cost. Finally, if at least one out-

put is produced inefficiently, i.e. Cq(yq,w,wq) < wq′xq for at least one q, we have

C(y,w,w1, . . . ,wQ) < w′x.

In practice, minimal costs can be computed using linear programs. This is partic-

ularly attractive since linear programs are easily solved. As noticed previously, the

output-specific minimal costs are, by definition, interdependent as the unobserved

output-specific input prices depend on the input prices. Attractively, we could com-

pute all the output-specific minimal costs by solving only one program. In fact, it

suffices to evaluate the minimal costs for the aggregate output level. In particular,

for every producer t operating at (yt,xt) with input price wt, the minimal cost Ct is
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obtained as follows (LP-1):

Ct = max
C1

t ,...,C
Q
t ∈R+

w1
t ,...,w

Q
t ∈RQ

+

Q∑
q=1

Cq
t

s.t. ∀q ∈ {1, . . . , Q}, the following holds:

(C-1) : Cq
t ≤ wq′

t xq
s for all s : yqs ≥ yqt ,

(C-2) : (wq
t )p = (wt)p for p an allocated input,

(C-3) :

Q∑
q=1

(wq
t )p = (wt)p for p a non-allocated input.

In words, (C-1) picks, for every output q, the minimal cost Cq
t when comparing

the evaluated producer t to the dominating producers (i.e. those that produce more

outputs than yqt ). Note that it is why we have to impose that the input requirement

sets are nested, otherwise we can only compare producer t to producers that produce

exactly the same output quantity. (C-2) and (C-3) make sure that the unknown

output-specific input prices are correctly specified (see (4) and (5)). As a final remark,

it could seem counter-intuitive to maximize a cost function. In fact, the maximization

selects the most favourable output-specific input prices (notion of shadow prices). See

also our discussion below when input prices are assumed unobserved.

Scale efficiency. Our previous definition of the technology, captured by the input

requirement sets Iq(yq), does not assume any particular structure in terms of returns-

to-scale. As such, variable returns-to-scale was implicitly assumed. To test formally

for scale efficiency, we first have to define minimal costs for both the aggregate and

output-specific levels under the hypothetical assumption of constant returns-to-scale.4

Let us denote the input requirement set satisfying the hypothetical assumption of

constant returns-to-scale as Îq(yq). It is straightforward to define the minimal costs

with respect to those sets. In fact, it suffices to use Îq(yq) instead of Iq(yq) in (6):

Ĉq(yq,w,wq) = min
xq∈Îq(yq)

wq′xq. (8)

The interpretation of Ĉq(yq,w,wq) is analogous to the interpretation of Cq(yq,w,wq),

4Îq(yq) satisfies constant returns-to-scale if: ∀k ∈ R+
0 : xq ∈ Îq(yq) =⇒ kxq ∈ Îq(kyq).
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the only difference is that the cost (in)efficient behaviour is evaluated when assuming

constant returns-to-scale. Note also, that by definition Ĉq(yq,w,wq) ≤ Cq(yq,w,wq).

It reflects that the input requirement set under constant returns-to-scale is, in gen-

eral, greater than the input requirement set under variable returns-to-scale, or in

other words, that Iq(yq) is included in Îq(yq).5.

We obtain our scale efficiency index for output q and for the aggregate production

level as follows:

SE q(yq,w,wq) =
Ĉ q(yq,w,wq)

C q(yq,w,wq)
. (9)

SE (y,w,w1, . . . ,wQ) =
Ĉ (y,w,w1, . . . ,wQ)

C(y,w,w1, . . . ,wQ)
=

∑Q
q=1 Ĉ

q(yq,w,wq)∑Q
q=1C

q(yq,w,wq)
. (10)

As Ĉq(yq,w,wq) ≤ Cq(yq,w,wq), SE q(yq,w,wq) is, in general, smaller than 1. A

value of one indicates scale efficiency behaviour. When SE q(yq,w,wq) < 1, it reveals

scale inefficiency, which could be due to decreasing or increasing returns-to-scale.6 As

for the output-specific value, SE (y,w,w1, . . . ,wQ) = 1 reflects scale efficiency, while

a value smaller than one implies more scale inefficiency behaviour. Attractively, in

that case, the source(s) of inefficiency could be found simply by looking at the values

of the SE q(yq,w,wq). As a final remark, note that our definition of scale efficiency at

the aggregate production level is coherent with the one of Färe and Grosskopf (1985).

The only difference is that we base our measurement on output-specific technologies.

The linear program for the minimal costs under the hypothetical assumption of

constant returns-to-scale has a structure that is formally analogous to the one of

(LP-1). In particular, for every producer t operating at (yt,xt) with input price wt,

the minimal cost under the hypothetical assumption of constant returns-to-scale is

5Îq(yq) is directly related to Iq(yq), since Îq(yq) = {λ(xq) ∈ Iq(λyq),∀λ > 0}.
6In practice, it is enough to evaluate the minimal cost when assuming non-increasing returns-

to-scale and compare to Cq(yq,w,wq). If they are equal, scale inefficiency is due to decreasing
returns-to-scale. Otherwise, scale inefficiency is due to increasing returns-to-scale.
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obtained as follows (LP-2):

Ĉt = max
Ĉ1

t ,...,Ĉ
Q
t ∈R+

w1
t ,...,w

Q
t ∈RQ

+

Q∑
q=1

Ĉq
t

s.t. ∀q ∈ {1, . . . , Q}, the following holds:

(C-1) : Ĉq
t ≤ wq′

t (ζqsx
q
s) for all s : (ζqsy

q
s) ≥ yqt ,

(C-2) : (wq
t )p = (wt)p for p an allocated input,

(C-3) :

Q∑
q=1

(wq
t )p = (wt)p for p a non-allocated input,

(C-4) : ζqs = inf
{
ζ ∈ R+

0 | ζyqs ≥ yqt
}
.

(LP-2) is very similar to (LP-1) except that the input-output of the dominating

producers are rescaled by the factor ζqs . In fact, this factor is present exactly to take

the hypothetical assumption of constant returns-to-scale into account in the linear

program. This is captured by the restriction on the set of the possible value of ζqs .

Note that, (LP-2) coincides with (LP-1) if ζqs = 1, ∀q,∀s, i.e. no rescaling of the

input-output.7 We end this part by one important remark: there is an interesting

relationship between scale efficiency at both levels.8 In fact, scale efficiency at the

aggregate level could be obtained as a weighted sum of the scale efficiencies at the

output-specific level where the weights are the output-specific minimal cost shares:

SE (y,w,w1, . . . ,wQ) =

Q∑
q=1

Cq(yq,w,wq)∑Q
q=1C

q(yq,w,wq)
SE q(yq,wq,wq). (11)

Input price availability. As it is defined, our aggregate and output-specific scale

efficiency indicators depend on the observation of the input price vectors (w). In the

following we relax this assumption. We believe that it is particularly attractive since

we can keep the advantage of basing our indicators on economic objective without

7Note that other returns-to-scale assumptions are easily implemented by replacing R+
0 by

(0, 1], [1,∞) for the decreasing or increasing returns to scale assumption, respectively. For more
details, see also Petersen (1990) and Bogetoft (1996) in a technical nonparametric setting. Also,
note that for (C-4), we assume that, if it is not possible to find such a ζqs (i.e. the solution is the
empty set), then ζqs = +∞, i.e. no constraints are put on the minimal costs.

8Zelenyuk (2016) obtains a similar result in a group aggregation context based on revenue max-
imization.
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facing the disadvantage of observing the input prices. As done before for the output-

specific input prices, we choose the input prices that maximize the minimal costs (i.e.

the shadow prices). As such, we evaluate the producers in the best possible way in

the absence of true input price information, which gives the benefit of the doubt to

the producers. We obtain:

C(y,w1, . . . ,wQ) =

Q∑
q=1

Cq(yq,wq) = max
w∈RQ

+

{
Q∑

q=1

Cq(yq,w,wq)

}
, (12)

Ĉ(y,w1, . . . ,wQ) =

Q∑
q=1

Ĉq(yq,wq) = max
w∈RQ

+

{
Q∑

q=1

Ĉq(yq,w,wq)

}
. (13)

As the computed input prices are the most favourable, the minimal cost C(y,w1, . . . ,wQ)

and Ĉ(y,w1, . . . ,wQ) provide upper bounds for the minimal costs when the input

prices are assumed observed. Importantly, since no input prices are available, the

constraints on the output-specific input prices in (4) and (5) are irrelevant. The al-

ternative definitions of scale efficiency are obtained by plugging-in the new definitions

of the minimal costs (12) and (13) in (9) and (10). Attractively, we can also evaluate

those minimal costs by linear programs. For every producer t operating at (yt,xt),

the minimal cost Ĉt is obtained by solving (LP-3):

Ĉt = max
Ĉ1

t ,...,Ĉ
Q
t ∈R+

w1
t ,...,w

Q
t ∈RQ

+

Q∑
q=1

Ĉq
t

s.t. ∀q ∈ {1, . . . , Q}, the following holds:

(C-1) : Ĉq
t ≤ wq′

t (ζqsx
q
s) for all s : (ζqsy

q
s) ≥ yqt ,

(C-2) : ζqs = inf
{
ζ ∈ R+

0 | ζyqs ≥ yqt
}
.

w′
txt = 1.

As explained previously, when input prices are not observed, no constraints (except

that they have to be non-negative) are put on the output-specific input prices. A

common way to proceed, that dates from the work of Charnes, Cooper and Rhodes

(1978), is to normalize the actual cost to unity (i.e. w′
txt = 1). The normalization is

used to make the computed minimal costs comparable, i.e. the benchmark value is
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1.9 The minimal costs Ct are obtained, for every producer t, by setting ζqs = 1,∀q,∀s
in (LP-3). Finally, note that extra constraints on the computed prices could easily

be added in (LP-3). For example, lower and upper bounds could be included, as it is

the case in our Application where we use state-level input prices as lower and upper

bounds for the unknown plant-level input prices (See Section 3 for more details).

Those extra constraints are added to increase the realism of the computed prices.

3 Application

We apply our methodology to the case of the US electricity plants. Investigating the

scale optimality, building on a cost minimization behaviour, of electricity plants has

already been considered by several authors. See, for example, Christensen and Greene

(1976), Nelson (1985, 1989), Krautmann and Solow (1988), Nemoto et al. (1993),

Burns and Weyman-Jones (1996) Filippini (1996), Considine (2000), Filippini and

Wild (2001), Kleit and Terrell (2001), Maloney (2001), Rhine (2001), Hiebert (2002),

Fraquelli et al. (2005), Kopsakangas-Savolainen and Svento (2008), Akkemik (2009),

Arcos and De Toledo (2009), Assaf, Barros and Managi (2011), Kumbhakar et al

(2015), Ajayi, Weyman-Jones, and Glass (2017).10 The cost minimizing framework is

mostly chosen in this context as the output side of the production process is rather

exogenous to the plant (fixed, in a sense, by the demand), while the plants can still

control the input side given the electricity generation. As such, the input side is

rather endogenous to the plants. This implies that cost minimization is preferable to

profit or revenue maximization in this context.

The distinguishing feature of our methodology is to consider each type of electricity

separately, instead of modelling only the aggregate electricity generation. As such,

our analysis, while remaining consistent with the previous works, offers the advantage

to provide more detailed results, without making extra assumptions on any aspect of

the production process. Moreover, our methodology offers two extra advantages in

this context. One, it allows us to allocate the inputs to each electricity generation

9Note that any value could, in principle, be used for the normalization, 1 is more convenient and
commonly used in this case.

10Note that in several works other methods are used to compute the cost functions (such as a
stochastic frontier model). In principle, these alternative methods could be extended to include
output-specific indicators. The advantages of the nonparametric model are its easy use and that no
strong assumptions are required about the production process. See our discussion of (1).

11



type, by explicitly recognizing the links between production factors and electricity

generation. In particular, it is clear that renewable electricity is not produced by the

use of fuel, while non-renewable electricity generation is. Two, our methodology also

works with partial input price data. This is very attractive in this context as, while

the data for the production factors and electricity generation are available for the

plant-level, the input prices are only available at the state-level.

We tackle two important questions in this empirical part. Firstly, we compute

scale efficiency of 10 types of electricity generations: coal, oil, gas, nuclear, other

fossil, wind, solar, geothermal, hydro, and biomass. This is attractive since it is

not obvious that the scale performances are the same for each type of electricity

production. Moreover, our sample consists of more than 3300 plants over a large

period (1998-2012), meaning that our results are trustworthy. Next, we investigate

whether multi- or single-output producers are preferable for each of the 10 types

of electricity generation. We believe that the answers to these two questions are

valuable information for managers, regulators, and policy makers when deciding how

to allocate the production of electricity and how to design the plants.

To present our empirical application, we first define the production process of

the plants. Next, we present our data and highlight the importance of multi-output

producers in the US. Afterwards, we present the scale efficiency results. Finally, we

provide the shadow prices for the inputs.

Data and plant production process. We use data of the eGRID system devel-

oped by the Environmental Protection Agency in the US. In particular, we use all

the databases available between 1998 and 2012 (there are no databases available after

2012). Unfortunately, the databases are not provided for each year but for nine years:

2012, 2010, 2009, 2007, 2005, 2004, 2000, 1999, and 1998. There are also two more

databases in 1996 and 1997, but the input labels are different; thus, we do not take

those two extra databases into account. This results in a sample of 3389 plants.

As explained in the Introduction, the first distinguishing feature of our empir-

ical analysis is that we model each type of electricity separately. Each plant can

produce up to 10 types of electricity: coal, oil, gas, nuclear, other fossil, wind, so-

lar, geothermal, hydro, and biomass (in fact, the maximum is 10 and the average is

1.40 on the period). We have Q = 10. As done by the eGRID system, we regroup

the ten types of electricity into two categories: renewable (wind, solar, geothermal,
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hydro, and biomass) and non-renewable (coal, oil, gas, nuclear, other fossil). By sum-

ming the ten types of electricity generation, we obtain the total electricity generation.

Therefore, we obtain three levels of comparison: ten types of electricity generation

(coal, oil, gas, nuclear, other fossil, wind, solar, geothermal, hydro, and biomass), two

aggregate categories (renewable and non-renewable), and the total generation.

While the output side of the production process is described in much detail by the

eGRID system, the input side is not so detailed. Indeed, only the fuel consumption

is provided by eGRID system. Fortunately, we could proxy the missing inputs (such

as infrastructure, labour, etc.) by the nameplate capacity, provided by the eGRID

system. This strategy has already been used, for example, by Tone and Tsutsui

(2011), Sarkis and Cordeiro (2012), Cherchye , De Rock, and Walheer (2015), and

Walheer (2017, 2018) in a similar context. We have two inputs, i.e. P = 2. An

attractive feature of our technique, as discussed previously, is that it gives the option

to allocate the inputs to the outputs. In this context, this is particularly relevant as

the fuel input is clearly not used to produce the renewable electricity. We summarize

the production process of a typical plant in Figure 1.

We end this part by two remarks. Firstly, no data for the input prices are reported

for the plants by the eGRID system. Nevertheless, the Environmental Protection

Agency provides price data for the states. As such, we use those prices to increase

the realism of the computed prices. In particular, we use the plant-level prices as

lower and upper bounds for the unknown plant-level prices. The goal of these bounds

is to avoid trivial and/or unrealistic prices (as too close to zero or too large). See

our discussion at the end of Section 2 for more details. Next, as the data for the

number of boilers and generators are also provided by the eGRID system, we could

incorporate them as extra inputs. This is done in, for example, Sarkis and Cordeiro

(2012). In that case, P = 4. As the results are very similar and for the sake of

simplicity, we present the case with two inputs, i.e. P = 2.

Descriptive statistics and importance of the multi-output plants. We present

the descriptive statistics in Table 1. The first part of Table 1 (top) gives the averages,

medians, and maxima for the total, non-renewable, and renewable electricity gener-

ation for the period. Clearly, plants produce more non-renewable than renewable

electricity for the period. This is confirmed by both the averages and the medians.

Moreover, as highlighted by the maxima, the largest plants are those producing non-

13



Figure 1: Production process of the electricity plants

renewable electricity. Next, renewable electricity generation represents around 10%

of the total electricity production, and this percentage is more or less constant for the

period. The second part of Table 1 (bottom) presents the relative importance of each

type of electricity. It reveals that coal electricity generation represents around 50%

of the total electricity generation for the period, while nuclear electricity generation

represents around 25%, gas electricity generation represents around 10%, and hydro

electricity generation represents slighlty less than 10%. For non-renewable electricity,

the coal and oil electricity generation are decreasing, while the gas and nuclear are

increasing. For renewable electricity, they are all more or less stable for the period.
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Table 2 presents the descriptive statistics for the input side of the production

process. While the fuel consumption slowly decreases for the period, the nameplate

capacity increases. It means that plants are becoming bigger. This is also confirmed

by the rise of the number of generators and boilers.

Table 2: Production factors
Year Boilers Generators Nameplate capacity Fuel

(number) (number) (MW) (MMBtu)
2012 1.15 3.68 247 10488370
2010 1.17 3.40 246 11607583
2009 1.16 3.38 245 11103202
2007 0.65 3.38 241 12593262
2005 1.00 3.38 241 12795503
2004 0.99 3.42 241 12894084
2000 0.61 2.75 230 13474571
1999 0.59 2.73 230 13237346
1998 0.58 2.06 229 13249417

As explained in the Introduction, the second distinguishing feature of our empiri-

cal analysis is that we differentiate between multi- and single-output plants. To justify

the importance of this distinction in this context, we present in Table 3, the proportion

of multi-output producers for the total, non-renewable, and renewable electricity gen-

eration, and the percentage of electricity produced and production factors used by the

multi-output plants. While the percentage of multi-output producers decreases from

Table 3: Importance of the multi-output producers
Year Total Non-Renewable Renewable Production factors

Multi Prod Multi Prod Multi Prod Namplate capacity Fuel
2012 31% 60% 54% 66% 16% 12% 59% 90%
2010 33% 64% 56% 70% 17% 13% 61% 92%
2009 32% 63% 55% 68% 17% 12% 60% 92%
2007 34% 67% 57% 72% 16% 14% 64% 93%
2005 35% 68% 60% 73% 16% 12% 65% 94%
2004 34% 67% 59% 72% 16% 12% 63% 92%
2000 39% 68% 66% 73% 18% 13% 67% 92%
1999 38% 67% 65% 73% 18% 12% 65% 92%
1998 37% 67% 64% 74% 16% 11% 65% 92%

almost 40% to 30% over the period, they are important as they produce around 60%
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of the total electricity, and represent 60% of the nameplate capacity and 90% of the

fuel consumption. This importance is higher for non-renewable electricity generation

as more than 50% of the producers are multi-output producers, and they represent

around 70% of the production of this type of electricity. Both these numbers decrease

over the period. For the renewable electricity production, the multi-output producers

represent around 16% of the number of producers, and generate around 12% of the

electricity. Both these numbers are stable over the period.

In Table 6 in the Appendix, we give the number of producers for each of the

10 types of electricity generation, and the proportion of multi-output producers. A

first observation is that the proportion of multi-output producers is very high for

the coal and solar electricity generation, as they represent more than 90% of the

producers. Next, they represent around 70% of the producers for the oil, gas, and

biomass electricity generation. The majority of producers of nuclear, hydro, and wind

electricity generation are single-output producers, while there are no multi-output

producers for the geothermal electricity generation. Finally, note that the proportion

of multi-output producers is slowly decreasing for every type of electricity generation,

except for solar electricity generation.

Scale efficiency results. The previous descriptive analysis has set the stage by

revealing the main characteristics of the US production plants, and the importance

of the multi-output plants. In this part, we present the results of the scale efficiency

scores. Those scores are computed using (LP-3) for every plant. We also add extra

constraints on the prices as discussed before. We use three tools to present our

results without losing too much information. Indeed, we have the scale efficiency

scores for the 3389 plants for the 10 outputs and the nine years. In particular, an

obvious choice is to give the averages and the medians for each year. While these

two statistics give a good first approximation of the change of scale efficiency, relying

only on the averages and medians to conclude if the scale efficiency has improved or

not could be restrictive in this context. Namely, because of the size of our sample.

As such, a more formal way to check the existence of an improvement is to make use

of the two-sample Kolmogorov-Smirnov test (KS test). This is a nonparametric test

that checks whether the distributions of two samples are equal or not. In our context,

we calibrate the test to check whether an improvement exists, i.e. if the distribution

has moved to the right. As such, we also provide the p−values of the two-sample

17



KS test. If the p−value is smaller than 5%, we can reject the null hypothesis, and

conclude that the distribution has moved to the right implying an improvement of

scale efficiency. The results for the total, non-renewable, and renewable electricity

generations are shown in Table 4. For each type of electricity generation, we consider

three cases: all the producers, the multi-output producers, and the single-output

producers.

Table 4: Averages, Medians, and Kolmogorov-Smirnov p−values
Year Total Non-Renewable Renewable

All Multi Single All Multi Single All Multi Single

2012 0.58 0.50 0.62 0.49 0.48 0.51 0.67 0.57 0.69
2010 0.61 0.57 0.64 0.51 0.54 0.48 0.72 0.69 0.72
2009 0.53 0.54 0.53 0.47 0.51 0.41 0.61 0.68 0.59
2007 0.46 0.56 0.40 0.54 0.54 0.54 0.37 0.62 0.32
2005 0.60 0.60 0.60 0.57 0.57 0.57 0.63 0.70 0.61
2004 0.55 0.57 0.54 0.52 0.53 0.51 0.58 0.70 0.56
2000 0.58 0.61 0.55 0.58 0.58 0.56 0.58 0.71 0.55
1999 0.51 0.58 0.47 0.57 0.57 0.57 0.45 0.58 0.42
1998 0.52 0.58 0.48 0.54 0.56 0.51 0.49 0.66 0.46

2012 0.62 0.53 0.69 0.48 0.51 0.46 0.71 0.60 0.73
2010 0.70 0.64 0.72 0.53 0.58 0.46 0.76 0.76 0.76
2009 0.57 0.61 0.56 0.49 0.55 0.37 0.62 0.76 0.60
2007 0.46 0.60 0.36 0.54 0.55 0.53 0.28 0.71 0.22
2005 0.63 0.66 0.61 0.62 0.63 0.59 0.63 0.78 0.62
2004 0.57 0.64 0.55 0.55 0.58 0.48 0.57 0.77 0.55
2000 0.58 0.70 0.52 0.64 0.66 0.56 0.54 0.77 0.51
1999 0.51 0.65 0.41 0.63 0.64 0.58 0.40 0.64 0.35
1998 0.51 0.66 0.39 0.63 0.63 0.58 0.39 0.73 0.38

2012 > 1998 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.99 0.00
2012 > 2010 0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.97 1.00
2010 > 2009 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.61 0.00
2009 > 2007 0.00 0.19 0.00 0.34 0.17 0.90 0.00 0.00 0.00
2007 > 2005 0.94 0.03 0.84 0.00 0.03 0.00 0.82 0.99 0.83
2005 > 2004 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00
2004 > 2000 0.00 1.00 0.00 0.96 1.00 0.17 0.00 0.20 0.00
2000 > 1999 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00
1999 > 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.89 0.21

Firstly, we can conclude that there is an improvement of scale efficiency over

the period for the total electricity generation. Except for 2007, the averages and
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medians have increased, and the p−values of the KS test are close to zero. The

same conclusion holds if we take only the multi- or the single-output producers into

account. Note that the averages have decreased for the multi-output producers, but

the p−values of the KS test are close to zero. This reveals the usefulness of this test in

our context. Next, non-renewable electricity generation shows a slight improvement,

while the improvement on renewable electricity generation is rather high. This is

confirmed by the p−values of the KS test. Again, similar results hold when looking

only at the multi- and single-output producers. Next, two important rankings seem

present in Table 4. One, renewable electricity generation seems to present higher

scale efficiency than non-renewable electricity. Two, single-output producers seem

less efficient on non-renewable electricity, but more efficient on renewable than multi-

output producers. The differences are more pronounced for renewable electricity

generation. To formally check those two observations, we again make use of the KS

test. The results are available in Table 5.

Table 5: Kolmogorov-Smirnov p−values
Year Renewable > Non-renewable Multi > Single

All Multi Single Total Non-renewable Renewable
2012 0.00 0.00 0.00 0.00 0.00 0.00
2010 0.00 0.00 0.00 0.00 0.32 0.07
2009 0.00 0.00 0.00 0.09 0.36 0.20
2007 0.00 0.00 0.00 0.14 0.02 0.74
2005 0.00 0.00 0.00 0.00 0.01 0.13
2004 0.00 0.00 0.00 0.00 0.00 0.32
2000 0.00 0.00 0.00 0.00 0.00 0.38
1999 0.00 0.00 0.00 0.15 0.00 0.26
1998 0.00 0.00 0.00 0.06 0.00 0.24

Our first observation about the relationship between renewable and non-renewable

electricity generation is clearly confirmed, as the KS test p−values are all close to zero,

implying that the distribution of renewable electricity is always larger than that for

non-renewable electricity. Our second observation is also confirmed. Indeed, the

majority of the KS test p−values are close to zero for the total and non-renewable

electricity, but not for the renewable electricity. As such, multi-output producers are

justified for non-renewable electricity, while single-output producers are preferred for

renewable electricity.

Finally, we present in Tables 7, 8, and 9 (available in the Appendix), the averages,
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medians, and KS test p−values of the scale efficiency scores for each type of electricity

generation. We give below the main findings. Firstly , the averages and medians for

the nuclear generation are the highest, and, as shown by the KS test p−values, they

are increasing. The performance of the three other types of non-renewable electricity

generation (i.e. coal, oil, and gas) are decreasing; this explains the relative worse per-

formances for non-renewable electricity generation discussed previously. Then, there

are high scores in hydro electricity generation (and increasing), biomass electricity

generation (and decreasing), and wind electricity generation (and increasing), which

explains the better performances for renewable electricity generation highlighted be-

fore.

When comparing single- and multi-output producers, it is clear that single-output

producers perform better for hydro, biomass, and wind electricity generation, which

explains the better performances of this type of producer for renewable electricity.

The performances of the single-output plant for geothermal electricity generation are

also high, but slowly decreasing. Note that no results are presented for geothermal

electricity generation for the multi-output plants as only single-output plants produce

that type of electricity. Interestingly, the performances of the multi-output producers

are higher for solar electricity generation. For non-renewable electricity, the multi-

output producers perform better for nuclear, coal, gas, and oil electricity generation;

but as discussed previously, the differences are more pronounced for renewable gen-

eration.11

Shadow prices. We end our application by providing the shadow prices. As ex-

plained previously, one of the advantages of the suggested methodology for scale

efficiency is that it works when prices are not or partially available. For our US plant

context, this is attractive as only the state-level input prices are provided by the En-

vironmental Protection Agency of the US. We provide in Table 6 the average shadow

prices when assuming variable returns-to-scale. Note that similar results could be

obtained when assuming constant returns-to-scale, but since the latter assumption is

more restrictive, we rely on the former. This also reveals that assumptions about the

technology should be well motivated as they have an impact on the results. As done

previously for the scale efficiency results, we make a distinction between renewable

11Those results are also confirmed by KS tests. For the sake of compactness (i.e. 10 types of
electricity for nine years), we do not present those results in the paper, but they are available by
request from the author.
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and non-renewable electricity generation, and between single- and multi-output pro-

ducers. The shadow prices for nameplate capacity are given in dollar per MW, and

for fuel in dollar per MMBtu.

Table 6: Shadow prices for nameplate capacity and fuel
Year All Non-Renewable Renewable

Multi Single Multi Single

2012 6.51 5.52 5.8 6.81 6.83
2010 7.73 6.65 6.81 8.01 7.86
2009 8.08 7.52 7.65 8.56 8.45
2007 8.09 7.52 7.64 8.56 8.45
2005 6.41 6.35 6.21 6.99 6.84
2004 5.42 5.31 5.22 5.68 5.76
2001 5.51 5.45 5.62 5.62 5.71
1999 5.5 5.31 5.54 5.63 5.64
1998 5.81 5.22 5.32 6.01 5.98

2012 3.09 3.01 3.12 - -
2010 3.85 3.84 3.86 - -
2009 3.86 3.7 4.01 - -
2007 4.63 4.4 4.71 - -
2005 5.63 5.56 5.65 - -
2004 4.45 4.4 4.48 - -
2004 5.45 5.32 4.98 - -
1999 5.64 5.61 5.67 - -
1998 5.21 5.19 5.23 - -

As explained in detail in Section 2, the shadow prices represent the most favourable

prices in the absence of price information. As such, they are not the estimators of

the true unknown prices, and have thus to be interpreted carefully. Nevertheless,

they not only provide interesting useful information for the managers of the plants,

but also for policy-makers and regulators. At this juncture, we point out that, in

general, estimating the production cost of the plants is not an easy task. In the US,

the Environmental Protection Agency is putting much effort into estimating these

costs.12 The provided shadow prices could help in that task.

An initial observation is that the price of nameplate capacity for the producers

of renewable electricity is, on average, higher than the price for the producers of

non-renewable electricity. This could be explained as it is the only input used by

12See the following website for more detail: www.eia.gov/outlooks/capitalcost.
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the producers of renewable electricity. Next, on average, the prices of the single-

output producers are higher for both inputs than those of the multi-output producers.

This might be explained by the presence of economies of scope. Indeed, a reason for

producing more than one type of electricity is to obtain a decrease of the average total

cost (see also our discussion of (3)). The smaller input prices might be interpreted in

that sense.

4 Conclusion

In this paper, we have shown how to provide scale efficiency indicators at the output-

level. This is particularly attractive for multi-output producers since it represents

valuable information. Moreover, our output-specific scale efficiency measurements

are nonparametric in nature, they take the economic objective of the producers into

account, they can be defined without observing the input prices, and they are easy

to interpret and to use in practice.

We have applied our methodology to the case of the US electricity plants. Using

the plant-level database developed by the Environmental Protection Agency of the

US, we evaluated the scale efficiency of more than 3300 US electricity plants from

1998 to 2012 for 10 different types of electricity generation (coal, oil, gas, nuclear,

other fossil, wind, solar, geothermal, hydro, and biomass). We show that, while there

is a scale improvement at the total electricity generation level, this is not the case for

each of the 10 types of electricity. Also, we demonstrated that, in general, renewable

electricity presents better scale of production than non-renewable electricity. Next, we

highlighted the importance of the multi-output plants in the US electricity sector, and

show that those plants are preferable for the production of non-renewable electricity,

while single-output plants are preferable for renewable electricity.
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