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Abstract

Quantum entanglement is a key property of quantum information theory, that is at
the heart of numerous promising applications in fields such as quantum cryptography,
quantum computing or quantum sensing. In the past decades, the advent of such inno-
vative technologies has reinforced the need for a better understanding of entanglement.
The aim of this thesis is to contribute to this effort through the development of new tools
targeting the characterization of several features of entanglement. Concerning the issue
of entanglement detection, we present an optimization of the approach that exploits the
concept of generalized concurrences to solve the separability problem for pure states. We
then reformulate the separability question of mixed states into a matrix analysis prob-
lem, from which we obtain general separability criteria for multipartite states of ranks
two and three. We also briefly discuss some properties of separable states. In partic-
ular, we characterize optimal separable decompositions of symmetric (i.e. permutation
invariant) states of two and three qubits with maximal rank properties. Regarding the
quantification of entanglement, we propose a function to quantify the entanglement of
symmetric multiqubit states within classes of entangled states gathering states that are
stochastically equivalent through local operations assisted with classical communication.
This function establishes a link between the amount of entanglement of a symmetric state
and the distribution of its Majorana points on the Bloch sphere. We finally investigate
the robustness of entanglement with respect to particle loss and provide a full description
of all multiqubit states that are fragile for the loss of one of their qubits. For symmet-
ric states, the fragility for the loss of one qubit is shown to be related to a particular
symmetry of the Majorana points.
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Introduction

The concept of quantum entanglement goes back to the early years of quantum me-
chanics, in the first decades of the twentieth century. At that time, it had quickly been
noted that, by contrast to the previous classical theories, the mathematical framework
of the emerging quantum mechanics theory allowed a system to be in a superposition of
different possible states of the system. For composite systems (i.e. systems made of at
least two particles), this new possibility has lead to states that cannot be factorized into
a collection of states corresponding to each subsystem. In such unfactorizable states, that
were later called entangled states, there are correlations between the individual properties
of the subsystems that cannot be reproduced classically. Quantum entanglement revealed
such intriguing potentialities that it lead E. Schrödinger to say [1]: “I would not call [en-
tanglement] one but rather the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought.”

From certain perspectives, the departure from the classical conception of nature was
even so abrupt that, before it established itself in the physics community, quantum en-
tanglement had first to overcome some controversy, notably into the form of the famous
EPR paradox. In 1935, A. Einstein, B. Podolsky and N. Rosen presented a thought exper-
iment [2] in which a pair of particles are created in an entangled state and then separated
from each other. According to the laws of quantum mechanics, when performing a mea-
surement on one of the entangled particles, the state of the other collapses into a new
state determined by the outcome of the measurement on the first particle and the initial
state of the pair. This collapse obviously changes the possible outcomes of a subsequent
measurement on the second particle. As this also happens if the two measurements are
separated by a spacelike interval (so that, according to the laws of special relativity, no
information can be sent from one particle to the other between the measurements), it
seems that the second particle must in some sense “know” what measurement has been
performed on the first particle, and with what outcome. Rejecting this surprising con-
clusion, notably because it violates the so-called “local realist” picture of causality, the
authors suggested that quantum mechanics was not a complete theory and proposed a
hidden variable model to restore local realism. In this model, the measurement outcomes
are predetermined in hidden variables at the time of creation of the entangled pair and
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carried by each particle, removing the need for a kind of communication between the
particles.

The EPR paradox was only settled in 1964, when J. S. Bell showed [3] an upper bound
on the amount of correlations any hidden variable theory can produce in a specific experi-
ment. Since this upper bound was proved to be violated by certain entangled states [3], it
showed that hidden variables could not reproduce all predictions of quantum mechanics.
This violation of the so-called Bell inequality was reproduced experimentally [4] in 1982,
by a team lead by A. Aspect, confirming that quantum mechanics correctly predicts the
non-local properties of entangled states.

From that moment, what seemed to be an odd feature of quantum mechanics became
considered as a powerful resource. For instance, the strong correlations highlighted in
Bell’s experiment were exploited in a protocol for securing communications [5], intro-
ducing entanglement into the emerging field of quantum cryptography [6]. Through the
quantum teleportation protocol [7], entanglement also opened new horizons in the field
of quantum communication. The list of applications using entanglement has continued to
grow ever since. To cite a few examples, entangled states are used in quantum comput-
ing [8], quantum metrology [9, 10], quantum imaging [11], or also quantum sensing [12].

With the advent of these numerous applications came also the need for a better the-
oretical characterization of entanglement. For instance, determining whether a state
produced experimentally is entangled or not can be a critical issue for the practical re-
alization of quantum protocols. This fundamental problem, known as the separability

problem, is however still an open problem for general multipartite states. Besides the
presence of entanglement, the usefulness of a state may also depend on its amount of
entanglement. Being able to quantify entanglement is for instance important in the field
of quantum computation, where some protocols are more efficient when using highly en-
tangled states [13], while others require states that are not too much entangled to perform
efficiently [14]. Through the years, multiple aspects have been added to the character-
ization of the entanglement property. Among these aspects, an entangled state can for
instance be characterized through is distillability [15, 16], through the class of states it
gives access to through local operations and classical communication [17, 18], through its
robustness against local noise [19] or through its robustness against particle loss [18].

In this thesis, we aim at contributing to this quest for a better characterization of quan-
tum entanglement. To do so, we develop new tools to study some of the aforementioned
features of quantum entanglement. While most of our developments focus on the famous
multiqubit systems (i.e. systems with 2-level subsystems), we sometimes also consider
multipartite systems with subsystems of arbitrary dimension. Throughout this thesis, we
also grant a particular importance to the case of permutation invariant (or symmetric)
multiqubit states. While we often compare their properties to those of general multiqubit
states, we specifically dedicate some chapters to symmetric states. The manuscript is
structured as follows.

In Chapter 1, we review the basic concepts of quantum information theory that will be
used throughout the subsequent chapters. We first introduce quantum systems associated
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to finite dimensional Hilbert spaces. In these systems, we describe the formalisms used to
treat pure and mixed states. We also define symmetric states and detail two well-known
representations for those states: the Dicke and Majorana representations. We get then
to the heart of the matter and dedicate three sections to the introduction of elementary
notions of entanglement characterization. The first one tackles entanglement detection,
the second one focuses on the operational classification of entanglement through local
operations and the last one introduces the field of entanglement quantification.

Chapter 2 is dedicated to fidelity optimization in operational classes. In this chapter,
we investigate the following question: Given a symmetric state |ψS〉 and an operational
class C containing symmetric and nonsymmetric states, is the optimal fidelity between
the states |ψS〉 and all the states of the class C obtained for a symmetric state? We first
summarize the known results about this problem and then study a conjecture concerning
a specific operational class.

Chapter 3 is dedicated to the study of the separability problem, using generalized
concurrences. We first optimize the number of generalized concurrences that have to be
considered, compared to previous methods, in order to solve the separability problem for
pure states. We then extend our study to mixed states using the preconcurrence matrix
formalism and reformulate the separability problem into a pure matrix analysis problem.
By solving this problem for low dimensional matrices, we finally give separability criteria
for low rank states.

In Chapter 4, we study properties of symmetric separable states. By contrast to
Chapter 3, we consider entanglement detection techniques based on partial transposition.
More specifically, we adapt an algorithm for the rank reduction of PPT states to study
optimal separable decompositions of separable symmetric states.

In Chapter 5, we propose a function to quantify the entanglement of symmetric states.
We then use it to discuss the relationship between the geometric configuration of the
Majorana points of a symmetric state and the amount of entanglement it possesses.

Finally, Chapter 6 is dedicated to the study of entanglement robustness against particle
loss. We first focus on the characterization of entanglement robustness for the loss of a
single particle, both in multiqubit and multiqudit systems. We then investigate the
entanglement robustness properties of symmetric multiqubit states and extend our study
to the case where several particles are lost.





Chapter 1

General notions of quantum

information theory

In this chapter, we give an overview of basic notions in quantum information theory.
We also take advantage of this chapter to specify some notations that will be used through-
out this manuscript. Section 1.1 is dedicated to the description of the states of quantum
systems associated to a Hilbert space of finite dimension. In Section 1.2, we describe spe-
cific features arising when considering a quantum system composed of several subsystems.
In Section 1.3, we introduce basic tools used for entanglement characterization.

1.1 Systems associated to Hilbert spaces of finite di-

mension

While in classical information theory, information is stored into a system ruled by
the laws of classical physics, such as a transistor or the beads of an abacus, in quantum
information theory, information is encoded into a quantum system whose possible states
obey the laws of quantum mechanics. One of the interests of quantum information theory
is then to use specific features of quantum mechanics to process the information with an
efficiency that outperforms any classical protocol. In quantum information, information
can be stored into systems associated to either finite or infinite dimensional Hilbert spaces
(the latter case is also called quantum information with continuous variables, see for
instance Ref. [20] and references therein). In this thesis, we focus on discrete quantum
systems, i.e. quantum systems associated to Hilbert spaces of finite dimension. The states
of such systems are described using two distinct formalisms, depending on whether they
are pure or mixed.
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1.1.1 Pure states

In classical information theory, the basic unit used to encode information is the bit. A
bit can only take two discrete values: 0 or 1. In quantum information theory, the smallest
system that can be used to encode information is called qubit. A qubit is any quantum
system associated to a Hilbert space of dimension 2. In this Hilbert space, one usually
works in a particular basis, called computational basis and composed of the basis states
|0〉 and |1〉. In this basis, the most general pure state |ψ〉 of a qubit can be written

|ψ〉 = α |0〉 + β |1〉, (1.1)

with α and β two complex numbers satisfying the normalization condition |α|2 + |β|2 = 1.
In quantum mechanics, the global phase of the Hilbert space element used to describe
the physical state of a system is arbitrary. As a consequence, if we choose to extract a
global phase equal to the phase of the complex number α in Eq. (1.1), we can equivalently
express the state |ψ〉 as

|ψ〉 = cos (θ/2) |0〉 + eiφ sin (θ/2) |1〉, (1.2)

for some θ ∈ [0, π] and φ ∈ [0, 2π[. The main interest of this particular parametrization of
qubit states, called Bloch representation, is that it allows to map any qubit state onto a
point on the unit sphere in R3, which in quantum information theory is called Bloch sphere.
As can be seen on Fig. 1.1, the angles θ and φ appearing in the parametrization (1.2) of
the qubit state |ψ〉 become the polar and azimuthal spherical coordinates of the point
representing |ψ〉 on the Bloch sphere.

θ

φ

|0〉

|1〉

|ψ〉

Figure 1.1: Representation of a qubit state |ψ〉 on the Bloch sphere.

Qubit systems play an important role in the field of quantum information theory but
there is no fundamental reason to restrict ourselves to quantum systems with a Hilbert
space of dimension 2. We will sometimes consider the more general case of quantum
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systems associated to a Hilbert space of finite dimension d ≥ 2. In this Hilbert space, the
computational basis contains d elements, which we write |0〉, |1〉, . . . , |d− 1〉. By analogy
to the word qubit, such systems are called qudits1 in quantum information theory.

1.1.2 Mixed states

A quantum system associated to a Hilbert space H is not necessarily in a pure state, it
can also be in a statistical ensemble (or mixture) of pure states. In this case, the system is
said to be in a mixed state and there exists a set {(pi, |ψi〉) : i = 1, . . . , l} with 0 ≤ pi ≤ 1
such that

∑l
i=1 pi = 1, called decomposition of the mixed state and such that the system

is in the pure state |ψi〉 with probability pi. Such a mixed state can also be described
by an operator, called density operator and generally denoted by ρ, defined in the space
Lin(H) of linear operators on H as

ρ =
l∑

i=1

pi|ψi〉〈ψi|. (1.3)

All the physical properties of a mixed state can be computed from its density operator.
Because of this strong relationship between a mixed state and its density operator, we
often denote a mixed state by its density operator. As can be checked in Eq. (1.3), a
density operator ρ is always a positive semi-definite Hermitian operator (which we also
write ρ ≥ 0) with unit trace. Conversely, any operator of Lin(H) satisfying these two
properties describes a physical mixed state of the system. Let us here note that pure
states are merely particular cases of mixed states, with decompositions containing only
one pure state (associated to a probability equal to 1). The density operator ρ associated
to a pure state |ψ〉 is nothing but the projector onto this state, i.e. ρ = |ψ〉〈ψ|. Pure
states are also the only states satisfying the purity condition ρ2 = ρ.

Given a genuine mixed state, whereas it is described by a unique density operator
ρ, there exists an infinite number of different decompositions {(pi, |ψi〉) : i = 1, . . . , l}
leading to ρ through Eq. (1.3). These decompositions correspond to the same physical
mixed state. Among them is the so-called eigendecomposition {(λi, |vi〉) : i = 1, . . . , r},
made of the nonzero eigenvalues λi of ρ (possibly repeated according to their multiplicity)
and associated eigenvectors |vi〉, with r the rank of ρ. By contrast to other decompositions,
the eigendecomposition can always be directly deduced from a given density operator. Its
cardinality is in addition the smallest possible cardinality for any decomposition of the
mixed state [21]. All the other decompositions of a mixed state ρ can be computed from its
eigendecomposition. For any other decomposition {(µi, |wi〉) : i = 1, . . . , l} of cardinality
l ≥ r, there indeed exists [21] a l× r matrix U whose columns are r orthonormal vectors

1In the particular case d = 3, the word qutrit is also often used.
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in Cl such that 


√
µ1 |w1〉

...√
µl |wl〉


 = U




√
λ1 |v1〉

...√
λr |vr〉


 . (1.4)

This relationship between the eigendecomposition of a mixed state ρ and any other de-
composition provides also a way to span all possible decompositions of ρ.

Like transistors in classical memories, the potential of quantum systems to encode
information naturally grows when combining several subsystems (for example several
qubits) to encode a larger piece of information. In addition, specific quantum properties,
such as entanglement, arise only in these combined systems, offering new possibilities to
process information. We describe these properties in the next section.

1.2 Multipartite systems

A multipartite (or composite) system is a system composed of a given number N ≥ 2 of
subsystems, which in this context are also called parties. If each subsystem is associated
to the Hilbert space Hi (i = 1, . . . , N), the global Hilbert space H of the multipartite
system is given by the tensor product of the Hilbert spaces of the subsystems: H =
H1 ⊗ · · · ⊗ HN . In the most general case, each subsystem can be associated to a Hilbert
space Hi of arbitrary finite dimension di ≥ 2. The dimension of the global Hilbert space
H is then given by the product of the dimensions of the Hilbert spaces associated to
each subsystem: dim(H) =

∏N
i=1 di. In this global Hilbert space, a basis can be created

by taking all possible combinations of tensor products between basis elements from each
subsystem. For the computational basis, we get basis states of the form |i1〉 ⊗ · · · ⊗ |iN 〉
with ij ∈ {0, . . . , dj − 1} for all j = 1, . . . , N . To simplify the notations, we generally use
short form |i1, . . . , iN〉 ≡ |i1〉⊗· · ·⊗|iN〉 for states that have this tensor product structure.
For computational basis states, we even drop the commas (when di ≤ 10, ∀ i = 1, . . . , N),
yielding states expressed as N -digit numbers, such as the 5-partite computational basis
state |20130〉, for example.

In quantum information, it is frequent to study homogeneous multipartite systems,
i.e. multipartite systems in which all subsystems are associated to Hilbert spaces of the
same dimension. In the following, we often consider multiqubit systems, i.e. multipartite
system containing only qubit subsystems, or multiqudit systems, i.e. multipartite systems
in which all the subsystems are qudits associated to Hilbert spaces of the same dimension
d.

Our description of the properties of multipartite states begins with a section dedicated
to the important property of quantum entanglement. We then describe the partial trace
operation, which is a tool used to compute the residual state associated to a given subset
of the parties of a multipartite system. In the last section, we introduce the so-called
symmetric states.
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1.2.1 Quantum entanglement

Quantum entanglement is a property that arises only in multipartite systems. A
multipartite pure state |ψ〉 defined in the Hilbert space H = H1 ⊗ · · · ⊗ HN is a product

or (fully) separable state if there exist states |φi〉 ∈ Hi for all i = 1, . . . , N such that

|ψ〉 = |φ1〉 ⊗ · · · ⊗ |φN 〉. (1.5)

In the same system, a mixed state ρ is (fully) separable if it can be written as a convex
combination of projectors onto pure product states, i.e. if there exist pure product states
|Φ(j)

sep〉 ∈ H (j = 1, . . . , l) and probabilities pj , with
∑l
j=1 pj = 1, such that

ρ =
l∑

j=1

pj |Φ(j)
sep〉〈Φ(j)

sep|. (1.6)

Any state (pure or mixed) that is not fully separable is an entangled state. Entanglement
is an emblematic quantum property that is notably related to the nonlocal nature of
quantum mechanics. For instance, even though all entangled states do not violate all
Bell’s inequalities, a Bell’s inequality can only been violated by entangled states [3].

From an experimental point of view, it is frequent to consider the scenario in which the
parties of a multipartite system are shared between spatially separated experimenters. In
this scenario, if each experimenter prepares a pure state, they can together only produce
a fully separable state of the form (1.5). These experimenters could naturally also prepare
each a mixed state and even add correlations between the mixtures they prepare through
classical communication [22]. This preparation protocol would yield a mixed state ρ of
the form

ρ =
∑

i

pi ρ
(1)
i ⊗ · · · ⊗ ρ

(N)
i , (1.7)

with, as usual,
∑
i pi = 1. Expending each subsystem mixed state as a convex sum of pro-

jectors, according to any of its decompositions, shows however that such a state can always
be written into the form (1.6) and is therefore separable. This shows that entanglement
cannot be produced by local operations on the parties, even when classical communication
is allowed between the experimenters. To produce entanglement, a multipartite operation
is required.

1.2.2 Partial trace and reduced density operator

Given a mixed state ρ of a general N -partite system associated to a Hilbert space H,
we might be interested in the properties of the state corresponding to only some of the N
subsystems. Let A be the subset of {1, . . . , N} containing the parties of interest and B its
complement. For any such bipartition, the global Hilbert space can always be expressed
as the tensor product H = HA⊗HB, where HA and HB are the Hilbert spaces associated
to the subsystems A and B, respectively. The reduced density operator ρA of the state
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corresponding to subsystem A, which is an operator acting on HA, can be extracted from
ρ through a partial trace over subsystem B.

For any sets {|φi〉 : i = 1, . . . ,dim(HA)} and {|ψµ〉 : µ = 1, . . . ,dim(HB)} forming
bases in HA and HB , respectively, ρ can be decomposed in the corresponding bipartite
basis as

ρ =
dim(HA)∑

i,j=1

dim(HB)∑

µ,ν=1

ρiµ,jν

(
|φi〉 ⊗ |ψµ〉

)(
〈φj | ⊗ 〈ψν |

)
. (1.8)

The partial trace of ρ over subsystem B, which is denoted by TrB(ρ), reads then

TrB(ρ) =
dim(HA)∑

i,j=1

dim(HB)∑

µ,ν=1

ρiµ,jν |φi〉〈φj | Tr
(

|ψµ〉〈ψν |
)
, (1.9)

and we have ρA = TrB(ρ). The partial trace over subsystem A is defined in a similar
fashion, with a trace acting on the basis states of subsystemA. It is interesting to note that
even when ρ is a pure state, meaning that we exactly know the global state of the system,
ρA may be a mixed state, meaning that the state of subsystem A is only known through a
probability distribution. This situation however only occurs if the state ρ presents some
entanglement across the bipartition A|B. This provides another illustration that, for an
entangled state, the global state must be seen as a whole and cannot be factorized into
states corresponding to the different subsystems.

1.2.3 Symmetric states in multiqubit systems

Due to the tensor product structure of the global Hilbert space of a multipartite
system, its dimension grows exponentially with the number of parties. This exponential
growth of the Hilbert space dimension is often a limiting factor, from both a numerical
and an analytical point of view, for the characterization of multipartite states in systems
with a large number of parties. For this reason, it can be interesting to focus on classes
of states defined in subspaces of the Hilbert space that have a dimension growing slower
with the number of parties. The class of symmetric states is an emblematic example of
such classes.

An N -partite state |ψS〉 is said to be symmetric if it remains invariant under any
permutation of the parties, i.e. if Pπ |ψS〉 = |ψS〉, ∀ π ∈ SN , where SN is the permutation
group of N elements and Pπ is the permutation operator corresponding to the permuta-
tion π. In an N -qudit system, the symmetric subspace (i.e. the subspace of the Hilbert
space containing the symmetric states) has a dimension equal to

(
N+d−1
d−1

)
instead of dN

for the whole Hilbert space. Besides this theoretical advantage, symmetric states have
also a particular experimental relevance. As a consequence of the spin-statistics theo-
rem, symmetric states are indeed the only allowed states for systems of indistinguishable
bosons. Throughout this thesis, we will frequently consider symmetric states, however
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exclusively in the context of multiqubit systems. We summarize here the basic properties
of symmetric multiqubit states.

In an N -qubit system, the dimension of the symmetric subspace is equal to N+1. This
linear growth of the symmetric subspace dimension with the number of qubits constitutes
a dramatic decrease compared to the dimension 2N of the global Hilbert space. For this
reason, the usual computational basis used to express multiqubit states is not the most
compact way to represent symmetric multiqubit states. These states are usually either
expressed in the Dicke [23] or in the Majorana [24] representation. We detail these two
representations in the next paragraphs.

The Dicke representation of a multiqubit symmetric state consists in expressing the
state in a particular basis of the symmetric subspace called Dicke basis. The N + 1 states
making up this basis, which are called Dicke states and denoted by |D(k)

N 〉 (k = 0, . . . , N),
are obtained by symmetrization of the computational basis states. We thus have

|D(k)
N 〉 =

1√(
N
k

)
∑

π

| 1 . . . 1︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
N−k

〉, (1.10)

where the sum runs over the
(
N
k

)
distinct permutations of the computational basis state

with k qubits in the state |1〉 and the remaining N − k qubits in the state |0〉. In the
Dicke representation, any symmetric state |ψS〉 is characterized by a list of N + 1 Dicke

coefficients dk (k = 0, . . . , N), such that
∑N
k=0 |dk|2 = 1 and

|ψS〉 =
N∑

k=0

dk|D(k)
N 〉. (1.11)

Due to the permutation invariance of the symmetric state |ψS〉 , it is also always
possible to find (normalized) 1-qubit states |φi〉 (i = 1, . . . , N) such that

|ψS〉 = N
∑

π∈SN

|φπ(1), . . . , φπ(N)〉, (1.12)

with N a normalization constant. In Eq. (1.12), a global phase can be extracted from each
1-qubit state |φi〉. These states can thus be expressed into the Bloch representation (1.2),
so that the symmetric state |ψS〉 can be written

|ψS〉 = N
∑

π∈SN

|ǫπ(1), . . . , ǫπ(N)〉, (1.13)

where |ǫi〉 = cos (θi/2) |0〉 + eiφi sin (θi/2) |1〉 for some θi ∈ [0, π] and φi ∈ [0, 2π[, ∀ i =
1, . . . , N . This representation of a symmetric state, as a sum over all permutations of
the single qubit states of a product state, is the so-called Majorana representation. By
mapping the single qubit states |ǫi〉 (i = 1, . . . , N) onto N points, called Majorana points,
on the Bloch sphere, we obtain a useful geometric representation of symmetric states.
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As the states |ǫi〉 are not necessarily different, some of the Majorana points may be
degenerated. This is for example the case of separable symmetric states, for which the
single qubit states |ǫi〉 appearing in their Majorana representation are all equal. An N -
qubit separable symmetric state is thus geometrically represented by a single point on the
Bloch sphere, degenerated N times.

To conclude this section, we show how to link the Dicke and Majorana representations.
Given an N -qubit symmetric state |ψS〉 with Dicke coefficients dk (k = 0, . . . , N), we
define, as in Ref. [25], the polynomial

P (z) =
N∑

k=0

(−1)k
√(

N

k

)
dk z

k. (1.14)

Let K be the degree of this polynomial. The value of K ranges from 0 to N , depending
on the number of nonzero Dicke coefficients dk. The complex roots z1, . . . , zK of this poly-
nomial can be related to the angles θj and φj (j = 1, . . . , N) corresponding to the Bloch
representation of the single qubit states appearing in the Majorana representation (1.13)
of |ψS〉 through the relation [25]

{
cot θj e−iφj = zj if j ≤ K

θj = 0 if j > K
. (1.15)

1.3 Entanglement characterization

The characterization of entanglement is a broad topic (see for instance Ref. [26] and
references therein). The aim of this section is not to present an overview of entanglement
characterization but rather to introduce the particular aspects of entanglement character-
ization that will be developed in the upcoming chapters. In Section 1.3.1, we introduce
the field of entanglement detection. In Section 1.3.2, we present the LOCC and SLOCC
paradigms for the operational characterization of entanglement, as well as the classifica-
tions of entangled states these paradigms lead to. Finally, in Section 1.3.3, we introduce
the field of entanglement quantification.

1.3.1 Entanglement detection

Determining whether a given state ρ is separable or not may naively seem to be a
basic question. Despite intensive research efforts, no general answer (covering the case of
mixed states) has however been provided to this fundamental question and the so-called
separability problem remains one of the most emblematic open problems in quantum
information theory.

When restricted to the case of pure states, the separability problem is easy to solve.
One solution is to check whether the reduced density operator corresponding to each
subsystem is a pure state. This is indeed the case if and only if the pure state is separable.
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In Chapter 3, we detail another solution of the separability problem for pure states, based
on generalized concurrences.

According to the definition of separability, a mixed state ρ is separable if it admits a
separable decomposition, i.e. a decomposition containing only pure product states. Search-
ing for such a separable decomposition is a dramatically complex task, requiring to span
unitary matrices of large dimensions, and it is not the usual way to tackle the separability
problem. One rather tries to exploit the existence of such a separable decomposition
to deduce properties of separable states, which can then be translated into separability
criteria. Over the years, many practical2 separability criteria have been stated, such
as the Positive Partial Transpose (PPT) criterion [27], combinatorially independent per-
mutation criteria [28, 29], Bell-type inequalities [30], or criteria based on entanglement
witnesses [31, 32]. In general, these criteria are only necessary or sufficient conditions
of separability, meaning that they allow to detect some but not all entangled states in a
given multipartite system. We will not detail here all the aforementioned criteria (further
details can, for example, be found in Refs. [26, 33]) but rather focus on one of them,
namely the PPT criterion, as it has become an ubiquitous tool in quantum information
theory.

The PPT criterion was proposed by A. Peres in 1996 [27] for bipartite states, but
extends straightforwardly to multipartite states. This entanglement criterion consists in
a necessary condition of separability based on an operation on the density operator called
partial transposition. Given an N -partite state ρ, a partial transposition can be applied to
its density operator for any bipartition A|B of the system, where A is a nonempty subset
of the N subsystems and B is the complementary subset. If the sets {|ψi〉} and {|φµ〉}
form orthonormal bases in the Hilbert spaces of the subsystems A and B, respectively,
then ρ can be expressed in the corresponding bipartite basis as

ρ =
∑

i,µ,j,ν

ρiµ,jν |ψi〉 ⊗ |φµ〉〈ψj | ⊗ 〈φν |. (1.16)

In this basis, taking the partial transpose of ρ with respect to subsystem A is equivalent
to transposing the elements of the tensor ρiµ,jν , but only for the indices corresponding
to subsystem A (the Latin indices in this case). The corresponding operator, which is
denoted by ρTA , reads

ρTA =
∑

i,µ,j,ν

ρjµ,iν |ψi〉 ⊗ |φµ〉〈ψj | ⊗ 〈φν |. (1.17)

The partial transposition of ρ with respect to subsystem B is defined similarly, permuting
this time only the indices corresponding to subsystem B (i.e. the Greek indices). Since
taking successively the partial transpose of ρ with respect to subsystem A and then with

2Practical should here be understood as providing an efficient algorithm (regarding computation time,
memory and precision) to test the condition.
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respect to subsystem B yields the usual full transpose ρT , we have also

ρTB =
(
ρTA

)T
. (1.18)

The PPT criterion, follows from the observation that the partial transpose of a sep-
arable density operator always yields another physical density operator and is therefore
necessarily a positive semi-definite operator [27]. This can be translated into the following
separability criterion:

PPT criterion (Peres [27]). If ρ is an N -partite separable state, then ρTA ≥ 0 for all

bipartitions A|B of the multipartite system.

As a consequence of Eq. (1.18), ρTB and ρTA have the same eigenvalues. This implies
ρTB ≥ 0 ⇔ ρTA ≥ 0 and this is the reason why we only consider partial transposition
with respect to only one part of the bipartition in the PPT criterion.

A multipartite state is said to be PPT if it remains positive semi-definite under partial
transposition with respect to all distinct bipartitions of the system, and NPT otherwise.
As a consequence of the PPT criterion, an NPT state is necessarily entangled, showing how
partial transposition and the PPT criterion can be useful tools to detect entanglement.
If a state is PPT, however, we cannot infer from the PPT criterion if it is separable
or entangled, except in the cases of 2-qubit and qubit-qutrit systems, where the PPT
criterion was proved to be also a sufficient condition of separability [31].

1.3.2 Operational classification of multipartite states

As discussed in Section 1.2.1, a multipartite state locally prepared by distant exper-
imenters cannot contain entanglement, even if the experimenters use classical communi-
cation (for example to share the outcome of a measurement performed on their party).
They could however locally manipulate an entangled state if this state has been created
somewhere through a multipartite entangling process before being shared between the
experimenters. In this case, one can be interested in the class of states the experimenters
have access to using local operations. This operational scheme, called LOCC for Local
Operations assisted with Classical Communication, is in fact used to define two classifi-
cations of multipartite states, into either LOCC or SLOCC classes.

A LOCC class contains states that can be deterministically (i.e. with probability 1)
converted into each other through LOCC. Two states ρ and σ belonging to the same
LOCC class are said LOCC-equivalent. For pure states, it has been shown [17] that two
states |ψ〉 and |φ〉 are LOCC-equivalent if and only if they are also equivalent through
local unitary (LU) operations. This condition reads formally

|ψ〉 and |φ〉 are LOCC-equivalent

⇔ ∃ U1, . . . , UN such that U †
i Ui = 1 ∀i = 1, . . . , N and |ψ〉 = U1 ⊗ · · · ⊗ UN |φ〉. (1.19)
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In other words, LOCC equivalence corresponds to equivalence under local change of basis.
Because of this equivalence, LOCC classes and LU classes divide a Hilbert space into the
same sets of states and both concepts can be used interchangeably. The LU equivalence
is a strong equivalence relation and it turns out [34] that even in the smallest multipartite
system, i.e. a 2-qubit system, this classification leads to an infinite number of LOCC
classes.

By relaxing the deterministic condition in the LOCC equivalence relation, we get
the SLOCC equivalence (where the “S” stands for Stochastic). Two states are SLOCC-
equivalent if they can stochastically (that is with a nonzero probability) be converted into
each other under LOCC. Compared to a LOCC protocol, a SLOCC protocol converts a
state ρ into a probabilistic distribution {(pi, σi) : i = 1, . . . , l} of mixed states σi, each
associated to a probability pi (such that

∑
i pi = 1). For pure states, it has been shown [18]

that two states |ψ〉 and |φ〉 are SLOCC-equivalent if and only if they can be converted
into each other through an Invertible Local Operation (ILO). We thus have

|ψ〉 and |φ〉 are SLOCC-equivalent

⇔ ∃A1, . . . , AN such that det(Ai) 6= 0 ∀i = 1, . . . , N and |ψ〉 = A1 ⊗ · · · ⊗AN |φ〉.
(1.20)

Obviously, two pure states that are LOCC-equivalent are necessarily SLOCC-equivalent
but the converse is not true, except in the set S containing all product states, which is
both a LOCC and a SLOCC class. The SLOCC classification is thus a coarse-grained
classification of the LOCC classification. In multiqubit systems, the SLOCC classifica-
tion yields a finite number of different SLOCC classes only if the system contains 2 or 3
qubits [18]. In a 2-qubit system, there are only 2 different SLOCC classes and in a 3-qubit
system, 6 different SLOCC classes [18]. In multiqubit systems of at least 4 qubits, the
number of SLOCC classes is infinite, and in multiqudit systems with d ≥ 3 and at least
three parties, the number of SLOCC classes is also infinite [18].

As the symmetric subspace of the Hilbert space associated to a multiqubit system
has a much lower dimension than the global Hilbert space, the SLOCC classification of
symmetric states could result in a lower number of classes. We take a closer look at the
operational classification of symmetric states in the following subsection.

SLOCC classification of symmetric multiqubit states

The permutation invariance of symmetric states has some interesting consequences on
their SLOCC classification. For symmetric states, the SLOCC equivalence relation (1.20)
in terms of ILOs can be simplified to [35, 36]

Two symmetric states |ψS〉 and |φS〉 are SLOCC-equivalent

⇔ ∃A with det(A) 6= 0 such that |ψS〉 = A⊗ · · · ⊗A|φS〉. (1.21)
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An ILO is called symmetric if, like in equation (1.21), the same invertible operation acts
on all the parties, and nonsymmetric otherwise. The SLOCC equivalence condition (1.21)
does not mean that two symmetric states cannot be transformed into each other through
a nonsymmetric ILO. When it is the case, we however have the guarantee that there also
exists a symmetric ILO transforming these two states into each other [35, 36].

Even though there are only 3 SLOCC classes of symmetric states in 3-qubit systems
(instead of 6 in the nonsymmetric case), there is still an infinite number of SLOCC
classes for symmetric states of at least 4 qubits [25]. The simplified SLOCC equivalence
relation (1.21) was nevertheless used in Ref. [25] to develop a classification of symmetric
states into a finite number of families of SLOCC classes. These families are defined upon
the diversity degree and degeneracy configuration of symmetric states [25], which can be
deducted from their Majorana representation.

The diversity degree of a symmetric state |ψS〉 corresponds to the number of distinct
single qubit states |ǫi〉 appearing in its Majorana representation (1.13). If a degeneracy

number is associated to each of these distinct single qubit states, corresponding to its
multiplicity in the Majorana representation of |ψS〉, then the degeneracy configuration of
|ψS〉 is defined as the list of these degeneracy numbers, sorted in decreasing order.

Applying a symmetric ILO on a symmetric state does not modify its degeneracy con-
figuration [25]. Because SLOCC-equivalent symmetric states can always be transformed
into each other through a symmetric ILO [35, 36], symmetric states with different degen-
eracy configurations are necessarily SLOCC-inequivalent. This is the reason why it was
proposed in Ref. [25] to group symmetric states with the same degeneracy configuration l
into a SLOCC class family, denoted by Dl. As there is one family Dl for each degeneracy
configuration l, the number of families in this classification is given by the number of pos-
sible degeneracy configurations for the symmetric states of the system. By definition, a
given degeneracy configuration corresponds to a way of dividing the set formed by the N
(indistinguishable) qubits into nonempty subsets. Such a division is called a partition of
N in number theory and the number of partitions of a natural number N is given by the
partition function p(N). The partition function of a natural number gives a finite number,
so that we always have a finite number of families Dl. This is an advantage compared to
the SLOCC classification. For instance, for a 4-qubit system, we have p(4) = 5 and the 5
corresponding Dl families are D4, D3,1, D2,2, D2,1,1 and D1,1,1,1.

The number of SLOCC classes that are grouped together into the family Dl depends
on the diversity degree of the degeneracy configuration l. The family Dl contains a single
SLOCC class if the diversity degree of its degeneracy configuration l is at most equal to
3, and an infinite number of SLOCC classes otherwise [25].

1.3.3 Entanglement quantification

Quantifying entanglement is not only interesting from a theoretical point of view, it
has also an experimental relevance as certain protocols, such as quantum teleportation [7],
have an efficiency that depends on the amount of entanglement of the states used in the
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protocol. For this reason, it would be interesting to have a real-valued function E, called
entanglement measure, for quantifying the amount of entanglement of multipartite states.
Quantum entanglement is a complex and rich property and there is no obvious choice
for such a function, that would be meaningful and easy to calculate for all multipartite
states. To guarantee that it respects the fundamental properties of entanglement, an
entanglement measure is generally required to satisfy two axioms [26, 37]. The first one
is related to the behavior of entanglement under LOCC.

Axiom 1. If the state ρ can be converted into the state σ through LOCC, then any

entanglement measure E must satisfy:

E(σ) ≤ E(ρ). (1.22)

This first axiom reflects the fact that, because of its nonlocal nature (see Section 1.2.1),
entanglement cannot be created or enhanced through LOCC. This axiom has an important
consequence: an entanglement measure must give the same value for all LOCC-equivalent
states, and therefore be invariant under LU operations. As all separable states are LOCC-
equivalent, this means in particular that an entanglement measure must be constant on
the set of separable states. This constant value must in addition be the lowest possible
value of the entanglement measure, as any state can be converted through LOCC to a
separable state (by local measurements, for example). This lowest value can be chosen
arbitrarily but it seems sensible to set it to zero. This is actually the second axiom:

Axiom 2. If ρ is a separable state, then any entanglement measure E must satisfy:

E(ρ) = 0. (1.23)

These two axioms gather the properties that an entanglement measure must satisfy
to faithfully quantify entanglement. Additional properties of entanglement measures may
however be required in some specific contexts. The most common of these requirements
is arguably the monotonicity under SLOCC.

Definition 1. An entanglement measure E is monotonic under SLOCC if, for any SLOCC

protocol converting a state ρ into the probabilistic distribution {pi, σi}, E does not increase

on average, i.e. if

E(ρ) ≥
∑

i

pi E(σi). (1.24)

A function satisfying monotonicity under SLOCC is usually called an entanglement

monotone. Most of the entanglement measures that have been proposed are actually
also monotonic under SLOCC [26]. This property obviously implies monotonicity under
LOCC and is sometimes easier to prove than monotonicity under LOCC [26], for example
for convex entanglement measures.
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Definition 2. An entanglement measure E is convex if,

E

(
∑

i

pi ρi

)
≤
∑

i

pi E(ρi), (1.25)

for any convex combination
∑
i pi ρi with

∑
i pi = 1.

Convexity is not fundamentally required to define an entanglement measure but it is a
mathematically convenient property. Among other convenient properties of entanglement
measures, we can also mention the additivity and full additivity.

Definition 3. An entanglement measure E is additive if,

E
(
ρ⊗n

)
= nE(ρ), (1.26)

for any mixed state ρ. It is fully additive if

E (ρ⊗ σ) = E(ρ) + E(σ), (1.27)

for any mixed states ρ and σ.

These properties reflect the idea that gathering the states of several separated systems
into a global system should preserve the total amount of entanglement. However, this
turns out to be a very strong condition, that many entanglement measures fail to satisfy.
For example, whereas the Entanglement of formation is conjectured to be additive, en-
tanglement measures such as the relative entropy of entanglement or the negativity are
not additive [37].

This description of the property of entanglement measures concludes our overview of
basics notions of quantum information theory. In the following chapter, we consider the
problem of fidelity optimization in operational classes, which is related to the classification
of entangled states presented in Section 1.3.2.



Chapter 2

Fidelity optimization in

operational classes

Quantum states belonging to the same LU or SLOCC operational class have similar
entanglement properties regarding local operations but can differ significantly regarding
other entanglement properties. In a local protocol using states from a given operational
class C, finding the state in C that optimizes a particular property may therefore help to
increase the efficiency of the protocol. In this chapter, we investigate this problem for the
optimization of the fidelity between a given state |ψ〉 and all the states belonging to an
operational class C (that does not contain the state |ψ〉). We focus on the case in which
the state |ψ〉 is symmetric and the class C contains symmetric and nonsymmetric states.
In the first section, we review the concept of quantum fidelity and remind some important
results regarding fidelity optimization in operational classes. We then describe some of
the results presented in Ref. [38] and present further developments about a conjecture
mentioned in Ref. [38].

2.1 Quantum fidelity and fidelity optimization

Quantum fidelity [39, 40] is widely used in quantum information theory to estimate
the “closeness” between two states in the Hilbert space of a quantum system. For two
arbitrary mixed states ρ1 and ρ2, it is defined as the symmetric real-valued function

F (ρ1, ρ2) =

(
Tr
√√

ρ1ρ2
√
ρ1

)2

. (2.1)

The fidelity between two pure states |ψ〉 and |φ〉 reduces to their squared overlap (i.e. the
squared modulus of their scalar product):

F (ψ, φ) = |〈ψ|φ〉|2. (2.2)
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The fidelity itself does not define a metric on the state space. There are however
metrics, such as the Bures distance [41, 42] dB(ρ1, ρ2) = [2 − 2

√
F (ρ1, ρ2) ]1/2, which are

monotonic functions of the fidelity. As a consequence, it is safe to say that the higher the
fidelity between two states, the “closer” these states are in the Hilbert space.

In the context of the operational classification of entangled (pure) states, one can then
use the fidelity to search, in an operational class C, the state that is the closest to a given
state |ψ〉. Such an optimal fidelity

F|ψ〉,C ≡ sup
|φ〉∈C

F (ψ, φ) (2.3)

turns out to be very a useful quantity. When considering the class S containing all sepa-
rable states, the maximal fidelity F|ψ〉,S can, for example, be used to build entanglement

witnesses [33] or compute the geometric measure of entanglement EG(ψ) = 1−F|ψ〉,S [43].
For other operational classes, optimal fidelities can be used in discrimination strategies of
inequivalent classes of multipartite entangled states, either using witnesses [44], or other
methods [45].

The difficult part is actually to compute such optimal fidelities. In the general case,
this was even proved to be an NP-hard problem [46]. However, when the optimization is
performed in the class of separable states, an important simplification in the computation
of F|ψ〉,S occurs if the state |ψ〉 is symmetric. In this case, it has indeed been proven [47]
that the maximal fidelity is always obtained for a symmetric separable state. For any
symmetric state |ψS〉, we thus have

F|ψS〉,S = FS|ψS〉,S ≡ sup
symmetric |φ〉∈S

F (ψS , φ). (2.4)

This property implies a dramatic simplification in the computation of the maximal
fidelity between a symmetric state and any separable state. Indeed, performing an opti-
mization over all symmetric separable states is equivalent to performing an optimization
over all single qubit states (i.e. over two real parameters), so that the complexity of the
optimization becomes independent of the number of qubits.

2.2 Fidelity optimization in LU and SLOCC classes

The main focus of Ref. [38] was to determine whether the property (2.4) can be
extended to general LU and SLOCC classes in multiqubit systems. Formally, the question
addressed was the following: “Given an operational SLOCC or LU class C containing
symmetric states, do we have for any symmetric state |ψS〉

F|ψS〉,C
?
= FS|ψS〉,C ≡ sup

symmetric |φ〉∈C

F (ψS , φ) ?” (2.5)
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Concerning LU classes, the answer to Question (2.5) was shown [38] to be always
positive, so that for any LU class CLU containing symmetric states and for any symmetric
state |ψS〉, we have

F|ψS〉,CLU
= FS|ψS〉,CLU

. (2.6)

For SLOCC classes however, Eq. (2.5) does not hold in general and several counter-
examples were identified in Ref. [38]. Counter-examples can for instance be found in the
SLOCC classes of some of the Dicke states (see Section 1.2.3 for the definition of the Dicke
states). Let W(k)

N (k = 0, . . . , ⌊N/2⌋1) denote the SLOCC class of the Dicke state |D(k)
N 〉.

When restricted to the symmetric subspace, the SLOCC class W(k)
N coincides with the

family DN−k,k (defined in Section 1.3.2). It turns out that most of the SLOCC classes

W(k)
N violate Eq. (2.5) as we have [38], for any state |ψ(1)

N 〉 ∈ W(1)
N ,

F
|ψ

(1)

N
〉,W

(k)

N

> FS
|ψ

(1)

N
〉,W

(k)

N

, ∀ N ≥ 4, k = 2, . . . , ⌊N/2⌋. (2.7)

By contrast, it was conjectured in Ref. [38] that Eq. (2.5) holds for the only Dicke
SLOCC class (containing entangled states) not considered in Eq. (2.7), namely W(1)

N ,

whatever symmetric state |ψS〉 is considered. This conjecture, that we call W(1)
N class

conjecture, reads formally

W(1)
N class conjecture. For any symmetric state |ψs〉, we have

F
|ψS〉,W

(1)

N

= FS
|ψS〉,W

(1)

N

. (2.8)

Although it is supported by extensive numerical simulations [38], this conjecture has
not been analytically proved yet. In the next section, we present results obtained while
attempting to prove the conjecture.

2.3 The W (1)
N class conjecture

In this section, we present an operational approach of the W(1)
N class conjecture and

several developments exploiting particular properties of the class W(1)
N to attempt proving

the conjecture. Although these attempts do not lead to a definitive proof of the conjecture,
they provide new ideas that can be useful in other investigations involving this SLOCC
class.

Let us begin with the operational rephrasing of the conjecture. On the one hand, the
left-hand side of Eq. (2.8) requires to span the states of the whole SLOCC class W(1)

N . As a
SLOCC class contains SLOCC-equivalent states, which can be obtained from one another
through an ILO [18], the span of the SLOCC class W(1)

N can equivalently be realized by

a span of the ILOs onto any state belonging to the class W(1)
N . On the other hand, the

right-hand side of Eq. (2.8) requires to span only the symmetric states of the class. As it

1Throughout this thesis, the symbol ⌊x⌋ denotes the floor function of the real number x.
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was proved [35] that two symmetric SLOCC-equivalent states can always be transformed
into each other through a symmetric ILO, this span can be equivalently achieved by a
span of the symmetric ILOs onto any symmetric state belonging to the class W(1)

N . To
simplify the comparison between both sides, it is preferable to choose the same state for
the span of the whole SLOCC class and the span of its symmetric subspace. As it seems
the most natural choice, we take the Dicke state |D(1)

N 〉, that is also often denoted by

|WN 〉, to be the representative state of the class W(1)
N . We can thus rephrase Eq. (2.8) as

sup
invertible A1,...,AN

|〈ψs|A1 ⊗ · · · ⊗AN |WN 〉|2
||A1 ⊗ · · · ⊗AN |WN 〉||2 = sup

invertible A

|〈ψs|A⊗N |WN 〉|2
||A⊗N |WN 〉||2 . (2.9)

This reformulation allows us to exploit specific properties of the state |WN 〉. For
example, it was pointed out in Ref. [35] that the state |WN 〉 admits a (nonsymmetric)
stabilizer2 S of the form

S = J ⊗ J−1 ⊗ 1⊗ · · · ⊗ 1 , (2.10)

where, in the computational basis, the operator J is represented by a 2 × 2 invertible
Jordan matrix

Jλ =

(
λ 1
0 λ

)
, with λ ∈ C0. (2.11)

Because of the permutation invariance of the state |WN 〉, it has to be noted that, in the
stabilizer S, the couple of qubits the operators J and J−1 act on is totally arbitrary. An
equivalent stabilizer could therefore be obtained by considering any permutation in the
tensor product defining S in Eq. (2.10).

This stabilizer plays a central role in the following section, in which we show how to
partially symmetrize the ILO in the left-hand side of Eq. (2.9). It will then be generalized
in Section 2.3.2.

2.3.1 Partial symmetrization of the ILO

This first attempt of proof has been developed in collaboration with P. Mathonet, who
proposed to exploit the stabilizer (2.10) to partially symmetrize the nonsymmetric ILO
acting on the state |WN 〉 in the left-hand side of Eq. (2.9). As shown in the following
proposition, this partial symmetrization consists in transforming any nonsymmetric ILO
acting on the state |WN 〉 into the product of a nonsymmetric LU operation, a nonsym-
metric diagonal ILO and a symmetric ILO.

Proposition 2.1. For any ILO A1 ⊗· · ·⊗AN acting on
(
C2
)⊗N

, there exist 2×2 unitary

matrices U1, . . . , UN and positive diagonal matrices D1, . . . , DN such that

A1 ⊗ · · · ⊗ AN |WN 〉
||A1 ⊗ · · · ⊗ AN |WN 〉|| =

(U1D1 ⊗ · · · ⊗ UNDN )B⊗N |WN 〉
|| (U1D1 ⊗ · · · ⊗ UNDN)B⊗N |WN 〉|| , (2.12)

2An operator S is said to be a stabilizer of a state |ψ〉 if S|ψ〉 = |ψ〉.
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where B is an operator represented in the computational basis either by the 2 × 2 identity

matrix, or by a 2 × 2 invertible Jordan matrix

Jλ =

(
λ 1
0 λ

)
, with λ ∈ C0.

Proof. Let us use the QR factorization [48] to decompose each 2 × 2 matrix Ai (i =
1, . . . , N) appearing in the left-hand side of equation (2.12) into the product Ai = UiRi,
with Ui a 2 × 2 unitary matrix and Ri a 2 × 2 upper triangular matrix with nonnegative
diagonal entries. To preserve the invertibility of each matrix Ai, the diagonal elements
of the corresponding matrix Ri must be strictly positive, so that these upper triangular
matrices can always be written

Ri =

(
αi ci
0 βi

)
, with αi, βi > 0 and ci ∈ C. (2.13)

We now divide the proof into two cases: (i) the matrices Ri are diagonal for all
i = 1, . . . , N or (ii) there exists at least one k ∈ {1, . . . , N} such that the matrix Rk is
not diagonal. In case (i), the conclusion follows immediately as Eq. (2.12) is satisfied
for B = 12. We now consider case (ii). Let R be the set containing the indices of
the matrices Ri which are not diagonal, i.e. R = {i ∈ {1, . . . , N} : ci 6= 0}, and r its
cardinality (1 ≤ r ≤ N). For all j ∈ {1, . . . , N}\R, we rename the diagonal matrix Rj as
Dj and for all k ∈ R, we further decompose the matrix Rk into the product Rk = DkJk,
with

Dk =

(
ck 0
0 ck

βk

αk

)
and Jk =

(
αk

ck
1

0 αk

ck

)
. (2.14)

We can now use stabilizers of the form (2.10) to collect all the Jordan matrices Jk (k ∈ R)
on a given qubit, say the first. This can be simply achieved if, for all k ∈ R with k 6= 1,
we apply the stabilizer Jk⊗1⊗· · ·⊗1⊗J−1

k ⊗1⊗· · ·⊗1 (with J−1
k acting on qubit k) on

the state |WN 〉 (the order in which these operations are performed has no importance).
The successive transformations we performed up to now onto the ILO appearing in the
left hand side of Eq. (2.12) lead to the equality

A1 ⊗ · · · ⊗AN |WN 〉
||A1 ⊗ · · · ⊗AN |WN 〉|| =

U1D1J
′ ⊗ U2D2 ⊗ · · · ⊗ UNDN |WN 〉

||U1D1J ′ ⊗ U2D2 ⊗ · · · ⊗ UNDN |WN 〉|| , (2.15)

with
J ′ =

∏

k∈R

Jk. (2.16)

Up to a multiplicative constant, the product of two Jordan matrices yields a Jordan matrix.
The matrix J ′ is therefore also a Jordan matrix, up to a multiplicative constant. Because
of the linearity of the norm, the multiplicative constants multiplying J ′ in the numerator



24 Fidelity optimization in operational classes

and in the denominator of the right-hand side of Eq. (2.15) cancel each other and we can
simply consider J ′ as a Jordan matrix. Up to a multiplicative constant, the m-th root of
a Jordan matrix is also a Jordan matrix, but because of the previous argument, we can
here neglect this multiplicative constant. By applying successively N − 1 stabilizers of
the form (2.10) with J an N -th root of J ′ acting each time on a different qubit between
the second and the last and J−1 acting on the first qubit, we can distribute an N -th root
of J ′ on each qubit, so as to get a symmetric ILO of Jordan matrices. To conclude the
proof, we just need to note that the invariance of Eq. (2.15) under scalar multiplication of
the local operators allows us to extract the complex number ck from the diagonal matrix
Dk for all k ∈ R, which makes them positive diagonal matrices. �

If we could further symmetrize the ILO of diagonal operators in Proposition 2.1, there
would only remain an LU operation between two symmetric states and we would be able
to prove the W(1)

N class conjecture by using Property (2.6). Although we have not found
how to perform such a symmetrization of the diagonal matrices, Proposition 2.1 can still
be used to simplify the operational form of the conjecture. Let us first compute the action
(in the computational basis) of the operator B⊗N from Proposition 2.1 on the state |WN 〉.
In the case where B⊗N corresponds to a symmetric ILO of Jordan matrices, we have

(Jλ)⊗N |WN 〉
|| (Jλ)⊗N |WN 〉||

=
|WN (λ)〉

|| |WN (λ)〉 || , (2.17)

where

|WN (λ)〉 = |ε(λ), 0, . . . , 0〉 + |0, ε(λ), 0, . . . , 0〉 + · · · + |0, . . . , 0, ε(λ)〉, (2.18)

with

|ε(λ)〉 =
|0〉 + λ |1〉√

1 + |λ|2
. (2.19)

To obtain the single qubit state |ε(λ)〉 in the more convenient Bloch representation
|ε(θ, φ)〉 = cos(θ/2) |0〉 + sin(θ/2) eiφ |1〉, we express the nonzero complex number λ into
the polar form λ = tan(θ/2) eiφ with θ ∈]0, π[ and φ ∈ [0, 2π[. We rename accordingly
|WN (λ)〉 into |WN (θ, φ)〉.

The case in which B⊗N is the identity operator is simply treated by adding the value
θ = π to the previous parametrization. Indeed, the state |WN 〉 merely corresponds to
|WN (π, 0)〉 (up to normalization).

For any ILO A1 ⊗ · · · ⊗AN acting on
(
C2
)⊗N

, we can thus write:

A1 ⊗ · · · ⊗AN |WN 〉
||A1 ⊗ · · · ⊗AN |WN 〉|| =

(U1D1 ⊗ · · · ⊗ UNDN ) |WN (θ, φ)〉
|| (U1D1 ⊗ · · · ⊗ UNDN ) |WN (θ, φ)〉|| (2.20)

for some 2 × 2 unitary matrices U1, . . . , UN , 2 × 2 positive diagonal matrices D1, . . . , DN

and angles θ ∈]0, π], φ ∈ [0, 2π[.
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We focus now on the action of the nonsymmetric ILO. Using the invariance of Eq. (2.20)
for the scalar multiplication of the local operators, one diagonal element can be set to
1 in each diagonal matrix Di (i = 1, . . . , N). This choice is arbitrary and we set here
the upper left diagonal elements to 1. Concerning the LU operation, we can also use
the scalar multiplication invariance to extract a global phase in each unitary matrix Ui
(i = 1, . . . , N) to set its determinant to 1 and make it an element from SU(2). We can
also omit the LU operation in the denominator of Eq. (2.20), as it leaves the norm of the
state unchanged.

Similar transformations can be applied to the symmetric ILO in the right-hand side of
the operational form (2.9) of the W(1)

N class conjecture. This yields the following simplified
operational form of the conjecture:

Simplified operational form of the W(1)
N class conjecture. For any symmetric state

|ψs〉, we have

sup
θ ∈ ]0,π]

φ ∈ [0,2π[
U1,...,UN ∈ SU(2)

r1,...,rN > 0

|〈ψs|U1D(r1) ⊗ · · · ⊗ UND(rN )|WN (θ, φ)〉|2

||D(r1) ⊗ · · · ⊗D(rN )|WN (θ, φ)〉||2
= sup

θ∈]0,π]
φ∈[0,2π[

U ∈ SU(2)
r > 0

|〈ψs| (UD(r))⊗N |WN (θ, φ)〉|2

||D(r)⊗N |WN (θ, φ)〉||2
,

(2.21)

where D(α) is represented, in the computational basis, by the diagonal matrix

D(α) ≡
(

1 0
0 α

)
(2.22)

and

|WN (θ, φ)〉 = |ε(θ, φ), 0, . . . , 0〉 + |0, ε(θ, φ), 0, . . . , 0〉 + · · · + |0, . . . , 0, ε(θ, φ)〉, (2.23)

with

|ε(θ, φ)〉 = cos(θ/2) |0〉 + sin(θ/2) eiφ |1〉. (2.24)

In the left-hand side of the original operational form (2.9) of the conjecture, we had to
perform an optimization over N invertible 2×2 matrices. This represents an optimization
over 4N complex parameters, or equivalently, over 8N real parameters. Using the invari-
ance of this expression under scalar multiplication of the local operators, we can lower this
number to 6N real parameters. In the simplified operational form (2.21), we are left (still
in the left-hand side) with an optimization over 2 angles, N unitary matrices from SU(2)
and N positive numbers. Each unitary matrix from SU(2) can be parametrized using 3
angles, so that in total, the optimization has to be performed over 4N+2 real parameters
(out of which 3N + 2 are angles). Even though this number of parameters still increases
with the number of qubits (by contrast to the symmetric optimization in the right-hand
side), the partial symmetrization implied by Proposition 2.1 allows to suppress roughly a
third of the (real) parameters required in the optimization.
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2.3.2 General ILO stabilizer of the state |WN〉
It has been shown in Ref. [35] that if two symmetric states |ψS〉 and |φS〉 can be

transformed into each other through a nonsymmetric3 ILO, then they belong either to
the separable class, to the SLOCC class of the state |WN 〉 or to the SLOCC class of
the state |GHZN 〉. When it is the case, there necessarily also exists a symmetric ILO
transforming |ψS〉 into |φS〉 [35]. As a consequence, these three SLOCC classes are the
only SLOCC classes in which symmetric states admit nonsymmetric stabilizers. This
specific feature of the SLOCC class W(1)

N was used in the previous attempt of proof of

the W(1)
N class conjecture to simplify the computation of nonsymmetric maximal fidelities

within the W(1)
N SLOCC class. We show here that the nonsymmetric stabilizer (2.10) we

used in that section is however not the most general nonsymmetric stabilizer of the state
|WN 〉.

To find the most general stabilizer of the state |WN 〉, we work in the computational
basis and search the most general form of invertible matrices A1, . . . , AN satisfying the
vector equation

A1 ⊗ · · · ⊗AN |WN 〉 = |WN 〉. (2.25)

The set of equations to solve growing exponentially with the number of qubits, we
consider first the 2 and 3 qubits cases. In the 2-qubit case, the states |W2〉 and |GHZ2〉
are SLOCC-equivalent. As a consequence, all the nonsymmetric stabilizers of the state
|GHZ2〉 identified in [35] induce nonsymmetric stabilizers for the state |W2〉, and we thus
expect the state |W2〉 to have stabilizers differing from the Jordan stabilizer (2.10). In
this case, Eq. (2.25) contains 8 complex parameters. We parametrize this equation as
follows: (

a11 a12

a21 a22

)
⊗
(
b11 b12

b21 b22

)
|W2〉 = |W2〉, (2.26)

with a11, a12, a21, a22, b11, b12, b21, b11 ∈ C such that a11a22 − a12a21 6= 0 and b11b22 −
b12b21 6= 0. The corresponding system of 4 equations is not difficult to solve. It admits a
general solution corresponding to the stabilizer

(
a11 a12

a21 a22

)
⊗ 1
a11a22 − a12a21

(
a11 −a12

−a21 a22

)
|W2〉 = |W2〉, (2.27)

with a11, a12, a21, a22 any complex numbers such that a11a22 − a12a21 6= 0. In this
parametrization, one ILO element of the stabilizer of |W2〉 can be chosen arbitrarily.
If A is any 2×2 invertible matrix, this stabilizer can also be written into the simpler form

A⊗
(
σ1(A−1)Tσ1

)
|W2〉 = |W2〉, (2.28)

3We exclude here the trivial case of a nonsymmetric ILO made of the tensor product of operators that
are all proportional to each other.
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with σ1 the first Pauli matrix. If A is a Jordan matrix, then σ1(A−1)Tσ1 is simply the
inverse of A and we recover the stabilizer (2.10).

For N > 2, we expect less degrees of freedom in the stabilizer, as the SLOCC equiva-
lence with the state |GHZN 〉 is lost. We detail here the computation for N = 3. In this
case, we are looking for solutions of the general equation

(
a11 a12

a21 a22

)

︸ ︷︷ ︸
A

⊗
(
b11 b12

b21 b22

)

︸ ︷︷ ︸
B

⊗
(
c11 c12

c21 c22

)

︸ ︷︷ ︸
C

|W3〉 = |W3〉. (2.29)

This vector equation is equivalent to the following set of equations






a12 b11 c11 + a11 b12 c11 + a11 b11 c12 = 0 (2.30a)

a12 b11 c21 + a11 b12 c21 + a11 b11 c22 = 1 (2.30b)

a12 b21 c11 + a11 b22 c11 + a11 b21 c12 = 1 (2.30c)

a12 b21 c21 + a11 b22 c21 + a11 b21 c22 = 0 (2.30d)

a22 b11 c11 + a21 b12 c11 + a21 b11 c12 = 1 (2.30e)

a22 b11 c21 + a21 b12 c21 + a21 b11 c22 = 0 (2.30f)

a22 b21 c11 + a21 b22 c11 + a21 b21 c12 = 0 (2.30g)

a22 b21 c21 + a21 b22 c21 + a21 b21 c22 = 0 (2.30h)

This system is harder to solve than in the 2-qubit case but we can exploit the permuta-
tion invariance of the state |W3〉 to obtain additional equalities. For instance, considering
the permutations (AB) and (AC) in Eq. (2.29) yield the vector equations

B−1 A⊗A−1 B ⊗ 1 |W3〉 = |W3〉 (2.31)

and
C−1 A⊗ 1⊗A−1 C |W3〉 = |W3〉, (2.32)

respectively, which notably provide the useful equalities

a11b21 = b11a21 (2.33)

and
a11c21 = c11a21. (2.34)

If a11 = 0 in Eqs. (2.33) and (2.34), then we have also b11 = c11 = 0, as a21 = 0
would not preserve the invertibility of the matrix A. This is however incompatible with
Eqs. (2.30b) and (2.30c). As a consequence, a11, b11 and c11 must be different from zero.
These first constraints on the matrix elements show that, by contrast to the 2-qubit case,
we cannot build a stabilizer of the state |W3〉 with an arbitrary ILO element.
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We now show by contradiction that we must have a21 = b21 = c21 = 0, implying that
all the ILO elements in any stabilizer of the state |W3〉 must be upper triangular matrices
(as it is the case for the stabilizer (2.10)). Let us assume a21 6= 0. Multiplying Eq. (2.30h)
by a11, Eq. (2.30d) by a21 and subtracting the resulting equations, we find

b21c21(a11a22 − a12a21) = 0. (2.35)

Since the invertibility of the matrix A implies det(A) = a11a22 −a12a21 6= 0, this equation
can only be satisfied if b21 = 0 or c21 = 0. In any case, this contradicts Eqs. (2.33) and
(2.34) as, given our assumption, a21 must be nonzero. The vanishing of a21, which in turn
implies the vanishing of b21 and c21, is thus required to satisfy Eqs. (2.30a) to (2.30h).
This considerably simplifies the resolution of these equations (most of them become even
trivial). The general solution can be parametrized by the matrices

A =

(
a11 a12

0 a22

)
, B =

(
b11 b12

0 b11
a22

a11

)
, C =

(
1

a22b11
− b12a11+a12b11

a11a22b2
11

0 1
a11b11

)
, (2.36)

with a11, a22, b11 ∈ C0 and a12, b12 ∈ C. One ILO element in the stabilizer of the state
|W3〉 can thus be any invertible upper triangular matrix. In the second ILO element, we
have two degrees of freedom instead of three and the last ILO element is totally fixed by
the other matrices.

The procedure we used to solve the system of equations corresponding to the gen-
eral ILO stabilizer (2.29) generalizes easily to an arbitrary number N ≥ 3 of qubits.
The equalities resulting from the permutation invariance of the state |WN 〉, generalizing
Eqs. (2.31) and (2.32), imply also that all the ILO elements in any stabilizer of the state
|WN 〉 must be upper triangular. As a consequence, in the system of equations generaliz-
ing System (2.30) to the N -qubit case, all equations are trivial, except the first one and
the N equations with a nonzero right-hand side. Choosing to solve these N equations
leaving free all elements of one of the matrices fixes the lower right elements of all the
other matrices, plus the upper left element in one of the matrices. Using the only remain-
ing free element in this matrix to solve the last equation (the first of the system), we get
the general stabilizer

A⊗B1 ⊗B2 ⊗ · · · ⊗BN−2 ⊗ C |WN 〉 = |WN 〉 (2.37)

with

A =

(
a11 a12

0 a22

)
, (2.38)

Bi =

(
bi1 bi2
0 bi1

a22

a11

)
, (2.39)
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C =
(
D2 AD1 B1 D1 B2 D1 · · ·BN−2 D1

)−1

, (2.40)

D1 =

(
1 0
0 a11

a22

)
, D2 =

(
a22

a11
0

0 1

)
, (2.41)

where a11, a22, bi1 ∈ C0, ∀ i = 1, . . . , N − 2 and a12, bi2 ∈ C, ∀ i = 1, . . . , N − 2.
The most general stabilizer of the state |WN 〉 contains thus more free parameters than

the Jordan stabilizer (2.10). Unfortunately, the drawback of getting more independent
parameters is that the stabilizer has necessarily a nontrivial action on each qubit state.
The only way of having a trivial action (corresponding to the identity operation) on at
least one qubit state is to set a11 = a22, which gives a stabilizer equivalent to several
applications of the Jordan stabilizer. This is unfortunately a strong limiting factor for
the improvement of Proposition 2.1 using this general stabilizer.





Chapter 3

Separability criterion based on

generalized concurrences

From his work on non-locality and hidden variable models, J. Bell already proposed [3]
in 1964 a way to test whether a given quantum state is entangled through an inequal-
ity involving correlations between measurement outcomes. The second breakthrough in
the field of entanglement detection came more than 30 years later through a necessary
condition of separability proposed by A. Peres [27]. This separability condition, known
as the PPT criterion [27], rapidly became the most standard tool for entanglement de-
tection. In his proof, A. Peres had left open the possibility for the PPT criterion to be
also a sufficient condition of separability, in which case it would entirely solve the sepa-
rability problem. Paradoxically, a proof that the PPT criterion cannot solve the general
separability problem was given in a paper showing that the PPT criterion is a necessary
and sufficient separability condition for 2-qubit states and hybrid states of one qubit and
one qutrit [31]. Among the separability criteria that were later proposed, few provide a
necessary and sufficient condition of separability, even in low-dimensional systems. For
instance, whereas the Range criterion [49] and the CCNR criterion [50, 51] allow to de-
tect many entangled states for which the PPT criterion fails [33, 49], these criteria do not
provide necessary and sufficient conditions of separability, even for 2-qubit states [52].

Following another line, necessary and sufficient conditions of separability can be ob-
tained from entanglement measures. This is for instance the case of the concurrence,
which was introduced in Ref. [53] to quantify the entanglement of mixed states of 2-
qubits. As the concurrence vanishes only for separable states [54], it can also be used
to detect all 2-qubit entangled states. The 2-qubit concurrence was then generalized to
general bipartite [55] and multipartite [56] systems. However, the entanglement mea-
sures provided by these generalized versions of the concurrence only yield a necessary and
sufficient condition of separability for pure states [56].



32 Separability criterion based on generalized concurrences

In this chapter, we first refine the generalizations of the concurrence of Refs. [55, 56]
by the introduction of independent generalized concurrences. We then extend a matrix
reformulation of concurrences for bipartite states [55, 57] to the general multipartite case
and show that the general separability problem is equivalent to a pure matrix analysis
problem that consists in determining whether a given set of symmetric matrices are simul-
taneously hollowisable, i.e. simultaneously unitarily congruent to matrices with a diagonal
only composed of zeroes. Finally, from the resolution of this mathematical problem for
low dimensional matrices, we state practical separability criteria for general multipartite
states of ranks 2 and 3. Low rank states are not only interesting because of their reduced
theoretical complexity, they can also be produced in experiments [58]. In some cases,
producing low-rank states even appears to be an advantage, for instance to increase the
practicability of quantum state tomography [59]. To conclude this introduction, let us
also mention that some of the results presented in this chapter have been published in
Ref. [60].

This chapter is structured as follows. In Section 3.1, we remind the definition and the
properties of the 2-qubit concurrence. We present its generalization to general multipar-
tite systems in Section 3.2, where we also show how to obtain independent generalized
concurrences. In Section 3.3, we introduce the preconcurrence matrix formalism and
show how it can be used to obtain a simple criterion for the vanishing of any generalized
concurrence. In Section 3.4, we prove that the separability problem is equivalent to a
simultaneous hollowisation problem. We investigate this mathematical problem for 2 × 2
matrices in Section 3.5 and obtain a separability criterion for mixed states of rank 2. In
Section 3.6, we extend these results to 3 × 3 matrices and mixed states of rank 3. Finally,
in Section 3.7, we consider the specific problem of the hollowisation of diagonal matrices.

3.1 The 2-qubit concurrence

The 2-qubit concurrence [53, 54] is a function that compares the states of a 2-qubit
system before and after a spin-flip operation. Such an operation transforms a 2-qubit
pure state |ψ〉 into the “spin-flipped” state

|ψ̃〉 = S |ψ∗〉, (3.1)

where S ≡ σy ⊗ σy is the spin-flip operator, with σy the second Pauli matrix, and |ψ∗〉 is
obtained by conjugating the components of the state |ψ〉 expressed in the computational
basis. For a spin- 1

2 particle, this transformation corresponds to the time reversal operation,
which actually reverses the direction of the spin [61], hence the name of the operation.
The concurrence of the state |ψ〉 corresponds merely to the modulus of its overlap with
the state |ψ̃〉:

C(ψ) = |〈ψ|S|ψ∗〉|. (3.2)
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The concurrence had originally been introduced [53] as an intermediate step to com-
pute the entanglement of formation [16] of 2-qubit states. The entanglement of formation

Ef is an entanglement measure defined for bipartite pure states as the Von Neumann
entropy of the reduced density operator corresponding to either of the subsystems. Given
a 2-qubit pure state |ψ〉, if we denote by ρ1 = Tr2(|ψ〉〈ψ|) the reduced density operator
corresponding to the first qubit and by ρ2 = Tr1(|ψ〉〈ψ|) the reduced density operator
corresponding to the second qubit, we have

Ef (ψ) = −Tr(ρ1 log2 ρ1) = −Tr(ρ2 log2 ρ2). (3.3)

The entanglement of formation is related to the concurrence through the relation [54]

Ef (ψ) = E(C(ψ)), (3.4)

where

E(C) = h

(
1 +

√
1 − C2

2

)
, (3.5)

with
h(x) = −x log2 x− (1 − x) log2(1 − x). (3.6)

The Equation (3.4) shows that the entanglement of formation is a monotonic function of
the concurrence. As both functions vanish only for product states, this implies that the
concurrence itself can also be used to faithfully quantify entanglement. The interest of
the concurrence becomes however clearer when considering mixed states.

For any 2-qubit mixed state ρ, the definitions of the concurrence and the entanglement
of formation can be extended through the convex-roof constructions:

C(ρ) = inf
{pi,|ψi〉}

∑

i

piC(ψi) (3.7)

and
Ef (ρ) = inf

{pi,|ψi〉}

∑

i

piEf (ψi), (3.8)

where the two infima are computed over all possible decompositions of ρ, i.e. all sets
{pi, |ψi〉} such that ρ =

∑
i pi|ψi〉〈ψi|. The optimizations implied by such convex-roof

constructions are generally difficult to compute (even for 2-qubit systems). In the case of
the concurrence, however, it was shown [54] that the optimization over all decompositions
is simply given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (3.9)

where λ1, . . . , λ4 are the square roots of the eigenvalues of the operator ρSρ∗S (with
ρ∗ = |ψ∗〉〈ψ∗|), sorted in decreasing order.

The Equation (3.9) has two important consequences. On the one hand, it allows to
easily compute the entanglement of formation of any 2-qubit state ρ, as, for convexity
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reasons, we have Ef (ρ) = E(C(ρ)) [54]. On the other hand, it provides the following
practical separability criterion for 2-qubit states.

Theorem 3.1 (Wootters [54]). A mixed state of two qubits with density operator ρ is

separable if and only if C(ρ) = 0, which is the case if and only if

λ1 − λ2 − λ3 − λ4 ≤ 0, (3.10)

where λ1, . . . , λ4 are the square roots of the eigenvalues of the operator ρSρ∗S, sorted in

decreasing order.

With the hope of finding new separability criteria, the 2-qubit concurrence was quickly
generalized to general bipartite [55] and multipartite systems [56], by the introduction of
a set of generalized concurrences. We detail this in the next section.

3.2 Entanglement detection from generalized concur-

rences

Even though the 2-qubit spin-flip operation can straightforwardly be extended to N -
qubit systems, for any even N [62], by considering the spin-flip operator S(N) = σ⊗N

y , the
correspondingN -qubit concurrence C(N)(ψ) = |〈ψ|S(N)|ψ∗〉| (called N -tangle in Ref. [62])
does not provide an extension of the separability criterion of Theorem 3.1 to multiqubit
states. For instance, whereas the entangled 4-qubit state |GHZ4〉 has C(4)(GHZ4) = 1,
the entangled 4-qubit Dicke state |D(1)

4 〉 has a vanishing 4-qubit concurrence, just as the
4-qubit product state |0000〉.

In any multipartite system associated to a Hilbert space H with dim(H) > 4, a
single concurrence is not enough to detect all entangled states. A separability criterion
inspired by the 2-qubit concurrence can nevertheless be obtained by the introduction of
a set of generalized concurrences Cα (α = 1, 2, . . .), defined similarly as in Eq. (3.2), but
each with a specific generalized “spin-flip” operator Sα [55, 56]. In this section, we first
detail an efficient method for generating the minimal number of generalized concurrences
required to obtain a necessary and sufficient separability condition for pure states. We
then illustrate this generation method for a specific Hilbert space and finally address the
case of mixed states.

3.2.1 Independent generalized concurrences for pure states

The generalized “spin-flip” operators Sα introduced in Refs. [55, 56] to build general-
ized concurrences are generated either from tensor products of SO(n) generators [56] or
from 2 × 2 minor equations from tensor matricizations [55, 63]. Both methods unfortu-
nately produce highly redundant sets of operators. Here, we show how to extract from
them the only independent operators. For this purpose, we make use of the 2 × 2 minor
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equations method [55], as it is better suited for this task. We consider an arbitrary multi-
partite system with Hilbert space H = H1 ⊗ H2 ⊗ · · · ⊗ HN , where Hj (j = 1, . . . , N) are
the individual Hilbert spaces of dimension mj ≥ 2 for each party. In the computational
basis |i〉 ≡ |i1, . . . , iN〉 ≡ |i1〉⊗ · · · ⊗ |iN〉, with ij = 0, . . . ,mj −1 (j = 1, . . . , N), any pure
state |ψ〉 can be expressed as

|ψ〉 =
∑

i

ai|i〉 ≡
m1−1∑

i1=0

· · ·
mN −1∑

iN =0

ai1,...,iN |i1, . . . , iN〉. (3.11)

The state |ψ〉 is separable if and only if the N -order tensor A with components ai ≡
ai1,...,iN is of rank 1 [64]. This is the case if and only if all mode-k matricizations A(k)

of A (k = 1, . . . , N) are themselves of rank 1 [64]. The mode-k matricization A(k) of
A is the mk × dimH/mk matrix whose columns are indexed by all possible values of
i¬k ≡ (i1, . . . , ik−1, ik+1, . . . , iN) and filled with the corresponding elements ai with ik
ranging from 0 to mk − 1. The N mode-k matricizations of A are of rank 1 if and only if
all their 2 × 2 minors vanish, i.e. if and only if

aiai′ = ai[i′

k
]
ai′

[ik]
, ∀k, ∀i, i′ : i′k > ik, i

′
¬k > i¬k, (3.12)

where i[i′
k

] ≡ (i1, . . . , ik−1, i
′
k, ik+1, . . . , iN ), i′

[ik] ≡ (i′1, . . . , i
′
k−1, ik, i

′
k+1, . . . , i

′
N), and i′

¬k >

i¬k means that at least one component of i′
¬k differs from its equivalent in i¬k and that

the first of these differing components is greater for i′
¬k than for i¬k. If we introduce the

generalized concurrences
Ck,i,i′(ψ) ≡ |〈ψ|Sk,i,i′ |ψ∗〉| (3.13)

with
Sk,i,i′ = |i〉〈i′| − |i[i′

k
]〉〈i′

[ik]| + h.c., (3.14)

then Eq. (3.12) is equivalent to

Ck,i,i′(ψ) = 0, ∀k, ∀i, i′ : i′k > ik, i
′
¬k > i¬k. (3.15)

This expresses a necessary and sufficient condition (NSC) of separability for the multipar-
tite pure state |ψ〉.

The total number of generalized concurrences implied by Eq. (3.15) amounts to∑N
k=1

(
mk

2

)(
dimH/mk

2

)
, which simplifies to NdN (dN−1 −1)(d−1)/4 for an N -qudit system

(i.e. mk = d, ∀k). Actually, many of these concurrences are redundant, if not identical,
and they do not cancel independently of each other. It is useful to identify a minimal
set of these equalities that provides equivalently an NSC of separability. To this aim,
we first introduce some notations. In Eq. (3.12), the conditions i′k > ik and i′

¬k > i¬k

imply that the indexes i and i′ in an equality necessarily differ in a number of components
greater than or equal to 2. Let qi,i′ be this number of different components and Qi,i′ the
set gathering their positions: Qi,i′ = { k : ik 6= i′k} and qi,i′ = #Qi,i′ . The (possibly
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empty) complement Qi,i′ is the set { k : ik = i′k}. We then define the two qi,i′-tuples
di,i′ ≡ (i(Q

i,i′ )1
, . . . , i(Q

i,i′ )q
i,i′

) and d′
i,i′ ≡ (i′(Q

i,i′ )1
, . . . , i′(Q

i,i′ )q
i,i′

), as well as, if qi,i′ 6= N ,

the (N−qi,i′)-tuple ci,i′ ≡ (i(Q
i,i′ )1

, . . . , i(Q
i,i′ )N−q

i,i′

), where (A)k denotes the k-th element

of the set A (A = Qi,i′ ,Qi,i′).
We then structure the set of equalities of Eq. (3.12) into subsets SQ,c,(d,d′) that each

gather all equalities with index couples (i,i′) said SQ,c,(d,d′)-compatible, i.e. such that
Qi,i′ = Q, ci,i′ = c and (di,i′ ,d′

i,i′) = (d,d′) up to swaps of d′ components with their
related components in d. We have #SQ,c,(d,d′) = q2q−2, with q = #Q. In each sub-
set SQ,c,(d,d′), one easily checks that the number of distinct pairs {i, i′} and {i[i′

k
], i

′
[ik]}

amounts together to 2q−1 and that the number of independent equalities is equal to
2q−1 − 1. The independent equalities of each subset S remain all independent when the
subsets are grouped together. To see this, let us consider an arbitrary equality indexed
by (k, i, i′) and belonging to a subset S, and let us show that it is independent from all
equalities of any other subsets S′. To this end, we consider the state |ψ〉 = ai|i〉 + ai′ |i′〉.
For this state, all equalities of any subset S′ 6= S are trivially satisfied since they read
0 = 0, while the equality (k, i, i′) of S reads aiai′ = 0. Hence, the separability of the state
(which requires here ai = 0 or ai′ = 0) can only be certified with the help of this latter
equality, which must therefore be independent from the equalities from the other subsets.
It follows that the total number of independent equalities amounts to

Q(H) =
N∑

q=2

(
2q−1 − 1

) ∑

Q
i,i′ :

q
i,i′ =q

q∏

k=1

(
m(Q

i,i′ )k

2

)N−q∏

k=1

m(Q
i,i′ )k

, (3.16)

that simplifies to

Q((Cd)⊗N ) = dN+1 d− 1
4

(
1 − 2

(
1 +

1
d

)N
+

(
1 +

2
d

)N)
(3.17)

for an N -qudit system.
Rather than generating all the equalities and then discarding the redundant ones, it

is more efficient to directly generate only the independent ones. Such an equivalent set of
independent equalities is obtained if, in each subset S, we rather consider the equalities
aiai′ = ajaj′ , with (i,i′) any fixed S-compatible index couple and (j, j′) all possible S-
compatible index couples distinct from (i, i′) and such that (dj,j′ ,d′

j,j′) = (di,i′ ,d′
i,i′) up

to swaps of any components but the last of d′
i,i′ with their equivalents in di,i′ . All these

equalities can be equivalently written

C(i,i′),(j,j′)(ψ) = 0, (3.18)
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with the generalized concurrences

C(i,i′),(j,j′)(ψ) = |〈ψ|S(i,i′),(j,j′)|ψ∗〉|, (3.19)

where
S(i,i′),(j,j′) = |i〉〈i′| − |j〉〈j′| + h.c. (3.20)

The Equalities (3.18) are hereafter merely indexed by the subscript α = 1, . . . , Q(H) and
similarly for all related generalized concurrences (3.19) and generalized spin-flip operators
(3.20). The NSC of separability (3.15) for pure states can then be refined accordingly:

Theorem 3.2. A general N -partite pure state |ψ〉 in H = C
m1 ⊗· · ·⊗C

mN (mj ≥ 2
for all j = 1, . . . , N) is separable if and only if Cα(ψ) = 0, ∀α = 1, . . . , Q(H).

Even though the number Q(H) of independent generalized concurrences Cα quickly
grows with the number of parties and dimensions of the subsystem spaces, the elimination
of all redundancies is not anecdotal. The gain obtained by considering independent gener-
alized concurrences instead of all generalized concurrences can for instance be estimated
from the fraction of independent generalized concurrences, i.e. the quotient between the
number of independent generalized concurrences Qindep(H) and the total number of gen-
eralized concurrence QSO(n)(H) or Qminors(H), depending on the generation method. For
multiqubit systems of between 2 and 20 qubits, the fraction of independent generalized
concurrences for both methods can be seen in Fig. 3.1. For both methods, this fraction
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N

Qindep(H)/QSO(n)(H)

Qindep(H)/Qminors(H)

Figure 3.1: Fraction of independent generalized concurrences in multiqubit systems as a
function of the number of qubits N in the system (between 2 and 20). The fraction of
independent generalized concurrences is shown for both the SO(n) generators generation
method (blue dots) and the 2 × 2 minors generation method (yellow dots).

decreases as the number of qubits increases. In a 20-qubit system, for instance, around a
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fifth of the concurrences generated from 2×2 minors are independent, and this proportion
even drops to a tenth for the SO(n) generators method. The comparison between the two
methods in Fig. 3.1 also reveals that, for systems of less than 6 qubits, it is the SO(n)
generators methods that produces the less redundant generalized concurrences, whereas
for larger multiqubit systems, it is the 2 × 2 minors method that is more efficient.

For multiqudit systems, the gain obtained by considering independent generalized con-
currences is even greater. This can be seen in Fig. 3.2, where the fraction of independent
generalized concurrences for the 2 × 2 minors method is represented for multiqudit sys-
tems with d = 2, 3, 4, 5. Although there is a clear gap between the curves corresponding
to d = 2 (i.e. to qubits) and d = 3, the fraction of independent generalized concurrences
stabilizes for multiqudit systems with larger subsystem dimensions.
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Figure 3.2: Fraction of independent generalized concurrences in several N -qudit systems
for the 2 × 2 minors generation method, as a function of the number of parties (between
2 and 20). The fraction of independent concurrences is represented for dimensions of the
subsystems ranging from 2 to 5.

Before addressing the case of mixed states, we illustrate our generation method with
an example.

3.2.2 Illustrative example for H = C
3 ⊗ C

2 ⊗ C
2

We illustrate here our method for generating the independent generalized concurrences
in the hybrid system associated to the Hilbert space H = C3⊗C2⊗C2, and thus composed
of one qutrit and two qubits. We have chosen to consider the less frequent case of an hybrid
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system rather than a multiqudit system to show the philosophy behind the generation
method in full generality.

As explained below Eq. (3.17), our method for the generation of the independent
generalized concurrences requires to find, for all distinct subsets SQ,c,(d,d′), one SQ,c,(d,d′)-
compatible index couple (i, i′) and then build all independent generalized concurrences
C(i,i′),(j,j′) with (j, j′) all possible SQ,c,(d,d′)-compatible index couples distinct from (i, i′)
and such that (dj,j′ ,d′

j,j′) = (di,i′ ,d′
i,i′) up to swaps of any components but the last of d′

i,i′

with their equivalents in di,i′ . We choose here to span the subsets SQ,c,(d,d′) according to
the parameter q = #Q. Since the set Q must contain at least 2 elements, we have only
two possibilities for q in our tripartite example, namely q = 2 or q = 3. We begin with
the case q = 2.

• q = 2

In this case, the subset Q is any subset of two elements in {1, 2, 3}, so that we have
the three possibilities Q = {1, 2}, Q = {1, 3} or Q = {2, 3}. As a reminder, this
set contains the positions (in the list of the parties) associated to each element of
the q-tuples d and d′, while the complementary subset Q contains the positions
associated to the elements of the (N − q)-tuple c.

For Q = {1, 2}, the 2-tuples d and d′ contain thus computational basis indices
corresponding to the qutrit and the first qubit, while the 1-tuple c contains a com-
putational basis index corresponding to the second qubit. For the 1-tuple c, there
are simply two possibilities: c = (0) or c = (1). For the 2-tuples d and d′, remem-
bering that the elements of d must always differ from their respective counterpart in
d′ and that distinct couples (d1,d′

1) and (d2,d′
2) that differ only by swaps between

corresponding elements lead to the same subset SQ,c,(d,d′), we find three couples
(d,d′) corresponding to distinct subsets SQ,c,(d,d′), namely (d,d′) = ((0, 0), (1, 1)),
(d,d′) = ((0, 0), (2, 1)) and (d,d′) = ((1, 0), (2, 1)).

Combining these possibilities, we find 6 distinct subsets SQ,c,(d,d′) having Q = {1, 2}.
A compatible index couple (i, i′) is easily associated to each of these subsets. For in-
stance, for the subset S{1,2},(0),((0,0),(1,1)) , we get the index couple (i, i′) = (000, 110).
As di,i′ and d′

i,i′ contain here only two elements, there is only one way of finding
a compatible index couple (j, j′) (distinct from (i, i′)) by swaps of any components
but the last of d′

i,i′ with their equivalents in di,i′ (we can here only swap the first
component in d′

i,i′ and di,i′). For instance, for (i, i′) = (000, 110), we can only have
(j, j′) = (100, 010). For the 6 subsets SQ,c,(d,d′) previously identified, we thus find
the 6 independent generalized concurrences C(000,110),(100,010), C(001,111),(101,011),
C(000,210),(200,010), C(001,211),(201,011), C(100,210),(200,110) and C(101,211),(201,111).

For Q = {1, 3}, the 2-tuples d and d′ contain computational basis indices corre-
sponding to the qutrit and the second qubit, while the 1-tuple c contains a compu-
tational basis index corresponding the first qubit. We thus find the same generalized
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concurrences up to a swap between the computational basis indices of the two qubits.
This leads to the independent concurrences C(000,101),(100,001), C(010,111),(110,011),
C(000,201),(200,001), C(010,211),(210,011), C(100,201),(200,101) and C(110,211),(210,111).

Finally, for Q = {2, 3}, the 2-tuples d and d′ contain computational basis indices
corresponding to the two qubits, while the 1-tuple c contains a computational basis
index corresponding to the qutrit. This leads to the following three possibilities for
the 1-tuple c: c = (0), c = (1) or c = (2). For the couple (d,d′), there is only one
distinct possibility, namely (d,d′)=((0, 0), (1, 1)). Again, since d and d′ contain here
only two elements, we can only swap their first element to get an index couple (j, j′)
from any S{2,3},c,(d,d′)-compatible (i, i′) couple. The three resulting independent
concurrences read C(000,011),(010,001), C(100,111),(110,101) and C(200,211),(210,201).

• q = 3

When q = 3, we necessarily have S = {1, 2, 3}. The complement of S is thus
empty and there is no tuple c to consider. A first possibility for the 3-tuples d

and d′ is d = (0, 0, 0), d′ = (1, 1, 1), for which we simply have (i, i′) = (000, 111)
as compatible index couple. As there are now three elements in d and d′, three
distinct swaps among the first two elements in d and d′ can be performed to get
compatible index couples (j, j′). This leads to the three independent concurrences
C(000,111),(100,011), C(000,111),(010,101) and C(000,111),(110,001).

Another possibility for d and d′ is d = (0, 0, 0), d′ = (2, 1, 1), for which we
simply have (i, i′) = (000, 211) as compatible index couple. The swaps among
the first two components lead to the independent concurrences C(000,211),(200,011),
C(000,211),(010,201) and C(000,211),(210,001).

Finally, the last possibility for 3-tuples d and d′ leading to a distinct subsets
S{1,2,3},(d,d′) corresponds to d = (1, 0, 0) and d′ = (2, 1, 1). In this case, we have the
compatible index couple (i, i′) = (100, 211) and the swaps among the first two com-
ponents lead to the independent concurrences C(100,211),(200,111), C(100,211),(110,201)

and C(100,211),(210,101).

These generalized concurrences conclude the span of all incompatible subsets SQ,c,(d,d′).
In total, we found all 24 independent generalized concurrences corresponding to the sys-
tem with Hilbert space H = C3 ⊗ C2 ⊗ C2. For this system, the global 2 × 2 minor
equations method would have given 48 generalized concurrences and the SO(n) genera-
tors method 33 generalized concurrences. This illustrative example concludes our study
of the separability of pure states based on generalized concurrences. We now turn to
mixed states.

3.2.3 Generalized concurrences for mixed states

Let us now consider a mixed state ρ acting on the same multipartite Hilbert space H.
The independent generalized concurrences Cα can be extended to mixed states using the
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standard convex-roof construction. For all α = 1, . . . , Q(H), we define

Cα(ρ) = inf
{pk,|ψk〉}

∑

k

pk Cα(ψk), (3.21)

where the infimum is taken over all possible decompositions of ρ. If ρ is separable, then
it admits a decomposition in which each state |ψk〉 is separable. This implies Cα(ψk) =
0, ∀α, ∀k and hence Cα(ρ) = 0, ∀α. The converse is not true. The cancellation of
all concurrences Cα(ρ) implies that for each of them a decomposition exists where the
considered concurrence vanishes for each pure state of the decomposition. For different
concurrences, however, such decompositions may be different. Therefore, the cancellation
of all concurrences Cα(ρ) does not imply that there exists a decomposition for which
all concurrences of each pure state of the decomposition vanish. The cancellation of all
concurrences is thus a necessary but not sufficient condition of separability for mixed
states:

ρ separable ⇒ Cα(ρ) = 0, ∀α. (3.22)

For instance, the 3-qubit mixed state

ρ =
(

|D(0,2)
3 〉〈D(0,2)

3 | + |D(1,2)
3 〉〈D(1,2)

3 | + |D(1,3)
3 〉〈D(1,3)

3 |
)
/3, (3.23)

with |D(k,k′)
3 〉 ≡

(
|D(k)

3 〉+ |D(k′)
3 〉

)
/
√

2 for all k, k′ ∈ {0, . . . , 3} (k 6= k′), where |D(0)
3 〉, . . . ,

|D(3)
3 〉 denote the four 3-qubit Dicke states (see Section 1.2.3), has a negative semi-definite

partial transpose with respect to any qubit and is therefore entangled [27] although all
concurrences Cα(ρ) (α = 1, . . . , 9) vanish for this state (these concurrences are easily
computed using Eq. (3.31) hereafter).

To obtain a necessary and sufficient separability condition for mixed states using
generalized concurrences, a deeper analysis of the possible decompositions is required.
Such an analysis appears to be easier to perform in the so-called preconcurrence matrix

formalism, which was introduced in Refs. [54, 55, 57] for bipartite systems. In the next
section, we extend this formalism to multipartite systems and exploit it to prove a simple
necessary and sufficient condition for the cancellation of a given concurrence Cα(ρ).

3.3 Preconcurrence matrices and hollowisability

Given a decomposition D = {pk, |ψk〉, k = 1, . . . , p} of a mixed state ρ acting on the
Hilbert space H, we build a preconcurrence matrix τD

α for each generalized concurrence
Cα (α = 1, . . . , Q(H)). Introducing the unnormalized states |ψ̃k〉 ≡ √

pk|ψk〉 so as to
write ρ =

∑p
k=1 |ψ̃k〉〈ψ̃k|, the preconcurrence matrix τD

α is defined as the square p × p

matrix with elements

(τD
α )ij = 〈ψ̃i|Sα|ψ̃∗

j 〉, i, j = 1, . . . , p. (3.24)
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The preconcurrence matrix is symmetric: (τD
α )T = τD

α . Its diagonal elements are the
Cα concurrences (up to the absolute value) of the (unnormalized) states |ψ̃k〉 of the
decomposition D, hence the name of the matrix.

Of particular interest is the eigendecomposition E of ρ, i.e. the decomposition of ρ over
its eigenvectors |vk〉 with nonzero eigenvalues λk: ρ =

∑r
k=1 λk|vk〉〈vk| =

∑r
k=1 |ṽk〉〈ṽk|,

with |ṽk〉 =
√
λk|vk〉 and where r is the rank of ρ. We set τα ≡ τE

α . No other decomposition
of ρ can contain a number of states smaller than r [21]. For an arbitrary decomposition
D = {pk, |ψk〉, k = 1, . . . , p} of ρ, a p × p unitary matrix U always exists such that1

(|ψ̃1〉, . . . , |ψ̃p〉)T = U∗(|ṽ1〉, . . . , |ṽp〉)T with |ṽk〉 ≡ 0 for k > r [21]. Applying this decom-
position change to the preconcurrence matrix τD

α shows that it is unitarily congruent to
the matrix τα extended, if p > r, with p − r rows and columns only composed of zeroes:
τD
α = Uτext

α UT , with τext
α the so extended τα matrix. Conversely, any p × p unitary U∗

applied on (|ṽ1〉, . . . , |ṽp〉)T defines an alternate decomposition of ρ (containing between
r and p pure states) [21] and the preconcurrence matrix related to this decomposition is
directly obtained by the corresponding unitary congruence Uτext

α UT .
We now show that this formalism provides a simple necessary and sufficient condition

to have Cα(ρ) = 0 for a given α. The concurrence Cα(ρ) vanishes if and only if there
exists a decomposition D of ρ such that all the pure states of the decomposition have
a vanishing Cα concurrence, or equivalently, such that the preconcurrence matrix τD

α is
hollow (i.e. has a diagonal only composed of zeroes). This is indeed the case if there
exists an extension τext

α of τα that is unitarily congruent to a hollow matrix.
As shown in the Lemma 2 of Ref. [65], two symmetric matrices are unitarily congruent

if and only if they have the same singular values. A symmetric matrix τext
α is therefore

unitarily congruent to a symmetric hollow matrix if and only if there exists a symmetric
hollow matrix with the same singular values. This problem can be solved using the
following theorem of Ref. [65].

Theorem 3.3 (Thompson [65]). Let d1, . . . , dn be complex numbers, and s1, . . . , sn
nonnegative real numbers, enumerated so that

|d1| ≥ · · · ≥ |dn| , s1 ≥ · · · ≥ sn .

Then a complex symmetric matrix S exists with d1, . . . , dn as its diagonal elements and

s1, . . . , sn as its singular values if and only if

k∑

i=1

|di| ≤
k∑

i=1

si , 1 ≤ k ≤ n, (3.25)

k−1∑

i=1

|di| −
n∑

i=k

|di| ≤
n∑

i=1
i6=k

si − sk , 1 ≤ k ≤ n, (3.26)

1In this change of decomposition, we use the unitary matrix U∗ instead of U for later convenience.
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n−3∑

i=1

|di| − |dn−2| − |dn−1| − |dn| ≤
n−2∑

i=1

si − sn−1 − sn , if n ≥ 3. (3.27)

The application of this theorem to hollow symmetric matrices (for which di = 0, ∀ i =
1, . . . , n) is straightforward: when n 6= 3, the Condition (3.26) for k = 1 is the only
inequality that is not trivially satisfied, and when n = 3, the Condition (3.26) for k = 1
and the Condition (3.27) can only be fulfilled at the same time if s1 − s2 − s3 = 0. This
leads to the following corollary.

Corollary 3.1. There exists a hollow n× n symmetric matrix with singular values

s1 ≥ · · · ≥ sn if and only if

s1 −
n∑

i=2

si ≤ 0 if n 6= 3, (3.28)

s1 − s2 − s3 = 0 if n = 3 . (3.29)

This corollary provides the desired condition for the existence of a hollow matrix
unitarily congruent to the preconcurrence matrix τext

α and we have thus a simple criterion
to check whether a given concurrence vanishes. Since the nonzero singular values of
any extension τext

α of τα are exactly the same as those of τα itself, we merely get that
Cα(ρ) = 0 if and only if the singular values s1, . . . , sr of τα, sorted in decreasing order,
verify s1 − ∑r

k=2 sk ≤ 0. In this case, the symmetric matrix τα (or its 4 × 4 extension
in the special case (SC) r = 3 and s1 − s2 − s3 < 0) is itself unitarily congruent to a
hollow matrix (we say hollowisable) and a decomposition of ρ over exactly r (or r + 1 in
the SC) states |ψk〉 with Cα(ψk) = 0, ∀k is ensured to exist. In the SC, the symmetric
matrix τα is itself not hollowisable and a decomposition of ρ over exactly r = 3 states
|ψk〉 with Cα(ψk) = 0, ∀k does not exist. This is the only case in which an extension of
the preconcurrence matrix τα is required to have unitary congruence to a hollow matrix.
We summarize this necessary and sufficient condition for the vanishing of a generalized
concurrence Cα in the following theorem.

Theorem 3.4. A given concurrence Cα of a general N -partite mixed state ρ van-

ishes if and only if the (symmetric) r× r preconcurrence matrix τα ≡ τE
α (or its 4 × 4

extension if r = 3) is hollowisable by unitary congruence (r = rankρ). This is the

case if and only if the singular values s1, . . . , sr of τα, sorted in decreasing order,

satisfy

s1 −
r∑

k=2

sk ≤ 0. (3.30)

The nonzero singular values of τα appear to be identical to the square roots of the
nonzero eigenvalues of ρSαρ∗Sα, showing that Theorem 3.4 is a direct generalization of
Theorem 3.1 to the case of generalized concurrences.
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The singular values s1, . . . , sr of τα (sorted in decreasing order) actually fully char-
acterize the generalized concurrence Cα(ρ). As a direct generalization of Eq. (3.9), we
have

Cα(ρ) = max(0, s1 −
r∑

k=2

sk). (3.31)

Indeed, we can first write Cα(ρ) = infD={pk,|ψk〉}

∑p
k=1 pkCα(ψk) = infD

∑
k Cα(ψ̃k) =

infD

∑
k |(τD

α )kk| = infp≥r,U∈U(p)

∑
k |(Uτext

α UT )kk|, with U(p) the p × p unitary group.
According to Thompson’s Theorem 3.3, and Lemma 2 of Ref.[65], the diagonal elements
dk (k = 1, . . . , p) of the symmetric matrix Uτext

α UT verify, if sorted in decreasing order
of their absolute values,

∑i−1
k=1 |dk| −∑p

k=i |dk| ≤ ∑p
k=1,k 6=i sk − si for 1 ≤ i ≤ p, where

s1, . . . , sp are the singular values of τext
α sorted in decreasing order. For i = 1, this

condition implies that the sum
∑p
k=1 |dk| is lower bounded by s1 −∑p

k=2 sk. This sum
is also trivially lower bounded by 0, and hence by max(0, s1 − ∑p

k=2 sk). This lower
bound is furthermore necessarily realized. This can for example be seen by observing
that Thompson’s Theorem 3.3 ensures the existence of a symmetric matrix unitarily
congruent to τext

α and with diagonal elements satisfying d1 = max(0, s1 −∑p
k=2 sk) and

d2 = · · · = dp = 0. Since the nonzero singular values of any extension τext
α of τα are the

same as those of τα itself, the conclusion follows immediately.
Although it allows to compute easily the Cα concurrence of any multipartite state

ρ, Theorem 3.4 cannot be used to conclude about the separability of ρ. As we show in
the following section, there is one condition to add to obtain a necessary and sufficient
condition of separability from the hollowisation of the preconcurrence matrices.

3.4 Separability criterion from simultaneous hollowi-

sation

We finally address the separability question of the mixed state ρ. The separability
of ρ is equivalent to the existence of a decomposition D = {pk, |ψk〉, k = 1, . . . , p} of ρ
such that all the pure states |ψk〉 are separable, i.e. satisfy Cα(|ψk〉) = 0, ∀k, ∀α. This
is the case if there exists a decomposition D of ρ such that the preconcurrence matrices
τD
α are hollow for all α, or equivalently if there exists a p × p unitary matrix U such

that the matrices Uτext
α UT are hollow for all α, where τext

α is the p× p extension of the
preconcurrence matrix τE

α . This shows that the separability of a state ρ is equivalent to
the existence of a unitary matrix U allowing the simultaneous hollowisation by unitary
congruence of all its preconcurrence matrices τext

α . Since it was shown in Ref. [66] that any
separable state ρ admits a separable decomposition containing between r(ρ) and (r(ρ))2

separable states, we can conclude the following theorem:
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Theorem 3.5. A general N -partite mixed state ρ acting on the Hilbert space H
is separable if and only if there exists a number p between r(ρ) and (r(ρ))2such

that, for all α = 1, . . . , Q(H), the p × p extended preconcurrence matrices τext
α are

all simultaneously hollowisable by unitary congruence (i.e. all hollowisable using

the same p × p unitary matrix U). In this case, a separable decomposition of ρ is

given by ρ =
∑p

k=1 |ψ̃k〉〈ψ̃k|, with (|ψ̃1〉, . . . , |ψ̃p〉)T = U∗(|ṽ1〉, . . . , |ṽp〉)T , where |ṽk〉
(k = 1, . . . , r(ρ)) are the (subnormalized) eigenvectors of ρ associated to nonzero

eigenvalues and |ṽk〉 = 0 for k > r(ρ).

This theorem shows that the general separability problem for mixed states is equiva-
lent to a pure matrix analysis problem that consists in determining whether a given set
of symmetric matrices is simultaneously unitarily congruent to hollow matrices. In the
same way that quantum compatibility of observables is equivalent to simultaneous diag-
onalisability of Hermitian matrices, quantum separability is equivalent to simultaneous
hollowisability of symmetric matrices.

For 2 qubits, since the system is entirely characterized by a single concurrence Cα
and a single preconcurrence matrix τα, the simultaneous hollowisability question comes
down to a single hollowisability question and this is why the inequality (3.30) fully char-
acterizes the separability of mixed states of 2 qubits [54]. For higher dimensional systems,
or systems composed of more than 2 parties, the number of generalized concurrences
inevitably increases and the simultaneous hollowisability question cannot be avoided any-
more. While there exist criteria to solve the related problem of simultaneous unitary
congruence between pairs of matrices (see for example Refs. [67, 68]), the simultaneous
hollowisability by unitary congruence of a set of symmetric matrices remains an open
matrix analysis problem.

To conclude this section, we illustrate the necessary and sufficient condition of sepa-
rability given in Theorem 3.5 with a nontrivial rank-5 3-qubit mixed state ρ, expressed
in the computational basis |000〉, |001〉, . . . as

ρ =
1
20




1 −1 0 0 −1 1 0 0
−1 3 0 0 1 −3 0 0
0 0 6 0 0 0 −2 0
0 0 0 0 0 0 0 0

−1 1 0 0 3 1 0 0
1 −3 0 0 1 5 0 0
0 0 −2 0 0 0 2 0
0 0 0 0 0 0 0 0




. (3.32)

Since this state has positive semi-definite partial transposes with respect to all the possible
bipartitions, the PPT criterion does not allow to decide about its separability. We can
however prove that it is separable using Theorem 3.5. To compute the preconcurrence
matrices of ρ, let us first compute the nine independent generalized spin-flip operators
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characterizing 3-qubit systems. Following the method explained in Section 3.2.1 and
illustrated in Section 3.2.2, we find the nine operators Sα = |000〉〈011| − |010〉〈001| +h.c.,
|100〉〈111| − |110〉〈101|+ h.c., |000〉〈101| − |100〉〈001| +h.c., |010〉〈111| − |110〉〈011| + h.c.,
|000〉〈110| − |100〉〈010|+ h.c., |001〉〈111| − |101〉〈011| +h.c., |000〉〈111| − |100〉〈011| + h.c.,
|000〉〈111| − |010〉〈101| + h.c., |000〉〈111| − |110〉〈001| + h.c. From the eigenvectors of ρ
(multiplied by the square root of the associated eigenvalues), we then compute the nine
5×5 preconcurrence matrices τα. Among these, three correspond to the zero matrix. The
zero matrix being hollowisable by any unitary matrix, we can ignore them. Out of the
6 remaining ones, 5 are already hollow and only one preconcurrence matrix has nonzero
diagonal elements. Because of the particular structure of these matrices, we can here
solve the simultaneous hollowisation problem. All the preconcurrence matrices are found
to be simultaneously unitary congruent to hollow matrices using the unitary matrix

U =
1√
6




−
√

3 0 0 0
√

3√
2 0 −

√
2 0

√
2

1 0 2 0 1
0 −

√
3 0 −

√
3 0

0 −
√

3 0
√

3 0



, (3.33)

out of which Theorem 3.5 yields the separable decomposition ρ = (1/5)
∑5
i=1 |ψi〉〈ψi|,

with |ψ1〉 = |−01〉, |ψ2〉 = |−0−〉, |ψ3〉 = |10+〉, |ψ4〉 = |−10〉, |ψ5〉 = |010〉, where
|±〉 ≡ (|0〉 ± |1〉)/

√
2.

In the next sections, we investigate the simultaneous hollowisation problem for low di-
mensional symmetric matrices and show that partial solutions of the problem can provide
interesting results about the separability problem for certain classes of states.

3.5 Simultaneous hollowisability of 2×2 symmetric ma-

trices

In this section, we focus on the simultaneous hollowisation problem for 2 × 2 sym-
metric matrices. In Section 3.5.1, we exploit the hollowisability condition provided by
Thompson’s Theorem 3.3 to find the most general form of a 2 × 2 hollowisable matrix.
In Section 3.5.2, we use a suitable parametrization of U(2) to find the set of 2 × 2 uni-
tary matrices hollowising any given 2 × 2 hollowisable matrix. From the intersections of
the sets of unitary matrices hollowising different hollowisable matrices, we conclude in
Section 3.5.3 a general simultaneous hollowisability criterion for 2 × 2 symmetric matri-
ces. In Section 3.5.4, we finally use this simultaneous hollowisability criterion to prove a
separability criterion for mixed states of rank 2.
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3.5.1 Hollowisable 2 × 2 matrices

Let A be a 2 × 2 symmetric matrix, that we parametrize as follows:

A =

(
c1 c3

c3 c2

)
,with c1, c2, c3 ∈ C. (3.34)

As a consequence of Thompson’s Theorem 3.3, the matrix A is hollowisable if and only if
its singular values are identical. The singular values s1 and s2 of A are given by

s1
2

=
1√
2

(
|c1|2 + |c2|2 + 2|c3|2 ± √

z
)1/2

, (3.35)

with
z =

(
|c1|2 − |c2|2

)2
+ 4 |c3|2

(
|c1|2 + |c2|2

)
+ 8 ℜ

(
c2

3c̄1c̄2

)
, (3.36)

where ℜ(c) and c̄ denote the real part and complex conjugate of the complex number c,
respectively. These singular values are thus equal if and only if z = 0. Using the polar
decomposition ci = |ci|eiφi with φi ∈ [0, 2π[ for all i = 1, 2, 3, this condition is equivalent
to

4 |c3|2
(

2 |c1| |c2| cos( 2φ3 − φ1 − φ2) + |c1|2 + |c2|2
)

= −
(

|c1|2 − |c2|2
)2
. (3.37)

As the left-hand side is always positive and the right-hand side always negative, this
equation only holds if both sides are equal to zero. This implies |c1| = |c2| and either
|c3| = 0 or φ2 = 2φ3 − φ1 + π + 2kπ , k ∈ Z.

In any case, we can conclude the following proposition:

Proposition 3.1. A 2 × 2 symmetric matrix A is hollowisable if and only if it can be

written

A =

( |c1| eiφ1 |c3| eiφ3

|c3| eiφ3 −|c1| ei(2φ3−φ1)

)
, with |c1|, |c3| ∈ R

+ and φ1, φ3 ∈ [0, 2π[. (3.38)

3.5.2 Unitary matrices hollowising a 2 × 2 hollowisable matrix

In order to find a simultaneous hollowisability criterion for 2 × 2 matrices, we now
search for the set of 2 × 2 unitary matrices hollowising the hollowisable matrix A from
Proposition 3.1. Let us first note that a unitary U hollowises A if and only if it also
hollowises the matrix cA, for any complex number c. As a consequence, the set of unitary
matrices hollowising A can equivalently be found when considering any multiple of A.
If all the elements of A are equal to zero, A is already hollow and hollowisable by any
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unitary matrix. When it is not the case, we choose to work with the multiple γA, with

γ =
e−iφ3

√
|c1|2 + |c3|2

, (3.39)

as it admits the simpler 2-angle parametrization

γA =

(
cos θ eiφ sin θ

sin θ − cos θ e−iφ

)
with θ ∈ [0, π/2] and φ ∈ [0, 2π[. (3.40)

This rescaled hollowisable matrix γA turns out to be a symmetric unitary matrix.
Transforming this matrix by unitary congruence preserves both its unitarity and its sym-
metry. As a consequence, the hollowisation of this matrix necessarily yields the σ1 Pauli
matrix, multiplied by some phase.

Using a similar argument, we can also extract two phases from any hollowising unitary.
Indeed, any 2 × 2 unitary matrix U ′ can be decomposed into a product of the form [69]

U ′ =

(
eiδ1 0
0 eiδ2

)

︸ ︷︷ ︸
D

(
cosψ − sinψ e−iσ

sinψ eiσ cosψ

)

︸ ︷︷ ︸
U

(3.41)

for some angles δ2, ψ ∈ [−π, π[ and δ1, σ ∈ [−π/2, π/2]. For convenience, we work here
with the modified space of parameters δ1, δ2, σ ∈ [0, 2π[ and ψ ∈ [0, π/2]. As the unitary
matrix U ′ hollowises γA if and only if U hollowises γA, we can first look for the unitary
U hollowising γA and add the diagonal matrix of phases D afterward.

The matrix U γAUT is hollow if its two diagonal elements vanish, i.e. if




e−iφ

(
e2iφ cos2 ψ cos θ − e−2iσ cos θ sin2 ψ − ei(φ−σ) sin(2ψ) sin θ

)
= 0

e−iφ
(
− cos2 ψ cos θ + e2i(φ+σ) cos θ sin2 ψ + ei(φ+σ) sin(2ψ) sin θ

)
= 0

. (3.42)

These two equations are in fact equivalent. We can eliminate one angle by posing δ = φ+σ,
so that the only independent equation to solve reads:

eiδ cos2 ψ cos θ − e−iδ cos θ sin2 ψ − sin(2ψ) sin θ = 0. (3.43)

The cancellation of the imaginary part of this equation yields merely sin δ cos θ = 0,
which implies either sin δ = 0 or cos θ = 0. When cos θ = 0, the matrix γA is already
hollow. The hollowising unitary U must then either have ψ = 0 or ψ = π/2. Up to
the phases of U , which can in this case be absorbed into the diagonal matrix D, these
solutions are compatible with the solution sin δ = 0, that we consider now. As δ ∈ [0, 4π[,
the solution sin δ = 0 implies δ = kπ, k ∈ {0, 1, 2, 3}. These values of δ give two different
equations for the vanishing of the real part of Eq. (3.43). We have to consider separately
(i) δ = kπ with k ∈ {0, 2} and (ii) δ = kπ with k ∈ {1, 3}.
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In case (i), we have σ = kπ − φ for some k ∈ {0, 2} such that σ ∈ [0, 2π[ and the
vanishing of the real part of Eq. (3.43) is equivalent to

cos θ cos(2ψ) − sin(2ψ) sin θ = 0. (3.44)

This equation admits the unique solution

ψ =
π/2 − θ

2
. (3.45)

In case (ii), we have σ = kπ − φ for some k ∈ {1, 3} such that σ ∈ [0, 2π[ and the
vanishing of the real part of Eq. (3.43) is equivalent to

− cos θ cos(2ψ) − sin(2ψ) sin θ = 0. (3.46)

This equation admits the unique solution

ψ =
π/2 + θ

2
. (3.47)

The solutions for cases (i) and (ii) transform the matrix γA into the same hollow matrix,
up to a global minus sign. Adding the diagonal matrix of phases D to these solutions, we
find the general form of the unitary matrices hollowising γA. This is summarized in the
following proposition.

Proposition 3.2. Given a 2×2 hollowisable symmetric matrix A, there exists a complex

number c such that the matrix cA can be written

cA =

(
cos θ eiφ sin θ

sin θ − cos θ e−iφ

)
for some θ ∈ [0, π/2] and φ ∈ [0, 2π[. (3.48)

A unitary matrix U hollowises the matrix A if and only if it can either be written

U =


 cos

(
π/2−θ

2

)
eiδ1 − sin

(
π/2−θ

2

)
ei(δ1+φ)

sin
(
π/2−θ

2

)
ei(δ2−φ) cos

(
π/2−θ

2

)
eiδ2


 (3.49)

or

U =



 cos
(
π/2+θ

2

)
eiδ1 sin

(
π/2+θ

2

)
ei(δ1+φ)

− sin
(
π/2+θ

2

)
ei(δ2−φ) cos

(
π/2+θ

2

)
eiδ2



 , (3.50)

for some δ1, δ2 ∈ [0, 2π[.
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3.5.3 Simultaneous hollowisability criterion for 2 × 2 symmetric

matrices

Two hollowisable matrices are simultaneously hollowisable only if their sets of hollow-
ising unitaries have a nonempty intersection. As we show in the following theorem, the
sets of unitary matrices hollowising 2 × 2 symmetric matrices have a nonempty intersec-
tion only if the symmetric matrices are proportional to each other, yielding a very strict
simultaneous hollowisability criterion for 2 × 2 symmetric matrices.

Theorem 3.6. A set of 2 × 2 symmetric matrices is simultaneously hollowisable if

and only if all the matrices of the set are individually hollowisable and proportional

to each other.

Proof. The sufficient condition is trivial: a set of hollowisable matrices (of arbitrary di-
mension) that are all proportional to each other is always simultaneously hollowisable. In
the necessary condition, the individual hollowisability condition is also trivial, so there
only remains to be proved that simultaneously hollowisable matrices are necessarily pro-
portional to each other.

As a consequence of Proposition 3.2, two hollowisable symmetric matrices with a
rescaled form (3.48) corresponding to two different values of θ have disjoint sets of hol-
lowising unitaries and cannot be simultaneously hollowisable. Similarly, two hollowisable
matrices with a rescaled form (3.48) corresponding to the same value of θ but to two
different values φ1 and φ2 (φ1 6= φ2) of φ have disjoint sets of hollowising unitaries and
cannot be simultaneously hollowisable, unless θ = 0 and φ2 = φ1 + π. In this case, the
two rescaled hollowisable matrices are however equal up to a global minus sign. We can
therefore conclude that hollowisable matrices are simultaneously hollowisable only if their
rescaled forms are proportional to each other, in which case the hollowisable matrices are
themselves proportional to each other. �

Even though this theorem presents a mathematical interest by itself, our objective is
of course to combine it with Theorem 3.5, in order to obtain a separability criterion. As
the dimension of the preconcurrence matrices τα of a mixed state ρ corresponds to the
rank of ρ, we can use Theorem 3.6 to study the separability of multipartite states of rank
2, i.e. multipartite states corresponding to the mixture of two independent states.

3.5.4 Separability criterion for multipartite states of rank 2

Using Theorem 3.6, we can check whether the 2 × 2 preconcurrence matrices τα of
a rank-2 multipartite state ρ are simultaneously hollowisable or not. To conclude about
the separability of ρ using Theorem 3.5, we must however not neglect the possibility of
extending the preconcurrence matrices τα by addition of up to two extra rows and columns
of zeroes to reach simultaneous hollowisability. We first show that such an extension of
2 × 2 symmetric matrices to 3 × 3 or 4 × 4 matrices does not change their simultaneous
hollowisability.



3.5 Simultaneous hollowisability of 2 × 2 symmetric matrices 51

Lemma 3.1. Let A1, . . . , An be n 2 × 2 symmetric hollowisable matrices. The 3 × 3 or

4 × 4 matrices Aext
1 , . . . , Aext

n obtained by extending the matrices A1, . . . , An with 1 or 2

extra row(s) and column(s) of zeroes are simultaneously hollowisable if and only if the

matrices A1, . . . , An are proportional to each other.

Proof. The sufficient condition is trivial. To prove the necessary condition we can restrict
ourselves to the case in which there are only two hollowisable matrices: A1 and A2. We
begin with the 3 × 3 extensions. Rather than working with two general hollowisable
matrices Aext

1 and Aext
2 , we can transform them by unitary congruence (using the same

unitary). The resulting matrices are indeed simultaneously hollowisable if and only if
Aext

1 and Aext
2 are also simultaneously hollowisable. For the same reason, we can also

multiply each one by an arbitrary complex number. As a symmetric matrix can always be
transformed by unitary congruence into a diagonal matrix in which the diagonal elements
are the singular values of the matrix with arbitrary phases [48], we can, without loss of
generality, work with the matrices

Aext
1 =




1 0 0
0 −1 0
0 0 0


 and Aext

2 =




cos θ eiφ sin θ 0
sin θ − cos θ e−iφ 0

0 0 0


 , (3.51)

for some θ ∈ [0, π/2] and φ ∈ [0, 2π[. The 3 × 3 unitary matrix

U =




u11 u12 u13

u21 u22 u23

u31 u32 u33


 (3.52)

hollowises the matrix Aext
1 if and only if





u2
11 − u2

12 = 0

u2
21 − u2

22 = 0

u2
31 − u2

32 = 0

. (3.53)

The solutions of this system are uj2 = ±uj1 for j = 1, 2, 3 (the third column of U does
not play any role in the unitary congruence of the extended matrices). The signs cannot
be identical for the three values of j as the columns of U must be orthonormal. There
are therefore only two possibilities: (i) uj1 and uj2 are identical for 2 values of j or (ii)
uj1 and uj2 are opposite for 2 values of j. The ones that are identical or opposite has no
importance as the different possibilities correspond to permutations of the rows of U . We
consider thus, without loss of generality, that the values of j for which uj1 and uj2 are
identical are always the smallest. We can easily check in both cases if such a unitary U
also hollowises Aext

2 :
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In case (i), we have

U =




u11 u11 u13

u21 u21 u23

u31 −u31 u33



 hollowises Aext
2 ⇔





u2
11

(
i sinφ cos θ + sin θ

)
= 0

u2
21

(
i sinφ cos θ + sin θ

)
= 0

u2
31

(
i sinφ cos θ − sin θ

)
= 0

.

(3.54)
The orthonormality of the columns of U imposes u31 6= 0. As a consequence, θ = 0 and
φ = 0 or π are the only solutions of the system. In case (ii), we have almost the same
system to solve:

U =




u11 u11 u13

u21 −u21 u23

u31 −u31 u33


 hollowises Aext

2 ⇔





u2
11

(
i sinφ cos θ + sin θ

)
= 0

u2
21

(
i sinφ cos θ − sin θ

)
= 0

u2
31

(
i sinφ cos θ − sin θ

)
= 0

.

(3.55)
The orthonormality of the columns of U implies u11 = 0, so that the only solutions of the
system are again θ = 0 and φ = 0 or π. This implies that Aext

1 and Aext
2 are simultaneously

hollowisable only if they are proportional to each other (which implies that A1 and A2

are also proportional to each other).
The proof for the case of the 4 × 4 extensions is rigorously the same (we just have an

extra equation in the systems, but the same solution). �

We have now all the ingredients to prove that the condition given in Theorem 3.6
for the simultaneous hollowisability of 2 × 2 symmetric matrices actually provides a nec-
essary and sufficient condition for the separability of multipartite states of rank 2. In
the following theorem, we prove in addition that the 2 × 2 unitary matrices realizing
the simultaneous hollowisation of the preconcurrence matrices lead to a unique separable
decomposition over 2 separable states.

Theorem 3.7. A rank-2 mixed state ρ defined in a general multipartite Hilbert space

H is separable if and only if, for all α = 1, . . . , Q(H), its preconcurrence matrices τα
are all individually hollowisable and proportional to each other. When it is the case,

the separable rank-2 state ρ admits a unique separable decomposition over 2 separable

states.

Proof. The sufficient condition follows simply from Theorem 3.5: if the preconcurrence
matrices τα are all individually hollowisable and proportional to each other, then they are
all simultaneously hollowisable, and Theorem 3.5 allows us to conclude that ρ is separable.

We now prove the necessary condition. If the rank-2 state ρ is separable, then The-
orem 3.5 implies that there exists a number p between 2 and 4 such that the p × p

extended preconcurrence matrices τext
α are all simultaneously hollowisable. If p = 2, then

Theorem 3.6 shows that all the preconcurrence matrices τα must be individually hollow-
isable and proportional to each other. We reach the same conclusion if p = 3 or p = 4



3.5 Simultaneous hollowisability of 2 × 2 symmetric matrices 53

by using Lemma 3.1. This concludes the proof of the first part of the theorem. We now
focus on the statement about the separable decompositions of ρ.

As the extended preconcurrence matrices are simultaneously hollowisable if and only
if the 2 × 2 preconcurrence matrices are themselves simultaneously hollowisable (because
of Lemma 3.1), Theorem 3.5 allows us to conclude that a rank-2 separable state always
admits a separable decomposition containing only 2 separable states. There only remains
to be proved that this decomposition is unique. Let ρ be a rank-2 separable state and τ ′

1

a rescaled version of the preconcurrence matrix τ1 of ρ reading

τ ′
1 =

(
cos θ eiφ sin θ

sin θ − cos θ e−iφ

)
for some θ ∈ [0, π/2] and φ ∈ [0, 2π[. (3.56)

According to Proposition 3.2, such a rescaled form always exists and the unitaries hol-
lowising τ ′

1 (and thus τ1 and all the other preconcurrence matrices) are either of the
form

U =



 cos
(
π/2−θ

2

)
eiδ1 − sin

(
π/2−θ

2

)
ei(δ1+φ)

sin
(
π/2−θ

2

)
ei(δ2−φ) cos

(
π/2−θ

2

)
eiδ2



 (3.57)

or

U ′ =



 cos
(
π/2+θ

2

)
eiδ1 sin

(
π/2+θ

2

)
ei(δ1+φ)

− sin
(
π/2+θ

2

)
ei(δ2−φ) cos

(
π/2+θ

2

)
eiδ2



 , (3.58)

with δ1, δ2 ∈ [0, 2π[.
The unitary U ′ appears to be related to U through the product

U ′ =

(
eiδ1 0
0 eiδ2

)(
0 1
1 0

)( −e−i(φ+δ1) 0
0 ei(φ−δ2)

)
U. (3.59)

This implies that when using U ′ instead of U to compute the separable decomposition
of ρ from its eigendecomposition as explained in Theorem 3.5, the two states of the
decomposition are simply swapped and have each an extra global phase. As a consequence,
U ′ and U lead to the same decomposition. Similarly, when using two matrices having
the form of U , but with different angles δ1 and δ2, the difference between the resulting
separable decompositions consists only in different global phases of the separable states.
This shows that the 2×2 unitary matrices realizing the simultaneous hollowisation of the
preconcurrence matrices of ρ lead all to the same, unique, separable decomposition of ρ
over 2 product states. �

The separability problem for mixed states of rank 2 had previously been solved in
Ref. [70], using a different method based on the PPT criterion. This method also allowed
to show that separable states of rank 2 always admit a separable decomposition containing
only 2 product states. The advantage of Theorem 3.7 is that it provides a simple and
direct way to compute such a separable decomposition over 2 product states, and further
proves that this decomposition is unique.
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Throughout this section, we solved the simultaneous hollowisation problem for 2 × 2
matrices and showed how to exploit the solution to prove a separability criterion for mixed
states of rank 2. With the goal of finding a separability criterion for multipartite mixed
states of rank 3, we study the simultaneous hollowisation problem for 3 × 3 matrices in
the next section.

3.6 Simultaneous hollowisation of 3×3 symmetric ma-

trices

For 3 × 3 symmetric matrices, the hollowisation condition given by Thompson’s The-
orem 3.3 is still an equality but less restrictive than for 2 × 2 matrices. Given a 3 × 3
hollowisable matrix A, we first characterize all the hollow matrices A can be transformed
into by unitary congruence. We then search, in a special basis, the form of hollowising
unitaries and finally address the simultaneous hollowisation problem.

3.6.1 Hollow forms of 3 × 3 hollowisable matrices

According to Thompson’s Theorem 3.3, a (symmetric) 3 × 3 matrix A is hollowisable
if and only if its singular values s1 ≥ s2 ≥ s3 satisfy s1 − s2 − s3 = 0. When it is the case,
the matrix A can be transformed by unitary congruence into at least one hollow matrix
H of the form

H =




0 h1 h2

h1 0 h3

h2 h3 0


 , with h1, h2, h3 ∈ C. (3.60)

As a consequence of the Lemma 2 of Ref. [65], the singular values of H must be the
same as the singular values of A. The singular values of the hollow matrix H are given
by the square roots of the roots of the polynomial

P (z) = z3 − 2ax2 + a2x− 4b , (3.61)

with {
a = |h1|2 + |h2|2 + |h3|2

b = |h1|2 |h2|2 |h3|2
. (3.62)

Since the polynomial P has a fixed coefficient (the one of the highest degree term),
there is a one-to-one correspondence between its roots and its coefficients. This implies
a one-to-one correspondence between the singular values of H (or A) and the values of a
and b. The matrix A can therefore be transformed into all hollow matrices H having a
and b corresponding to its singular values. We now compute explicitly the set of hollow
matrices A can be transformed into.

As a and b depend only on the norms of the elements of H , the phases of the elements
of H have no influence on the possibility of transforming A into H by unitary congruence.
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To suppress these trivial degrees of freedom, it is therefore interesting to factor all phases
out of H and look at real (positive) hollow matrices. This can be done using a diagonal
(unitary) matrices of phases, as there exist angles φ1, φ2, φ3 ∈ [0, 2π[ such that

H =




0 |h1| ei φ1 |h2| ei φ2

|h1| ei φ1 0 |h3| ei φ3

|h2| ei φ2 |h3| ei φ3 0


 = Dφ(φ1, φ2, φ3)H ′

(
Dφ(φ1, φ2, φ3)

)T
, (3.63)

with

Dφ(φ1, φ2, φ3) =




ei
φ1+φ2−φ3

2 0 0

0 ei
φ1+φ3−φ2

2 0

0 0 ei
φ2+φ3−φ1

2


 (3.64)

and

H ′ =




0 |h1| |h2|
|h1| 0 |h3|
|h2| |h3| 0


 . (3.65)

Such a phase factorization is only possible because the hollow matrix H is a 3 × 3 matrix
with 3 distinct complex elements. A 3×3 diagonal matrix of phases has therefore enough
degrees of freedom to absorb all the phases. Even though this was also possible in the case
of 2 × 2 hollow matrices, for which there was only one phase to absorb (see Section 3.5.2),
we would not be able to do it for 4 × 4 hollow matrices. These matrices have indeed 6
distinct complex elements, so that a diagonal matrix of 4 phases could not allow such a
factorization.

To find the set containing all the hollow matrices of the form H ′ corresponding to
given singular values s1 ≥ s2 ≥ s3, we must first express a and b as a function of these
singular values. This can be done by expressing the coefficients of the polynomial P
defined in Eq. (3.61) in terms of its roots (which are the squares of the singular values of
H ′). We get the following relations:

{
a =

(
s2

1 + s2
2 + s2

3

)
/2 = s2

1 − s2s3

b =
(
s2

1 s
2
2 s

2
3

)
/4

. (3.66)

The relationship between the nonzero elements of H ′ and its singular values is then
obtained by solving System (3.62). This yields the following set of triplets:

(|h1|, |h2|, |h3|) ∈
{(

λ,
1√
2

√
s2

1 − s2s3 − λ2 − γ,
1√
2

√
s2

1 − s2s3 − λ2 + γ

) ∣∣∣ λ ∈ [s3, s2]

}

⋃{(
λ,

1√
2

√
s2

1 − s2s3 − λ2 + γ,
1√
2

√
s2

1 − s2s3 − λ2 − γ

) ∣∣∣ λ ∈ [s3, s2]

}

(3.67)
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with

γ =

√
(λ2 − s2

1)(λ2 − s2
2)(λ2 − s2

3)
λ2

. (3.68)

As a conclusion, given an hollowisable 3×3 matrix A with singular values s1 ≥ s2 ≥ s3,
the hollow matrices A can be transformed into (by unitary congruence) have non diagonal
elements whose norms correspond to one of the triplets of Eq. (3.67) and have arbitrary
phases.

3.6.2 Hollowising 3 × 3 unitary matrices

We now search the form of the unitaries transforming A into one of the accessible
hollow matrices. As in the 2 × 2 case, a diagonal matrix of phases can be factored out of
any 3×3 unitary matrix. To that purpose, let us define, as in Ref. [69], the n-dimensional
unimodular matrix Upq(φ, σ) with 1 ≤ p < q ≤ n and φ ∈] − π, π], σ ∈ [−π/2, π/2], as
the unitary matrix differing from n× n identity matrix only through the 4 elements





(Upq(φ, σ))pp = (Upq(φ, σ))qq = cosφ

(Upq(φ, σ))pq = − sinφ e−iσ

(Upq(φ, σ))qp = sinφ eiσ
. (3.69)

Using 3-dimensional unimodular matrices Upq(φ, σ) and a 3 × 3 diagonal matrix of
phases, a 3 × 3 unitary matrix U can always be written as the product [69]

U = diag(eiδ1 , eiδ2 , eiφ3 ) U23(φ2, σ3)U12(θ, σ2)U13(φ1, σ1)︸ ︷︷ ︸
U ′

, (3.70)

where all angles range from −π/2 to π/2 except for the angles φi (i = 1, 2, 3), which range
from −π to π. Since U hollowises a matrix A if and only if U ′ hollowises A, we may omit
the diagonal matrix of phases in the following developments.

Searching the unitaries hollowising a symmetric matrix A is not an easy task. This
task can however be made easier when working in a well chosen basis. As every symmetric
matrix A is diagonalizable by unitary congruence [48], working in a basis in which A is
diagonal is always possible. After diagonalization, the elements on the diagonal are the
singular values of A, in any desired order and with arbitrary phases [48]. As we show in
the following proposition, working with a traceless diagonal matrix simplifies the search
for hollowising unitaries.

Proposition 3.3. If a unitary matrix U hollowises the matrix

D =




s1 0 0
0 −s2 0
0 0 −s3


 , with s1 − s2 − s3 = 0 (3.71)
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then there exists a diagonal matrix of phases V and a real orthogonal matrix O such that

U = V O.

Proof. Given the hypotheses, the matrix H = UDUT is hollow. As shown in Eq. (3.63),
there exist angles φ1, φ2, φ3 ∈ [0, 2π[ such that H = Dφ(φ1, φ2, φ3)H ′ Dφ(φ1, φ2, φ3)T ,
with H ′ a symmetric, hollow and positive matrix and Dφ a diagonal matrix of phases.
The matrix H ′ being real and symmetric, there exists a real orthogonal matrix O such that
the matrix Σ = OTH ′O is diagonal [48]. The diagonal elements of Σ are the eigenvalues
of H ′ (in any desired order), i.e. the singular values of H ′ up to a possible minus sign. As
H ′ is unitarily congruent to H , which is itself unitarily congruent to D, H ′ and D have
the same singular values, namely s1, s2 and s3. In addition, H ′ having a zero trace and a
positive determinant (this can be checked explicitly), its eigenvalues sum up to zero and
have a positive product. We can therefore conclude that the eigenvalues of H ′ are s1,−s2

and −s3. It is then always possible to choose O so that OTH ′O = D.
From the two expressions of H we computed, we have

Dφ(φ1, φ2, φ3)ODOT Dφ(φ1, φ2, φ3)T = U DUT , (3.72)

which is equivalent to

(
U † Dφ(φ1, φ2, φ3)O

)
D = D

(
U †Dφ(φ1, φ2, φ3)O

)∗

, (3.73)

where X∗ and X† are used to denote the complex and Hermitian conjugates of the matrix
X , respectively. Since D is a real diagonal matrix that cannot be multiple of the identity
matrix, the previous equality only holds if U † Dφ(φ1, φ2, φ3)O is a real diagonal matrix
too. This implies that U †Dφ is a real unitary matrix, i.e. an orthogonal matrix, that
must be equal to OT up to a possible change of sign of each column. Including this
possible change of sign into the matrix Dφ(φ1, φ2, φ3), which becomes Dφ(φ′

1, φ
′
2, φ

′
3), we

recover the statement of the proposition as U = Dφ(φ′
1, φ

′
2, φ

′
3)O. �

As a consequence of the previous proposition, determining all the unitary matrices
U hollowising D is equivalent, up to diagonal matrices of phases, to finding all the real
orthogonal matrices O hollowising D. This constitutes a dramatic simplification of the
problem, as orthogonal matrices have a parameter space of only 3 angles, compared to
the 9 angles of general unitary matrices. In this particular basis, we can actually find the
analytical form of all the hollowising unitaries.

Using similar matrices as in Eq. (3.70), a general real orthogonal matrix O can be
written

O = diag(1, 1,±1)U23(φ2, 0)U12(θ, 0)U13(φ1, 0). (3.74)

The diagonal matrix in this parametrization is there to guarantee that, for each orthog-
onal matrix with determinant 1 (i.e. from SO(3)), we have the equivalent matrix with
determinant -1 (i.e. from O(3) \SO(3)). As this matrix is nothing but a diagonal matrix
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of phases, it has no impact on the fact that O hollowises D or not, and we can thus deal
with orthogonal matrices from SO(3) only.

With this parametrization, the orthogonal matrix O hollowises D if and only if the
equations





1

2
cos2(θ) (s2 + (s2 + 2s3) cos(2φ1)) − s2 sin2(θ) = 0

s2 − 3s2 cos(2θ) − 2(s2 + 2s3) cos2(θ) cos(2φ1) = 0

−6s2 cos2(θ) cos(2φ2) − (s2 + 2s3)
(

cos(2φ1) cos(2φ2)(−3 + cos(2θ)) + 4 sin(θ) sin(2φ1) sin(2φ2)
)

= 0

(3.75)

are all satisfied. Since the first two equations of this system are equivalent, we have two
independent equations for three unknowns and we expect a continuous set of solutions.
These solutions can be parametrized as follows:

− arctan

(√
s1

s2

)
≤ θ ≤ arctan

(√
s1

s2

)
, (3.76)

φ1 = ±1
2

arccos

(
s2(2 tan2(θ) − 1)

s1 + s3

)
+ kπ with k ∈ Z s.t.− π < φ1 ≤ π (3.77)

and

φ2 =






π
4 + k π

2 with k ∈ Z s.t.− π < φ2 ≤ π , if θ = 0 or sin(2φ1) = 0,
1
2 arctan

(
2s2(tan2(θ)−1)

(s1+s3) sin(θ) sin(2φ1)

)
+ k π

2 with k ∈ Z s.t.− π < φ2 ≤ π , otherwise,

(3.78)
unless s3 = 0 and θ = π/4, in which case there is no condition on φ2 (φ2 ∈] − π, π]).

The orthogonal matrices satisfying these conditions for given values of s1 ≥ s2 ≥ s3,
transform the diagonal matrix D into all the positive hollow matrices H ′ having elements
belonging to the sets (3.67), but also into real hollow matrices with some negative elements.
Due to the symmetries of the matrix D, it can happen that orthogonal matrices with
different angles θ, φ1 and φ2 transform D into the same hollow matrix up to the signs of
its elements (which could be absorbed into a diagonal matrix of phases). The range of
the angle θ, as well as the different solutions for φ1 and φ2, for a given value of θ, explain
some of these redundancies. Considering an orthogonal matrix with angles {θ, φ1, φ2}
satisfying Eqs. (3.76) to (3.78) that transforms D into the hollow matrix

H =




0 h1 h2

h1 0 h3

h2 h3 0



 , (3.79)

some elementary transformations on the angles θ, φ1 and φ2 inducing redundant hollow
matrices are listed in Table 3.1.

By combining some of the transformations listed in Table 3.1, one can for example
show that orthogonal matrices O1, O2 that both hollowise D and are characterized by the
angles {θ, φ1, φ2} and {−θ,−φ1, φ2 + π}, respectively, transform the matrix D into the
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Angle transformation Corresponding hollow elements

θ → −θ {−h1, h2,−h3}
φ1 → −φ1 {h1,−h2,−h3}
φ1 → φ1 + π {h1, h2, h3}
φ2 → φ2 + π/2 {h2,−h1,−h3}

Table 3.1: Effect of certain transformations on the angles θ, φ1 and φ2 characterizing
an orthogonal matrix transforming the diagonal matrix D into the hollow matrix H of
Eq. (3.79) on the non diagonal elements of the resulting hollow matrix.

same hollow matrix. Other symmetries, such as permutation symmetries, are naturally
present in this solution, but are more difficult to identify. A permutation in the triplet
(h1, h2, h3) can for example be obtained by applying the inverse permutation on the rows of
the orthogonal matrix used in the unitary congruence, which cannot always be expressed
easily as an angle transformation.

A deeper analysis of these symmetries allows to conclude that a minimal set of hollow-
ising orthogonal matrices, i.e. a set of orthogonal matrices transforming D into hollow
matrices that are not equivalent through unitary congruence with a diagonal matrix of
phases or rows and columns permutations, can be obtain through the set of angles





0 ≤ θ ≤ arctan
(√

s2

2s1+s2

)

φ1 = 1
2 arccos

(
s2(2 tan2(θ)−1)

s1+s3

)

φ2 =





π/4, if θ = 0
1
2 arctan

(
2s2(tan2(θ)−1)

(s1+s3) sin(θ) sin(2φ1)

)
, otherwise

. (3.80)

3.6.3 Simultaneous hollowisation of 3 × 3 matrices

Symmetric hollowisable matrices are in general not simultaneously diagonalizable. As
a consequence, the hollowising orthogonal matrices found in the previous section cannot
be directly used to study the conditions guaranteeing simultaneous hollowisability of
symmetric 3 × 3 matrices. These orthogonal matrices can however be exploited in a
numerical algorithm (Algorithm 3.1 hereafter), allowing to check efficiently whether n
symmetric 3 × 3 matrices S1, . . . , Sn are simultaneously hollowisable or not.

Algorithm 3.1 (Simultaneous hollowisability check for symmetric 3 × 3 matrices).

Given a set of n symmetric 3 × 3 matrices S1, . . . , Sn, we first check that each matrix is

individually hollowisable. This is the case if and only if each matrix Si (i = 1, . . . , n) has

singular values si1 ≥ si2 ≥ si3 satisfying si1 − si2 − si3 = 0.
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If these conditions are satisfied, we then search a unitary matrix U that transforms

the matrix S1 by unitary congruence into a diagonal matrix of the form

D1 =




s1 0 0
0 −s2 0
0 0 −s3



 , (3.81)

where si = s1
i for i = 1, 2, 3 (we drop the superscripts of the singular values of S1 for

simplicity). Such a unitary matrix can, for example, be found by adjusting the phases of

any unitary matrix diagonalizing the Hermitian matrix S1S
∗
1 [48]. Rather than considering

the problem of simultaneous hollowisability of S1, . . . , Sn, we consider now the equivalent

problem of simultaneous hollowisability of D1, S
′
2, . . . , S

′
n, with S′

i = USiU
T for all i =

2, . . . , n.

The last step of the algorithm consists in checking numerically if there exists an or-

thogonal matrix O of the form

O = U23(φ2, 0)U12(θ, 0)U13(φ1, 0) , (3.82)

with 




− arctan
(√

s1

s2

)
≤ θ ≤ arctan

(√
s1

s2

)

φ1 = ± 1
2 arccos

(
s2(2 tan2(θ)−1)

s1+s3

)

φ2 =





π/4, if θ = 0 or sin(2φ1) = 0
1
2 arctan

(
2s2(tan2(θ)−1)

(s1+s3) sin(θ) sin(2φ1)

)
, otherwise

, (3.83)

that hollowises all the matrices S′
2, . . . , S

′
n. If it is not the case, then the matrices

S1, . . . , Sn are not simultaneously hollowisable.

The set of orthogonal matrices used in this algorithm corresponds to the largest sub-
set of the set gathering all orthogonal matrices hollowising D1 (which we obtained in
the previous section) that contains orthogonal matrices transforming 3 × 3 symmetric
matrices into distinct matrices (up to rows and columns permutation or rephasing). As a
consequence, if none of these orthogonal matrices hollowise the matrices S′

2, . . . , S
′
n, then

S′
2, . . . , S

′
n and D1 cannot be simultaneously hollowisable. The reason why we have to

consider the full range for the angle θ, as well as two solutions for the angle φ1, instead of
the minimal solution (3.80) for the matrices hollowising D1 is that the matrices S′

2, . . . , S
′
n

do not necessarily have the same form and the same symmetries as D1, so that the unitary
congruences with orthogonal matrices do not produce the same redundancies.

This algorithm transforms thus the simultaneous hollowisation problem for 3 × 3 sym-
metric matrices into an optimization over one real parameter. An advantage of this
algorithm is that, when matrices are found to be simultaneously hollowisable, the unitary
matrix realizing the hollowisation is given in the last step (as the product between the
hollowising orthogonal matrix O and the diagonalizing unitary matrix U).



3.6 Simultaneous hollowisation of 3 × 3 symmetric matrices 61

Transforming, in the first step of the algorithm, the matrix S1 into a traceless diagonal
matrix of the form (3.81) also provides a necessary condition for the simultaneous hol-
lowisability of the matrices D1, S

′
2, . . . , S

′
n. Indeed, as a consequence of Proposition 3.3,

if a unitary matrix U hollowises D1, there exist a diagonal matrix of phases V and an
orthogonal matrix O such that U = V O, which implies that U hollowises D1 if and only if
O hollowises D1. Therefore, the matrices D1, S

′
2, . . . , S

′
n are simultaneously hollowisable

only if the matrices S′
2, . . . , S

′
n are also hollowisable using an orthogonal matrix. As the

unitary congruence with an orthogonal matrix preserves the trace, and since hollow ma-
trices have a vanishing trace, the matrices D1, S

′
2, . . . , S

′
n are simultaneously hollowisable

only if S′
2, . . . , S

′
n have a vanishing trace.

This condition can be added to the algorithm. If it is not fulfilled, it is indeed pointless
to continue the execution of the algorithm. If it is fulfilled, then each matrix OS′

iO
T

(i = 2, . . . , n) keeps a zero trace for any orthogonal matrix O of the form (3.82), and with
angles θ, φ1 and φ2 satisfying conditions (3.83). To check if each OS′

iO
T is hollow, it is

then sufficient to look at the vanishing of only two diagonal elements. If the elements of
S′
i are written

S′
i =




a b c

b d e

c e f


 , (3.84)

and we consider the first two diagonal elements, this is equivalent to the condition

∣∣∣ sin(2θ)
(
e sin(φ1) − b cos(φ1)

)
+ d sin2(θ) + cos2(θ)

(
a cos2(φ1) − c sin(2φ1) + f sin2(φ1)

) ∣∣∣+
∣∣∣
(

cos(φ1) cos(φ2) sin(θ) − sin(φ1) sin(φ2)
)
t(b, c, a) + cos(θ) cos(φ2) t(d, e, b)−

(
sin(φ1) cos(φ2) sin(θ) + cos(φ1) sin(φ2)

)
t(e, f, c)

∣∣∣ = 0, (3.85)

with
t(a, b, c) = a cos(θ) cos(φ2) − sin(φ1)

(
b cos(φ2) sin(θ) + c sin(θ)

)

+ cos(φ1)
(
c cos(φ2) sin(θ) − b sin(φ2)

)
.

(3.86)

To avoid computing each time the matrix product OS′
iO

T , one could directly implement
this condition into the algorithm.

3.6.4 Separability criterion for mixed states of rank 3

In this section, we show that the algorithm presented in the previous section to solve
the simultaneous hollowisation problem for symmetric 3×3 matrices can be used to solve
the separability problem for multipartite states of rank 3.

As shown in Theorem 3.5, having a criterion for simultaneous hollowisability (even
if it is limited to matrices of given dimension) can provide a separability criterion. In
general, if we want to address the separability problem for states of rank r (which have
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preconcurrence matrices of dimension r), we need a simultaneous hollowisation criterion
for matrices of dimension up to r2, as we also have to take into account the extensions of
the preconcurrence matrices up to dimension r2. Using results from Ref. [70], we first show
that for rank-3 states, we almost never have to consider extensions of the preconcurrence
matrices to decide about separability.

Let us first consider a rank-3 multipartite mixed state ρ acting on a Hilbert space H
and such that, when omitting the parties of ρ that have a rank-1 reduced density operator,
ρ is not a bipartite state with rank-2 reduced density operators for both parties. According
to Theorem 3.5, if such a state ρ is separable, then there exists a number p between 3
and 9 such that all the p × p extensions τext

α of the preconcurrence matrices of ρ are
simultaneously hollowisable for all α = 1, . . . , Q(H), implying furthermore the existence
of a separable decomposition of ρ containing p separable pure states. It was however
shown in Ref. [70] that, if such a state ρ is separable, then it necessarily admits a separable
decomposition containing only 3 product states. This means that ρ is separable if and
only if its (unextended) preconcurrence matrices τα are all simultaneously hollowisable,
which implies that it is never necessary to look at the simultaneous hollowisability of their
extensions to decide about the separability of ρ.

This is a surprising result, even if it had already been noted that the case of pre-
concurrence matrices of dimensions 3 is particular. It is indeed the only dimension for
which a preconcurrence matrix τα may not be hollowisable, while one of its extensions
is. This happens if the singular values s1 ≥ s2 ≥ s3 of τα satisfy s1 − s2 − s3 < 0 (see
the proof of Theorem 3.4). As a consequence, if ρ satisfies Cα(ρ) = 0, extending the
3 × 3 preconcurrence matrix τα of ρ to a 4 × 4 matrix may be mandatory to find a hollow
preconcurrence matrix associated to the Cα concurrence, whereas if ρ is separable (in
which case it necessarily satisfies Cα(ρ) = 0, ∀α), its preconcurrence matrices τα must be
themselves hollowisable, ∀α. In other words, if for any value of α, the preconcurrence
matrix τα needs to be extended to be hollowisable, then ρ cannot be separable. We can
accordingly refine, for such rank-3 states ρ, the necessary condition of separability given
by the vanishing of all concurrences Cα(ρ).

Proposition 3.4. Let ρ be a rank-3 multipartite mixed state such that, when omitting

the parties of ρ that have a rank-1 reduced density operator, ρ is not a bipartite state with

rank-2 reduced density operators for both parties. If ρ is separable, then Cα(ρ) = 0, ∀α,

and each associated preconcurrence matrix τα has singular values sα1 ≥ sα2 ≥ sα3 satisfying

sα1 − sα2 − sα3 = 0. (3.87)

Let us now consider a rank-3 state ρ that, up to parties with rank-1 reduced density
operator, is a bipartite state with rank-2 reduced density operator for both parties. As the
parties with rank-1 reduced density operator have no influence on the separability of ρ, we
can restrict ourselves to study the separability of σ, the bipartite reduced density operator
of ρ corresponding to the two parties with rank-2 reduced density operator. Whatever
Hilbert space the state ρ acts on, σ can be seen as a density operator acting on C2 ⊗C2, i.e.
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as a 2-qubit state. Its separability question (and thus the separability question of ρ) can
therefore simply be answered using the 2-qubit separability criterion given in Theorem 3.1.
By contrast to the other rank-3 states, separable states of this type can have separable
decompositions containing 4 separable states [55, 70]. This is essentially due to the fact
that the separability of these states is characterized by only one concurrence, so that
there is no limitation on the number of states in any separable decomposition of such
state coming from the simultaneous hollowisation of its preconcurrence matrices.

In conclusion, we can always decide about the separability of mixed states of rank 3
using criteria based on generalized concurrence and simultaneous hollowisation. This is
summarized in the following theorem.

Theorem 3.8. Let ρ be a rank-3 multipartite mixed state defined in the Hilbert space

H.

When omitting parties with rank-1 reduced density operator, if ρ is a bipartite

state with rank-2 reduced density operator for both parties, then ρ is separable if and

only if

C(σ) = 0, (3.88)

where C is the 2-qubit concurrence and σ is the reduced density operator of ρ corre-

sponding to the two parties with rank-2 reduced density operator.

Otherwise, ρ is separable if and only if, for all α = 1, . . . , Q(H), all its 3 × 3
preconcurrence matrices τα are simultaneously hollowisable.

In the second part of the theorem, the simultaneous hollowisability condition can be
checked efficiently using Algorithm 3.1. As a consequence, concurrence based criteria can
always efficiently solve the separability problem for mixed states of rank 3. Although
it provides a new way to look at the separability problem, the separability criterion
given in Theorem 3.8 is not the unique practical solution of the separability problem for
multipartite mixed states of rank 3. It has indeed been shown that the PPT criterion is
also a necessary and sufficient condition for the separability these states [70].

3.7 Hollowisation in a diagonal basis

Even though Thompson’s Theorem 3.3 provides a simple criterion for the hollowisabil-
ity of symmetric matrices, it does not allow to find the form of the hollowising unitaries.
In this section, we consider the problem of hollowisation in a diagonal basis and show
that in such basis, we can always find some particular examples of hollowising unitaries.
This approach is based on the following reformulation of Thompson’s Theorem 3.3, which
was also shown in Ref. [65].

Theorem 3.9 (Thompson [65]). Let d = (d1, . . . , dn)T and s = (s1, . . . , sn)T be com-

plex column n-tuples with the numbering such that

|d1| ≥ · · · ≥ |dn| , |s1| ≥ · · · ≥ |sn| .
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Then there exists a unitary matrix U = (uij) such that

d = (u2
ij)s (3.89)

if and only if
k∑

i=1

|di| ≤
k∑

i=1

|si| , 1 ≤ k ≤ n, (3.90)

k−1∑

i=1

|di| −
n∑

i=k

|di| ≤
n∑

i=1
i6=k

|si| − |sk| , 1 ≤ k ≤ n, (3.91)

n−3∑

i=1

|di| − |dn−2| − |dn−1| − |dn| ≤
n−2∑

i=1

|si| − |sn−1| − |sn| , if n ≥ 3. (3.92)

Translated into the context of hollowisation, this theorem shows that a unitary matrix
U with elements (U)ij = uij hollowises the diagonal matrix diag(s1, . . . , sn) if and only if
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 . (3.93)

A symmetric matrix A is always unitarily congruent to a diagonal matrix whose ele-
ments are the singular values of A, in any order and with any phases [48]. As a conse-
quence, Theorem 3.9 shows that for each unitary U hollowising A in this diagonal form,
the diagonal elements must be solutions of an homogeneous linear system involving the
squares of the elements of U . This system provides a new condition on the unitaries real-
izing the hollowisation: if a unitary matrix U hollowises a nonzero diagonal matrix, then
the matrix V obtained by squaring all the elements of U must be singular, i.e. satisfy
det(V ) = 0.

As an illustration, we show that the 4 × 4 hollowising unitary U found by W. K.
Wootters [54] in his proof of Formula (3.9) corresponds to a solution of Eq. (3.93) with a
matrix V having the lowest possible rank. We first remind how to build this hollowising
unitary, which can be obtained for any 2-qubit mixed state ρ such that the square roots
λ1, λ2, λ3, λ4 (ordered decreasingly) of the eigenvalues of the operator ρSρ∗S (with S the 2-
qubit spin-flip operator) satisfy λ1−λ2−λ3−λ4 < 0. For such a state ρ, there always exists
a decomposition D = {|xi〉, i = 1, . . . , r} (with r the rank of ρ), subnormalized so that ρ =∑r

i=1 |xi〉〈xi|, and such that τD is the diagonal matrix diag(λ1, λ2, λ3, λ4) [54]. Because of
the condition λ1 −λ2 −λ3 −λ4 < 0, ρ can only have rank 3 or 4. For convenience, if ρ has
rank 3, we add a zero vector |x4〉 in the decomposition D. The separable decomposition
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{|zi〉, i = 1, . . . , 4} is then obtained through the change of basis [54]

|z1〉 = 1
2

(
eiφ1 |x1〉 + eiφ2 |x2〉 + eiφ3 |x3〉 + eiφ4 |x4〉

)
,

|z2〉 = 1
2

(
eiφ1 |x1〉 + eiφ2 |x2〉 − eiφ3 |x3〉 − eiφ4 |x4〉

)
,

|z3〉 = 1
2

(
eiφ1 |x1〉 − eiφ2 |x2〉 + eiφ3 |x3〉 − eiφ4 |x4〉

)
,

|z4〉 = 1
2

(
eiφ1 |x1〉 − eiφ2 |x2〉 − eiφ3 |x3〉 + eiφ4 |x4〉

)
,

(3.94)

where the angles φ1, . . . , φ4 are chosen so that
∑4

j=1 e
2i φjλj = 0, which is always possible

since λ1 − λ2 − λ3 − λ4 < 0. One easily checks that all states |zi〉 (i = 1, . . . , 4) have a
zero 2-qubit concurrence, and are thus separable.

From this separable decomposition, we can deduce that the unitary matrix

U =
1
2




eiφ1 eiφ2 eiφ3 eiφ4

eiφ1 −eiφ2 eiφ3 −eiφ4

eiφ1 eiφ2 −eiφ3 −eiφ4

eiφ1 −eiφ2 −eiφ3 eiφ4


 (3.95)

hollowises the diagonal matrix diag(λ1, λ2, λ3, λ4). The matrix V obtained by squaring
each element in U is ensured to satisfy Eq. (3.93) for the vector (λ1, . . . , λ4)T , as the
phases eiφj (j = 1, . . . , 4) satisfy

∑4
j=1 e

2i φjλj = 0. For this solution, the matrix V has
identical rows and has thus rank 1. This corresponds to the simplest solution as, even
though the condition det(V ) = 0 prevents V from having maximal rank, V could still
have rank 2 or 3.

This procedure for building a unitary matrix hollowising an hollowisable diagonal ma-
trix can straightforwardly be generalized to any dimension that is a power of 2. Choosing
a sufficiently large dimension and discarding potential unnecessary columns, we can then
use it to find hollowising unitaries for preconcurrence matrices corresponding to arbitrary
multiqudit systems. As we already mentioned, this is however a simple solution, with few
degrees of freedom, and it is unfortunately unlikely that such a solution helps solving the
simultaneous hollowisation problem.





Chapter 4

Separable decompositions of

PPT symmetric multiqubit

states

Just like entanglement, separability is a property that is difficult to characterize. For
instance, even when a state is known to be separable, it is in general difficult to obtain one
separable decomposition. This emblematic feature of separable states (the fact that they
admit at least one separable decomposition) remains poorly known. For instance, given
a separable state ρ, one does in general not know its length, i.e. the minimal number of
product state required in a separable decomposition of ρ, or the multiplicity of decompo-
sitions with such minimal cardinality. Concerning these two features of separable states,
several specific results have nevertheless been obtained. Using arguments concerning fa-
cial structures of the convex set of separable states, it has for instance been shown that,
in the set of bipartite separable states of length k acting on the Hilbert space Cm ⊗ Cn,
the subset of separable states with unique separable decomposition is dense and open
if k ≤ max(m,n) [71]. Using similar arguments, separable states with unique separable
decomposition have also been found in multipartite systems [72]. Concerning the length
of separable states, general results have been obtained for mixed states of ranks 2 and
3 [70].

As a byproduct of our research about the separability problem, we already obtained
some results about separable decompositions of separable states in Chapter 3. In The-
orem 3.5, we indeed showed that, given a mixed state ρ, the existence of a separable
decomposition of ρ is equivalent to the existence of a unitary matrix allowing the simul-
taneous hollowisation of all the preconcurrence matrices of ρ (or their extensions). For
separable states of rank 2, we provided a simple way to compute a separable decompo-
sition over two product states and also demonstrated the unicity of this decomposition.
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For separable states of rank 3, we gave an algorithm allowing to efficiently compute a
separable decomposition over three product states.

In this chapter, we follow a different approach and use properties of the partial transpo-
sition operation to search for separable decompositions of separable states. In Section 4.1,
we present an algorithm proposed in Ref. [73] to constructively check the separability
of bipartite PPT states and show how to extend this algorithm to multipartite states.
We then use this algorithm in Section 4.2 to prove general results about the separable
decompositions of symmetric states of 2, 3 and 4 qubits.

4.1 The rank reduction algorithm

Although it is neither a common nor an easy approach to solve the separability prob-
lem, trying to explicitly reconstruct a separable decomposition can be a way of proving
that a given state is separable. In Ref. [73], a constructive algorithm was proposed to re-
construct separable decompositions of bipartite PPT states acting on the space C2 ⊗CM .
Given a PPT mixed state ρ acting on this space, the principle of this algorithm, that we
call rank reduction algorithm, is to subtract projectors onto product states from ρ in order
to decrease its rank (and the rank of its partial transposes1) while keeping the resulting
mixed state PPT. If one can decrease the rank of ρ up to zero with this method, then ρ is
obviously separable and the set of projectors that have been subtracted from ρ provides
a separable decomposition of this state.

This rank reduction algorithm is mathematically based upon two lemmas shown in
Ref. [73], that we briefly recall here. Given a bipartite PPT density operator ρ and a
product state |e, f〉, let us define, as in Ref. [73]:

ρ̃(ρ, |e, f〉, λ) = ρ− λ|e, f〉〈e, f |, (4.1)

λ0(ρ, |e, f〉) =
1

〈e, f |ρ−1|e, f〉 , (4.2)

λ0(ρ, |e, f〉) =
1

〈e∗, f | (ρTA)−1 |e∗, f〉
, (4.3)

where |e∗〉 denotes the complex conjugate of the state |e〉 in the computational basis,
ρTA denotes the partial transpose of ρ with respect to the first party and σ−1 denotes
the pseudoinverse of the density operator σ, i.e. σ−1 =

∑r
i=1 1/λi |vi〉〈vi| with r the

rank of σ, λi (i = 1, . . . , r) its nonzero eigenvalues and |vi〉 the associated eigenvectors.
The operation transforming the product state |e, f〉 into |e∗, f〉 is a partial conjugation,
performed here on the first party. Using a notation reminding the one used for the
partial transposition, we also denote this operation by (|e, f〉)CA ≡ |e∗, f〉. The partial

1As the partial transposes of ρ with respect to the two parties (often called A and B in the case of
bipartite systems) are related by a (full) transposition, they have the same spectrum, and thus the same
rank. We can therefore restrict ourselves to consider one partial transpose, for example the one performed
over party A, and only look at the rank of this partial transpose.
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conjugation naturally extends to multipartite states, where it can be performed with
respect to any subset of the parties.

On the one hand, denoting by R(ρ) the range of the density operator ρ, the condition
under which the operator ρ̃(ρ, |e, f〉, λ) is PPT reads:

Lemma 4.1 (Kraus et al. [73]). ρ̃(ρ, |e, f〉, λ) is PPT if and only if |e, f〉 ∈ R(ρ),

|e∗, f〉 ∈ R(ρTA ) and λ ≤ min
(
λ0(ρ, |e, f〉), λ0(ρ, |e, f〉)

)
.

On the other hand, the ranks of ρ̃(ρ, |e, f〉, λ) and its partial transpose over party A
differ from the ones of ρ and ρTA in three situations:

Lemma 4.2 (Kraus et al. [73]). Assuming |e, f〉 ∈ R(ρ), |e∗, f〉 ∈ R(ρTA ), and sim-

ply denoting ρ̃(ρ, |e, f〉, λ) by ρ̃,

(i) if λ = λ0(ρ, |e, f〉) < λ0(ρ, |e, f〉), then r(ρ̃) = r(ρ) − 1 and r(ρ̃TA ) = r(ρTA ),

(ii) if λ = λ0(ρ, |e, f〉) < λ0(ρ, |e, f〉), then r(ρ̃) = r(ρ) and r(ρ̃TA ) = r(ρTA ) − 1,

(iii) if λ = λ0(ρ, |e, f〉) = λ0(ρ, |e, f〉), then r(ρ̃) = r(ρ) − 1 and r(ρ̃TA ) = r(ρTA ) − 1.

Subtracting a projector onto a product state, i.e. a rank-1 density operator, from a
density operator ρ can obviously only decrease its rank, or the rank of its partial transpose,
by at most one unit. As both ranks must be brought to zero, the success of the algorithm
requires at least max

[
r(ρ), r(ρTA )

]
subtractions. Lemma 4.2 shows however that the rank

of ρ and its partial transpose cannot always be reduced at the same time, explaining why
the success of the algorithm may require some extra subtractions.

As a consequence of these lemmas, we can conclude that the central task in the rank
reduction algorithm is to find product states |e, f〉 in the range of the density operator
we wish to reduce the rank such that the partially conjugated state |e∗, f〉 is in the range
of the partial transpose (over the first party) of this density operator. The success of
the algorithm is however not guaranteed. By successively reducing the rank of a PPT
state ρ using this method, one can indeed end up with a PPT state σ for which there
exists no product state |e, f〉 ∈ R(σ) such that |e∗, f〉 ∈ R(σTA ). Because subtracting
from them any projector onto a product state always yields an NPT state, such states σ
can be seen as lying on “the edge” of the set of PPT states and are therefore called edge

states [74, 75]. Failure of the algorithm for a given state does however not prove that the
state is entangled. The reason of the failure may also be that the set of product states
chosen at each step of the algorithm is not part of a separable decomposition of the state.

As shown in Ref. [76], the rank reduction algorithm and the Lemmas 4.1 and 4.2 extend
naturally to general bipartite states. We show in the next section that they can even be
extended to multipartite states. This extension requires some adaptations, as there are,
in the multipartite case, several bipartitions (and thus several partial transpositions) to
consider.
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4.1.1 Multipartite extension of the algorithm

Let us now consider an N -partite PPT state ρ acting on a Hilbert space H. As in the
bipartite case, we want to decrease the rank of ρ and its partial transposes by subtraction
of projectors onto product states. Given such a product state |φ〉 ∈ H, we now study the
operator ρ̃(ρ, |φ〉, λ) = ρ − λ|φ〉〈φ|. The function λ0(ρ, |e, f〉) of the bipartite algorithm
generalizes, for any bipartition S|S̄ of the N parties (with S̄ denoting the complement of
the subset S), to

λS0 (ρ, |φ〉) =
1

〈φ′| (ρTS )−1 |φ′〉
, (4.4)

with |φ′〉 = (|φ〉)CS .
To obtain the condition under which ρ̃(ρ, |φ〉, λ) is a PPT operator, we just have to

apply Lemma 4.1 to all distinct bipartitions of the N parties. This provides the following
lemma:

Lemma 4.3. ρ̃(ρ, |φ〉, λ) is PPT if and only if |φ〉 ∈ R(ρ), λ ≤ λ0(ρ, |φ〉) and, for all

distinct bipartitions S|S̄ of the parties, (|φ〉)CS ∈ R(ρTS ) and λ ≤ λS0 (ρ, |φ〉).

The conditions under which the ranks of ρ̃(ρ, |φ〉, λ) and its partial transposes change can
be inferred from Lemma 4.2.

A lower bound on the number of subtractions required in a successful application of
the algorithm is now given by the greatest rank among the rank of ρ itself and the ranks
of all its partial transposes taken with respect to distinct bipartitions of the parties. For
an N -partite state ρ, there are 2N−1 such ranks. For convenience, we put them into a
(2N−1)-tuple called rank configuration of ρ.

Although the ideas and lemmas supporting the rank reduction algorithm are easily
generalized to the multipartite case, the number of partial transpositions to consider,
and thus the number of range conditions to verify, grows exponentially with the number
of parties. This makes the algorithm quickly unpractical when the number of parties
increases.

As pointed out in Ref. [77], this exponential growth of the number of partial transposes
can be replaced by a linear growth when considering symmetric multiqubit states. We
detail the adaptation of the rank reduction algorithm to symmetric states in the next
section.

4.1.2 Rank reduction of symmetric multiqubit states

We consider now an N -qubit symmetric PPT state ρS . The permutation symmetry of
ρS implies two simplifications in the rank reduction algorithm. First, as the range of ρS
contains only symmetric states, a product state belonging to the range of ρS is necessarily
of the form |e, . . . , e〉 ≡ |e〉⊗N , with |e〉 a 1-qubit state. Second, for a given subset S of the
qubits, if |e, . . . , e〉 ∈ R(ρS) and (|e, . . . , e〉)CS ∈ R(ρTS

S ), then (|e, . . . , e〉)CS′ ∈ R(ρTS′

S )
for all subset S′ of the qubits such that #S = #S′. Instead of considering the partial
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transpositions and partial conjugations with respect to all distinct bipartitions, we can
thus restrict ourselves to considering partial transpositions and conjugations over the first
k qubits, for all k = 1, . . . , ⌊N/2⌋. We simply denote by ρ

T(k)

S the partial transpose of
ρS over the first k qubits and by (|e, . . . , e〉)C(k) the partial conjugation of |e, . . . , e〉 over
these k first qubits. These two properties of symmetric states considerably simplify the
search for the suitable product states to subtract from ρS .

The permutation symmetry also implies r(ρTS

S ) = r(ρTS′

S ) when #S = #S′. We
therefore drop these redundancies in the rank configuration of ρS , so that it merely
becomes the (⌊N/2⌋ + 1)-tuple constituted by the rank of ρS and the ranks of its partial

transposes ρ
T(k)

S , for all k = 1, . . . , ⌊N/2⌋. Working with symmetric states presents the
additional advantage of providing nontrivial upper bounds on all the ranks of their rank
configuration. Indeed, as it acts on the symmetric subspace of the N -qubit Hilbert space,
ρS itself has a rank that is at most equal to N + 1. As partial transposition breaks
the permutation symmetry of the qubits, any partial transpose ρ

T(k)

S does not act on the
symmetric subspace and may therefore have a greater rank. The symmetry breaking is
however only partial: it is broken across the bipartition 1 · · ·k|k+1 · · ·N , but the reduced
density operators corresponding to the first k qubits and the last N − k ones remain
permutation invariant. As a consequence, the partial transpose ρ

T(k)

S (k = 1, . . . , ⌊N/2⌋)

can be considered as a density operator acting on the bipartite Hilbert space H = H(k)
S ⊗

H(N−k)
S , where H(k)

S and H(N−k)
S are the symmetric subspaces corresponding the Hilbert

spaces of k- and (N −k)-qubit systems. This provides the following upper bound on their
ranks [77]

r(ρ
T(k)

S ) ≤ (k + 1)(N − k + 1), ∀k = 1, . . . , ⌊N/2⌋. (4.5)

These bounds show that symmetric states have limited rank configurations. This is
interesting as low rank multipartite states appear to have particular separability proper-
ties [70]. We review some of these properties in the next section.

4.1.3 Low rank states and optimal separable decompositions

In general, the rank configuration of a separable state reflects the complexity of its
separable decompositions. The minimal number of separable states required to build a
separable decomposition of a separable state ρ is indeed lower bounded by the greatest
rank appearing in its rank configuration, and upper bounded by r(ρ)2 [66]. This minimal
number of separable states is often called length or optimal cardinality of the separable
state ρ and denoted by L(ρ). It also corresponds to the minimal dimension of the exten-
sions of the preconcurrence matrices τext

α of a separable state such that these extended
preconcurrence matrices are simultaneously hollowisable for all α (see Theorem 3.5).

The length of a separable state is generally hard to determine. Some general values
of length are nevertheless known for low rank states [70]. We summarize here some
important results about the lengths of low rank states.
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In the separability criterion of Theorem 3.7, based on simultaneous hollowisation of
2 × 2 matrices, we showed that separable states of rank 2 have length 2. This had been
previously shown using the PPT criterion:

Theorem 4.1 (Chen & Ðokovic [70]). A density operator ρ of rank 2 is separable if

and only if it is PPT, in which case we have also L(ρ) = 2.

As we show in the following corollary, this completely fixes the rank configuration of PPT
states of rank 2.

Corollary 4.1. An N -partite PPT state ρ has r(ρ) = 2 if and only if, for any subset S

of the parties, r(ρTS ) = 2.

Proof. (Necessary condition) As a consequence of Theorem 4.1, if ρ is a rank-2 PPT state,
then it is separable and has length 2. Since the length of a state must be greater than
or equal to any element of its rank configuration, we have thus, for any subset S of the
parties, r(ρTS ) ≤ 2. Whatever subset S, the rank of ρTS can however not be equal to 1, as
it would imply that ρ is a separable pure state, in which case it cannot have a rank equal
to 2. We have therefore r(ρTS ) = 2 for all subsets S of the parties. (Sufficient condition)
As ρ is a PPT state, ρTS is also PPT. In addition, ρ is nothing but the partial transpose
of ρTS with respect to the subset S of the parties. Applying the necessary condition to
the rank-2 PPT density operator ρTS yields therefore r(ρ) = 2. �

The PPT criterion turns out to also solve the separability problem for rank-3 states.
However, there exist PPT states of rank 3 with a length greater than 3:

Theorem 4.2 ( Chen & Ðokovic [70]). A density operator ρ of rank 3 is separable if

and only if it is PPT, in which case it has L(ρ) ∈ {3, 4}. Omitting trivial parties of ρ

having a rank-1 reduced density operator, L(ρ) = 4 is only possible if ρ is a bipartite state

with r(Tr1 ρ) = r(Tr2 ρ) = 2.

This theorem also fixes the rank configuration of PPT states of rank 3. We distinguish
two cases depending on their length.

Corollary 4.2. A rank-3 PPT state has length 4 if and only if it is a bipartite state (when

omitting trivial parties with a rank-1 reduced density operator) with rank configuration

(3, 4).

Proof. (Necessary condition) As a consequence of Theorem 4.2, if ρ is a rank-3 PPT state
with length 4, then (omitting trivial parties with a rank-1 reduced density operator) it is
a bipartite state with r(Tr1 ρ) = r(Tr2 ρ) = 2. The partial transpose of ρ with respect
to the first party cannot have a rank greater than the length of ρ, so r(ρT1 ) ≤ 4. Let
us span the values of r(ρT1 ) from 1 to 3 to show that they are incompatible with the
rank and length of ρ. If r(ρT1 ) = 1, then ρ is a pure product state with r(ρ) = 1. If
r(ρT1 ) = 2, Corollary 4.1 implies r(ρ) = 2. Finally, if r(ρT1 ) = 3, let us apply the rank
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reduction algorithm to show that L(ρ) = 3. As ρ is separable, we can indeed always find a
product state |e, f〉 ∈ R(ρ) such that |e∗, f〉 ∈ R(ρT1 ). As a consequence of Corollary 4.1,
bipartite states with rank configuration (2, 3) or (3,2) do not exist. This implies that
when subtracting a projector onto |e, f〉 from ρ to decrease its rank, the resulting state

ρ̃(ρ, |e, f〉, λ) with λ = min
(
λ0(ρ, |e, f〉), λ0(ρ, |e, f〉)

)
is necessarily a PPT state with

rank configuration (2,2). Such a state has length 2 because of Theorem 4.1 and we have
thus L(ρ) = 3. The only possible value for r(ρT1 ) is therefore 4, which concludes the
proof of the necessary condition. (Sufficient condition) As a consequence of Theorem 4.2,
a PPT state ρ of rank 3 has length 3 or 4. However, r(ρT1 ) = 4 implies L(ρ) ≥ 4, so that
ρ has length 4. �

Corollary 4.3. Omitting trivial parties having a rank-1 reduced density operator, if a

PPT state ρ is not a bipartite state with r(Tr1 ρ) = r(Tr2 ρ) = 2, then r(ρ) = 3 if and

only if, for any subset S of the parties, r(ρTS ) = 3.

Proof. (Necessary condition) As a consequence of Theorem 4.2, the rank-3 PPT state ρ
must have length 3. This implies, for any subset S of the parties, r(ρTS ) ≤ 3. As a
consequence of Corollary 4.1, we cannot have r(ρTS ) = 2 as it would imply r(ρ) = 2.
Similarly, r(ρTS ) = 1 is impossible as it would imply that ρ is a separable pure state, in
which case we have r(ρ) = 1. The only possibility is therefore r(ρTS ) = 3. (Sufficient

condition) As ρ is a PPT state, ρTS is also PPT. Furthermore, ρ is nothing but the partial
transpose of ρTS with respect to the subset S of the parties. Applying the necessary
condition to the rank-3 PPT density operator ρTS yields therefore r(ρ) = 3. �

As we show in the next section, these theorems and corollaries complement well the
rank reduction algorithm to study optimal separable decompositions (i.e. separable de-
compositions of a separable state ρ containing L(ρ) product states) of symmetric multi-
qubit states.

4.2 Optimal separable decompositions of symmetric

multiqubit states

In this section, we show that the rank reduction algorithm and the separability prop-
erties of low rank states can be exploited to obtain general results about length and
optimal separable decompositions of symmetric multiqubit states. We successively con-
sider 2-qubit, 3-qubit and 4-qubit systems.

4.2.1 2-qubit system

A 2-qubit symmetric separable density operator ρS has a rank that is at most equal
to 3. Its length depends on its rank and the rank of its partial transpose ρT1

S , for which
the general bound (4.5) reads ρT1 ≤ 4. If r(ρS) = 2, then L(ρS) = 2 (Theorem 4.1). If
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r(ρS) = 3, then L(ρS) = 3 if r
(
ρT1

S

)
= 3, and L(ρS) = 4 if r

(
ρT1

S

)
= 4 (Theorem 4.2 and

Corollary 4.2). If r(ρS) = 2, Theorem 3.7 implies that ρS has a unique optimal separable
decomposition. We now study optimal separable decompositions of 2-qubit symmetric
states of rank 3.

Let us consider the most general case of a 2-qubit symmetric separable state ρS with
rank configuration (3, 4). In this case, any 2-qubit product state |e, e〉 belongs to R(ρS)
and is such that |e∗, e〉 ∈ R(ρT1

S ), since both ranges are maximal. Any symmetric prod-
uct state can thus be subtracted from ρS , while keeping it PPT, as long as the associ-
ated weight λ satisfies Lemma 4.1. As a consequence of Corollary 4.1, we cannot have

λ0(ρS , |e, e〉) ≤ λ0(ρS , |e, e〉), as the state ρ̃
(
ρS , |e, e〉, λ0(ρS , |e, e〉)

)
would either have

rank configuration (2, 3) or rank configuration (2, 4), which are both impossible. We must

therefore have λ0(ρS , |e, e〉) > λ0(ρS , |e, e〉) and the state ρ̃1 ≡ ρ̃
(
ρS , |e, e〉, λ0(ρS , |e, e〉)

)

has the rank configuration (3, 3). This means that the kernel2 of the operator ρ̃T1
1 has di-

mension 1 and contains thus 1 state (up to global phase), that we denote by |χ〉. A direct

computation shows that ρ̃T1
1

(
ρT1

S

)−1

|e∗, e〉 = 0, which implies that |χ〉 =
(
ρT1

S

)−1

|e∗, e〉.
As we show now, the permutation symmetry of ρS induces constraints on the state |χ〉 .

In the computational basis, the 2-qubit symmetric states ρS has the general form

ρS =




r1 c1 c1 c2

c∗
1 r2 r2 c3

c∗
1 r2 r2 c3

c∗
2 c∗

3 c∗
3 r3


 , (4.6)

with r1, r2, r3 ∈ R and c1, c2, c3 ∈ C, and its partial transpose ρT1

S reads

ρT1

S =




r1 c1 c∗
1 r2

c∗
1 r2 c∗

2 c∗
3

c1 c2 r2 c3

r2 c3 c∗
3 r3


 . (4.7)

The pseudoinverse operator ρ−1
S keeps the same structure as ρS in terms of real and

complex elements. By contrast, the pseudoinverse operator
(
ρT1

S

)−1

loses one symmetry

2We remind that the kernel of a density operator ρ acting on a Hilbert space H is the subspace

K(ρ) = {|ψ〉 ∈ H | ρ|ψ〉 = 0}.
Denoting by k(ρ) the dimension of K(ρ), we have dim(H) = r(ρ) + k(ρ).
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compared to ρT1

S :

(
ρT1

S

)−1

=




r′
1 c′

1 (c′
1)∗ r′

2

(c′
1)∗ r′

3 c′
2 c′

3

c′
1 (c′

2)∗ r′
3 (c′

3)∗

r′
2 (c′

3)∗ c′
3 r′

4


 , (4.8)

with r′
1, r

′
2, r

′
3, r

′
4 ∈ R and c′

1, c
′
2, c

′
3 ∈ C. This structure implies that applying the operator(

ρT1

S

)−1

to a product state of the form |e∗, e〉 always yields a state |χ〉 of the form

|χ〉 = a|00〉 + γ|01〉 + γ∗|10〉 + b|11〉, with a, b ∈ R and γ ∈ C. (4.9)

The form of |χ〉 may suggest that it is the partial conjugation of a symmetric product
state. It is however not, as the first and last components are real but not necessarily
positive. The state |χ〉 is generally an entangled state.

If we want to further decrease the rank of ρ̃1, we must search a 1-qubit state |e2〉 such
that |e2, e2〉 ∈ R(ρ̃1) and |e∗

2, e2〉 ∈ R(ρ̃T1
1 ), which is equivalent to 〈χ|e∗

2, e2〉 = 0. Using
the simple parametrization |e〉 = |0〉 + α|1〉, with α ∈ C, we find that the state we are
looking for must have

α = −γ

b
+ r eiθ, (4.10)

with r =
√

(|γ|/b)2 − a/b and θ ∈ [0, 2π[.
This set of complex numbers α forms a circle into the complex plane. Each point of

this circle corresponds to a state |e2〉, which (after normalization) can be used to decrease
the rank of ρ̃1 or its partial transpose. Except when r = 0, in which case the circle
collapses into a point, we thus have some freedom to choose the second separable state of
the separable decomposition of ρS that we are building using the rank reduction algorithm.
We must this time have λ0(ρ̃1, |e2, e2〉) = λ0(ρ̃1, |e2, e2〉) as, because of Corollary 4.1, the
ranks of ρ̃1 and its partial transpose must be reduced at the same time. The state ρ̃2 ≡
ρ̃
(
ρ̃1, |e2, e2〉, λ0(ρ̃1, |e2, e2〉)

)
is a thus PPT state with rank configuration (2, 2). Such a

state is always separable and has length 2. Its unique optimal separable decomposition can
be found using Theorem 3.7. Adding the corresponding product states and weights to the
2 states and weights we already subtracted from ρS provides a separable decomposition
of ρS containing 4 states. Such a decomposition is in addition optimal as L(ρS) = 4.

In conclusion, we showed that given a 2-qubit separable symmetric state ρS with
rank configuration (3, 4), the rank reduction algorithm always succeeds in decomposing
ρS as a sum of projectors onto product states. In addition, the corresponding separable
decomposition always contains 4 states and is thus always optimal. As both the ranks of
ρS and its partial transpose ρT1

S are maximal, we also noticed that the symmetric product
state chosen in the first step is totally arbitrary. Using the rank reduction algorithm, we
can thus build an optimal separable decomposition of ρS from any 2-qubit symmetric
product state |e, e〉. This is summarized in the following theorem.
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Theorem 4.3. A 2-qubit symmetric separable state ρS with rank configuration (3, 4)
admits an infinite number of optimal separable decompositions such that any 2-qubit

product state |e, e〉 is part of an optimal separable decomposition of ρS.

In the next section, we study the optimal separable decompositions of symmetric states
of 3 qubits.

4.2.2 3-qubit system

A 3-qubit symmetric density operator ρS has a rank that is at most equal to 4. Due to
the permutation symmetry, we can restrict ourselves to consider only the partial transpose
ρ
T(1)

S when applying the rank reduction algorithm to ρS (as explained in Section 4.1.2).

According to the bound (4.5), this partial transpose has a rank satisfying r(ρ
T(1)

S ) ≤ 6.
It was shown in Ref. [78] that a 3-qubit symmetric state is separable if and only if it is
PPT. Using the rank reduction algorithm, we can further determine its length. This is
the object of the following theorem.

Theorem 4.4. A 3-qubit separable symmetric state ρS has a length equal to the rank

of its partial transpose over the first qubit.

Proof. Since the state ρS is separable, it is necessarily PPT [27] and we can thus apply
the rank reduction algorithm to try to reconstruct a separable decomposition of this state.
At each step of the algorithm, we keep a symmetric 3-qubit PPT state, hence a separable
state [78]. This ensures that we can decrease the rank of ρS up to zero, and effectively
build a separable decomposition of this state. To see how many steps are required in
the algorithm, it is useful to make a list of the possible rank configurations of ρS . If the
separable state ρS has rank 1, it can obviously only have the rank configuration (1, 1).
If r(ρS) = 2, then Corollary 4.1 implies that ρS has the rank configuration (2, 2). Since
ρS is a symmetric state, its three parties have identical reduced density operators. As
a consequence, ρS always satisfies the hypotheses of Corollary 4.3, so that if r(ρS) = 3,
then ρS has necessarily the rank configuration (3, 3). Finally, if ρS has maximal rank,

i.e. r(ρS) = 4, then its partial transpose ρ
T(1)

S cannot have a rank lower than 4 due to
Corollaries 4.1 and 4.3. As a consequence, if ρS has maximal rank, its possible rank
configurations are (4, 4), (4, 5) and (4, 6).

In any case, we always have r(ρS) ≤ r(ρ
T(1)

S ), so that the length of the separable state

ρS is at least equal to r(ρ
T(1)

S ). We now prove that the rank reduction algorithm always
provides a separable decomposition of ρS containing a number a product states equal to
r(ρ

T(1)

S ). Due to the possible rank configurations of ρS , it turns out to be impossible to

decrease its rank without decreasing also the rank of its partial transpose ρ
T(1)

S . As a
consequence, at any step of the rank reduction algorithm, we must always decrease the
rank of ρ

T(1)

S . If r(ρ
T(1)

S ) > 4, we can only decrease the rank of ρ
T(1)

S . Otherwise, we must
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decrease the ranks of both ρS and ρ
T(1)

S . The rank reduction algorithm has thus a number

of steps equal to the rank of ρ
T(1)

S , implying L(ρS) = r(ρ
T(1)

S ). �

In the proof of this theorem, we showed that the rank reduction algorithm always
provides an optimal separable decomposition for 3-qubit PPT symmetric states. When
considering a 3-qubit PPT state ρS with the maximal rank configuration (4, 6), the first
product state of the decomposition can in addition be chosen arbitrarily among all sym-
metric product states of 3 qubits. This is due to the fact that when the ranges of ρS
and its partial transpose ρ

T(1)

S are maximal, any product state |e, e, e〉 (with |e〉 a 1-qubit

state) belongs to R(ρS) and is such that |e∗, e, e〉 ∈ R(ρ
T(1)

S ). This shows that Theorem 4.3
extends to symmetric states of 3 qubits:

Theorem 4.5. A symmetric 3-qubit state ρS with the maximal rank configuration

(4, 6) admits an infinite number of optimal separable decompositions such that for

any 1-qubit state |e〉, it is always possible to build an optimal separable decomposition

of ρS containing the product state |e, e, e〉.

In the following section, we show that Theorem 4.5 does however not extend to sym-
metric states of 4 qubits.

4.2.3 4-qubit system

A 4-qubit symmetric density operator ρS has a rank that is at most equal to 5. By
contrast to the case of symmetric states of 3 qubits, we must here explicitly use the
multipartite framework of the rank reduction algorithm, as there are two distinct partial
transposes to consider, namely ρ

T(1)

S and ρ
T(2)

S . According to the general bound (4.5), the

ranks of these partial transposes satisfy r(ρ
T(1)

S ) ≤ 8 and r(ρ
T(2)

S ) ≤ 9.
We prove here by a counterexample that for a 4-qubit symmetric separable state

ρS with the maximal rank configuration (5, 8, 9), any 4-qubit symmetric product state
|e, e, e, e〉 is not necessarily part of an optimal separable decomposition of ρS .

We consider the separable state

ρS =
1
9

3∑

j=1

2∑

k=0

(∣∣∣ψ(j π/4, k 2π/3)
〉〈
ψ(j π/4, k 2π/3)

∣∣∣
)⊗4

, (4.11)

with |ψ(θ, φ)〉 the usual Bloch representation of single qubit states, that is

|ψ(θ, φ)〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ |1〉. (4.12)

This state has the maximal rank configuration (5, 8, 9), which in particular implies
that its length is at least equal to 9. Since it is build as a convex sum of 9 projectors onto
product states, we can conclude that its length is precisely equal to 9. Due to the fact that
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ρS has the maximal rank configuration, any 4-qubit symmetric product state |e, e, e, e〉
belongs to R(ρS) and is such that |e∗, e, e, e〉 ∈ R(ρ

T(1)

S ) and |e∗, e∗, e, e〉 ∈ R(ρ
T(2)

S ). Such
a state |e, e, e, e〉 can therefore always be used to decrease at least one element of the rank
configuration of ρS .

If we choose this product state to be the state |0000〉, we have

λ0(ρS , |0000〉) > λ1,2
0 (ρS , |0000〉) > λ1

0(ρS , |0000〉). (4.13)

This implies that we can only reduce the rank of ρ
T(1)

S by using a projector onto the state
|0000〉. The state

ρ̃S = ρS − λ1
0(ρS , |0000〉) |0000〉〈0000| (4.14)

is thus a PPT state with rank configuration (5, 7, 9). If it is still a separable state, then
by continuing the rank reduction algorithm, we might be able to reconstruct a separable
decomposition of ρS containing the state |0000〉. This decomposition can however not

be optimal. Indeed, as r(ρ̃
T(2)

S ) = 9, we have L(ρ̃S) ≥ 9 and if we succeed in building
a separable decomposition of ρS containing the state |0000〉, this decomposition will at
least contain 10 product states (which is more than the length of ρS).

By contrast, for all the product states |ψj,k〉 ≡ |ψ(j π/4, k 2π/3)〉⊗4, with j = 1, 2, 3
and k = 0, 1, 2, appearing in the separable decomposition (4.11) of ρS , we have

λ0(ρS , |ψj,k〉 > λ1
0(ρS , |ψj,k〉) > λ1,2

0 (ρS , |ψj,k〉) =
1
9
. (4.15)

It is most likely that such a counterexample can also be found for symmetric states of
more than 4 qubits. The freedom we have in building optimal separable decompositions
of 2- and 3-qubit symmetric states with maximal rank configuration is essentially due to
their low ranks and the fact that the study of their separability requires to consider only
one partial transpose.



Chapter 5

Entanglement quantification of

symmetric multiqubit states

Quantifying entanglement is a complex task. Since different entanglement measures
are often maximized by different entangled states, it is in most systems not possible
to establish an absolute hierarchy between entangled states. This is essentially due to
the fact that entanglement measures do not quantify entanglement in its entirety but
rather quantify a specific feature of entanglement. For instance, the geometric measure of
entanglement [43] quantifies the “distance” between an entangled state and the “closest”
separable state (measured through the fidelity), the 3-tangle [79] quantifies the amount
of tripartite correlations in 3-qubit entangled states and the negativity [80, 81] quantifies
how far an entangled state is from having the PPT property. In that regard, the large
number of functions that have been proposed to quantify entanglement (see for instance
the list given in Ref. [37]) gives a good insight of the diversity of the properties of entangled
states.

In this chapter, we focus on the quantification of entanglement properties of symmetric
multiqubit states. In Refs. [82, 83], it had been noticed from numerical computations
and analytical considerations that symmetric states corresponding to large values of the
geometric measure of entanglement have highly scattered Majorana points on the Bloch
sphere. In light of this observation, we aim at building a function that would quantify
the entanglement of SLOCC-equivalent symmetric states through the distance between
their Majorana points on the Bloch sphere.

In Section 5.1, we consider the entanglement quantification within SLOCC classes
and show how the special properties of symmetric states under SLOCC can simplify
the quantification problem. In Section 5.2, we review the Majorana representation of
symmetric states and develop geometrical tools that are useful to study the distribution
of the Majorana points on the Bloch sphere. In Section 5.3, we propose a function to
quantify the entanglement of SLOCC-equivalent symmetric multiqubit states through
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their Majorana points configuration. Finally, in Section 5.3.3, we relate this type of
quantification to the mathematical problem that consists in finding the configuration of
points on a sphere that minimizes a given potential energy.

5.1 Entanglement quantification in SLOCC classes

Although entanglement characterization tools for multiqubit states can always be
particularized to symmetric multiqubit states, it is sometimes also possible to develop
characterization methods specifically dedicated to symmetric states. For instance, in the
context of the classification of entanglement with respect to local operations, a classifi-
cation of entanglement specifically dedicated to symmetric states and defined upon their
Majorana representation has been proposed in Ref. [25]. In the context of entanglement
quantification, it is by contrast not possible to define an entanglement measure that would
be specifically dedicated to symmetric multiqubit states. This is due to the fact entangle-
ment measures have to satisfy the monotonicity under LOCC axiom (see Section 1.3.3),
while LOCC do not necessarily preserve the permutation symmetry.

To circumvent this pitfall, we use the link between entanglement monotones and ho-
mogeneous functions that are invariant under det-1 local operations shown in Ref. [84] to
propose a quantification of entanglement inside SLOCC classes. In this context, we then
show that the specific properties of symmetric states under SLOCC can be exploited to
develop entanglement quantification functions that are exclusively dedicated to symmetric
states.

Let us first introduce the following theorem from Ref. [84].

Theorem 5.1 (Eltschka et al. [84]). A positive homogeneous function µ(ψ) of the pure

multiqubit state |ψ〉 that is invariant under local determinant-1 operations and such that

µ(λψ) = ληµ(ψ), with η, λ > 0,

is an entanglement monotone if and only if η ≤ 4.

If |ψ〉 and |φ〉 are SLOCC-equivalent N -qubit pure states, then there exist invertible
operators A1, . . . , AN ∈ GL(2,C) such that |ψ〉 = A1 ⊗ · · · ⊗ AN |φ〉 [18]. Up to a mul-
tiplicative constant, each element of the ILO can be rescaled into a det-1 operator since
there exist angles θi ∈ [0, 2π[ such that Ai =

√
| det(Ai)| eiθiA′

i with det(A′
i) = 1 for all

i = 1, . . . , N . For any entanglement monotone µ satisfying Theorem 5.1, we then have

µ(ψ) = µ

(
N∏

i=1

√
| det(Ai)| eiθi

(
A′

1 ⊗ · · · ⊗A′
N φ
))

=

(
N∏

i=1

√
| det(Ai)|

)η
µ(φ). (5.1)

As a consequence, if µ vanishes for one state of the SLOCC class of the states |ψ〉 and
|φ〉, then it must vanish on the whole SLOCC class. By contrast, if µ is nonzero on this
SLOCC class, then we can deduce whether the state |ψ〉 is more entangled than the state
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|φ〉 (according to the entanglement measure µ) by looking only at the determinant of the
ILO connecting these two states, whatever the precise form of the entanglement monotone
µ. In addition, this also shows that the degree of the homogeneous function µ has no
influence on the entanglement hierarchy between SLOCC-equivalent states induced by
the entanglement measure µ.

If we now consider two symmetric SLOCC-equivalent states |ψS〉 and |φS〉, it is always
possible to connect them through a symmetric ILO [35]. As for nonsymmetric states, we
could consider quantifying the entanglement of these symmetric states through the value
of the determinant of the symmetric ILO connecting them. To stay in the symmetric
subspace and quantify the entanglement of symmetric states only, we would however need
a function that preserves the permutation symmetry. Based on the previous comments,
we make the following observation.

Observation 5.1. A strictly positive homogeneous function τC(ψS) of the pure symmet-

ric multiqubit state |ψS〉 belonging to the SLOCC class C that is invariant under any det-1
symmetric ILO and such that

τC(λψS) = λκτC(ψS), with κ, λ > 0,

would lead, in the symmetric subspace of the SLOCC class C, to the same quantification

of entanglement as any nonzero homogeneous function satisfying Theorem 5.1. Since

symmetric ILOs preserve the permutation symmetry, such a function could be defined in

the symmetric space only and exploit specific properties of symmetric states to quantify

their entanglement.

As a consequence of this observation, we propose to use homogeneous functions that
are invariant under det-1 symmetric ILOs to quantify entanglement in the symmetric
subspace of SLOCC classes. To build a function that would relate the distribution of
the Majorana points of a symmetric state to its entanglement quantity, we first study
geometric properties of the Majorana representation.

5.2 Geometric properties of the Majorana representa-

tion

The Majorana representation of symmetric N -qubit states exploits the permutation
invariance of these states to represent them as collections of N points on the Bloch sphere.
We had already introduced this representation in Section 1.2.3 but we review it briefly here
as, to simplify upcoming developments, we adopt in this chapter a specific normalization
convention for the Majorana representation.

In the Majorana representation, an N -qubit symmetric state is represented as the
superposition of the states corresponding to all possible permutations of the single qubit
states of an N -qubit product state. Indeed, given an N -qubit symmetric state |ψS〉, there
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always exist single qubit states |ǫ′
1〉, . . . , |ǫ′

N〉 such that

|ψS〉 =
1
N

∑

π∈SN

|ǫ′
π(1), . . . , ǫ

′
π(N)〉, (5.2)

where SN is the group of permutations of N elements and N is a normalization factor.
Several conventions exist for this normalization factor, depending on the norm of the
single qubit states |ǫ′

i〉 (i = 1, . . . , N). To get an unambiguous parametrization that
moreover respects the permutation invariance, these single qubit states must all have the
same norm, but this norm does not necessarily have to be 1. We choose here to work with
the convention in which the parameter N corresponds to the norm of the superposition
of all the permutations of the tensor product of the normalized single qubit states, i.e.

N =

√√√√
(
∑

π∈SN

〈ǫ′
π(1)|

||ǫ′
π(1)||

⊗ · · · ⊗
〈ǫ′
π(N)|

||ǫ′
π(N)||

)(
∑

π′∈SN

|ǫ′
π′(1)〉

||ǫ′
π′(1)||

⊗ · · · ⊗
|ǫ′
π′(N)〉

||ǫ′
π′(N)||

)
. (5.3)

The norm of |ψS〉 is then stored into the single qubit states |ǫ′
i〉, yielding the following

parametrization:

|ψS〉 =
1
N

∑

π∈SN

|ǫπ(1), . . . , ǫπ(N)〉, (5.4)

with

|ǫi〉 =
|ǫ′
i〉

||ǫ′
i||

||ψS ||1/N . (5.5)

In this parametrization, if the state |ψS〉 is normalized (which is usually the case), all
the states |ǫi〉 (i = 1, . . . , N) are normalized as well. Each normalized single qubit state
|ǫi〉 can (up to a global phase) always be written

|ǫi〉 = cos(θi/2) |0〉 + sin(θi/2) ei φi |1〉, (5.6)

with θi ∈ [0, π] and φi ∈ [0, 2π[. Using those angles, we can equivalently represent the
state |ψS〉 as a collection of N points (called Majorana points) on the Bloch sphere.

5.2.1 Distance between Majorana points on the Bloch sphere

Given two single qubit states |ǫ1〉 and |ǫ2〉, let us first characterize the (great-circle)
distance ∆σ between the points representing them on the Bloch sphere (see Fig. 5.1).

The Bloch sphere having a radius equal to 1, the great-circle distance between two
points on the sphere is equal to the central angle between them. This central angle can be
expressed as a function of the spherical coordinates of the two points using the haversine
formula of spherical trigonometry. Using our conventions of Bloch sphere coordinates (as
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θ1

φ1

θ2

φ2

|ǫ1〉

|ǫ2〉

∆
σ

|0〉

|1〉

Figure 5.1: Representation of the great-circle distance ∆σ on the Bloch sphere between
two points with Bloch sphere coordinates (θ1, φ1) and (θ2, φ2), corresponding to the states
|ǫ1〉 and |ǫ2〉, respectively.

shown in Fig. 5.1), this yields:

∆σ = 2 arcsin

√

sin2

(
θ2 − θ1

2

)
+ sin θ1 sin θ2 sin2

(
φ2 − φ1

2

)
. (5.7)

Using trigonometric identities, this formula is easily shown to be equivalent to

∆σ = 2 arcsin

∣∣∣∣cos

(
θ1

2

)
sin

(
θ2

2

)
eiφ2 − cos

(
θ2

2

)
sin

(
θ1

2

)
eiφ1

∣∣∣∣ . (5.8)

In this second formulation, we can directly identify the computational basis components
of |ǫ1〉 and |ǫ2〉, expressed in the Bloch representation (5.6). Renaming these as

|ǫ1〉 = α1|0〉 + β1|1〉 and |ǫ2〉 = α2|0〉 + β2|1〉, (5.9)

we simply get
∆σ = 2 arcsin |α1β2 − α2β1| . (5.10)

Instead of the great-circle distance, we can also consider the Euclidean distance to
quantify the separation between two points on the Bloch sphere. The Euclidean distance
between the points representing the states |ǫ1〉 and |ǫ2〉 on the Bloch sphere, that we
denote by d(|ǫ1〉, |ǫ2〉), is given by the chord length of the central angle ∆σ. We thus have

d(|ǫ1〉, |ǫ2〉) = 2 sin

(
∆σ
2

)
= 2 |α1β2 − α2β1| . (5.11)
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Whereas the great-circle distance ∆σ ranges from 0 (when |ǫ1〉 and |ǫ2〉 are identical) to
π (when |ǫ1〉 and |ǫ2〉 correspond to antipodal points on the Bloch sphere), the Euclidean
distance d ranges from 0 to 2. This function can also be expressed as twice the modulus
of the overlap between |ǫ1〉 and |ǫ⊥

2 〉, a state that is orthogonal to |ǫ2〉:

d(|ǫ1〉, |ǫ2〉) = 2
∣∣〈ǫ⊥

2 |ǫ1〉
∣∣ . (5.12)

This shows in particular that orthogonal states are always represented by antipodal points
on the Bloch sphere. In the following section, we use these geometrical tools to quantify
the entanglement of symmetric multiqubit states through the distribution of their Majo-
rana points.

5.3 Entanglement quantification upon Majorana points

distribution

In the symmetric subspace of any SLOCC class C containing symmetric states with
only nondegenerated Majorana points on the Bloch sphere, we propose the function

τC(|ψS〉) =
δC

N
∏

1≤i<j≤N

d(|ǫi〉, |ǫj〉)
1

N−1 , (5.13)

where δC is a (strictly positive) normalization constant, to quantify the entanglement of
any symmetric state |ψS〉 ∈ C with Majorana representation

|ψS〉 =
1
N

∑

π∈SN

|ǫπ(1), . . . , ǫπ(N)〉. (5.14)

We now show that this function satisfies the hypotheses of Observation 5.1. This
function is obviously positive, and it is nonzero for all symmetric states that have only
nondegenerated Majorana points on the Bloch sphere. It is also homogeneous. Indeed, for
any λ > 0, the state λ|ψS〉 has a Majorana representation with the same norm parameter
as |ψS〉 and single qubit states |ǫ′

i〉 reading |ǫ′
i〉 = λ

1
N |ǫi〉 for all i = 1, . . . , N . Since

d(λ
1
N |ǫi〉, λ

1
N |ǫj〉) = λ

2
N d(|ǫi〉, |ǫj〉), we have τC(λ|ψS〉) = λ τC(|ψS〉), meaning that τC is

an homogeneous function of degree 1. There remains to be shown that τC is invariant
under any det-1 symmetric ILO. Let A be a det-1 operator. We have

A⊗N |ψS〉 =
1
N

∑

π∈SN

A|ǫπ(1)〉 ⊗ · · · ⊗A|ǫπ(N)〉. (5.15)

Since the ILO A⊗N does not necessarily preserve the norm of |ψS〉, the right-hand side
of Eq. (5.15) does however not necessarily respect our normalization convention for the
Majorana representation of A⊗N |ψS〉. According to this convention, the actual Majorana
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representation of this state reads instead

A⊗N |ψS〉 =
1

N ′

∑

π∈SN

A|ǫπ(1)〉
||A|ǫπ(1)〉||

||A⊗N |ψS〉||1/N ⊗ · · · ⊗ A|ǫπ(N)〉
||A|ǫπ(N)〉||

||A⊗N |ψS〉||1/N

(5.16)
with

N ′ =

√√√√
(
∑

π∈SN

〈ǫπ(1)|A†

||A|ǫπ(1)〉||
⊗ · · · ⊗ 〈ǫπ(N)|A†

||A|ǫπ(N)〉||

)(
∑

π′∈SN

A|ǫπ′(1)〉
||A|ǫπ′(1)〉||

⊗ · · · ⊗ A|ǫπ′(N)〉
||A|ǫπ′(N)〉||

)

(5.17)
and

||A⊗N |ψS〉|| =
N ′
∏N
i=1 ||A|ǫi〉||

N . (5.18)

From Eq. (5.11), which expresses the distance d(|ǫi〉, |ǫj〉) in terms of the computational
basis components of |ǫi〉 and |ǫj〉, we find d(A|ǫi〉, A|ǫj〉) = | det(A)| d(|ǫi〉, |ǫj〉). As A is
a det-1 operation, we have

τC(A⊗N |ψS〉) =
δC

N ′

∏

1≤i<j≤N

d

( ||A⊗N |ψS〉||1/N
||A|ǫi〉||

A|ǫi〉,
||A⊗N |ψS〉||1/N

||A|ǫj〉||
A|ǫj〉

) 1
N−1

(5.19)

=
δC

N ′

∏

1≤i<j≤N

( ||A⊗N |ψS〉||2/N
||A|ǫi〉|| ||A|ǫj〉||

) 1
N−1

d(A|ǫi〉, A|ǫj〉)
1

N−1 (5.20)

=
δC||A⊗N |ψS〉||

N ′
∏N
k=1 ||A|ǫk〉||

∏

1≤i<j≤N

d(|ǫi〉, |ǫj〉)
1

N−1 (5.21)

= τC(|ψS〉). (5.22)

This finally proves that τC does effectively satisfy the hypotheses of Observation 5.1.
By definition, τC can only be used to quantify entanglement in SLOCC classes contain-
ing symmetric states with only nondegenerated Majorana points on the Bloch sphere,
i.e. in the SLOCC classes of the entanglement family D1,...,1 of Ref. [25]. Fortunately,
this family contains all generic symmetric states and, in systems of at least 4 qubits, it
includes an infinite number of SLOCC classes [25], in which we can nontrivially quantify
entanglement.

In the entanglement quantification function τC , the term involving the product of the
Euclidean distances between all pairs of Majorana points is obviously larger for symmetric
states that have highly scattered Majorana points on the Bloch sphere. By contrast, the
influence of the Majorana points configuration on the norm parameter N is not so evident.
We figure out how to express it as a function of the distances between the Majorana points
in the next section.
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5.3.1 Geometric interpretation of the norm parameter

Following our convention, the norm parameter defined in Eq. (5.3) corresponds to
the norm of a superposition of tensor products of normalized single qubit states. In
the following, we drop the normalization factor of the single qubit states to simplify the
notations. The norm parameter N is then given by

N =

√√√√
(
∑

π∈SN

〈ǫπ(1), . . . , ǫπ(N)|
)(

∑

π′∈SN

|ǫπ′(1), . . . , ǫπ′(N)〉
)

(5.23)

=

√∑

π∈SN

∑

π′∈SN

(
〈ǫ1, . . . , ǫN |

)(
|ǫπ◦π′(1), . . . , ǫπ◦π′(N)〉

)
, (5.24)

where π ◦ π′ denotes the composition of the permutations π and π′. Since the action of
any permutation on its permutation group gives the group itself, the first sum gives the
same result for all permutations π ∈ SN and we have

N =

√
N !

∑

π′∈SN

(
〈ǫ1, . . . , ǫN |

)(
|ǫπ′(1), . . . , ǫπ′(N)〉

)
. (5.25)

To get intuition on how to express this equation as a function of the distance between
the Majorana points, we consider explicitly the cases of symmetric states of 2 to 4 qubits.
We then extrapolate the general case.

Case of 2 qubits

We begin with the simplest case: N = 2. Throughout these explicit computations of
the norm parameter N (to which we add a subscript specifying the number of qubits it
corresponds to), we use cycle notations for the elements of the symmetric group SN and
omit cycles of length 1 for simplicity. In this case, we have

N2 =

√
2!
(

〈ǫ1, ǫ2|
(
1 + (12)

)
|ǫ1, ǫ2〉

)
(5.26)

=

√
2
(

1 + |〈ǫ2|ǫ1〉|2
)

(5.27)

Let |ǫ⊥
2 〉 denote a state orthonormal to |ǫ2〉. In the orthonormal basis {|ǫ2〉, |ǫ⊥

2 〉}, we
have, for any normalized state |ǫ1〉,

|〈ǫ2|ǫ1〉|2 + |〈ǫ⊥
2 |ǫ1〉|2 = 1. (5.28)
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As shown in Eq. (5.12), the second term of the sum is nothing but d(|ǫ1〉, |ǫ2〉)2/4. Insert-
ing this identity into Eq. (5.27) gives

N2 =
√

2

√
2 − 1

4
d(|ǫ1〉, |ǫ2〉)2. (5.29)

Case of 3 qubits

For a 3-qubit symmetric state, the norm parameter N3 contains 6 permutations:

N3 =

√
3!
(

〈ǫ1, ǫ2, ǫ3|
(
1+ (12) + (23) + (13) + (123) + (132)

)
|ǫ1, ǫ2, ǫ3〉

)
. (5.30)

From the N = 2 case, we can deduce the result for the cycles of length 2:

〈ǫ1, ǫ2, ǫ3|(ij)|ǫ1, ǫ2, ǫ3〉 = 1 − 1
4
d(|ǫi〉, |ǫj〉)2, ∀ i, j ∈ {1, 2, 3}, i 6= j. (5.31)

For the last two terms, we have

〈ǫ1, ǫ2, ǫ3|
(

(123) + (132)
)

|ǫ1, ǫ2, ǫ3〉 = 2 ℜ(〈ǫ1|ǫ2〉〈ǫ2|ǫ3〉〈ǫ3|ǫ1〉), (5.32)

where ℜ(c) denotes the real part of the complex number c. This part of the norm factor
involving a product of three scalar products is more difficult to express as a function of
Euclidean distances. When expressing each single qubit state |ǫi〉 (i = 1, 2, 3) into the
Bloch parametrization (5.6), the explicit computation of the scalar products yields

2ℜ(〈ǫ1|ǫ2〉〈ǫ2|ǫ3〉〈ǫ3|ǫ1〉) =
1
2

(
1+

∑

1≤i<j≤3

cos θi cos θj + sin θi sin θj cos(φi − φj)
)
. (5.33)

The great-circle distance ∆σij between the points representing the states |ǫi〉 and |ǫj〉 on
the Bloch sphere appears explicitly in this last formula from the spherical law of cosines.
When applied to the spherical triangle formed by the points representing the states |ǫi〉
and |ǫj〉 on the Bloch sphere and an auxiliary point on either the north or the south pole
of the Bloch sphere, the spherical law of cosines gives indeed

∆σij = arccos
(

cos θi cos θj + sin θi sin θj cos(φi − φj)
)
. (5.34)

Combining this formula with the trigonometric identity cosα = 1 − 2 sin2(α/2), we get

2 ℜ(〈ǫ1|ǫ2〉〈ǫ2|ǫ3〉〈ǫ3|ǫ1〉) = 2 − 1
4

∑

1≤i<j≤3

d(|ǫi〉, |ǫj〉)2. (5.35)
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Gathering the terms corresponding to all the permutations yields finally

N3 =
√

3!

√
6 − 1

2

∑

1≤i<j≤3

d(|ǫi〉, |ǫj〉)2. (5.36)

Case of 4 qubits

For a 4-qubit symmetric state, we have 24 permutations to consider in the norm factor
N4. The terms with cycles of length up to 3 can be deduced from the previous cases, so
that we only have to analyze the cycles of length 4 and the compositions of disjoint
transpositions (i.e. cycles of length 2). As the length of the cycle increases, an explicit
computation like in Eq. (5.33) becomes harder to perform. For this reason, we present
now another approach, based on the matrix representation of the permutation operators.
In this approach, we consider the sum over all permutations as a single operator and
try to express its action onto the product state |ǫ1, . . . , ǫN 〉 as a sum of compositions of
disjoint transpositions.

Let us denote by Σ the matrix corresponding to the sum of all the matrices representing
permutations of N qubits in the N -qubit computational basis. This matrix can obviously
only couple states of the computational basis with the same number of excitations (i.e.
the same number of qubits in the state |1〉). Since the action of SN on itself is regular, all
the computational basis states with k excitations have the same orbit under the action
of the group. This imply that rows of Σ associated to computational basis states with a
given number k of excitations are all equal to each other. Since the matrices representing
permutations are orthogonal, the matrix Σ must in addition be symmetric (in the sense
Σ = ΣT ). This can easily be seen by grouping each permutation with its inverse in the
sum constituting Σ. As a consequence, the columns of Σ associated to computational
basis states with a given number k of excitations must also be equal to each other, so that
all the elements in these rows and columns have the same value. This value is simply given
by the total number of permutations, divided by the number of computational states with
k excitations. We thus have

(Σ)ij =
N !(
N

E(i−1)

)δE(i−1),E(j−1), (5.37)

where δa,b is the Kronecker symbol between a and b and E(n) gives the number of digits
1 in the binary representation of the natural number n.

Given a computational basis state with k excitations, any permutation on its qubits
can equivalently be realized by the composition of up to min(k,N − k) transpositions
over disjoint couples of qubits. We thus want to decompose the matrix Σ as a sum of
permutations corresponding to the composition of up to ⌊N/2⌋ disjoint transpositions. As
Σ contains all the permutations, we expect all the compositions of k disjoint transpositions
to have the same weight in the sum, for all k = 1, . . . , ⌊N/2⌋. Denoting by Σk the matrix
corresponding to the sum of the matrices representing, in the computational basis, all
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the compositions of k disjoint transpositions of the qubits, such a decomposition of Σ is
possible if there exist integer numbers x0, x1, . . . , x⌊N/2⌋ such that

Σ = x01+ x1Σ1 + · · · + x⌊N/2⌋Σ⌊N/2⌋. (5.38)

We now search for such a decomposition in the case N = 4. To see if the matrix
equation (5.38) admits a solution, we decompose it into blocks of rows and columns
corresponding to computational basis states with the same number of excitations. In
each block, all the rows and columns are thus identical. We arbitrarily choose one row,
corresponding to a particular computational basis state, and decompose, as in Eq. (5.38),
all the permutations of the qubits of this state into three components corresponding to 1,
Σ1 and Σ2. By solving the corresponding equation, we get the values of the coefficients
x0, x1 and x2 of Eq. (5.38), for the corresponding block. We then check whether the
coefficients corresponding to the decompositions of the other blocks are identical, in which
case we have the confirmation that the matrix decomposition of Eq. (5.38) is possible. The
block corresponding to computational basis states with k excitations being identical to
the block corresponding to computational basis states with N − k excitations, we only
consider the blocks associated to computational basis states with at most 2 excitations.
We begin with the block corresponding to computational basis states with 2 excitations.

Given a computational basis state with 2 excitations, such as the state |0011〉, we can
distinguish, in the corresponding row of Σ, 3 classes of computational basis states this
state can be transformed into by permutation. A permutation can indeed either leave the
state unchanged, induce one swap between excited and non-excited states or induce two
swaps between the excited and non-excited states. For the different components of the
decomposition (5.38), we have:

• The 3 compositions of disjoint transpositions transform the state |0011〉 once into
itself and twice into the state |1100〉, i.e. the only state with 2 swaps.

• The 6 transpositions transform the state |0011〉 twice into itself, and once into the
states |1001〉, |1010〉, |0101〉 and |0110〉, i.e. once into each state with 1 swap.

• The identity naturally transforms the state |0011〉 into itself.

In the left hand-side of Eq. (5.38), all the nonzero elements of Σ corresponding to this
row must be identical and equal to 4!/

(
4
2

)
= 4. For the different states of this row, the

Equation (5.38) can thus be put into the linear system

1 Σ1 Σ2





2 swaps 0 0 2
1 swap 0 1 0
0 swap 1 2 1




x0

x1

x2



 =




4
4
4



 . (5.39)

This system admits the solution x0 = −6, x1 = 4 and x2 = 2. We must now verify
that this solution also holds for the other rows and columns of Σ. For the rows and
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columns corresponding to computational basis states with 1 excitation, such as the state
|0001〉, the permutations cannot correspond to 2 swaps. They can only correspond to 1
or 0 swap, giving the following system:

1 Σ1 Σ2( )
1 swap 0 1 1
0 swap 1 3 0




x0

x1

x2



 =

(
6
6

)
. (5.40)

We check easily that the solution of the previous system is compatible with this one.
Finally, we have to consider states with 0 excitation. There is only one such state, namely
|0000〉. Any permutation of its qubits leaves it unchanged. The Equation (5.38) for the
corresponding row simply reads

1 Σ1 Σ2( )
0 swap 1 6 3




x0

x1

x2


 = 24. (5.41)

The solution x0 = −6, x1 = 4 and x2 = 2 being also solution of this system, we can
conclude that the matrix Σ can indeed be decomposed into the identity, transpositions
and compositions of two disjoint transpositions as

Σ = −61+ 4 Σ1 + 2 Σ2. (5.42)

This allows a simple computation of the norm factor:

N4 =
√

4!
(

− 6 + 4
∑

{i,j}⊂S4

|〈ǫi|ǫj〉|2 + 2
∑

disjoint pairs {i,j},{k,l}⊂S4

|〈ǫi|ǫj〉|2|〈ǫk|ǫl〉|2
)
,

(5.43)
with S4 the set {1, 2, 3, 4} containing the 4 qubits. Replacing the squared overlaps using
the identity |〈ǫi|ǫj〉|2 = 1 − 1

4d(|ǫi〉, |ǫj〉)2, we finally obtain the norm parameter

N4 =
√

4!

√√√√√24 − 3
2

∑

{i,j}⊂S4

d(|ǫi〉, |ǫj〉)2 +
1
8

∑

disjoint pairs
{i,j},{k,l} in S4

d(|ǫi〉, |ǫj〉)2 d(|ǫk〉, |ǫl〉)2.

(5.44)

General case

Following a development similar to the one detailed in the previous section, we can
try to find, in systems of N > 4 qubits, a decomposition of the matrix Σ(N) into the
identity and Σ(N)

k matrices, for k = 1, . . . , ⌊N/2⌋ (for clarity, we add a superscript to the
matrices Σ, 1 and Σk, to specify the number of qubits they correspond to). For instance,
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for systems of 5 to 7 qubits, such a decomposition can indeed be found and we have

Σ(5) = −301(5) + 6 Σ(5)
1 + 6 Σ(5)

2 , (5.45)

Σ(6) = −901(6) − 6 Σ(6)
1 + 18 Σ(6)

2 + 6 Σ(6)
3 , (5.46)

Σ(7) = −120 Σ(7)
1 + 48 Σ(7)

2 + 24 Σ(7)
3 . (5.47)

This allows a simple computation of the corresponding norm factors:

N5 =
√

5!

√√√√√120 − 6
∑

{i,j}⊂S5

d(|ǫi〉, |ǫj〉)2 +
3
8

∑

disjoint pairs
{i,j},{k,l}⊂S5

d(|ǫi〉, |ǫj〉)2 d(|ǫk〉, |ǫl〉)2,

(5.48)

N6 =
√

6!

(
720 − 30

∑

{i,j}⊂S6

d(|ǫi〉, |ǫj〉)2 +
3
2

∑

disjoint pairs
{i,j},{k,l}⊂S6

d(|ǫi〉, |ǫj〉)2d(|ǫk〉, |ǫl〉)2

− 3
32

∑

disjoint pairs
{i,j},{k,l},{m,n}⊂S6

d(|ǫi〉, |ǫj〉)2d(|ǫk〉, |ǫl〉)2d(|ǫm〉, |ǫn〉)2

)1/2

, (5.49)

N7 =
√

7!

(
5040 − 180

∑

{i,j}⊂S7

d(|ǫi〉, |ǫj〉)2 +
15
2

∑

disjoint pairs
{i,j},{k,l}⊂S7

d(|ǫi〉, |ǫj〉)2d(|ǫk〉, |ǫl〉)2

− 3
8

∑

disjoint pairs
{i,j},{k,l},{m,n}⊂S7

d(|ǫi〉, |ǫj〉)2d(|ǫk〉, |ǫl〉)2d(|ǫm〉, |ǫn〉)2

)1/2

, (5.50)

where SN (N = 5, 6, 7) denotes the set made of the N qubits. Extrapolating these
expressions to an arbitrary number of qubits, we conjecture that the decomposition (5.38)
can be performed for any number N of qubits, yielding the norm factor

NN =
√
N !

√√√√√N ! +

⌊N/2⌋∑

k=1

(−1

4

)k

(N − k)!
∑

k disjoint pairs
{i1,i2},...,{i2k−1,i2k}⊂SN

d(|ǫi1 〉, |ǫi2 〉)2 . . . d(|ǫi2k−1
〉, |ǫi2k

〉)2.

(5.51)

We checked this formula numerically, up toN = 12. This gives strong indications that the
entanglement quantification function τC only depends on the Euclidean distances between
the Majorana points of symmetric states.

The maximization of τC requires to minimize the norm parameter N . Due to the
factorial term in front of the sum in formula (5.51), the minimization of the norm pa-
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rameter requires a large value of the (negative) term corresponding to k = 1 in the sum.
Indeed, a low value for this term implies a low value for the other terms, so that there
is nothing to balance the N ! term. The term k = 1 of the sum corresponds to the sum
of the Euclidean distances between all pairs of Majorana points. In the numerator of τC

we have the product of all these distances. The inequality between the arithmetic mean
and the geometric mean suggests then that, in order to maximize both terms (and thus
maximize τC), the points should be homogeneously distributed on the sphere.

This intuition is in accordance with the observation, made in Refs. [82, 83], that
symmetric states corresponding to large values of the geometric measure of entanglement
have highly scattered Majorana points on the Bloch sphere. This can also be checked
numerically. We show in the next section how to efficiently compute the entanglement
quantification function τC .

5.3.2 Numerical computation of the norm parameter

Although it is useful to understand how the entanglement quantification function τC

quantifies the entanglement of a symmetric state through its Majorana point configuration,
the general formula (5.51) is not the most efficient way to numerically compute the norm
parameter N of the Majorana representation of a symmetric state |ψS〉. This is due to
the sums over all possible disjoint transpositions among the N qubits. Although these
sums contain less terms than in the general formula (5.25), where one had to consider all
the possible permutations of the N qubits, they still become difficult to evaluate when the
number of qubits increases. As we show here, the computation of all these sums can be
circumvented by using the equivalence between the Majorana and Dicke representations
of symmetric states (which we had already introduced in Section 1.2.3).

Let us consider an N -qubit symmetric state |ψS〉 with Majorana representation

|ψS〉 =
1
N

∑

π∈SN

|ǫπ(1), . . . , ǫπ(N)〉, (5.52)

where
|ǫi〉 = cos(θi/2) |0〉 + sin(θi/2) ei φi |1〉, (5.53)

with θi ∈ [0, π] and φi ∈ [0, 2π[ for all i = 1, . . . , N . We choose here to order the
single qubit states |ǫi〉 (i = 1, . . . , N) in descending order of the associated angles θi and
denote by K (0 ≤ K ≤ N) the number of angles θi satisfying θi 6= 0. The coefficients dk
(k = 0, . . . , N) of the Dicke representation of |ψS〉 can be deduced from the polynomial [25]

P (z) =
K∑

k=0

(−1)k
√(

N

k

)
dk z

k, (5.54)

which is a degree K polynomial whose complex roots z1, . . . , zK are related to the angles
characterizing the Majorana states (5.53) of |ψS〉 through the relation zi = cot(θi)e−i φi
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for all i = 1, . . . ,K. We thus have the identification

P (z) =
K∑

k=0

(−1)k

√(
N

k

)
dk z

k = α

K∏

i=1

(z − zi), (5.55)

where α is a multiplicative constant that can be chosen to fix the norm of the state with
Dicke coefficients dk.

To compute the value of the norm parameter N , we now adjust α to compute the
Dicke representation of the state

|ψ′
S〉 =

∑

π∈SN

|ǫπ(1), . . . , ǫπ(N)〉, (5.56)

as the norm of this state is precisely equal to N . To do so, we compare the components
of |ψ′

S〉 and the state with Dicke coefficients dk satisfying Eq. (5.55) on one particular
computational basis state. Among all computational basis components, the one that is
the easiest to identify is probably the first, i.e. the component on the computational basis
state |0 · · · 0〉. For the state |ψ′

S〉, this component is simply given by

〈0 · · · 0|ψ′
S〉 = (N !)

N∏

i=1

cos(θi/2). (5.57)

For the state with the Dicke components dk of Eq. (5.55), since |0 · · · 0〉 is nothing but
the Dicke state |D(0)

N 〉, the component on the first computational basis state is simply d0.
From Eq. (5.55), we have

d0 = (−1)Kα
K∏

i=1

zi. (5.58)

Unless θ1 = π, in which case z1 = 0 and Eqs. (5.57) and (5.58) both vanish, we can
use these equations to compute α. Inserting the value of α into Eq. (5.55), we can then
compute all the Dicke coefficient dk, for k = 0, . . . ,K, and finally compute the norm

parameter, which simply reads N =
√∑K

k=0 |dk|2.
When θ1 = π, we could try to compare another computational basis component be-

tween the Dicke representation of |ψS〉 and the unnormalized Majorana representation
of |ψ′

S〉 but we can also follow a more practical solution. It is indeed easier to apply a
symmetric LU operation U⊗N , where U is a 2 × 2 unitary matrix, on the state |ψS〉, so
as to make sure that the Majorana states of the resulting state U⊗N |ψS〉 are all different
from the state |1〉. Such a symmetric LU operation induces a rigid rotation of the N Ma-
jorana points representing the state |ψS〉 on the Bloch sphere [85] and a random unitary
operation U is generically sufficient to obtain a state U⊗N |ψS〉 without Majorana state
|1〉. Since an LU operation does not change the norm parameter N of the Majorana repre-
sentation of a symmetric state, this parameter can be computed using the state U⊗N |ψS〉
instead of |ψS〉 in the previous development. We have this time the guarantee that the
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state U⊗N |ψS〉 has a nonzero component on the computational basis state |0 · · · 0〉, so that
N can effectively be computed from this component. This potential LU transformation,
that we presented, for explanatory purposes, as a solution to an issue that could occur
in a first execution of the procedure can naturally be implemented at the beginning of
the procedure, to prevent any failure of the computation of α. In any case, this method
provides a fast and efficient way to compute the norm parameter N of any symmetric
multiqubit state.

In the next section, we consider the problem of finding Majorana points configurations
optimizing the entanglement quantification function τC .

5.3.3 Majorana points configuration with maximal entanglement

The entanglement quantification function τC can be rescaled, so that its maximal
value is 1, by computing, in each SLOCC class C of the family D1,...,1, the normalization
constant

δC =

[
sup

|ψS〉∈C

τ ′
C(ψS)

]−1

, (5.59)

where τ ′
C merely corresponds to τC with δC = 1.

We show now that the optimization problem for τ ′
C can be rephrased into the well

established framework (see for instance Ref. [86]) of the study of distributions of points
on a sphere minimizing a certain potential energy. In 1904, J. J. Thompson considered the
problem of finding the configuration of N electrons constrained on the surface of a sphere
that minimizes their electrostatic potential energy [87]. Mathematically, Thompson’s
problem is equivalent to searching the N points x1, . . . , xN on the sphere S2 minimizing
the potential energy

E(x1, . . . , xN ) =
∑

1≤i<j≤N

|xi − xj |−1, (5.60)

where |xi − xj | denotes the Euclidean distance between the points xi and xj .
This problem was then generalized [86] to the minimization of the potential energy

E(s;x1, . . . , xN ) =
∑

1≤i<j≤N

|xi − xj |−s, (5.61)

for arbitrary values of s > 0. In the limit s → ∞, we recover the so-called Tammes prob-
lem [88], in which the minimal distance between all pairs of points has to be maximized.
In the opposite limit s → 0, one minimizes the logarithmic energy

E(0;x1, . . . , xN ) = −
∑

1≤i<j≤N

ln (|xi − xj |) , (5.62)
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which is equivalent [89] to maximizing the product

∏

1≤i<j≤N

|xi − xj |. (5.63)

Up to the norm factor 1/N and the exponent (which has no influence on the maximiza-
tion), this is precisely the problem we are concerned with. The potential energy that
must be minimized in order to maximize the entanglement quantification function τ ′

C is
thus

E′(0;x1, . . . , xN ) = −
∑

1≤i<j≤N

ln

( |xi − xj |
N 2

N

) 1
(N−1)

, (5.64)

with the additional constraint that x1, . . . , xN correspond to Majorana points of a state
of the SLOCC class C. It has been established in Ref. [90] that an ILO between two
SLOCC-equivalent symmetric states can be interpreted as a Moebius transformation on
the roots of the polynomial P defined in Eq. (5.54), which are related to the Bloch sphere
coordinates of the Majorana points. This provides a clue to implement the SLOCC
equivalence constraint, but it further complicates the original problem. In fact, even
without this additional constraint, the minimization of such potential energies on a sphere
is a very challenging task. These functions are indeed known to have many saddle points,
leading to many local minima [89]. Even though the entanglement quantification function
τC provides a simple way to quantify entanglement within SLOCC classes of symmetric
states, it is, as many entanglement measures, difficult to maximize.





Chapter 6

Entanglement robustness

against particle loss

The intensive research undertaken in the past decades to better characterize quan-
tum entanglement revealed non only its theoretical complexity, but also its potential for
innovative experimental protocols (see for example Ref. [26, 91] and references therein).
The practical realization of theoretical protocols involving entangled states constitutes
however a considerable challenge as it requires to solve experimental issues such as de-
coherence. In this context, the robustness of entanglement was introduced by Vidal and
Tarrach [19], as a measure to quantify how resilient an entangled state is to the presence
of local noise.

Entanglement robustness can also be defined with respect to particle loss [18]. In that
case, an entangled multipartite state is said to be robust (or in contrast fragile) for the
loss of a given subset of its particles if the reduced density operator corresponding to
the remaining particles is an entangled (respectively separable) state. The Greenberger-
Horne-Zeilinger [92] state of 3 qubits |GHZ3〉 ≡ 1/

√
2 (|000〉 + |111〉) is an emblematic

example of fragile entangled state as, though highly entangled as a 3-qubit state, it loses
all entanglement with the loss of any of its qubits [18]. By contrast, the so-called W state
of 3 qubits |W3〉 ≡ 1/

√
3 (|001〉 + |010〉 + |100〉), which captures the other type of genuine

3-qubit entanglement [18], has the highest robustness of entanglement against particle
loss in the sense that the average entanglement of its 2-qubit reduced density operators
reaches the highest value among all 3-qubit states [18]. This property of maximal bipar-
tite entanglement (as measured by the mean concurrence of the 2-qubit reduced density
operators) was quickly generalized to W states of an arbitrary number of qubits [93].

In Ref. [94], the relationship between robustness against particle loss and permutation
symmetry was studied for specific 3-qubit pure states. Up to now, entanglement robust-
ness and fragility properties have mainly been considered in the extreme case where all
the particles but 2 are lost (see for example Refs. [95, 93, 96]). The reason for this is
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that the concurrence can then be used as a true entanglement measure on the resulting
2-qubit reduced density operator.

In this chapter, we use different tools to investigate the entanglement robustness
against particle loss, which enables us to consider a more general framework. In Sec-
tion 6.1, we identify exhaustively all fragile multiqubit states for the loss of any single of
their qubits. The extension of this result to multiqudit systems is considered in Section 6.2.
In Section 6.3, we investigate the influence of permutation invariance on entanglement
fragility. We show in particular that symmetric entangled states that are fragile for the
loss of 1 qubit are all SLOCC-equivalent and belong the SLOCC class of the GHZ state.
We also identify SLOCC classes containing only symmetric robust states.

Some of the results of this chapter have been published in Ref. [97]. To make them
better fit in the construction of this chapter, some of the proofs we give here differ from
the ones given in Ref.[97]. These proofs are naturally equivalent.

6.1 Fragility for the loss of 1 particle in multiqubit

systems

The concepts of entanglement robustness and fragility against particle loss making
only sense for N -particle systems of at least 3 particles, we always assume N ≥ 3 in
the following. In an N -particle system, an entangled pure state |ψ〉 is said to be fragile
(resp. robust) against the loss of its particle k if ρ¬k ≡ Trk(|ψ〉〈ψ|) is separable (resp.
entangled).

We first prove a simple lemma showing the incompatibility between biseparability for
the bipartition k|1 · · · ✁k · · ·N and fragility for the loss of the k-th qubit.

Lemma 6.1. Let |ψ〉 be an N -qubit entangled pure state. If |ψ〉 is fragile for the loss of

its k-th qubit, then |ψ〉 cannot be biseparable for the bipartition k|1 · · · ✁k · · ·N .

Proof. We prove this lemma by contradiction. Assuming that the state |ψ〉 is fragile for
the loss of its k-th qubit, if it is in addition biseparable for the bipartition k|1 · · · ✁k · · ·N ,
then |ψ〉 is necessarily fully separable. This is however impossible as it contradicts our
hypothesis about the entanglement of |ψ〉. �

Even though we consider here the case in which only one qubit is lost, we can imagine
several fragility scenarios. In the simplest scenario, the process leading to particle loss
only affects one of the qubits, say qubit k. In this scenario, an entangled multiqubit state
|ψ〉 is robust if it remains entangled after the loss of its qubit k. In another scenario, all
the qubits are affected by the process inducing particle loss. In that case, the state |ψ〉 is
robust if it remains entangled after the loss of any one of its qubits, i.e. if ρ¬i is entangled
for all i = 1, . . . , N . In the most general scenario (which covers the previous ones), the
process leading to particle loss affects all the qubits belonging to a given subset A of the
qubits and |ψ〉 is robust if ρ¬i is entangled for all i ∈ A. We successively treat these 3
scenarios in the following sections.
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6.1.1 Fragility for the loss of a given qubit

In this section, we study the conditions under which an entangled multiqubit state
|ψ〉 is fragile for the loss of its k-th qubit. According to Lemma 6.1, such a fragile
state cannot be biseparable for the bipartition k|1 · · · ✁k · · ·N . As a consequence, the
Schmidt number [91] of |ψ〉 for the bipartition k|1 · · · ✁k · · ·N must be strictly greater than
1. Since |ψ〉 is a multiqubit state, its Schmidt number for this bipartition cannot be
greater than 2, and is thus precisely equal to 2. This implies that the reduced density
operator Trk (|ψ〉〈ψ|), which is separable since |ψ〉 is fragile for the loss of its k-th qubit,
has a rank equal to 2. As a separable density operator of rank 2 has a length1 equal to
2 [70], we can always write Trk (|ψ〉〈ψ|) as a convex sum of two distinct projectors onto
product states:

Trk (|ψ〉〈ψ|) = p1 |e¬k〉〈e¬k| + p2 |e′
¬k〉〈e′

¬k|, (6.1)

with p1, p2 > 0 such that p1 + p2 = 1 and

|e¬k〉 =
N⊗

i=1
i6=k

|ei〉 and |e′
¬k〉 =

N⊗

i=1
i6=k

|e′
i〉, (6.2)

where |ei〉 and |e′
i〉 (i 6= k) are normalized 1-qubit states such that |〈e¬k|e′

¬k〉| < 1.
Let λ1 and λ2 be the two nonzero eigenvalues of Trk (|ψ〉〈ψ|) and |v1〉, |v2〉 the asso-

ciated eigenvectors. We denote by U the 2 × 2 unitary matrix connecting the separable
decomposition (6.1) of Trk (|ψ〉〈ψ|) to its eigendecomposition [21]. This unitary satisfies

( √
λ1 |v1〉√
λ2 |v2〉

)
= U

( √
p1 |e¬k〉√
p2 |e′

¬k〉

)
. (6.3)

According to the Schmidt decomposition [91] of the state |ψ〉 for the bipartition
k|1 · · · ✁k · · ·N , there exist 2 orthonormal 1-qubit states |a1〉, |a2〉 such that

|ψ〉 =
√
λ1 |v1〉 ⊗ |a1〉k +

√
λ2 |v2〉 ⊗ |a2〉k, (6.4)

where we added a subscript to the single qubit states |a1〉 and |a2〉 to specify which qubit
they correspond to.

Using Eq. (6.3), we can then write

|ψ〉 =
√
p1 |e¬k〉 ⊗ |φk〉k +

√
p2 |e′

¬k〉 ⊗ |φ′
k〉k, (6.5)

where ( |φk〉
|φ′
k〉

)
= UT

( |a1〉
|a2〉

)
. (6.6)

1The length of a separable state ρ corresponds to the minimal number of separable states of any
separable decomposition of ρ.
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The Equation (6.5) shows that the fragile state |ψ〉 can always be written as a superposi-
tion of two product states. As |a1〉, |a2〉 are orthonormal states, the unitary transformation
in Eq. (6.6) implies that the states |φk〉 and |φ′

k〉 are orthonormal too. On the other hand,
any N -qubit state |ψ〉 that can be written into the form (6.5) with orthogonal states
|φk〉 and |φ′

k〉 is obviously fragile for the loss of its k-th qubit. We can thus conclude the
following theorem.

Theorem 6.1. An entangled N -qubit pure state |ψ〉 is fragile for the loss of its k-th

qubit if and only if it can be written

|ψ〉 = a|e1, . . . , eN 〉 + b|e′
1, . . . , e

′
N 〉, (6.7)

where |ei〉 and |e′
i〉 (i = 1, . . . , N) are normalized 1-qubit states such that 〈ek|e′

k〉 = 0
and |〈e¬k|e′

¬k〉| < 1, and where a, b are two nonzero complex numbers such that

|a|2 + |b|2 = 1.

This theorem characterizes all states that are fragile for the loss of a given qubit. We now
turn to the scenario in which any particle of the system can be lost.

6.1.2 Fragility for the loss of any one of the qubits

A state |ψ〉 that is fragile for the loss of any one of its qubits is in particular fragile
for the loss of its k-th qubit and can therefore always be written into the form (6.7). The
partial trace over the k-th qubit of this state is the separable density operator

Trk (|ψ〉〈ψ|) = |a|2 |e¬k〉〈e¬k| + |b|2 |e′
¬k〉〈e′

¬k|. (6.8)

On the one hand, the expression (6.7) of |ψ〉 implies that if |〈ei|e′
i〉| = 1 for some

i ∈ {1, . . . , ✁k, . . . , N}, then the state |ψ〉 is biseparable for the bipartition i|1 · · · ✄i · · ·N .
According to Lemma 6.1, this is however incompatible with the fragility for the loss of
the i-th qubit. To have a state |ψ〉 that is fragile for the loss of any of its qubits, we must
therefore have |〈ei|e′

i〉| < 1, for all i ∈ {1, . . . , ✁k, . . . , N}.
On the other hand, the reduced density operator of |ψ〉 obtained after partial trace

over any other qubit than the k-th, say qubit l (l 6= k), must also be a (N − 1)-qubit
separable mixed state of rank 2. This reduced density operator can always be written

Trl (|ψ〉〈ψ|) = q1 |f¬l〉〈f¬l| + q2 |f ′
¬l〉〈f ′

¬l|, (6.9)

where |fi〉 and |f ′
i〉 (i 6= l) are normalized 1-qubit states such that |〈f¬l|f ′

¬l〉| < 1, and
q1, q2 are two positive (nonzero) real numbers satisfying q1 + q2 = 1.

Following a development similar to the one of the previous section, but this time for
the l-th qubit, we find

|ψ〉 =
√
q1 |f¬l〉 ⊗ |φl〉l +

√
q2 |f ′

¬l〉 ⊗ |φ′
l〉l, (6.10)
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with |φl〉 and |φ′
l〉 two orthonormal 1-qubit states.

The expressions (6.8) and (6.9) being two reduced density operators from the same
state, they must fulfill some compatibility conditions. For instance, for anym ∈ {1, . . . , N}
with m 6= k, l, the 1-qubit reduced density operator Tr¬m [Trk (|ψ〉〈ψ|)] (in which Tr¬m

means that all the qubits are traced out except the m-th), which reads

Tr¬m [Trk (|ψ〉〈ψ|)] = |a|2|em〉〈em| + |b|2|e′
m〉〈e′

m|, (6.11)

has to be consistent with the 1-qubit reduced density operators obtained from tracing out
first the l-th qubit and then all the qubits except the m-th, i.e. with the reduced density
operator

Tr¬m [Trl (|ψ〉〈ψ|)] = q1|fm〉〈fm| + q2|f ′
m〉〈f ′

m|. (6.12)

Since the expressions (6.11) and (6.12) must correspond to the same density operator,
these two decompositions must be related by a unitary transformation [21]. Not taking
into account unphysical global phases, this implies that there exist two complex numbers
γ, δ, satisfying |γ|2 + |δ|2 = 1 and such that

( √
q1 |fm〉√
q2 |f ′

m〉

)
=

(
γ δ

−δ∗ γ∗

)( |a| |em〉
|b| |e′

m〉

)
. (6.13)

We can check the compatibility between Eqs. (6.11) and (6.12) by computing expectation
values of projectors chosen so as to exploit the relation (6.13) between the two decompo-
sitions of the reduced density operator corresponding to the m-th qubit. We choose here
the projectors

A = 1

⊗N−3
2 ⊗ |ek〉k〈ek| ⊗ |φl〉l〈φl| ⊗ |e⊥

m〉m〈e⊥
m|, (6.14)

and
B = 1

⊗N−3
2 ⊗ |e′

k〉k〈e′
k| ⊗ |φl〉l〈φl| ⊗ |(e′

m)⊥〉m〈(e′
m)⊥|, (6.15)

where the notation |a⊥〉 is used to denote a state that is orthogonal to the state |a〉.
Computing the expectation values of these projectors for the expressions (6.7) and (6.10)
of |ψ〉 yields { 〈ψ|A|ψ〉 = 0 = |b|2 |δ|2 |〈e′

m|e⊥
m〉|2 |〈fk|ek〉|2

〈ψ|B|ψ〉 = 0 = |a|2 |γ|2 |〈em|(e′
m)⊥〉|2 |〈fk|e′

k〉|2 . (6.16)

As |em〉 and |e′
m〉 cannot be proportional to each other, the only solutions of System (6.16)

are δ = 0 and |〈fk|e′
k〉| = 0 or γ = 0 and |〈fk|ek〉| = 0. Up to swapping the primed and

non-primed vectors, these two solutions lead to the same situation, where |〈em|fm〉| = 1,
|〈e′

m|f ′
m〉| = 1 and, more interestingly, |〈ek|fk〉| = 1. Using similar projectors, we can also

prove that the states |e′
k〉 and |f ′

k〉 must be proportional to each other, as well as the states
|el〉 and |φl〉, and |e′

l〉 and |φ′
l〉. Since this is valid for all m 6= k, l, the expressions (6.7)

and (6.10) of |ψ〉, resulting from its fragility for the loss of the qubits k and l, respectively,
are only compatible if they have the same single qubit states in each term of the sum,
with orthogonal states for the qubits l and k. To have a state |ψ〉 that is fragile for the
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loss of any one of its qubits, this orthogonality condition must obviously be replicated on
each pair of 1 qubit states. This proves the following theorem.

Theorem 6.2. An entangled N -qubit state |ψ〉 is fragile for the loss of any single

qubit if and only if it can be written

|ψ〉 = a|e1, . . . , eN〉 + b|e⊥
1 , . . . , e

⊥
N〉, (6.17)

where |ei〉 and |e⊥
i 〉 are normalized 1-qubit states such that 〈ei|e⊥

i 〉 = 0 for all i =
1, . . . , N and where a, b are two nonzero complex numbers such that |a|2 + |b|2 = 1.

The state |GHZN 〉 ≡ 1/
√

2(|0 · · · 0〉+ |1 · · · 1〉) is an emblematic example among states
that are fragile for the loss of any one of their qubits. For this state, we have |ei〉 = |0〉
and |e⊥

i 〉 = |1〉 for all i = 1, . . . , N , and a = b = 1/
√

2. Any state |ψ〉 of the form (6.17)
is in fact SLOCC-equivalent to the state |GHZN 〉. Indeed, as the states |ei〉 and |e⊥

i 〉 are
orthonormal, there exist unitary matrices Ui (i = 1, . . . , N) such that Ui |ei〉 = |0〉 and
Ui |e⊥

i 〉 = |1〉, ∀i = 1, . . . , N . Adding a 2 × 2 diagonal matrix D to balance the weights,
we find:

|GHZN 〉 =

(
N⊗

i=1

D Ui

)
|ψ〉, (6.18)

with

D =

( (√
2a
)−1/N

0

0
(√

2b
)−1/N

)
. (6.19)

This shows that the states |ψ〉 and |GHZN 〉 can be transformed into each other through
an invertible local operation (the invertibility of D is ensured by the fact that both a and
b are nonzero). These states are thus SLOCC-equivalent [18]. Naturally, there are states
that are SLOCC-equivalent to the state |GHZN 〉 but that cannot be transformed into the
state |GHZN 〉 through an ILO of the form (6.18). As a consequence, the SLOCC class
of the state |GHZN 〉 contains also states that are robust for the loss of any one of their
qubits. From this particular SLOCC equivalence, we can conclude the following corollary
of Theorem 6.2:

Corollary 6.1. The entangled N -qubit states that are fragile for the loss of any one of

their N qubits belong all to the same SLOCC class, namely that of the state |GHZN 〉 state,

but this class contains also robust states.

6.1.3 Fragility for the loss of one qubit among a given subset of

the qubits

The last case we still need to address to get a full characterization of the fragility for
the loss of 1 qubit is the fragility for the loss of one qubit among a given subset A of
the qubits. This case can be deduced from the previous one through a few adaptations.
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We can for instance use a similar development to show that a state that consists in the
superposition of two separable states in which the single qubit states corresponding to
all the qubits in the subset A are pairs of orthogonal states is fragile for the loss of any
qubit of A. In the previous case (or in other words when A contains all the qubits),
the unicity of the solution (6.17) was guaranteed by the fact that the fragile state could
not be biseparable, for any bipartition. In this case though, we have to reconsider this
assumption about the possible biseparability of the state. As a consequence of Lemma 6.1,
the states |ψ〉 we are looking for cannot present a biseparability of the form one qubit
versus the rest for any qubit belonging to subset A. This is however not forbidden for the
other qubits and this can provide new solutions.

In system (6.16), we can indeed find a different solution if the states |em〉 and |e′
m〉

correspond to a qubit (the m-th in that case) that do not belong to the subset A and are
proportional to each other. Since the same system can be written for any qubit that does
not belong to A, another solution can be found only if the state |ψ〉 is biseparable for the
bipartition A versus the rest and such that the state corresponding to the complement of
A is fully separable. In this case, the qubit states corresponding to the complement of A
can always be factored out of any partial trace and do not influence the separability of the
global state. The fragility problem of the global state is then equivalent to the fragility
problem of the state corresponding to the qubits in A only. We already know, from
Theorem 6.2, the solution of this problem if A contains at least 3 qubits. If A contains
only 2 qubits, however, the partial trace of the global state over any of the 2 qubits in
A always yields a separable mixed because of the separability of the state corresponding
to the qubits belonging to the complement of A. As a consequence, for any subset A
containing 2 qubits, any N -qubit state |ψ〉 of the form

|ψ〉 = |φe〉A ⊗ |φs〉Ā , (6.20)

with |φe〉A an entangled state of the 2 qubits of A and |φs〉Ā a product state of the
remaining N − 2 qubits, is an entangled state that is fragile for the loss of any qubit in
A.

The Schmidt decomposition [91] of the bipartite state |φe〉 implies that there always
exist pairs of orthonormal states |e(1)

1 〉, |e(1)
2 〉 and |e(2)

1 〉, |e(2)
2 〉, such that

|φe〉 =
2∑

i=1

λi|e(1)
i 〉 ⊗ |e(2)

i 〉, (6.21)

with λ1, λ2 two nonzero real numbers satisfying λ2
1 + λ2

2 = 1. In the end, the fragile
state (6.20) can thus also be written as a superposition of two product states in which
the qubits of A correspond to pairs of orthogonal states. This turns out to be the unique,
general form of fragility for the loss of one qubit belonging to any subset A of the qubits.
We summarize this in the following theorem.
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Theorem 6.3. An entangled N -qubit pure state |ψ〉 is fragile for the loss of any

qubit belonging to a given subset A of the qubits if and only if it can be written

|ψ〉 = a|e1, . . . , eN 〉 + b|e′
1, . . . , e

′
N 〉, (6.22)

where |ei〉, |e′
i〉 (i = 1, . . . , N) are normalized 1-qubit states such that 〈ek|e′

k〉 = 0 for

all k ∈ A and, if #A = 1, there exists at least one j ∈ {1, . . . , N} \ A such that |ej〉
and |e′

j〉 are not proportional to each other, and where a, b are two nonzero complex

numbers satisfying |a|2 + |b|2 = 1.

This theorem concludes our general study of entanglement fragility for the loss of a
single qubit in multiqubit systems. In the next section, we consider the extension of these
results to multiqudit systems.

6.2 Fragility for the loss of 1 particle in multiqudit

systems

We first consider the extension of Theorem 6.1 to multiqudit systems and search
the conditions under which an N -qudit pure state |ψ〉 is fragile for the loss of its k-th
qudit. In the proof of Theorem 6.1, the dimension of the subsystems (which was 2 in the
multiqubit case) was only used once, to get an upper bound on the rank of the reduced
density operator obtained after tracing out the k-th particle. Indeed, as a consequence
of the Schmidt decomposition for the bipartition k|1 · · · ✁k · · ·N , the partial trace over the
k-th particle of a pure state |ψ〉 has a rank that is equal to the local rank associated to
the k-th particle. When |ψ〉 was a multiqubit state, the rank of Trk(|ψ〉〈ψ|) was thus at
most equal to 2. If |ψ〉 is now a multiqudit state, the rank of Trk(|ψ〉〈ψ|) can take values
up to d.

We show now that this maximal rank has a critical impact from the perspective of
extending the proof of Theorem 6.1 to multiqudit systems. Given an entangled N -qudit
pure state |ψ〉 that is fragile for the loss of its k-th qudit, the reduced density operator
Trk(|ψ〉〈ψ|) must be separable and have a rank strictly greater than 1 (as a consequence
of Lemma 6.1). In the generic case, the separable (N−1)-qudit state Trk(|ψ〉〈ψ|) has rank
d. Following the proof of Theorem 6.1, we should now exploit a separable decomposition
of Trk(|ψ〉〈ψ|), generalizing Eq. (6.5). Unlike in the multiqubit case, we do here not know
the length l of the separable state Trk(|ψ〉〈ψ|). In the multiqubit case, we had indeed
used the fact that separable states of rank 2 have a length equal to 2 [70], but, to our
knowledge, this result has not been generalized to separable states of arbitrary rank d.

Up to the fact that we cannot relate the length of Trk (|ψ〉〈ψ|) to its rank, we can
still perform a development similar to the one that allowed us to prove Theorem 6.1. To
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begin with, we can write the separable state Trk (|ψ〉〈ψ|) of rank d and length l as

Trk (|ψ〉〈ψ|) =
l∑

j=1

pj |e(j)
¬k〉〈e(j)

¬k |, (6.23)

with pj > 0 ∀j = 1, . . . , l satisfying
∑l

j=1 pj = 1, and

|e(j)
¬k〉 =

N⊗

i=1
i6=k

|e(j)
i 〉, (6.24)

where |e(j)
i 〉 (i = 1, . . . , N, i 6= k and j = 1, . . . , l) are normalized 1-qubit states such that

|e(j)
¬k〉 and |e(j′)

¬k 〉 are not proportional for all 1 ≤ j < j′ ≤ l.
Let λi (i = 1, . . . , d) be the d nonzero eigenvalues of Trk (|ψ〉〈ψ|) and |vi〉 the as-

sociated eigenvectors. We denote by U the d × l “unitary” matrix (whose rows are d
orthonormal vectors of Cl) connecting the separable decomposition (6.23) of Trk (|ψ〉〈ψ|)
to its eigendecomposition [21]. This unitary satisfies




√
λ1 |v1〉

...√
λd |vd〉


 = Ud×l




√
p1 |e(1)

¬k〉
...

√
pl |e(l)

¬k〉


 . (6.25)

According to the Schmidt decomposition [91] of the state |ψ〉 for the bipartition k|1 · · · ✁k · · ·N ,
there exist d orthonormal 1-qudit states |ai〉 (i = 1, . . . , d) such that

|ψ〉 =
d∑

i=1

√
λi |vi〉 ⊗ |ai〉k, (6.26)

where we add subscripts to the single qudit states |ai〉 to specify which qudit they corre-
spond to.

Using Eq. (6.25), we can then write

|ψ〉 =
l∑

j=1

√
pj |e(j)

¬k〉 ⊗ |φ(j)
k 〉k, (6.27)

where 


|φ(1)
k 〉
...

|φ(l)
k 〉


 = (Ud×l)

T




|a1〉
...

|ad〉


 . (6.28)

The length of a separable state cannot be smaller than its rank and l is thus either
equal to d or strictly greater than d. If it is equal to d, U is a usual unitary matrix and
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the unitary matrix UT transforms the orthonormal states |a1〉, . . . , |ad〉 into orthonormal
states |φ(1)

k 〉, . . . , |φ(d)
k 〉. In this case, we can thus write the fragile state |ψ〉 as a super-

position of d product states in which the qudit states associated to the k-th particle
are orthogonal to each other. By contrast, if l > d, then the matrix UT is made of
l non-orthonormal rows and it transforms the orthonormal states |a1〉, . . . , |ad〉 into non
normalized nor orthogonal states |φ(1)

k 〉, . . . , |φ(l)
k 〉. In this case, with the loss of the orthog-

onality between the qudit states associated to the k-th particle, we also lose the sufficient
condition of fragility for the loss of the k-th qudit of the state (6.27). As a consequence,
we can only extend the proof of Theorem 6.1 to qudit systems if l = d. Although we
cannot guarantee it in the general case, we can exploit the results of Ref. [70] concerning
the length of mixed states of rank 3 to study the qutrit case.

Let |ψ〉 be an entangled N -qutrit state that is fragile for the loss of its k-th qutrit. In
this case, the separable reduced density operator Trk (|ψ〉〈ψ|) has either rank 2 or rank
3 (rank 1 being impossible because of Lemma 6.1). If it has rank 2, it has necessarily a
length equal to its rank. If Trk (|ψ〉〈ψ|) has rank 3, then it has also length 3, except in
the special case where the (N − 1)-particle state Trk (|ψ〉〈ψ|) has (N − 3) particles with
rank-1 reduced density operators and 2 particles with rank-2 reduced density operators,
in which case it can also have length 4 [70]. When |ψ〉 does not have the local rank
configuration of the special case, the separable density operator Trk (|ψ〉〈ψ|) has a length
equal to its rank. Using the previous development, we can thus conclude the following
fragility criterion for the loss of 1 particle, for almost all N -qutrit states (the special case
is not generic).

Proposition 6.1. Let |ψ〉 be an entangled N -qutrit state. Given one of the qutrit, say

the k-th, if |ψ〉 has not the special local rank configuration in which the k-th qutrit is the

only one that has local rank 3, N − 3 qutrits have local rank 1, and the two remaining

ones have local rank 2, then |ψ〉 is fragile for the loss of its k-th qutrit if and only if it can

be written

|ψ〉 =
l∑

j=1

√
pj |e(j)

1 , . . . , e
(j)
N 〉, , (6.29)

where l ∈ {2, 3} is the local rank of the k-th qutrit, |e(j)
i 〉 (i = 1, . . . , N and j = 1, . . . , l)

are single qutrit states such that 〈e(j)
k |e(j′)

k 〉 = 0 and |e(j)
¬k〉 is not proportional to |e(j′)

¬k 〉 for

j 6= j′, and p1, . . . , pl are strictly positive numbers such that
∑l

j=1 pj = 1.

For all the states for which we can apply Theorem 6.1 or Proposition 6.1, fragility
for the loss of a given qubit is not a generic property. This is essentially due to the
orthogonality relations required when writing the pure fragile state as a superposition of
product states, which are not met by generic states. As mentioned earlier, states which,
after the loss of a given particle, have a reduced density that (if separable) can have a
length greater than its rank, do not have to meet these orthogonality conditions to be
fragile. As we show now, this can, in some particular systems, dramatically change the
proportion of states that are fragile for the loss of one particle.
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In a hybrid system composed of one qutrit and two qubits, the reduced density operator
obtained after having traced out the qutrit is a mixed state that has generically rank 3 but
that could, if separable, have length 4. Out of 1000 random2 pure states of this system,
we could always find a non-negligible fraction of fragile states (from 20 repetitions of the
numerical simulation, the mean fraction of fragile state was about 0.088, with a standard
deviation of 0.009), showing that generic states of this system have a nonzero probability
of being fragile for the loss of the qutrit. By contrast, out of all the simulations that were
performed, none of these random states were fragile for the loss of one of the two qubits,
which is not surprising as this kind of fragility is characterized by Proposition 6.1.

6.3 Robustness against particle loss in the symmetric

subspace

Due to their permutation invariance, the reduced density operators of a symmetric
multiqubit state corresponding to a given number of qubits are all equal, whatever subset
of the qubits is traced out. This implies that if a symmetric state is fragile (respectively
robust) for the loss of some k-tuple of its qubits, it is also fragile (respectively robust) for
the loss of any other k-tuple of its qubits.

In light of this observation, we first revisit the results we obtained in the previous
section about the fragility for the loss of 1 qubit for the special case of symmetric states.
We investigate then the fragility of symmetric states for the loss of several qubits and
consider in particular the states belonging to the SLOCC classes of the Dicke states.

6.3.1 Symmetric states fragile for the loss of 1 qubit

Due to their permutation invariance, symmetric states that are fragile for the loss of
a given qubit must be also fragile for the loss of any other qubit. As a consequence, sym-
metric states that are fragile for the loss of 1 qubit must necessarily satisfy Theorem 6.2.
In the following corollary, we particularize this theorem in order to get a necessary and
sufficient condition for the fragility for the loss of one qubit of symmetric states.

Corollary 6.2. A symmetric entangled N -qubit state |ψS〉 is fragile for the loss of any

single qubit if and only if it can be written

|ψS〉 = a|e, . . . , e〉 + b|e⊥, . . . , e⊥〉, (6.30)

where |e〉 and |e⊥〉 are normalized 1-qubit states such that 〈e|e⊥〉 = 0 and a, b are 2

nonzero complex numbers such that |a|2 + |b|2 = 1.

2For this random generation of pure states, the real and imaginary parts of the 12 complex components
of the states in the (hybrid) computational basis were chosen uniformly at random on the unit sphere in
R24 using G. Marsaglia’s method given in Ref. [98].
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Proof. States of the form (6.30) constitute a particular case, obviously symmetric, of the
general case of states |ψ〉 that are fragile for the loss of any one of their qubits, which can
always be written (see Theorem 6.2)

|ψ〉 = a|e1, . . . , eN〉 + b|e⊥
1 , . . . , e

⊥
N 〉. (6.31)

We now prove that this is the only possible form for a symmetric state satisfying the
desired fragility property. Let us assume that, in Eq. (6.31), there are at least two
unproportional states |ek〉 and |el〉 for some k, l ∈ {1, . . . , N}, k 6= l. Since the single
qubit states appearing in Eq. (6.31) are normalized, we have 〈e1, . . . , eN |ψ〉 = a. If |ψ〉
is a symmetric state, it must remain invariant under any permutation of the qubits, thus
in particular under the permutation of the qubits k and l. However, denoting by Pkl the
operator permuting the qubits k and l, we have 〈e1, . . . , eN |Pkl|ψ〉 = a|〈ek|el〉|2. As a
consequence, |ψ〉 cannot be symmetric if |ek〉 and |el〉 are not proportional to each other.
The state |ψ〉 can thus only be symmetric if all the single qubit states |e1〉, . . . , |eN 〉 of
Eq. (6.31) are proportional to each other, in which case |ψ〉 can always be written into
the form (6.30). �

As a consequence of corollary 6.1, any symmetric state that is fragile for the loss of
one of its qubits is SLOCC-equivalent to the state |GHZN 〉. In the symmetric subspace,
the fragility for the loss of one qubit is thus limited to a single SLOCC class. As we show
now this fragility property of symmetric states can be related to a particular symmetry
of their Majorana points. The state |GHZN 〉 is known to have a highly symmetrical
Majorana representation, with Majorana points forming a regular N -sided polygon on the
equatorial plane of the Bloch sphere (see Fig. 6.1). Surprisingly, this polygonal symmetry
of the Majorana points turns out to be a necessary and sufficient condition for the fragility
for the loss of any single qubit of symmetric multiqubit states. This is the object of the
following Theorem.

Theorem 6.4. A symmetric entangled N -qubit pure state |ψS〉 is fragile for the loss

of any one of its qubits if and only if its Majorana points are the vertices of a regular

N -sided polygon in any plane intersecting the Bloch sphere.

Proof. It was shown in Ref. [99] that point-group symmetries of the Majorana points
of a multiqubit symmetric state induce constraints on the coefficients of the symmetric
state in the Dicke basis. In particular, the results of Ref. [99] imply that an N -qubit
symmetric state has N distinct Majorana points exhibiting the symmetries of a regular
N -sided polygon if and only if it is equivalent through a symmetric LU operation to a
state of the form

|φS〉 = a′|0, . . . , 0〉 + b′|1, . . . , 1〉, (6.32)

where a′ and b′ are two nonzero complex numbers such that |a′|2 + |b′|2 = 1.
As the single qubit states |0〉 and |1〉 are orthonormal, a unitary operation always

transforms them into a pair of orthonormal states. As a consequence, a symmetric LU
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operation always transforms a state of the form (6.32) into a state of the form (6.30) and
corollary 6.2 concludes the proof.

�

As illustrated in Fig. 6.1, this proposition gives a direct geometrical interpretation of
the fragility for the loss of one qubit in the symmetric subspace.

Figure 6.1: Illustration of the Majorana representations of two symmetric multiqubit
states that are fragile for the loss of one qubit. As shown in Theorem 6.4, these states
necessarily have Majorana points forming a regular polygon inscribed into a circle of
the Bloch sphere. This circle can be a great circle (as in the left figure), in which case
it corresponds to a state LU-equivalent to the state |GHZN 〉, or any circle that is not
degenerated into a point (as in the right figure).

6.3.2 Symmetric states fragile for the loss of multiple qubits

In the previous section, we showed that symmetric states that are fragile for the loss
of one qubit belong all to the same SLOCC class. This is however not true for states that
are fragile for the loss of at least 2 qubits. We illustrate this with symmetric states of 4
qubits. As explained in Section 1.3.2, symmetric multiqubit states can be classified into
families [25] based on the degeneracy list of the 1-qubit states appearing in their Majorana
representation. In this classification, symmetric 4-qubit states with 4 distinct 1-qubit
states in their Majorana representation belong to the family D1,1,1,1, which contains an
infinite number of different SLOCC classes [25]. In Ref. [100], it was shown that each
SLOCC class in the family D1,1,1,1 is unambiguously represented, for a given value of the
complex number µ in the set (see Fig. 6.2)

S = {µ ∈ C : Re(µ), Im(µ) ≥ 0, µ <
√

2/3 if Im(µ) = 0

and |µ−
√

2/3| <
√

8/3 if µ 6=
√

2 i}, (6.33)

by the state

|ψµ〉 =
1√

2 + |µ|2
(

|D(0)
4 〉 + µ|D(2)

4 〉 + |D(4)
4 〉
)
, (6.34)
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where, |D(k)
4 〉 denotes the k excitations Dicke state of 4 qubits. In their respective SLOCC

class, the states |ψµ〉 are in addition the unique maximally entangled states (up to LU oper-
ations) in the sense that their 1-qubit reduced density operators are maximally mixed [100].
To estimate their robustness for the loss of 1 or 2 qubit(s), we use the negativity [81]. Given
a subset A of the qubits, the negativity, denoted by N , is an entanglement measure defined
for any state ρ as

N (ρ) =
||ρTA ||1 − 1

2
, (6.35)

where ||ρ||1 = Tr(
√
ρρ†) and ρTA is the partial transpose of ρ with respect to the qubits

of A. After the loss of 1 or 2 qubit(s), the states |ψµ〉 become symmetric mixed states of
3 or 2 qubits. For such states, the negativities corresponding to all the possible subsets of
the qubits yield the same value. For this reason, we only consider the negativity relative
to the first qubit. For symmetric mixed states of 3 or 2 qubits, the PPT criterion, and
thus the vanishing of the negativity, is in addition a necessary and sufficient condition of
separability [78]. A state |ψµ〉 is then fragile for the loss of 1 or 2 qubits if and only if the
negativity of the corresponding reduced density operator is equal to zero.

For the loss of 1 qubit, there is only one fragile state |ψµ〉, namely the state |ψ0〉, which
is nothing but the |GHZ4〉 state. By contrast, there is a continuous set of state |ψµ〉 that
are fragile for the loss of 2 qubits, corresponding to values of µ belonging to the set (see
Fig. 6.2)

F = S ∩
{
µ ∈ C : Im(µ) ≥

√(√
6 − Re(µ)

)
Re(µ)

}
. (6.36)

Since the states |ψµ〉 are SLOCC-inequivalent for different values of µ in S, this shows
that the fragility of multiqubit symmetric entangled states for the loss of more than one
qubit is not restricted to a single SLOCC class (by contrast to the fragility for the loss of
a single qubit).

6.3.3 Robustness in the Dicke states SLOCC classes

Up to now, we mainly focused on the characterization of states that are fragile for
the loss of some of their qubits. In this section, we identify symmetric SLOCC classes
containing only robust states.

As mentioned in the introduction, the robustness of entanglement against particle loss
of the state |W3〉 was first shown in Ref. [18]. This state can naturally be generalized in
systems of N > 3 qubits, in which it coincides with the 1 excitation Dicke state |D(1)

N 〉.
As a natural extension, we can thus study the robustness properties of all Dicke states.

It was shown in Ref. [101] that the 2-qubit reduced density operators of all the entan-
gled Dicke state (which excludes the cases k = 0 and k = N) are entangled states. As sep-
arable states (of at least 3 particles) remain separable after particle loss, this also implies
that the entangled Dicke states are robust for the loss of any number t ∈ {1, . . . , N−2} of
their qubits. Another way to prove this is to compute the negativity (for the first qubit)
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Figure 6.2: Representation of the set S (area inside the red borders, with the dashed
borders excluded) in the complex plane corresponding the values of the parameter µ for
which the states |ψµ〉 are SLOCC-inequivalent. The blue area F corresponds to the values
of µ for which the states |ψµ〉 are fragile for the loss of 2 qubits.

of the reduced density operator obtained after partial trace of t qubits. This computation
gives

N
(

Tr1,...,t|D(k)
N 〉〈D(k)

N |
)

=
1

2
(
N
k

)
t+1∑

i=1

(
−x(k)

N (i) +

√(
x

(k)
N (i)

)2

+ 4y(k)
N (i)

)
, (6.37)

with
x

(k)
N (i) =

(
t
i−2

)(
N−t−1
k−i+1

)
+
(
t
i

)(
N−t−1
k−i

)
, (6.38)

and
y

(k)
N (i) =

(
N−t−1
k−i

)(
N−t−1
k−i+1

) ((
t
i−1

)2 −
(
t
i−2

)(
t
i

))
, (6.39)

where
(
a
b

)
is the binomial coefficient with the usual convention

(
a
b

)
= 0 if b > a or b < 0.

As x(k)
N (i) and y

(k)
N (i) are always positive numbers for any N ≥ 3, k = 1, . . . , N − 1 and

y
(k)
N (i) is different from zero for at least one value of i between 1 and t+1, we can conclude

that N
(

Tr1,...,t|D(k)
N 〉〈D(k)

N |
)
> 0, ∀ N ≥ 3, 1 ≤ k ≤ N − 1 and 1 ≤ t ≤ N − 2. This

confirms the robustness property of the entangled Dicke states.
We conjecture that this robustness property is not limited to the entangled Dicke states

but extends to their whole SLOCC classes. We present now analytical and numerical
results supporting this conjecture. Let us first note that if a state |ψ〉 is robust for the
loss of a subset A of its particles, then any state equivalent to |ψ〉 under LU operations is
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also robust for the loss of the particles of the subset A. In other words, the robustness (or
fragility) against particle loss is an LU-invariant property. This is due to the fact that the
local unitaries acting on the particles that are traced out can be seen as a change of basis
and do not affect the partial trace operation, as well as the local unitaries acting on the
remaining qubits do not change the separability property of the corresponding reduced
density operator. As a consequence, we can restrict ourselves to study the robustness of
one representative state per LU class.

In the symmetric subspace of an N -qubit system, the Dicke states |D(i)
N 〉 and |D(j)

N 〉
for i, j ∈ {0, . . . , N}, i 6= j are SLOCC-inequivalent if and only if i + j 6= N . The
Dicke states thus belong to ⌊N/2⌋ different SLOCC classes, that we denote by DN−k,k

(k = 1, . . . , ⌊N/2⌋) following the notations of Ref. [25]. Any symmetric state belonging
to the SLOCC class DN−k,k has only 2 different single qubit states in its Majorana
representation, degenerated N − k and k times, respectively. Using LU operations, it is
always possible to bring the N − k times degenerated state onto the state |0〉 state and
to make real the two computational basis components of the other qubit state. As a
consequence, any state in a SLOCC class DN−k,k is LU-equivalent, for some parameter
u ≥ 0, to the state

|ψ(k)
N (u)〉 =

√
A

(k)
N (u)

∑

π

|0〉⊗N−k ⊗ (u |0〉 + |1〉)⊗k, (6.40)

with

A
(k)
N (u) =

(
k∑

i=0

(
k
i

)2

(
N
i

) u2(k−i)

)−1

. (6.41)

Tracing out all qubits but 2, we get the reduced density operator ρ̃(k)
N (u) =

Tr¬1,2(|ψ(k)
N (u)〉〈ψ(k)

N (u)|), which is given by

ρ̃
(k)
N (u) = A

(k)
N (u)




f
(k)
N (u, 0, 0) f

(k)
N (u, 1, 0) f

(k)
N (u, 1, 0) f

(k)
N (u, 2, 0)

f
(k)
N (u, 1, 0) f

(k)
N (u, 1, 1) f

(k)
N (u, 1, 1) f

(k)
N (u, 2, 1)

f
(k)
N (u, 1, 0) f

(k)
N (u, 1, 1) f

(k)
N (u, 1, 1) f

(k)
N (u, 2, 1)

f
(k)
N (u, 2, 0) f

(k)
N (u, 2, 1) f

(k)
N (u, 2, 1) f

(k)
N (u, 2, 2)


 , (6.42)

with

f
(k)
N (u, j, j′) =

1
(
N
k

)2

k∑

i=0

(
N−i−j
k−i−j

)(
N−i−j′

k−i−j′

)(
N−2
i

)
u2(k−i)−j−j′

. (6.43)

Showing that the reduced density operator ρ̃(k)
N (u) is entangled shows that the state

|ψ(k)
N (u)〉 is robust for the loss of any number of its qubits (up to N − 2). To prove that

ρ̃
(k)
N (u) is indeed entangled, it is sufficient to show that the determinant of its partial

transpose over the first qubit is negative, since this implies that the state is NPT [27].
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For the simplest case k = 1 (which corresponds to considering the states in the SLOCC
class of the state |WN 〉), the determinant is simply given by

det

[(
ρ̃

(1)
N (u)

)T1
]

= −
(
A

(1)
N (u)

)4

, (6.44)

which shows that all the states that are SLOCC-equivalent to the state |WN 〉 are robust
for the loss of any number of their qubits (up to N − 2).

For k > 1, only strong numerical evidences for a similar conclusion can be given. In
Fig. 6.3, we see that for a fixed number N of qubits (here set to 10) the determinant
of the partial transpose of ρ̃(k)

N (u) gets more and more negative for increasing values
of k. The behavior for increasing number of qubits and k = 2 is shown in Fig. 6.4.
In this case, the determinant flattens with increasing number of qubits, coming from
the negative side closer to the flat zero curve. This suggests that extrapolating to any
value of N and k = 2, . . . , ⌊N/2⌋, we would always have strictly negative values for the
determinant and that all symmetric states in the remaining Dicke state SLOCC classes
DN−k,k (k = 2, . . . , ⌊N/2⌋) would be robust with respect to the loss of any number t of
qubits (t ≤ N − 2).

det

[

(

ρ̃
(k)
10 (u)

)T1

]

↓

→
u

Figure 6.3: Plot of the determinant of the partial transpose (over the first qubit) of the 2-

qubit reduced density operator ρ̃(k)
N (u) as a function of the parameter u for all the possible

values of k (N being set here to 10).

Finding states that are robust with respect to the loss of an arbitrary number of
qubits is particularly interesting as this property is not generic. When translated into the
context and notations of this paper, the results of Refs. [102, 103, 104] imply that N -qubit
pure states chosen uniformly at random (according to the natural Fubini-Study measure
in the N -qubit Hilbert space) have a probability close to 1 to be fragile for the loss of any
t-tuple of their qubits for the largest values of t. By contrast, for the smallest values of
t, random states have a probability close to 1 to be robust for the loss of any t-tuple of
their qubits. There is a transition region between generic robustness and generic fragility,
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det

[

(

ρ̃
(2)
N

(u)
)T1

]

↓

−→
u

Figure 6.4: Plot of the determinant of the partial transpose (over the first qubit) of the

2-qubit reduced density operator ρ̃(k)
N (u) as a function of the parameter u for increasing

values of N , from 4 to 10 (k being set here to 2).

corresponding to the values of t for which both fragile and robust states with respect to
the loss of t qubits can be found with nonnegligible probability. In this region of the t
parameter space, the probability of being robust for the loss of any t qubits was shown to
decrease exponentially with t, from both numerical simulations [102, 103] and theoretical
arguments [104], making the transition region surprisingly sharp. For N -qubit systems,
it was numerically estimated to lie somewhere between N/3 and N/2 [103].
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The aim of this thesis was to contribute to a better understanding of quantum en-
tanglement in multipartite systems. Quantum entanglement is a complex property, with
countless distinct features that must generally be characterized independently. In this
work, we focused on the detection of entanglement, its characterization under local oper-
ations, its quantification and its robustness against particle loss. We always considered
quantum systems associated to a Hilbert space of finite dimension, such as the celebrated
multiqubit systems, or the more general multiqudit systems. We also frequently took a
closer look at the case of the symmetric multiqubit states (i.e. states that remain invariant
under any permutation of their qubits).

In Chapter 1, we reviewed basic notions of quantum information theory that were used
throughout this thesis. We first introduced quantum systems associated to finite dimen-
sional Hilbert spaces and described the formalisms used to treat pure and mixed states.
We also defined symmetric states and detailed the Dicke and Majorana representations
for these states. We then introduced elementary notions of entanglement characterization.
More specifically, we considered entanglement detection, the operational classification of
entanglement through local operations and entanglement quantification.

In Chapter 2, we studied fidelity optimization within operational classes containing
symmetric states. When computing the maximal fidelity between a symmetric state
and all the states of an operational class containing symmetric state, it is interesting to
determine whether the maximal fidelity is always obtained for a symmetric state or not.
We specifically studied a conjecture stating that this question always admits a positive
answer for the SLOCC class of the state |WN 〉. On the one hand, we showed that
stabilizers of the state |WN 〉 can be used to decrease the number of parameters needed in
any fidelity optimization within its SLOCC class. On the other hand, we computed the
most general stabilizer of the state |WN 〉.

In Chapter 3, we studied the general separability problem, which consists in determin-
ing whether a given state ρ is separable or not. We first tackled the separability problem
of pure states using the concept of generalized concurrences. We showed that the existing
methods for generating generalized concurrences produce an overcomplete set, containing
redundant generalized concurrences, and proposed an optimized method for generating
only the independent ones. This new set contains the minimal number of generalized
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concurrences providing a necessary and sufficient condition of separability for pure states.
We then used the preconcurrence matrix formalism to address the separability of mixed
states. We showed that the general separability problem can be reformulated into a pure
matrix analysis problem that consists in determining whether a set of symmetric matrices
can be simultaneously hollowised, i.e. simultaneously transformed by unitary congruence
into matrices with a diagonal only composed of zeroes. Although this mathematical prob-
lem is to date still open, it provides a new angle to tackle the separability problem and
it should pave the way toward new research in this field. We initiated research in this
direction with the study of the simultaneous hollowisation problem for 2 × 2 and 3 × 3
symmetric matrices. In the 2 × 2 case, we found a criterion of simultaneous hollowisation
and showed how to convert it into a general separability criterion for mixed states of rank
2. Even though there exist other separability criteria for mixed states of rank 2, our crite-
rion has the advantage to provide a separable decomposition over two product states for
any separable state of rank 2 and it further allowed us to prove that such a decomposition
is unique. In the 3 × 3 case, we showed how to transform the simultaneous hollowisation
problem into a set of equations involving only one real parameter. These equations being
easily solved numerically, we proposed an algorithm to efficiently solve the separability
problem for mixed states of rank 3. This algorithm has also the advantage of providing a
separable decomposition of minimal cardinality for all separable states of rank 3.

In Chapter 4, we set aside entangled states to study optimal separable decomposition
properties of symmetric separable states. By contrast to Chapter 3, we used methods
based on the partial transposition operation to characterize separability. We first showed
how to extend an algorithm that had been proposed for trying to reconstruct separable
decompositions of PPT bipartite states to the general multipartite case. We also showed
that this algorithm could be drastically simplified for symmetric multiqubit states, in-
creasing its tractability for large numbers of parties. We then used this algorithm to
study optimal separable decompositions (i.e. separable decompositions containing the
lowest possible number of product states) of symmetric states of 2 to 4 qubits. For sym-
metric states of 2 and 3 qubits, we showed that any mixed state ρS of maximal rank,
and such that its partial transposes with respect to all possible bipartitions have also a
maximal rank, admits an infinite number of optimal separable decompositions, such that
any symmetric product state of the system is part of an optimal separable decomposition
of ρS . For symmetric states of 4 qubits, we presented a counterexample showing that any
symmetric product state is not necessarily part of an optimal separable decomposition of
a mixed state with such maximal rank properties.

In Chapter 5, we studied the entanglement quantification of symmetric multiqubit
states within SLOCC classes. Exploiting the link between det-1 invariant homogeneous
positive functions and entanglement monotones, we proposed an homogeneous function
invariant under symmetric det-1 local operations to quantify entanglement in the sym-
metric subspace of the SLOCC classes belonging to the entanglement family D1,...,1. We
showed that this function depends only on the Euclidean distances between all pairs of
Majorana points representing a symmetric state on the Bloch sphere, which illustrates the
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relationship between the geometric configuration of the Majorana points of a symmetric
state and its amount of entanglement. We finally related the maximization of this entan-
glement monotone to a longstanding mathematical and physical problem that consists in
minimizing the energy, for a given potential, of particles constrained onto the surface of
a sphere.

In Chapter 6, we studied the robustness of entanglement against particle loss of mul-
tipartite entangled states. We first characterized multiqubit entangled states that are
fragile for the loss of a given qubit and gave a canonical form for any state having this
fragility property. We then extended our characterization to entangled states that are
fragile for the loss of any one of their qubits and also treated the most general case of the
fragility for the loss of any qubit among a given subset of the qubits. We also found a
canonical form for the states that present this general form of fragility for the loss of one
qubit. Unfortunately, we showed that the lack of general results about the length of sepa-
rable states with given rank prevents us from extending our results for multiqudit systems.
We could nevertheless give a canonical form of fragility for the loss of a given qubit for
generic multiqutrit states. We then focused on the entanglement robustness properties
of symmetric multiqubit states. We showed that all the symmetric states that are fragile
for the loss of one qubit are SLOCC-equivalent and in particular SLOCC-equivalent to
the state |GHZ〉. We showed however that for the loss of at least two qubits, symmetric
fragile states are not necessarily SLOCC-equivalent. We also found SLOCC classes of
N -qubit symmetric states in which all the states are robust for the loss of any number of
their qubits, between 1 and N − 2.
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Development of new tools to detect,
characterize and quantify quantum

entanglement in multipartite systems

Antoine Neven

Abstract: Quantum entanglement is a key property of quantum information
theory, that is at the heart of numerous promising applications in fields such as
quantum cryptography, quantum computing or quantum sensing. In the past
decades, the advent of such innovative technologies has reinforced the need for
a better understanding of entanglement. The aim of this thesis is to contribute
to this effort through the development of new tools targeting the characteriza-
tion of several features of entanglement. Concerning the issue of entanglement
detection, we present an optimization of the approach that exploits the concept
of generalized concurrences to solve the separability problem for pure states. We
then reformulate the separability question of mixed states into a matrix analy-
sis problem, from which we obtain general separability criteria for multipartite
states of ranks two and three. We also briefly discuss some properties of sepa-
rable states. In particular, we characterize optimal separable decompositions of
symmetric (i.e. permutation invariant) states of two and three qubits with max-
imal rank properties. Regarding the quantification of entanglement, we propose
a function to quantify the entanglement of symmetric multiqubit states within
classes of entangled states gathering states that are stochastically equivalent
through local operations assisted with classical communication. This function
establishes a link between the amount of entanglement of a symmetric state and
the distribution of its Majorana points on the Bloch sphere. We finally investi-
gate the robustness of entanglement with respect to particle loss and provide a
full description of all multiqubit states that are fragile for the loss of one of their
qubits. For symmetric states, the fragility for the loss of one qubit is shown to
be related to a particular symmetry of the Majorana points.
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