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ABSTRACT INTRODUCTION
_Inorder to respond to the demand of accurate miniature in- Thermoelastic damping has been identified as an important
ertial navigation systems, ONERA has been working on the de- |5ss mechanism in numerous high-Q micro-resonators, see fo
sign of a vibrating beam accelerometer called the Vibratimg example Refs. [1-5]. The ability to accurately model and pre
ertial Accelerometer (VIA). The accuracy of the VIAis difc et energy loss due to the thermoelastic effects is thesedo
related to_ the_ thermoelastic quality factor of iFs sensgtile- key requirement in order to improve the performance of f@h-
ment, which is a beam made of quartz. In this work, thermo- yegonators. Although most studies of thermoelastic gualittor
piezoelectric finite element analyses of the beam are ahoig till date have been based on analytical models, which aresub
in order to determine the thermoelastic quality factor. 3&d- to very restrictive assumptions so that they are not suffitjie
nite element results are compared to the analytical andexpe  accyrate to predict the behavior of complex 3-D structuies.
mental quality factors. Due to their inherent restrictivesamp- this paper, a finite element formulation has been develaped i
tions, analytical models overestimate the quality factbilethe der to analyze the behavior of systems that are not andlytica

finite element results are in good agreement with the ex@grim  5ctaple.
tal values. As the finite element model allows to take into ac-
count the real geometry of the beam and the piezoelectiafity
the material, it allows to quantify more precisely the theatas-

tic quality factor.

The resonator devices used in this study are accelerometers
fabricated at ONERA. In order to respond to the demand of ac-
curate miniature inertial navigation systems, ONERA hanbe
working on the design of a vibrating beam accelerometeedall
the Vibrating Inertial Accelerometer (VIA) [6]. The preseap-
plications of this device are the guidance and the attitwhérol
*Address all correspondence to this author. of tactical missiles as well as aircraft inertial navigatidhe ac-
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Figure 1. VIA DESIGN WITH THE DECOUPLING FRAME

curacy of the VIA is directly related to the quality factor it$

of the stored energy in the resonatdf)(and the total dissipated
energy per cycle of vibratiol\(V):

W
Q= Zﬂm

1)

Q is affected by several loss mechanisms, which are extrin-
sic (losses by gas damping, losses into support,...) dngitr
(viscosity, thermoelastic damping,...). The global quydtctor
Qtotal Can be express as [9] :

1 “1_ -1 -1 -1 -1
Qtcatal = Z Qi = Qsurface™ Qsu pport T Qvisco+ QTED 2)
|

where Qsuriace represents the surface losses (such as gas
damping),Qsupport are the energy losses due to the fixation to
the supportQuisco corresponds to losses due to intrinsic losses

sensitive element, which is a beam made of quartz. The aim of andQrgp is the effect of thermoelastic damping

this paper is to study the influence of the thermoelastictsffen
the behavior of the VIA.

Firstly, the VIA is introduced and the importance of the ther
moelastic effects on its performances is highlighted. T tieer-
moelastic damping in beam resonators is briefly reviewedfzad
thermo-piezoelectric finite element formulation is dedive-i-
nally, finite element analyses are carried out and the eaud
compared to the analytical and experimental quality factor

THE VIBRATING INERTIAL ACCELEROMETER
The Vibrating Inertial Accelerometer (VIA) [6-8] is a Vi-
brating Beam Accelerometer (VBA) made of monocrystalline

In the VIA, extrinsic losses have been decreased as much
as possible. Indeed, gas damping is avoided by operatingrund
vacuum (p= 0.1 mbar). Moreover, a specific insulation fra@ae h
been developed in order to reduce the losses out of the quartz
structure. Finite element analyses show that, due to thindr
less than 102 of the whole energy is dissipated into the support,
and really high quality factors are allowed. Lastly, duetie t
quality of quartz crystal, viscosity losses can be negtecte

Thus, intrinsic losses, and especially thermoelastic diagnp
are now the main contribution to energy losses and limit the V
quality factor :Qotal = Qrep. Experimental quality factaotal
is about 13 000, whereas Zener’s thermoelastic model [1d} ev
uatesQrep around 17 000. This difference can be explained by

quartz. Its concept is based on the resonance frequendy shif the strong assumptions of the analytical model (such aamect

of a beam when submitted to axial stresses induced by accel-

eration. More precisely, in the VIA design, a micrometriabe
(cross section 3@umx 60 um length 2.26 mm) is clamped at

gular beam, isotropic solid,...) which are not satisfiechn¢ase
of the VIA beam. So, a finite element approach has been devel-
oped in order to have a better understanding of the therrstiela

one of its ends and is connected to proof mass at the other (seedamping, and to improve the design of future accelerometers

Fig. 1). When an acceleration is applied along the sensitg

of the sensor (perpendicular to the transducer plane), ribwef p
mass generates an axial stress into the beam, which modifies i
bending resonance frequency.

As quartz is a piezoelectric material, it is possible to actu
ate and detect the oscillations of the beam by metallic mldes
which are deposited on it. An electronic oscillator, withirgand
phase control, is used to excite the beam at its resonance. Th
output of VIA is thus the frequency of the oscillator sigrehd
its variations represent the applied acceleration. Biabildty,

i.e. beam frequency without acceleration, requires a @son
with high quality factor, in order to reduce the sensitivifyelec-
tronic phase drift. The quality factof)] is defined by the ratio

2

THERMOELASTIC DAMPING

The basic notions of thermoelasticity are well known [11].
In isotropic solids with a positive thermal expansion coéfit,
an increase of temperature creates an expansion and ilyyerse
a decrease of temperature produces a compression. Symilarl
an expansion lowers the temperature and a compressios raise
the temperature. Therefore, when a thermoelastic solidtigns
motion, it is taken out of equilibrium, having an excess of ki
netic and potential energy. The coupling between the stnath
the temperature fields induces an energy dissipation meshan
which causes the system to return to its static equilibridime
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relaxation of the thermoelastic solid is achieved throughit-
reversible flow of heat driven by local temperature gradiéimat

are generated by the strain field. Thermoelastic dampingdtses
from this dissipation which is not always measurable. When
the vibration frequency is much lower than the relaxatide,ra
the solid is always in thermal equilibrium and the vibrasare
isothermal. On the other hand, when the vibration frequéscy
much higher than the relaxation rate, the system has no time t
relax and the vibrations are adiabatic. Hence, it is onlymithe
vibration frequency is of the order of the relaxation ratat tihe
energy loss becomes appreciable.

Analytical models

Zener [10] was the first to develop expressions to approxi-
mate the thermoelastic damping. His theory is based on an ex-
tension of Hooke’s law involving stress straine as well as their
first time derivativesr ande [10]:

0+ 1¢0 = Er(e + 15€)

3)

This model is called the "Standard Anelastic Solid” modeheT
three parametens, 15 andEg have the following physical inter-
pretation:

- T¢ is the relaxation time at which the stress relaxes expo-
nentially when the strain is kept constant.

- Tg is the relaxation time at which the strain relaxes expo-
nentially when the stress is kept constant.

- Er is the elastic modulus after all relaxations have oc-
curred.

The unrelaxed value of the elastic moduls can be de-
fined using the three previous parameters:

Ey = Er.° (4)
Te

In order to analyze the characteristics of the solid viloragi
the stress and the strain are considered to vary harmoneall
the natural pulsatiomy,. The dissipation in the solid can be mea-
sured byQ 1, the inverse of the quality factor of the resonating
structure, which is defined as the fraction of energy lostqyer
cle:

wnT

717
Q=2 1+ (onT)?

()

where 1 = /TgTe IS the effective relaxation time and
De= [T /= Eu_ER js the relaxation strength.

vEREU

Thus, the dissipation exhibits a Lorentzian behavior as a
function of w,T with a maximum value of\g /2 whenwst = 1.
This agrees with the previous qualitative explanation. Wine
frequency is small compared to the relaxation rategg. << 1,
the thermoelastic dissipation is negligible and the cesttilhs are
isothermal. On the other hand, when the frequency is large co
pared to the relaxation rate, i.e;T >> 1, the oscillations are
adiabatic. Therefore, it is only when the frequency is ofdhe
der of the relaxation rate, i.ewnt ~ 1, that the thermoelastic
dissipation takes importance.

For a beam in flexion, assuming that the relaxation occurg onl
through the first transverse conduction mode and that the the
moelastic natural frequencyy, can be approximated by the
isothermal frequencyy n, the inverse of the quality factor for
a thermoelastic flexural beam resonator can be expressett as f
lows

ol Ea2T, 273/

C, 1+ (22?2

(6)

whereE is the Young modulusy is the heat expansion coeffi-
cient,C, is the heat capacity at constant volurigjs the refer-
ence temperature ar{dis a dimensionless parameter which de-
pends on the thermal diffusivity= k /C, wherex is the thermal
conductivity, the beam thicknessand the isothermal frequency

Won: { = by /3.
Lifshitz and Roukes (LR) [12] proposed an analysis basedhen t
same fundamental physics but in which the transverse temper

ture profile is more accurately modeled. Their model gives th
following expression for the inverse of the quality factor:

( )

The quality factors predicted by LR model differ from
Zener’s ones by between 2 % and 20 % depending on the value
of the dimensionless paramefterindeed, it can be showed that
the quality factor given by equation (7) is bounded between t
Lorentzians:

6 6 sinh{+sinC

1 Ea®T, 6 6 sinhg+sin{
- ? C3cosh +co<

Q c (7)

216 z2) R (ZZ)
Ne— 2| — | < <Neg—71 | — 8
() st () ®

where the Lorentzian is defined as:
N

For small values of, the quality factor tends to its lower
Lorentzian bound. While for large values &f it tends to its
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upper Lorentzian bound. Zener’s solution correspondsdddh lowing dynamic equilibrium equation that governs the therm

lowing Lorentzian:

piezoelectric behavior of the system :

272 Muyy 00 Uy 0 0 O Uy
Ql:L(%) (10) 0 00| (o |+ 0 0 0 [uo]+
0 00 Ug Cou Coo Cop Ug

It results from this comparison that expressions (6) andlif?) Ku Kuo Kug Uu Fu
fer by less than 2% on the isothermal side of the peak gpw + | KouKoo Ko | | Uo | = | Fo | (17)
While on the adiabatic side of the peak (high the difference 0 0 Koo Ue Fe
can reach 20 %. Hence, when considering configurationsddcat
on the adiabatic side of the peak, it is better to use LR mddei t whereM, is the mass matrixCq, andCge are the damping

Zener's approximation.

Finite Element Formulation

The analytical models are based on very restrictive assump-
tions and can only be used for simple beam-like configuration
Even if some work have been carried out to extend the analytic
models to polycrystalline beams [13], laminated beams [14]
or uniform rings of rectangular cross-section [15], in orte
investigate complex structures (i.e. non rectangular gdom
anisotropic material,...), @ numerical approach is reglLirThe
finite element method can be used to solve the dynamics of

thermo-piezoelectric structures [16].

matrices due to thermo-mechanical and thermo-electriplowy
effect, respectively an@gg is the damping matrix due to the ther-
mal field. MatriceK yo» andK ¢, are the stiffness matrices due
to piezoelectric coupling effect. Matricég,g andK ¢g are the
stiffness matrices due to thermo-mechanical and thermctrét
coupling, respectively. Matricd§,,, Koo andK gg are the stiff-
ness matrices due to mechanical, electric and thermal fiedds
spectively. Vectors-,, Fo andFg are the force vectors due to
mechanical, electric and thermal fields, respectively.
Thermoelastic effects modify the quality factor of the r@sge,
inducing both damping and resonance frequency shift. lerord
to quantify the quality factor of a structure, a modal anialyss
to be carried out. Equation (17) takes the general form

The thermo-piezoelectric finite element formulation can be

derived from Hamilton’s variational principle in which rrean- Md+Cq+Kg=0 (18)
ical, thermal and electric degrees of freedom are congid&re
multaneously. The displacement fialdthe electric potentiab whereC andK are non-symmetric matrices. This problem may

and the temperature incremére related to the corresponding  pe transformed into a linear problem of twice the size throag

node valuesl,, up andug by the mean of the shape function

matricesNy, No andNg

linearization procedure. Partitioning the eigenvectats elec-
tric, thermal and mechanical degrees of freedom and sutistt
the time derivative of the thermal degrees of freedom byrthei

u = NyUy (11) values, the eigenvalue problem to solve may be rewrittehén t
® = NoUo 12y ~ fom
6=N 13
ol ( ) —Kuu —KucD —Kue 0 Xu
—Kou —Koo —Kyo 0 X
Therefore, the strain fiele, the electric fielde and the thermal 0 0 —Kg O Xg
field eare related to this nodal values by the shape function deriv- 0 0 0 Mu Xu
ative matrice8,, Bo andBg 0 0 0 My, Xu
) Sl o (19)
€ = DNyuy = Byuy (14) Meu gm 89 0 Xg
E — —ONoUe = BoUo (15) u Xu
e = —[INgug = Bgug (16)

If the number of electric, mechanical and thermal degrees of
freedom is denoteds, N, andng, respectively, the eigenvalue

wherel is the gradient operator amal is the derivation operator  problem (Eg. 19) hasr conjugate complex eigenvaluag
defined so that = Du according to the displacement compati- real eigenvalues anal, infinite eigenvalues. Therg eigenval-
bility equation. The finite element discretisation leadth®fol- ues correspond to the mechanical eigenfrequenciestbhaes
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to the thermal eigenfrequencies and theones to the electric
eigenfrequencies.
The quality factor of the nth mode is given by

A

O 2

(20)

wherew, andwy are the real and imaginary parts of the nth con-
jugate complex eigenvalue of Eq. (19). Note that anothertway
determine the quality factor is to carry out a harmonic asialy
and to derive the value of the quality factor from the freqren
response function of the structure.

All these finite element developments are implemented in a
software called Oofelie ("Object Oriented Finite Elemertilby
Interactive Executer”). This software is written in C++ ¢prage
so that it allows to solve multiphysic problems with strorogi€
pling [17,18].

Figure 2. VIA BEAM GEOMETRY WITH ELECTRODE POSITION

THERMOELASTIC QUALITY FACTOR OF THE VIBRAT-

ING INERTIAL ACCELEROMETER ever, using equivalent isotropic material data and a resmfe-
In order to quantify the performance of the VIA, the ther- quency of 62 kHz, Zener's model (Eq. 6) gives a quality facfor
moelastic quality factor of its sensitive part, a clampéatvped 16576, which is nearly 30 % higher than the experimentale/alu

beam, has to be determine. The beam is made of quartz, whichLR model (Eq. 7) gives 14763, which is 12 % different from
is anisotropic and moreover piezoelectric. Figure 2 shdwes t  Zener's quality factor. The difference between the two izl
geometry of the beam. It is to be noted that the scale in the di- models has been introduced above. It has been showed that thi
rection of the beam length is ten times smaller than the one in difference is large when the dimensionless frequency is.Hig

the other two directions. The cross-section of the beamiigd r order to check the influence of the dimensionless frequehey,
trapezoid. Due to chemical anisotropic etching of quartandy cantilever configuration, for which the beam is clamped & on
the manufacturing of transducers, some crystalline plappsar end and free at the other one, is considered. In terms of para-
and modify the beam geometry, so that the real cross-seafion meters that are used in the analytical models, the cantitore

VIA beams is trapezoidal. The beam vibrates along the dmect  figuration differs from the clamped-clamped one only in fes-f

of the largest sides of the trapezoid. The dimensions aengiv guency, which is lower. For the cantilever configuratiom&es
Tab. 1. Figure 2 shows also the configuration of the actimatio quality factor is 2712 while LR model gives 2620. As expected
electrodes. These electrodes are made of gold and théintgs in this case, the difference between the two analytical isdde
is of 200nm smaller.
Mathematically, the difference is explained by the inhéren
Table 1. DIMENSIONS OF VIA VIBRATING BEAM approximations assumed in the transverse temperaturdeprofi

As in the finite element method, no approximation is made abou
the transverse temperature profile, the FE results can tsdzon
Data Dimensionim| ered as the exact solutions. Finite element analyses ofdooth
Height 33 figura‘Fions are carried out us_ing exactly t_he same geomatty a
material data as those used in the analytical models. FEM qua
Large base 59 ity factors differ from a few percents from LR results. Figur
3 represents the transverse temperature profile assumée in t
Small base 54 : L .
two analytical models as well as the finite element profiler Fo
Length 2260 both configurations (cantilever and clamped-clamped), WRe
gives a better approximation than Zener's curve. As expette
two FE curves are different. Indeed, the deformations ieduxy
the bending mode of a cantilever and a clamped-clamped beam
Experiments have shown that the quality factor of the VIA are different and due to the thermo-mechanical couplirgyirth
is around 13000 at a resonance frequency of about 62 kHz. How- duced temperature distributions are also different.
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Table 3. RECTANGULAR CROSS-SECTION CONFIGURATION QUAL-
ITY FACTOR
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Figure 3. TRANSVERSE TEMPERATURE PROFILE

Even if LR model gives a better approximation than Zener's
one, LR quality factor is still more than 10 % higher than the
experimental value. This overestimation can be due to the in
ability of LR model to take into account the real geometry and
material behavior. Indeed, the cross-section is trapekoiubt
rectangular, the material is anisotropic, not isotropi@r&bver,
piezoelectricity as well as the electrodes can also inflaghe
quality factor. In order to study the effects of all thesetdas,
different finite element analyses are carried out.

Table 2. RECTANGULAR CROSS-SECTION CONFIGURATION RES-
ONANCE FREQUENCY

Configuration FEM Fr. [Hz] Ana. Fr. [HZ]
Iso cantilever 9751 9682
Ani cantilever 9724 9682

Iso clamped-clamped 61871 61949

Ani clamped-clamped 61 607 61949

Firstly, the effect of anisotropy is taking into account.- Ta
bles 2 and 3 summarize the results for the clamped-clampkd an
cantilever configurations. They show that anisotropy $hgin-
creases the quality factor while it lowers the resonanagieacy.
However, the anisotropy effect can not explain the diffesen
with the experimental results.

Trapezoidal cross-section finite element models are inves-

6

Configuration FEMQ LRQ ZQ

Iso cantilever 2640 2620 2712

Ani cantilever 2649 2620 2712
Iso clamped-clamped 14111 14763 16576

Ani clamped-clamped 14157 14763 16576

tigated. Table 4 lists the results for trapezoidal crosdice
configurations. As before, anisotropy decreases the rasena
frequency while it increases the quality factor. Howeverfa
rectangular cross-section configurations, quality factoe still
10 % larger than the experimental results.

Table 4. TRAPEZOIDAL CROSS-SECTION CONFIGURATION RE-
SULTS

Configuration FEMFr.[Hz] FEMQ LRQ ZQ
Isotropic 61992 14236 14763 16576
Anisotropic 61626 14644 14763 16576

Table 5. VIA STRUCTURE RESULTS

Configuration FEM Fr. [HzZ] FEMQ
TEw/oelec 61830 15125
TPw/oelec 62117 14363

TE w/ elec 60815 13700
TP w/ elec 61111 13090

Two effects are still to be investigated: piezoelectrigibyd

the influence of the electrodes. Piezoelectricity is knoan t
increase the resonance frequency, what could also affect th
quality factor. The electrodes made of gold, which is a re-
ally good thermal conductor compared to quartz, will pdatur
the thermal field and hence, modify the quality factor. Table
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5 gives the quality factor of the VIA for four different model
thermoelastic analysis without electrodes, thermo-paésiric
analysis without electrodes, thermoelastic analysis wiltt-
trodes and thermo-piezoelectric analysis with electrodtesan

be seen that the electrodes decrease the quality factoddmut a

Therefore, when taking into account a model actuated by
piezoelectricity, the quality factor as well as the resaafre-
guency correspond to the experimental values. These a&salys
show that the electrodes play an importantrole in the quiai-
tor and that piezoelectricity has to be taken into accountder

the resonance frequency. Figures 4 and 5 show the temperatur to accurately determine the resonance frequency.

increment magnitude distributions corresponding to thedbey
mode of the VIA beam with and without electrodes, respebltive
The electrodes modify the temperature distribution on thifase
of the beam creating temperature gradient through the hefgh
the beam so that the quality factor decreases significapityo-
electricity increases the resonance frequency as well alsat
slightly lowers the quality factor.

n

Figure 4. TEMPERATURE INCREMENT MAGNITUDE DISTRIBUTION
OF THE VIA BEAM BENDING MODE WITHOUT ELECTRODES

B

Figure 5.  TEMPERATURE INCREMENT MAGNITUDE DISTRIBUTION
OF THE VIA BEAM BENDING MODE WITH ELECTRODES

CONCLUSIONS

Finite element analyses have been carried out to determine
the thermoelastic quality factor of the VIA. It has been shdw
that analytical models are not sufficient in order to studgl re
complex 3-D structures due to their inherent restrictivaiagp-
tions.

In the case of the VIA, finite element analyses have shown
the importance of the influence of the gold electrodes ontiad g
ity factor and the effect of piezoelectric actuation on theo-
nance frequency. So that a thermo-piezoelectric finite efgm
model taking into account the gold electrodes gives the same
sults than the experiment in terms of the quality factor dred t
resonance frequency.

Thanks to the finite element approach, the different factors
that influence the behavior of the VIA have been identifiedwNo
having a better understanding of the physics involved, dségmh
of the VIA could be modified in order to increase the quality
factor and hence, its performance.

ACKNOWLEDGMENT

The author S. Lepage is supported by the Belgian National
Fund for Scientific Research (FNRS), which is gratefully ac-
knowledged. This work is also supported by the Communauté
Francaise de Belgique - Direction Générale de la Retieehci-
entifique in the framework Actions de Recherche Concertées
(convention ARC 03/08-298).

REFERENCES

[1] Duwel, A., Gorman, J., Weinstein, M., Borenstein, J.dan
Ward, P., 2002. “Quality factors of mems gyros and the
role of thermoelastic damping”. In Proceedings of the 15th
International Conference on Microelectromechanical Sys-
tems (MEMS), pp. 214-219.

[2] Duwel, A., Gorman, J., Weinstein, M., Borenstein, J.dan
Ward, P., 2003. “Experimental study of thermoelastic
damping in mems gyros”Sensors and Actuatorg(203),
pp. 70-75.

[3] Houston, B., Photiadis, D., Marcus, M., Bucaro, J., Liu,
X., and Vignola, J., 2002. “Thermoelastic loss in mi-
croscale oscillators” Applied physics letteB0(7), Febru-
ary, pp. 1300-1302.

Copyright (© 2006 by ASME



[4] Houston, B., Photiadis, D., Vignola, J., Marcus, M., Liu preter OOFELIE for PDEs”. In European Congress on
X., Czaplewski, D., Sekaric, L., Butler, J., Pehrsson, P., Computational Methods in Applied Sciences and Engineer-
and Bucaro, J., 2004. “Loss due to transverse thermoelastic ing, ECCOMAS 2000.
currents in microscale resonatord¥laterials Science and
Engineering A370), pp. 407-411.

[5] Abdolvand, R., Ho, G., Erbil, A., and Ayazi, F., 2003.
“Thermoelastic damping in trench-refilled polysilicon+es
onators”. In Transducers’03, the 12th International Confe
ence on Solid State Sensors, Actuators and Microsystems,
pp. 324-327.

[6] Le Traon, O., Janiaud, D., Muller, S., and Bouniol, P989
“The via vibrating beam accelerometer: concept and per-
formance”. In PLANS’98, Position Location and Naviga-
tion Symposium.

[7] Le Traon, O., Janiaud, D., and Muller, S. “Monolithic ac-
celerometer transducerdS Patent n 5,962,786 published:
10/05/1999.

[8] Masson, S., Janiaud, D., Le Traon, O., and Muller, S.6200
“Design and performances of two quartz monolithic vibrat-
ing inertial microsensors”. In Caneus 2006.

[9] Le Foulgoc, B., Bourouina, T., Le Traon, O., Bosseboeuf,
A., Marty, F., Breluzeau, C., Grandchamp, J.-P., and Mas-
son, S., 2006. “Highly decoupled single-crystal silicos-re
onators: an approach for the intrinsic quality factorJ.
Micromech. Microeng.16.

[10] Zener, C., 1937. “Internal friction in solidsPhysical Re-
view,52, August, pp. 230-235.

[11] Nowacki, W., 1986. Thermoelasticity Pergamon Press,
Oxford.

[12] Lifshitz, R., and Roukes, M., 2000. “Thermoelastic gam
ing in micro-and nano-mechanical systemPhysical Re-
view B,61(8), February, pp. 5600-5609.

[13] Srikar, V., and Senturia, S., 2002. “Thermoelastic darg
in fine-grained polysilicon flexural beam resonatotkSur-
nal of microelectromechanical systertid(5), pp. 499-504.

[14] Bishop, J., and Kinra, V., 1993. “Thermoelastic dangpirf
a laminated beam in flexure and extensialdurnal of Re-
inforced Plastics and Compositek?, February, pp. 210—
226.

[15] Wong, S., Fox, C., and McWilliam, S. “Thermoelastic
damping of the in-plane vibration of thin silicon rings”.
Journal of Sound and Vibratio293(1).

[16] Lepage, S., and Golinval, J.-C., 2005. “Finite ele-
ment modeling of the thermoelastic damping in micro-
electromechanical systems”. In Acomen 2005, Third Inter-
national Conference on Advanced Computational Methods
in Engineering.

[17] Klapka, I., Cardona, A., and Géradin, M., 1998. “An eti}
oriented implementation of the finite element method for
coupled problems”Revue europenne des Elments Finis
August.

[18] Klapka, I., Cardona, A., and Géradin, M., 2000. “Inter

8 Copyright (© 2006 by ASME



