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ABSTRACT

Context. The space-based Kepler mission provided four years of highly precise and almost uninterrupted photometry for hundreds of
γ Doradus stars and tens of SPB stars, finally allowing us to apply asteroseismology to these gravity mode pulsators. Without rotation,
gravity modes are equally spaced in period. This simple structure does not hold in rotating stars for which rotation needs to be taken
into account to accurately interpret the oscillation spectrum.
Aims. We aim to develop a stellar-model-independent method to analyse and interpret the oscillation spectrum of γ Dor and SPB
stars.
Methods. Within the traditional approximation of rotation, we highlight the possibility of recovering the equidistance of period
spacings by stretching the pulsation periods. The stretching function depends on the degree and azimuthal order of gravity modes and
the rotation rate of the star. In this new stretched space, the pulsation modes are regularly spaced by the stellar buoyancy radius.
Results. On the basis of this property, we implemented a method to search for these new regularities and simultaneously infer the
rotation frequency and buoyancy radius. Tests on synthetic spectra computed with a non-perturbative approach show that we can
retrieve these two parameters with reasonable accuracy along with the mode identification. In uniformly rotating models of a typical
γ Dor star, and for the most observed prograde dipole modes, we show that the accuracy on the derived parameters is better than 5%
on both the internal rotation rate and the buoyancy radius. Finally, we apply the method to two stars of the Kepler field, a γ Dor and
an SPB, and compare our results with those of other existing methods.
Conclusions. We provide a stellar-model-independent method to obtain the near-core rotation rate, the buoyancy radius and mode
identification from g-mode spectra of γ Dor and SPB stars.
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1. Introduction

In stellar physics, the treatment of interfaces between convec-
tive and radiative regions remains rather simplistic and subject to
large uncertainties despite the critical effects on the stellar struc-
ture and evolution. This is especially true for main-sequence
stars that possess a convective core. Indeed, mixing processes
at the interface can extend the central mixed zone and increase
the amount of hydrogen fuel available for nuclear fusion reac-
tions i.e. the time spent on the main sequence. A better treatment
of these interfaces will thereby result in more precise determi-
nations of stellar ages. In standard models, the convective core
boundary is set by the Schwarzschild criterion that is equivalent
to the location where the acceleration of convective motions can-
cels out. Comparison of standard stellar models with observa-
tions of eclipsing binaries (Andersen et al. 1990) or open clusters
(Maeder & Mermilliod 1981) showed that this criterion actually
underestimates the size of the convective core and proved the
need for including extra-mixing processes in stellar models. If
this fact is well-established, the nature of these processes (over-
shooting, rotationally induced mixing, internal gravity waves),
the extent of the extra-mixed region, and their dependence on
stellar parameters are still not fully understood.

Another major uncertainty of stellar physics is the distri-
bution and evolution of angular momentum (e.g. Meynet et al.

2013). Rotation distorts stars and triggers supplementary hydro-
dynamical instabilities, which mixes stellar interiors and feeds
back into rotation by transporting angular momentum. In partic-
ular, meridional circulation and shear instabilities are commonly
accepted as operating mechanisms in stellar interiors. However,
several studies (Chaboyer et al. 1995; Maeder & Zahn 1998;
Mathis & Zahn 2004) pointed out that these mechanisms are
insufficient to reproduce the solar rotation profile as measured
by helioseismology (e.g. Schou et al. 1998; Garcı́a et al. 2007;
Fossat et al. 2017). To explain the discrepancy between observa-
tions and rotating models, several additional processes of angu-
lar momentum transport have been proposed that either involves
internal gravity waves (Charbonnel & Talon 2005) or magnetic
fields (Eggenberger et al. 2005), but whether one is dominating
over the others remains somewhat unclear. Similar uncertainties
hold in evolved low-mass stars. The internal rotation rates of red
giants, as measured by asteroseismology, is a few orders of mag-
nitude smaller than what is predicted by rotating stellar models
(Mosser et al. 2012), indicating that one or several missing angu-
lar momentum transport processes are at work in these evolved
stars (e.g. Fuller et al. 2014; Rüdiger et al. 2015; Belkacem et al.
2015; Eggenberger et al. 2017).

Among the variety of pulsating stars, γ Doradus (γ Dor) and
Slowly Pulsating B-type (SPB) stars are promising targets for
obtaining constraints on both convective boundary mixing and
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angular momentum transport processes. These stars pulsate in
high radial order gravity modes that probe the innermost ra-
diative layers close to their convective core, where they have
larger amplitude. Notably, Miglio et al. (2008) and Bouabid
et al. (2013) demonstrated that the properties of gravity modes
(g modes) in these stars is particularly sensitive to the shape of
the chemical gradient at the edge of the convective core. γ Dor
stars are late A- to early F-type main-sequence stars with masses
between roughly 1.3 and 2.0 M�. Their g-mode pulsations are
thought to be excited by the modulation of the radiative flux at
the base of their thin convective envelope, or so-called convec-
tive blocking mechanism (Guzik et al. 2000; Dupret et al. 2005).
It is worth noting that a more specific interest of γ Dors lies in
the fact that they are progenitors of red giants. SPB stars are
main-sequence stars that have spectral types B3-B9 and masses
between 2.5 to 8 M�. In these stars, the pulsations are driven by
the κ-mechanism due to the metal opacity bump at T ∼ 2×105 K
(Dziembowski et al. 1993).

From the point of view of seismology, ground-based ob-
servations of these pulsators are especially impractical as their
g-mode pulsations typically have periods of around one day.
This seriously hindered the application of asteroseismology to
γ Dor and SPB stars until the advent of space missions ded-
icated to high precision photometry. In particular, Kepler pro-
vided four years of highly precise and nearly uninterrupted pho-
tometry for many of these stars allowing the detection of g-mode
series nearly equally spaced in periods as predicted by theory
(Tassoul 1980; Ledoux 1951). Thus, in recent years, detailed
seismic studies of slowly-rotating γ Dor (Kurtz et al. 2014; Saio
et al. 2015; Keen et al. 2015; Bedding et al. 2015; Murphy et al.
2016) and SPB stars (Pápics et al. 2014; Moravveji et al. 2015)
targeted by Kepler could be undertaken. However, this regular
structure does not hold for moderately and rapidly-rotating stars
that, yet, constitutes the majority of these pulsating variables.
Indeed, the projected equatorial velocities of B- and A-type stars
is commonly around 100 km.s−1 but, this can reach 250 km.s−1

in some stars (Abt et al. 2002; Royer et al. 2007).
Moderate or rapid rotation significantly affects the g-

mode oscillation spectrum because of the Coriolis force.
Observationally, the Fourier spectrum of the photometric time-
series often contains hundreds of peaks with no apparent struc-
ture, at least not as predicted by classical perturbative treatments
of rotation. This leads Van Reeth et al. (2015a) to develop a new
algorithm to search for non-equally spaced g-mode series during
the pre-whitening process. Successfully, they reported the de-
tection of period spacing patterns in 50 γ Dor stars (Van Reeth
et al. 2015b). To identify the g modes and estimate their interior
rotation rates, Van Reeth et al. (2016) subsequently modelled
the patterns following a direct approach. Using the asymptotic
formulation of the traditional approximation that account for the
main effects of the Coriolis force, the authors computed the grav-
ity mode periods in a grid of stellar models representative of the
γ Dor instability strip and then fitted the observed patterns with a
least-square minimisation. Following a similar approach, Pápics
et al. (2017) conducted a detailed seismic study of five rotating
SPB stars in the Kepler field.

Given the uncertainties contained in stellar models, we pro-
pose a different method that is model-independent and solely re-
lies on the asymptotic traditional approximation. Section 2 revis-
its the theoretical background of the traditional approximation
and introduces the details of this method. In Sect. 3, we validate
it on synthetic spectra of representative γ Dor models in which
oscillations are computed with a 2D non-perturbative approach.
We also assess the biases on our estimates of the buoyancy radius

and near-core rotation frequency. In Sect. 4, we confirm the po-
tential of such method on two already studied Kepler targets, the
γ Dor star KIC12066947 and the SPB star KIC3459297. Finally,
we discuss the limitations of the method in its current implemen-
tation and conclude in the last section.

2. Method

2.1. Theoretical background

Formally, the pulsation periods are obtained by solving the equa-
tions of hydrodynamics perturbed by small fluctuations around
an equilibrium structure. Two approaches may be adopted: solv-
ing the whole system of equations numerically or conducting an
asymptotic analysis assuming reasonable approximations. With
this latter approach, in a non-rotating spherical star, Tassoul
(1980) demonstrated that the pulsation periods of high-order
gravity modes (|n| � `) can be well-approximated to first order
by the following expression,

Pn,`,m ≈
P0 (|n| + ε)
√
` (` + 1)

, (1)

where n is the radial order, ` the angular degree and m the az-
imuthal order of the pulsation mode. Note that, by convention,
radial orders of g modes are negative. We adopt the convention
that m > 0 are prograde modes and m < 0 retrograde modes.
ε is near-constant and linked to the star’s structure, and

P0 = 2π2
(∫
R

NBV

r
dr

)−1

, (2)

is the buoyancy radius. NBV is the Brunt-Visl frequency and R
represents the resonant cavity of g modes. Hence, modes of same
degree ` and consecutive radial orders n are equally spaced in pe-
riod, which is characterised by constant period spacings defined
as,

∆P` = Pn+1,`,m − Pn,`,m ≈
P0

√
` (` + 1)

. (3)

This is a particularly interesting property of high-order g modes
when searching for mode series in an observed spectrum. Note
also that the pulsation periods does not depend on m.

In a rotating star, pulsations are described by a coupled set
of equations that is both computationally expensive and nu-
merically complex to solve. First introduced in the context of
Geophysics (Eckart 1960) and later applied to stellar pulsa-
tions (e.g. Lee & Saio 1987, 1997; Townsend 2003), the tradi-
tional approximation of rotation (TAR) is a non-perturbative, but
simplified, treatment of rotation that allows the separability of
these equations while still acknowledging the main effects of the
Coriolis force. Assuming the star is in solid-body rotation, the
TAR neglects the horizontal component of the rotation vector. In
other words, the radial motions due to the Coriolis force and the
radial component of the Coriolis force associated with horizon-
tal motions are discarded. This approximation is well-justified
for low-frequency pulsations as it is discussed here (Berthomieu
et al. 1978), except near the stellar centre where radial and hori-
zontal motions become comparable. To obtain the separability of
the system, the Cowling (1941) approximation, which neglects
the perturbation of the gravitational potential, is further made.
Finally, the centrifugal distortion is neglected ensuring the spher-
ical symmetry of the star’s structure. This latter hypothesis can
be justified by the fact that the g modes are mostly sensitive to
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the innermost radiative layers, where centrifugal distortion re-
mains minimal.

Thus, in the reference frame in co-rotation with the star, the
equations of pulsations become separable in the three spherical
coordinates (r, θ, ϕ). The dependence in latitudinal coordinate is
governed by the Hough functions, Θ`,m, that are the eigenfunc-
tions of the well-known Laplace’s tidal eigenvalue problem,

Ls[Θ`,m (µ, s)] = −λ`,m (s) Θ`,m (µ, s) . (4)

where Ls is a linear operator, λ`,m are the eigenvalues of the
problem and µ = cos θ. A complete derivation of the problem
is derived, e.g., in Lee & Saio (1997). Both the Hough func-
tions and associated eigenvalues depend on `, m, and the spin
parameter s = 2Pco

n,`,m/Prot, where Pco
n,`,m is the mode period in

the co-rotating frame and Prot is the rotation period of the star.
This latter reduced parameter appears naturally in the frame of
the TAR, and is indicative of the influence of the Coriolis force
on pulsation modes. The equation for the radial component is
similar to that of the non-rotating case, except that `(` + 1) are
replaced by the new eigenvalues λ`,m. The azimuthal dependence
stays identical.

As their form is akin to the non-rotating case, the asymptotic
analysis of Tassoul (1980) may also be applied to the pulsation
equations obtained within the TAR. It follows a more general
asymptotic formula for periods of high-order g modes in the co-
rotating frame,

Pco
n,`,m (s) ≈

P0 (|n| + ε)√
λ`,m (s)

. (5)

The mode periods in the inertial frame, are subsequently de-
duced from,

Pin
n,`,m =

1
νco

n,`,m + mνrot
=

Pco
n,`,m

1 + mνrotPco
n,`,m

, (6)

where νco
n,`,m is the mode frequency in the co-rotating frame and

νrot is the cyclic rotation frequency. Therefore, in rotating stars,
the degeneracy in azimuthal order is lifted and the regular struc-
ture of the spectrum no longer holds as period spacings now also
depend on the spin parameter.

2.2. Behaviour of gravity modes in rotating stars

We recall here the behaviour of high-order g modes in rotating
stars. We refer the reader to the works of Miglio et al. (2008),
Bouabid et al. (2013) and Ouazzani et al. (2017) for a more com-
plete and detailed picture.

In slowly-rotating stars (s � 1), the spectrum is organised
in well-separated multiplets (n, `). Information on the rotation of
the star is carried by the rotational splittings, which are expressed
by δνn,` = νn,`,m − νn,`,0 in terms of the observed mode frequen-
cies. At moderate rotation, when the rotation period approaches
those of the modes (s ∼ 0.1), these multiplets start to overlap and
it becomes difficult to disentangle them visually. Nonetheless,
period spacings remain almost constant, which makes the detec-
tion of a regular structure still possible (see e.g. Bedding et al.
2015). For rapid rotation, when the rotation period is of the same
order (or greater) than the pulsation periods, the structure of
the spectrum is fundamentally different. Indeed, rotation tends
to separate modes according to their geometry, i.e. to their val-
ues of (`,m). In the inertial frame, prograde and zonal modes
are shifted towards shorter periods whereas retrograde modes
tend to drift towards longer periods. If the rotation frequency is

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Pin (d)

0.1

1.2

8.7

20.0

ν r
ot

(µ
H

z)

Fig. 1. Illustration of the rotational shift of observed pulsation
periods, i.e. in the inertial frame, for four rotation rates. The os-
cillation spectra were computed within the asymptotic TAR (see
Eq. 5) using P0 = 4320 s, a value typical of γ Dors. Black, or-
ange and blue bars are dipole prograde (m = 1), zonal (m = 0)
and retrograde (m = −1) modes, respectively. They are shifted
vertically for clarity.

sufficiently high, (`,m) modes form clusters of modes distinct
from each other. These clusters partially overlay otherwise. This
evolution of the g-mode spectrum with rotation is illustrated on
Fig. 1.

Rotation also leaves its imprint on the period spacings.
Indeed, in the inertial frame, the period spacings of prograde and
zonal modes decrease almost linearly with increasing mode pe-
riods. At fixed rotation frequency, the slope of this linear trend is
smaller for prograde than for zonal modes. Also, for a given star,
this slope get steeper with increasing rotation rate. As for retro-
grade modes, the change of reference frame and rotation have
competitive effects on the mode periods, and so, on the period
spacings, resulting in more complicated behaviour. However, the
spacings tend to have an upper trend in the ∆Pin-Pin plan for the
most part.

As γ Dor and SPB stars evolve on the main-sequence, a
chemical composition gradient develops near the convective
core boundary. If no mixing processes smooth this gradient, this
leads to a local sharp variation of the Brunt-Visl frequency. Such
buoyancy glitch periodically traps the g modes in the gradient
region. As a result, the period spacings slightly oscillate around
the linear trend. The period of this oscillatory component is re-
lated to the location of the glitch while the amplitude gives infor-
mation about its abruptness (Miglio et al. 2008; Bouabid et al.
2013).

2.3. The method

In the frame of the asymptotic TAR, we highlight the possibility
of recovering the equidistance of the period spacings by stretch-
ing the pulsation periods. Indeed, rearranging the terms of Eq.
5,√
λ`,m (s)Pco

n,`,m ≈ P0 (|n| + ε) , (7)

shows that, by multiplying the period scale by the square root of
the Laplace’s eigenvalue λ`,m (s), where s matches the star’s ro-
tation frequency, the associated (`,m) modes become regularly
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spaced of P0. This is illustrated on Fig. 2 where we applied
the stretching to a synthetic series of prograde dipole modes
(` = 1,m = 1).

On the basis of this property, we implemented a method to
search for these new regularities in the g-mode spectrum of γ
Dor and SPB stars and, simultaneously infer νrot and P0. Here,
we describe the methodology used in detail. Similar stretching
techniques have been developed to interpret the mixed mode os-
cillation patterns of red giant stars (Mosser et al. 2015).

First, while not absolutely necessary, we carry out the
frequency analysis of the oscillation spectrum (e.g. by pre-
whitening the periodogram). This simplifies greatly the subse-
quent steps and allows us to identify possible combination fre-
quencies that arise from non-linear processes occurring in the
star.

The periodogram of γ Dor and SPB stars is typically dense
and often contains a large amount of frequency peaks, where
several series of (`,m) modes may coexist. The equidistance of
the period spacings can only be recovered for a given series of
(`,m) modes at once. In other words, for the method to work cor-
rectly, the (`,m) modes searched for need to be dominant in the
list of frequencies used for the analysis. The strategy adopted
here consists in selecting a part of the spectrum where we ex-
pect modes of given (`,m) to be prevailing, relying on the be-
haviour of g modes in rotating stars (Sect. 2.2). In the current
implementation, this step is performed by visual inspection of
the periodogram or of the period distribution. Typically, we look
for frequency groupings or mode density variations. Such fil-
tering is obviously subjective and may be a matter of trial and
error when the g-mode spectrum appears especially disordered.
Automation of this step is possible and is currently under study.
At this point, we consider that a given mode series is dominant
over other series possibly present in the spectrum.

Once the list of mode periods to analyse is established, we
pick a guess for ` and m and choose a range of rotation frequency
to test. In practice, surface cancellation effects limits greatly the
visibilities of high degree modes (` & 4). As for the rotation rate,
we restrain the interval to 0-35 µHz, which largely contains all
the rotation frequencies measured in γ Dors and SPBs until now.
Then, for each rotation rate, we compute the pulsation periods
in the co-rotating frame using Eq. 6 and stretch the spectrum
according to Eq. 7.

To detect a regularity, we subsequently compute the power
spectral density (PSD) of each stretched spectrum from the
Discrete Fourier Transform (DFT). For a frequency f , this is
given by,

∣∣∣∣DFT
( √

λ`,mPco

)∣∣∣∣2 ( f ) =
1
N

∣∣∣∣∣∣∣
N∑

i=1

ei2π f
√
λ`,mPco

i

∣∣∣∣∣∣∣
2

. (8)

where Pco
i are the mode periods in the co-rotating frame and N

the total number of modes in the list. The DFT spectra obtained
are then stacked vertically by increasing rotation rate to build
a DFT map representative of the space of parameters explored.
Figure 3 shows an example of such map. The detection of a reg-
ularity materialises into a characteristic ridge of high PSD. Such
ridge is indicative of the correlation between P0 and νrot. Indeed,
because νrot and P0 are related through Eq. 5, the effect of a small
change in νrot can be nearly, but not exactly, counterbalanced by
a small change in P0.

Finally, to ensure the detection is not coincidental, we com-
pare the maximum of PSD to a threshold value computed from
a false-alarm probabily p = 0.01 of having a peak generated
by random noise. Further details are provided in Sect. 2.4. If

1.0 1.2 1.4 1.6 1.8 2.0√
λ1, 1 Pco

n, 1, 1 (d)

0.36 0.38 0.40 0.42 0.44
Pin

n, 1, 1 (d)

Fig. 2. Stretching of the pulsation periods in the example of a
series of dipole prograde modes. Mode periods were generated
using the asymptotic TAR with νrot = 20 µHz and P0 = 4320
s (or 0.05 d). Top: Before the stretching as they would be seen
by an observer. Bottom: After the change of reference frame and
the stretching, assuming the correct mode identity and rotation
rate.

greater than this threshold, the maximum of PSD is used as
an estimator of νrot and P0 (or more exactly 1/P0). The period
échelle diagram of the stretched spectrum may then be plotted
to have an overview of the modes actually participating in
the regularity detected. Otherwise, the trial and error process
may be continued by changing either the filtering of mode pe-
riods, the guess for ` and m, or the interval of rotation rate tested.

Briefly, the algorithm proceeds as follows,

1. Establishing a list of frequencies (e.g. from Fourier analy-
ses).

2. (Optional) Filtering of pulsation modes according to their
period values.

3. Pick a guess for (`,m) and choose the interval of rotation
frequencies to test.

4. For each rotational frequency:
(a) Switch from the inertial to the co-rotating frame.
(b) Stretch the spectrum.
(c) Compute the DFT.

5. Stack the DFT spectra obtained on top of another by increas-
ing rotation rate (DFT map).

6. Check if the maximum of PSD is significant.
(a) If significant: formally identify modes and estimate νrot

and P0 from the maximum of PSD.
(b) If not: continue the trial and error process by returning to

step 2 or 3.

2.4. Detection threshold

We derive here the detection threshold needed to achieve a spec-
ified probability of false alarm p for a peak found in a DFT map.
This p-value corresponds to the probability for that peak to be
generated by pure noise. Each line of the map is computed as the
norm square of the DFT of a stretched spectrum. From Eq. 8, we
can show that the noise in the power spectrum asymptotically
(i.e. for large N) follows a two-degrees-of-freedom χ2 statistics
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Fig. 3. DFT map obtained for the synthetic prograde mode series
of Fig. 2, as illustration. Red dot represents the true parameter
values. White cross indicates the maximum of PSD. Solid and
dashed lines are the contours at 95% and 50% of the maximum
of PSD, respectively.

(e.g. Abramowitz & Stegun 1964) when the period set Pco
i is

purely random1. These statistics are correct as long as N, i.e. the
number of periods in the set, is large enough. We have numeri-
cally verified that a dozen is sufficient in practice, that is often
the case for real observations. The normalisation used for the
DFT in Eq. 8 ensures that the mean and variance of the statistics
is 1. Thus, the probability for pure noise to generate, in a given
DFT bin, a peak larger than a threshold T is p = exp−T . As a
consequence, given M independent bins in the DFT, the detec-
tion threshold is,

T = − ln[1 − (1 − p)1/M]. (9)

The number of independent bins is then M = ∆ f /δ f , where
δ f is the spectral resolution and ∆ f is the frequency window of
interest, i.e. the range in which we look for 1/P0. The spectral
resolution expresses δ f = (

√
λ`,mPco

max −
√
λ`,mPco

min)−1 where
Pco

max and Pco
min are the largest and smallest periods in the set.

For p = 0.01 and a typical value of M = 50, the detection
threshold is then T = 8.5.

2.5. Estimating the uncertainties

Due to the rotation-pulsation coupling, the mode identity, the
rotation frequency and the buoyancy radius are intrinsically
related which can give rise to degeneracies in the process
of mode identification. Indeed, several mode identities can
be found for a given (`1,m1) mode series. This is due to the
fact that, assuming another geometry (`2,m2), it is sometimes
possible to mimic the (`1,m1) pattern by adjusting the values
of νrot and P0 accordingly. This problem has already been
noticed by Van Reeth et al. (2016). To break the degeneracy,
the authors compare the found value of the asymptotic period
spacing ∆P` (or equivalently P0) to expected values in models,
as a consistent check. We used the same strategy in this work.

1 Since Pco
i are random set, both real and imaginary parts of the

DFT follow normal distributions according to the Central Limit the-
orem when N is large enough. Hence, by definition, the norm square
follows a two-degrees-of-freedom χ2 distribution.

The buoyancy radius adopts a sufficiently narrow range of
values in γ Dor (roughly between 3500 and 5000 s) and SPB
stars (approximatively from 5000 to 11500 s) to infer the
correct mode identity in most cases (Miglio et al. 2008). If that
is insufficient, other expected properties of g modes can be
considered such as the pulsation periods of excited modes or the
slope of the pattern in the ∆P − P plan.

The rotation frequency and buoyancy radius as determined
by our method is affected by two main sources of uncertain-
ties: errors on oscillation mode periods and the adequacy of the
asymptotic TAR to assess the properties of gravity modes. The
former uncertainties can be taken into account by simply propa-
gating the errors throughout the analysis. On the other hand, the
evaluation of errors caused by the use of the asymptotic TAR
is more complicated as it requires to know the ”true” parameter
values. It is nonetheless possible to assess the effect of a sharp
feature of the stellar structure, such as a buoyancy glitch, or any
other effect that does not affect the global trend of the period
spacing patterns. This can be treated in the same way as a sta-
tistical error on the mode periods would be. Here, we describe
the procedure used to evaluate the impact of these two types of
uncertainties on the estimate of νrot and P0. Other potential error
sources or biases will be addressed in Sect. 3.

As a first step, it is necessary to quantify the relative con-
tributions from each source. This is achieved by performing a
first analysis of the oscillation spectrum. From the values of νrot
and P0 obtained, we compute the mode periods in the asymptotic
TAR using Eq. 5 and identify each observed mode by comparing
the two period values. If the standard deviation of the residuals(
Pn,`,m − PTAR

n,`,m

)
is significantly larger than the mean error on the

observed mode periods, we consider it to be the dominant source
of errors. Otherwise, we keep the individual uncertainty on each
observed mode period that were determined during the mode ex-
traction process.

Secondly, we propagate these errors by means of a Monte-
Carlo simulation. To this end, we draw 500 random samples of
the observed pulsation periods assuming the errors on them fol-
low a normal distribution and are not correlated. In case the un-
certainty on pulsation periods is not the dominant source of error,
we adopt the standard deviation of the residual

(
Pn,`,m − PTAR

n,`,m

)
as being the errorbar on all mode periods. Then we apply the
method to each sample to get the distributions of νrot and P0.
The final values of the rotation rate and buoyancy radius are de-
termined from the maximum of PSD during the first analysis and
their errorbars are evaluated as the 1-σ deviation of the distribu-
tions.

3. Tests on synthetic spectra

As validation, we tested the method on a set of synthetic oscil-
lation spectra computed for representative models of γ Doradus
stars, which are presented in Sect. 3.1.

In particular, we investigate the ability of the method to de-
tect regularities in situations that are likely to be encountered
in observations. This also lets us gauge potential biases intro-
duced by the use of the asymptotic TAR as a prescription of the
rotation-pulsation coupling. To this end, we selected three test
cases. Firstly, we examine the simple case of a uniformly ro-
tating star with no structural glitch (Sect. 3.2). With the second
model, we assess the method’s robustness against the effect of
a buoyancy glitch (Sect. 3.3). Finally, the effect of differential
rotation is addressed with the last model (Sect. 3.4).
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We restrained our study to dipole modes only as there are
mostly those observed in high-order g-mode pulsators. For each
synthetic spectrum, we analysed the three mode series indepen-
dently ensuring that the maximum of PSD found is above the
detection threshold defined in Sect 2.4. The DFT maps obtained
are compiled under the form of a contour map, where, for each
of three DFT map, we depict the contours at 50% and 95% of
the maximum of PSD.

3.1. Stellar structure and oscillation models

Here we explain the choices made for the calculation of the stel-
lar structure and oscillation used to generate the synthetic oscil-
lation spectra. Let us first discuss the hypotheses made for the
stellar structure calculation. Throughout this study, we opted for
1D spherical stellar models. Indeed, spherically symmetric 1D
calculations have been tested against complete 2D calculations
for g modes in polytropic models (Ballot et al. 2012), as well as
for a model of γ Dor star (Ouazzani et al. 2017). According to
them, the 1D non-perturbative approach, which presents the ad-
vantage of requiring less numerical resources, gives satisfactory
results compared to the full 2D approach.

Under this assumption, stellar models were computed with
the stellar evolution code cles (Scuflaire et al. 2008) for a mass
of 1.86 M�, and with initial helium mass fraction Y = 0.27
and metallicity Z = 0.014. We adopted the AGSS09 metal
mixture (Asplund et al. 2009) and corresponding opacity ta-
bles obtained with OPAL opacities (Iglesias & Rogers 1996),
completed at low temperature (log T < 4.1) with Ferguson
et al. (2005) opacity tables. We used the OPAL2001 equation of
state (Rogers & Nayfonov 2002) and the nuclear reaction rates
from NACRE compilation (Angulo et al. 1999), except for the
14N(p, γ)15O nuclear reaction, for which we adopted the cross-
section from Formicola et al. (2004). Surface boundary condi-
tions at T = Teff were provided by ATLAS model atmospheres
(Kurucz 1998). Convection was treated using the mixing-length
theory (MLT) formalism (Böhm-Vitense 1958) with a parameter
αMLT = 1.70.

We considered models with and without turbulent diffusion.
Since the cles code does not include effects of rotation on trans-
port of angular momentum or chemical species, we instead in-
troduced mixing by turbulent diffusion, following the approach
of Miglio et al. (2008). This reproduces an effect of rotationally-
induced mixing that is quite similar to overshooting, but in ad-
dition tends to smooth chemical composition gradients inside
the star. In models including this type of mixing, the coefficient
of turbulent diffusion was set to Dt = 700 cm−2 · s−1 and kept
constant to this value during evolution and in every layer of the
models. This value was selected from a previous calibration to
Geneva models with similar masses. Since the evolution code
does not generate rotation profiles, those are then added ad hoc
after evolution calculations. When a differential rotation profile
is considered, it is adapted to the structure by the mean of an
error function, centered right above the convective core, with a
width depending on the profile of chemical gradient.

The oscillation modes of such 1D models were computed
with a non-perturbative method using the acor oscillation code
(Ouazzani et al. 2012, 2015), which accounts for both the
Coriolis and the centrifugal force. The acor code solves the hy-
drodynamics equations perturbed by Eulerian fluctuations, per-
forming direct integration of the problem. The numerical method
is based on a spectral multi-domain method which expands the
angular dependence of eigenfunctions into spherical harmonics
series, and whose radial treatment is particularly well adapted

Table 1. Properties of cles γ Dor models used in Section 3.

Model A Model B

M/M� 1.86 1.86
Teff (K) 7960 8025
log L/L� 1.269 1.202
log g 3.99 4.08
R/R� 2.27 2.07
Age (Myr) 1048 782
XC 0.34 0.32
Dt (cm−2 · s−1) 700 -
P0 (s) 4579 4453

to the behaviour of equilibrium quantities in evolved models (at
the interface of convective and radiative regions, and at the stel-
lar surface).

In order to determine the range of radial orders to investi-
gate, we have relied on the non-adiabatic stability calculations
provided in Bouabid et al. (2013). All the pulsations spectra
studied here are calculated for g-mode radial orders between
n = −50 and −20.

3.2. Simple case: solid-body rotation and smooth period
spacing patterns

We started with the simplest case and computed a model of γ
Dor star in solid-body rotation with no glitches in the structure
(Model A in Table 1). Initially, we set the rotation frequency of
the model at 7 µHz, which is included in the range observed in γ
Dor stars (Van Reeth et al. 2016).

The top left pannel of Figure 5 shows the contours of the
three DFT map obtained. While the three contours seem to agree
on the values of νrot and P0, there are still small departures from
the true parameter values as measured directly from the model.
Table 2 compiles the results of the three analyses. We found that
relative systematic errors on the parameters do not exceed a few
percent but vary according to the mode geometry considered.
The stretched period échelle diagram for prograde dipole modes
(` = 1,m = 1) is plotted on the top right panel of Fig. 5, as
an example. The ridge slightly weaves along a vertical line that
would represent the ridge if the asymptotic TAR was perfectly
suited. Period échelle diagrams for other series present identical
features. Although model A has turbulent diffusion mixing, the
chemical gradient at the convective core boundary is still quite
substantial and gives rise to a light undulation of the period spac-
ings.

In order to compare the systematic errors against other
sources, we estimated the uncertainties on νrot and P0 by pro-
ceeding as described in Sect. 2.5 where we assumed a typical
uncertainty on the mode periods of 1 × 10−4 d. The standard de-
viation on the residuals (Pn,`,m−PTAR

n,`,m) are 6×10−5, 1×10−4 and
5× 10−4 d for the prograde, zonal and retrograde modes, respec-
tively. The uncertainties derived in this manner stay one order of
magnitude smaller than the biases highlighted in Table 2, sug-
gesting the latter is actually the critical source of errors on the
parameter values.

To investigate the provenance of these systematic errors, we
compared the period spacings that can be obtained with the TAR

6
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Table 2. Rotation frequencies and buoyancy radii as determined
from our method for Model A in solid-body rotation (see Sect.
3.2). Relative differences (δνrot, δP0) compared to the parameter
inputs (7 µHz, 4579 s) are also indicated.

(`,m) νrot (µHz) δνrot (%) P0 (s) δP0 (%)

(1, 1) 6.95 0.75 4495 1.84
(1, 0) 6.88 1.74 4484 2.09
(1,−1) 7.15 2.14 4580 0.02

using either the parameter values determined from the method
analysis (Table 2) or from the model, to those of the complete
calculations. From Eq. 5, the asymptotic period spacings within
the TAR can be expressed as,

∆Pco '
P0√

λ`,m (s)
(
1 + 1

2
d ln λ`,m(s)

d ln s

) , (10)

in the co-rotating frame (see Appendix of Bouabid et al. 2013,
for a derivation). The spacings in the inertial frame are then de-
rived from the following expression,

∆Pin =
∆Pco(

1 + m
2 s (n)

) (
1 + m

2 s (n + 1)
) . (11)

These functions were interpolated on the period values of the
complete calculations to work out the differences δ (∆Pin) =
∆PTAR

in −∆Pacorin . Figure 4 displays the results of each compari-
son. The parameter values outputted by the method are those that
minimise the differences δ (∆Pin), which turn out to be differ-
ent from the true parameter values. In other words, the stretched
spectrum using the true values is less regular than if we used
the output values of the method. This means that the asymptotic
TAR does not perfectly model the spacings of complete calcula-
tions.

The approximations made in the derivation of the asymp-
totic TAR, i.e. either the asymptotic approximation or the TAR
(or both) then cause the disparity between the true parameter
values and those recovered by the method. To investigate this
further, we computed additional synthetic spectra. We set three
rotation rates (7, 15 and 23 µHz) in model A and computed the
oscillation frequencies either within the non-asymptotic TAR or
with acor. In this way, we are able to compare the relative con-
tribution of each approximation to the bias and how it may vary
with the rotation frequency. We limited this study to prograde
modes (` = 1,m = 1) since other dipole modes are affected by
an avoided crossing for model at 15 and 23 µHz in the range
of radial orders calculated with acor. Note also that prograde
modes are mostly those detected in γ Dor and SPB stars. The
results of the analyses are listed in Table 3. The buoyancy ra-
dius is even more misestimated when the model is rotating fast,
while no clear trend is visible for the recovered rotation frequen-
cies. Moreover, the retrieved values are biased whether we take
the non-asymptotic TAR or complete calculations. As could be
expected, the errors obtained for the acor calculations are more
important than for those in the non-asymptotic TAR. This indi-
cates that both the asymptotic treatment and the TAR contribute
to the bias.
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Fig. 4. Differences between the period spacings computed within
the asymptotic TAR and those derived from complete calcu-
lations with acor. Orange squares: period spacings within the
asymptotic TAR were computed using the parameter values of
the model (νrot = 7 µHz and P0 = 4579 s). Blue squares: using
the parameter values found by the analysis of the spectrum (see
Table 2).

3.3. Effect of a buoyancy glitch

The effect of a buoyancy glitch on the pulsation periods and
therefore on the period spacings is not taken into account within
the asymptotic TAR. Although the global trend of the period
spacing pattern is not affected, it should be made clear if this
impacts our estimates of νrot and P0. Model B was computed
without turbulent diffusion mixing so that a sharp chemical com-
position gradient grows at the convective core boundary forming
a buoyancy glitch. We set the rotation frequency of this model to
7 µHz to compute the mode periods.

Our results (Table 4 and middle left panel of Fig. 5) show
significant disagreements between the three dipole mode series.
In addition, substantial deviations from the true parameter val-
ues are found. These are one order greater than for the smooth
model used in Sect. 3.2 reaching up to a maximum relative dif-
ference of ∼17 % for νrot and ∼6 % for P0. The middle right
panel of Fig. 5 displays the stretched period échelle diagram
for prograde modes where the oscillatory component due to the
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Table 3. Recovered parameter values from the application of the method to synthetic oscillation spectra computed from Model A.
The non-asymptotic TAR and the complete treatment of rotation (acor) are compared for three different rotation rates.

True values Recovered values
(Model A) Non-asymptotic TAR acor

νrot (µHz) 7.00 6.97 6.95
P0 (s) 4579 4531 4495
νrot (µHz) 15.00 14.95 14.94
P0 (s) 4579 4498 4459
νrot (µHz) 23.00 22.95 22.891

P0 (s) 4579 4497 43941

Notes. (1) For this specific model, an accumulation of higher ` modes occurs around the pulsation period of the radial order n = −45, which causes
an avoided crossing.

Table 4. Same as Table 2 for Model B in solid-body rotation (see
Sect. 3.3). Parameter inputs are 7 µHz for νrot and 4453 s for P0.

(`,m) νrot (µHz) δνrot (%) P0 (s) δP0 (%)

(1, 1) 6.67 4.71 4233 4.94
(1, 0) 6.29 10.14 4202 5.64
(1,−1) 8.17 16.77 4645 4.31

buoyancy glitch is clearly visible. Other échelle diagrams show
identical behaviour.

In the general case, the oscillatory component, that is su-
perposed to the smooth period spacing pattern in presence of a
buoyancy glitch, is not symmetrical. By using the location of
the maximum of PSD as an estimator of P0, we actually find
the mean spacing of the stretched pattern. The systematic errors
underlined here can be, for the most part, attributed to the differ-
ence between this mean spacing and the true value of P0. Note,
however, that the biases found in Sect. 3.2 also contribute here.

3.4. Differential rotation

The TAR is a simplified treatment of rotation. One of its major
and limiting hypotheses is the assumption of solid-body rotation,
which is more invoked for the sake of mathematical simplifica-
tions rather than from physical considerations. As differentially
rotating stars will almost surely be encountered in observational
data, it is interesting to test if we are able to find regularities in
the stretched spectrum for such stars and if so, investigate the
impact of differential rotation on the estimate of the near-core
rotation rate and buoyancy radius as obtained with our method.
With this aim, we modelled a synthetic spectrum from Model A
(Table 1) on which we applied a two-zone rotation profile. The
convective core rotates at νrot,core = 15 µHz while the rotation
rate is νrot,env = 7 µHz in the envelope. In model A, the gradi-
ent of chemical composition at the convective core boundary is
smoothed, which allows us to dismiss the effect of a buoyancy
glitch hereafter.

The bottom left panel of Fig. 5 shows the contours for each
DFT map. Table 5 lists the results of the analysis. Our results
suggest that we should be in a position to find regularities in the
stretched spectrum of a differentially rotating star. Moreover, the

Table 5. Same as Table 2 for Model A in differential rotation
(see Sect. 3.4).

(`,m) νrot (µHz) P0 (s)

(1,−1) 8.97 4598
(1, 0) 8.06 3899
(1, 1) 11.74 5592

values of νrot and P0 obtained from each mode series differ from
each other at a substantial level. These differences are superior
to the expected biases and errors in an equivalent model in solid-
body rotation (Model A and B, see Sect. 3.2 and 3.3). The bot-
tom right panel of Fig. 5 represents the stretched period échelle
diagram in the case of the prograde dipole modes. The ridge is
almost vertical but also slightly curved. Moreover, two avoided
crossings occur at ∼15.5 and ∼17.5 µHz due to an accumulation
of higher degree modes (` = 5 and ` = 7, respectively) at these
frequencies. This illustrates the extent of the TAR limitations.

In a rotating star, the resonant cavity of gravity modes varies
from a pulsation mode to another, which in turn impact on their
properties like the pulsation period. While this variation is small
(but still noticeable) within modes of same (`,m), it can be quite
large between modes of distinct (`,m) couples. Then, we have a
signature of differential rotation. In particular, prograde modes
probe deeper in the star than zonal and retrograde modes, which
is consistent with much faster rotation. This is less clear for zonal
and retrograde modes as the two rotation frequencies obtained
are quite similar and this slight difference could indeed be ex-
plained by other factors. In particular, the corresponding ridges
are not vertical in the stretched period échelle diagram. For this
same reason, it is also difficult to reliably interpret the estimate
of the buoyancy radii.

4. Applications on Kepler targets

As a proof of concept, we applied our method to two stars tar-
geted by Kepler, the γ Dor star KIC12066947 and the SPB
star KIC3459297. Both were previously studied in the literature
hence giving us a point of comparison with other existing meth-
ods.
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Fig. 5. Left: Contour maps at 95% (solid) and 50% (dashed) of the maximum of power spectral density for Model A in solid-body
rotation (top), Model B in solid-body rotation (middle) and Model A in differential rotation (bottom). Colours are indicative of the
type of modes (`,m) on which was applied the method. Red dots indicates the input value of νrot and 1/P0 as measured from the
models, when relevant. Right: Example of stretched period échelle diagrams for prograde modes, which are plotted twice for clarity.
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4.1. Frequency analysis

For the two stars, the frequency analysis was performed using
the classical iterative pre-whitening process, where, at each step,
the peak with the highest amplitude in the periodogram was
subtracted from the light curve. The statistical significance of
each peak was derived on the basis of the false alarm probabil-
ity (Scargle 1982), which gives robust results for Kepler data.
To make sure that the peak extracted was not introduced during
the pre-whitening process, we compare the amplitude of the ex-
tracted peak with value in the original data. If these deviate more
than 25% we disregard this peak. A similar procedure was also
used by Van Reeth et al. (2015a). A detailed description of the
code used here will be given in Antoci et al. (in prep.).

Despite these precautions, noise peaks or spurious frequen-
cies created by the pre-whitening process may still be extracted.
Robustness of the stretching method is ensured as long as these
frequencies remain in minority compared to the modes that are
looked for, which justifies to be conservative in the frequency
analysis. On the contrary, actual pulsation mode frequencies of
a series may not be extracted because of overly cautious crite-
ria. This would introduce windowing in the DFT map or, in the
worst case, prevent us from identifying the mode series. In this
case, accepting frequencies with a worst agreement between ex-
tracted and original amplitude may improve the detection of the
regularity. We tested the effect of missing orders in a modes se-
ries with simulated spectra. We found that a regularity could be
detected as long as more than approximately half of the modes
were present in the frequency list.

Line-of-sight motions of stars introduce Doppler shifts of
the pulsation frequencies, which can be larger than their asso-
ciated uncertainties in Kepler data (Davies et al. 2014). Here, we
neglected these Doppler frequency shifts as we could not find
line-of-sight velocity measurements in the literature for these
two stars. The impact on the measured νrot and P0 is expected
to be contained within our internal uncertainties, even assuming
large radial velocities (±150 km.s−1).

4.2. The γ Dor star KIC12066947

The γ Dor star KIC12066947 was observed by the Kepler space-
craft in long-cadence mode during quarters 0-1 and 10-17 thus
gathering almost 670 days of high-quality photometric data. We
could extract 22 peak frequencies from the Lomb-Scargle peri-
odogram (Table A.1). As shown in Fig. 6, most extracted peaks
cluster in two groups in frequency roughly between 20 and
23 µHz (hereafter referred as cluster A), and between 27 and
35 µHz (cluster B). We analysed each cluster of peaks indepen-
dently ensuring that we explored a sufficiently broad parameter
space.

The analysis of cluster B frequencies leads to a detection
for several trial values of (`,m). However, unless we suppose
they are (1,1) modes, the buoyancy radius given by the maxi-
mum of PSD is much larger than generally expected values for γ
Dor stars. We therefore identify these peaks as prograde dipole
modes. The left panel of Fig. 7 shows the DFT map obtained in
this case. We found νrot = 24.95 ± 0.05 µHz (2.156 ± 0.004 c/d)
and P0 = 4181 ± 63 s (0.0484 ± 0.0008 d). The quoted un-
certainties were computed from a Monte-Carlo simulation as
explained in Sect. 2.5 and does not account for systematic er-
rors. The stretched échelle diagram built using these values is
shown on the right panel of Fig. 7. The ridge shows important
curvatures indicating a substantial deviation from the asymp-
totic TAR. Such feature is however difficult to explain without a

proper detailed study of the star. Furthermore, there is a great gap
between the frequency at ∼ 27.8 µHz and the rest of the ridge,
causing a severe window effect in the DFT map. We checked if
this has any influence on the derived values of νrot and P0 by
discarding the frequency and re-analysing this part of the spec-
trum. In this manner, we derived νrot = 24.94 ± 0.04 µHz and
P0 = 4157 ± 51 s in good agreement with the previously deter-
mined values.

Despite searching for modes up to ` = 4 and trying rotation
frequencies from 2 to 35 µHz, we could not identify cluster A
peaks. Given their high amplitudes, these peaks are more likely
to be dipole modes. Using Eq. (5) and the parameter values de-
rived from the analysis of cluster B peaks, we computed the pul-
sation periods of dipole retrograde and zonal modes within the
asymptotic TAR and then checked if they were consistent with
the range of periods observed. Unfortunately, they do not agree
well suggesting that these peaks do not originate from gravito-
inertial mode pulsations.

The oscillation spectrum shows an excess of power around
55-65 µHz with peaks of very low amplitude that are not ex-
tracted. Although they are located in the expected frequency
range for (2,2) modes, the majority of these peak frequencies
are simple combinations (νi + ν j) or first harmonics (2 νi) of the
highest amplitude peaks.

KIC12066947 was studied by Van Reeth et al. (2015b, 2016)
as part of their sample. Using the method of Van Reeth et al.
(2015a) to analyse the oscillation spectrum, they detected two
non-equidistant period spacing patterns. The first mode series
consists of pulsation modes with frequencies in the range 27-
37 µHz and a downwards slope in the ∆P - P plane. Modelling
this pattern, they identified them as (1, 1) pulsation modes and
found νrot = 25.00±0.10µHz (2.160±0.008c/d). From their best
fit model, they could also estimate the asymptotic period spac-
ing ∆P` = 2950 ± 70 s, which translates into P0 = 4171 ± 99 s
(0.0484 ± 0.0012 d) using Eq. (1). These results agree very well
with our determination from cluster B peaks. The second pat-
tern has an upward slope consisting of pulsation frequencies in
the range 19-22 µHz, i.e. corresponding to our cluster A. The
authors could not identify them as g modes. The upward slope
in the ∆P − P diagram suggest their retrograde character how-
ever, assuming the found νrot is accurate, their pulsation periods
are much shorter than what would be expected from retrograde g
modes. On the other hand, the authors could show that the period
spacing pattern is consistent with retrograde Rossby modes (or
r modes) using the asymptotic expression of Townsend (2003).
This seems also supported by theory and numerical compu-
tations that predict the excitation of r modes in fast-rotating
stars due to an interaction between toroidal motion and rota-
tion (Townsend 2003; Salmon et al. 2014; Saio et al. 2018).
Interestingly, this would also explain why we could not iden-
tify these modes with our method. The TAR also predicts the
r-mode periods with the same expression as Eq. 5. Our stretch-
ing method can then also be applied to these modes by providing
the λ functions. First attempts are encouraging.

4.3. The SPB star KIC3459297

The SPB star KIC3459297 was observed by Kepler in long
cadence mode during quarters Q0-5, 7-9, 11-13 and 15-17,
which represents 1069 days of high-quality photometric data.
The Lomb-Scargle periodogram computed from the light curve
is plotted on Fig. 8. We extracted 27 peak frequencies, of which
6 are found to be combinations and are discarded for the rest of
the analysis (Table A.2). Two groups of peaks clearly stand out.
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Fig. 6. Part of the Lomb-Scargle periodogram of KIC12066947 computed from the Kepler light curve. Blue bars indicate the peak
frequencies that were extracted and kept for the analysis.
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Fig. 7. Left: DFT map resulting from the analysis of cluster B peaks, assuming they are prograde dipole modes (` = 1,m = 1). White
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The cluster at very low frequency is most likely due to instru-
mental effects or may have been introduced by the detrending
of the light curve. We analysed the other group in the 9-14 µHz
interval.

From a first analysis, we could detect a series of modes, but
due to numerous missing orders and consequent windowing, we
could not reliably obtain νrot and P0. In the following, we there-
fore included peaks with a lower agreement between the ampli-
tude extracted and that of the original data (50%). The 14 in-
dependent frequencies added are indicated by yellow bars on
Fig. 8. The detection threshold was reached for several trial
(`,m) values. However, similarly to the case of KIC12066947,
only (1, 1) gives a buoyancy radius consistent with expected
values for SPB stars. The peaks are thereby identified as pro-
grade dipole modes. We estimated νrot = 6.85 ± 0.07 µHz and
P0 = 7018 ± 190 s (see left panel of Fig. 9). To obtain this esti-
mate, we discarded the two isolated peaks at 9.25 and 9.38 µHz
to avoid the effect of windowing. Furthermore, as can be seen
on the stretched period échelle diagram (right panel of Fig. 9),
the belonging of these two frequencies to the prograde series is

debatable. Remarkably, the period spacing pattern shows an os-
cillatory behaviour, which is a typical signature of a buoyancy
glitch (Miglio et al. 2008).

The power excess between 23 and 28 µHz is dominated
by simple combination frequencies of high amplitude peaks
(νi + ν j). The couple of remaining frequencies may be actual
(2, 2) modes but cannot be formally identified with our method
due to their restricted number.

This SPB star was studied in Pápics et al. (2017). The authors
could find a long period spacing pattern consisting of 43 modes
in the 9-14 µHz domain with a downward slope in the ∆P − P
plane. Following the method of Van Reeth et al. (2016), they
identified the mode series as dipole prograde modes. Moreover,
they estimated νrot = 7.3 ± 0.5 µHz (0.63 ± 0.04 c/d) and
∆P` = 5840+950

−860 s, which translates into a buoyancy radius of
P0 = 8260+1400

−1300 s (0.096+0.016
−0.014 d). These findings are compatible

at a 1-σ level with ours although somewhat greater. We made
the choice to stay more conservative in the frequency analysis of
the light curve. This results in a lesser number of extracted fre-
quencies than Pápics et al. (2017). We analysed the list of pro-
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grade mode periods provided in their Table 6 using our method.
The results (νrot = 6.81 ± 0.02 µHz, P0 = 6857 ± 66 s) are
not significantly different from our first estimate showing that
the difference does not come from the period list. Pápics et al.
(2017) found a second series of 8 modes in the 25-32 µHz range
that they do not identified as combination frequencies. They sug-
gested these are (2,2) modes.

5. Discussion and conclusions

We have developed and tested a stellar-model-independent
method to disentangle the g-mode spectrum of moderately to
rapidly-rotating γ Dor and SPB stars. Using this method, we are
able to simultaneously obtain the mode identity and estimate the
near-core rotation frequency and buoyancy radius of these stars.
Moreover, we successfully apply this method to two Kepler tar-
gets. Our results are compatible with preceding determinations
that used a different method (Van Reeth et al. 2016; Pápics et al.
2017), but the uncertainties on νrot and P0 intrinsic to our method
are substantially lower. It should be noted, however, that the
dominant source of errors comes from the inadequacies of the
asymptotic TAR on which Van Reeth et al. (2016) also relied.
It is also expected that the non-asymptotic formulation that was
used by Pápics et al. (2017) suffers from systematic biases.

While the method works well in most cases, precautions
need to be taken during the analysis or in the interpretation of
results in some specific cases.

Because we use the DFT to detect regularities in the
stretched spectrum, modes in a given series must be in sufficient
number so that a peak in the DFT map can be unambiguously
attributed to a regularity, i.e. with an amplitude that is above the
detection threshold (see Sect. 2.4). We are also subject to the
effects of windowing especially in case of missing orders in a
ridge. Therefore, particular attention should be paid to the results
when signatures of these effects are visible in the DFT map.

As a result of the non-linear coupling of pulsation modes,
combination frequencies are common in the oscillation spectrum
of γ Dor and SPB stars. These combinations are generally con-
sidered to be harmonics or simple combinations of the frequen-
cies of highest amplitude but this has been subject to debate as
the underlying physical mechanism is not understood (see Kurtz
et al. 2015, and references therein). Possible combination fre-
quencies must be identified. Their analysis, as if there were in-
dependent frequencies, can lead to wrong interpretations. For in-
stance, the first harmonics of (1, 1) may be misidentified as (2, 2)
modes with the same rotation rate and buoyancy radius that can
be derived from the fundamental frequencies. In this work, to
avoid these misinterpretations, we searched for frequencies that
could be explained as linear combinations (

∑
ciνi where ci ∈ Z)

and we discarded those of order 3 or less (
∑
|ci| ≤ 3) from the

analyses.
γ Dor and SPB stars are numerous in the Kepler field of

view. Few of them are slowly rotating and present rotational
splittings that can be accurately interpreted with classical per-
turbative treatments of rotation. In this regard, we emphasise
that the method presented in this paper complement the pertur-
bative approach by allowing the interpretation of the spectrum of
moderate to fast rotators. Thus, for rapid rotators, the analysis is
straightforward as each mode series (`,m) is well separated from
the others. In moderate rotators, several g-mode series may over-
lap, which slightly complicates the identification process as the
stretching function is relevant only for a given (`,m) couple. This
can be easily overcome by using the expected distribution of g
modes in rotating stars as an indicator to guide the analysis (see

Sect. 2.2). As long as some (`,m) modes are dominant in number
on the portion of the spectrum studied, the associated regularity
should be detectable. Then, proceeding iteratively, i.e. identify-
ing the dominant mode series, removing these modes from the
list of frequencies, and re-analysing the remaining frequencies,
allows the identification of overlapping series.

In the current implementation of the method, we assess the
rotation-pulsation coupling in the framework of the asymptotic
TAR. While the hypotheses behind this approximation are rather
crude, it seems to offer reasonably accurate results. For a typi-
cal model of γ Dor in uniform rotation and no structural glitch,
we evaluated that the derived rotation rate and buoyancy radius
are biased by only a few per cent. The TAR and the asymptotic
approximations contribute to this bias in approximately equal
proportions. In an equivalent model with a buoyancy glitch, the
systematic errors can reach up to ∼17% for νrot and 6% for P0
because the effects of the buoyancy glitch on the pulsation peri-
ods is not accounted for in the asymptotic approximation. For the
most observed dipole prograde modes, these biases remains lim-
ited to 5% for both νrot and P0. In a differentially rotating model,
we show a clear signature of differential rotation although the
full interpretation of the g-mode spectrum is not straightforward.
The TAR assumes solid-body rotation and describes the pulsa-
tions in the co-rotating frame, which cannot be properly defined
when there is differential rotation. Secondly, as mentioned be-
fore, the g-mode cavity changes from mode to mode. This ques-
tions the definition of a unique rotation frequency for a given
mode series.

We stress that these limitations and potential biases shown
here are not specifically linked to our stretching method but are
inherited from the asymptotic TAR, thus any method based on
it would suffer the same issues. Furthermore, such method can
be adapted to better prescriptions for pulsations in rotating stars.
As long as the expression of pulsation periods adopts a suitable
form, it is possible to define a stretching function such that the
pulsation periods are regularly spaced once stretched. In which
case, the determination of νrot and P0 can be refined without
modifying the core principle of the method. Recent theoretical
studies (Prat et al. 2016, 2017) have taken an interest in devel-
oping new and more accurate asymptotic theories on the basis
of ray theory, which provides an interesting lead for future im-
provements of this method.

γDor and SPB stars are present in great number in the wealth
of data provided by Kepler. Thanks to recent progress on the the-
ory of pulsations in rotating stars as well as in the interpretation
of their oscillation spectra, we are now in good position to ex-
ploit the Kepler data to their full potential. That promises to put
tight constraints on convective-core boundary mixing and angu-
lar momentum transport.
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maximum of PSD. Right: Period échelle diagram of the stretched spectrum, plotted twice for clarity. Marker size is representative
of their amplitude in the Lomb-Scargle periodogram.

Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nuclear Physics A, 656, 3
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Ballot, J., Lignières, F., Prat, V., Reese, D. R., & Rieutord, M. 2012, in

Astronomical Society of the Pacific Conference Series, Vol. 462, Progress in
Solar/Stellar Physics with Helio- and Asteroseismology, ed. H. Shibahashi,
M. Takata, & A. E. Lynas-Gray, 389

Bedding, T. R., Murphy, S. J., Colman, I. L., & Kurtz, D. W. 2015, in European
Physical Journal Web of Conferences, Vol. 101, European Physical Journal
Web of Conferences, 01005

Belkacem, K., Marques, J. P., Goupil, M. J., et al. 2015, A&A, 579, A31
Berthomieu, G., Gonczi, G., Graff, P., Provost, J., & Rocca, A. 1978, A&A, 70,

597
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Pápics, P. I., Tkachenko, A., Van Reeth, T., et al. 2017, A&A, 598, A74
Prat, V., Lignières, F., & Ballot, J. 2016, A&A, 587, A110
Prat, V., Mathis, S., Lignières, F., Ballot, J., & Culpin, P.-M. 2017, A&A, 598,

A105
Rogers, F. J. & Nayfonov, A. 2002, ApJ, 576, 1064
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Appendix A: Lists of extracted frequencies

Table A.1. Frequencies for KIC12066947

# ν (µHz) σν (µHz)

1 31.52532 0.00004
2 22.42224 0.00003
3 32.34848 0.00003
4 23.20940 0.00006
5 34.37178 0.00003
6 31.71185 0.00006
7 22.83401 0.00007
8 29.88961 0.00018
9 34.02406 0.00004
10 34.74865 0.00004
11 30.61035 0.00020
12 21.84573 0.00011
13 33.10856 0.00010
14 23.55624 0.00014
15 30.22282 0.00036
16 29.05031 0.00041
17 21.12773 0.00016
18 20.94863 0.00019
19 29.60103 0.00049
20 27.85636 0.00035
21 29.12221 0.00057
22 21.59091 0.00020
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Table A.2. Frequencies for KIC3459297

# ν (µHz) σν (µHz)

1 11.45892 0.00002
2 12.56457 0.00001
3 11.32431 0.00003
4 12.33807 0.00003
5 11.94646 0.00004
6 12.81174 0.00004
7 10.10531 0.00012 2ν1 − ν6

8 11.21814 0.00017 ν1 + ν2 − ν6

9 12.15636 0.00013
10 11.05385 0.00018
11 0.27316 0.00037
12 10.51394 0.00021
13 0.12457 0.00039
14 0.14769 0.00046
15 10.34129 0.00022
16 10.24943 0.00024
17 0.10236 0.00057
18 0.22518 0.00059 ν2 − ν4

19 9.71168 0.00031 ν3 − ν5 + ν15

20 11.62550 0.00023
21 1.10575 0.00043 ν2 − ν1

22 0.06223 0.00061
23 0.27982 0.00063
24 0.18418 0.00050 ν4 − ν9

25 10.35381 0.00031 2ν1 − ν2

26 24.96855 0.00010
27 0.21483 0.00072
28 10.21922 0.00039 ν1 − ν2 + ν3

29 30.29326 0.00005
30 10.84022 0.00039 ν1 − ν2 + ν5, ν1 + ν3 − ν5

31 9.24711 0.00035
32 13.05932 0.00019 ν2 − ν1 + ν5

33 9.48398 0.00048
34 11.23270 0.00038 ν1 − ν2 + ν4

35 0.41900 0.00089
36 0.28797 0.00089
37 26.51890 0.00010
38 1.24003 0.00065 ν2 − ν3

39 11.77798 0.00038
40 24.90285 0.00015 ν2 + ν4

41 0.39570 0.00106 ν4 − ν5

42 0.52098 0.00087
43 29.40322 0.00007
44 24.50931 0.00016 ν2 + ν5

45 23.78280 0.00015
46 0.68074 0.00101
47 0.23975 0.00131 ν6 − ν2

48 27.71991 0.00011
49 9.83608 0.00071 2ν3 − ν6

50 0.02418 0.00155
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