Comparison Between **Differential** and **Variational** Forms of an **Energy**-Based **Hysteresis** Model

Kevin JACQUES^{1,2}, François HENROTTE³, Christophe GEUZAINE¹, Johan GYSELINCK²

 1 Department of Electrical Engineering and Computer Science, Applied and Computational Electromagnetics (ACE), University of Liege, Belgium

²Department of Bio-, Electro- And Mechanical Systems (BEAMS) University of Brussel, Belgium

³Institute of Mechanics, Materials and Civil Engineering, MEchanics MAthematics(MEMA), Université catholique de Louvain, Belgium

Introduction

Goal:

Build an **Efficient** Method for calculating **Iron Losses** to improve the **Accuracy** of Simulations of **Energy Conversion Devices**

Main Difficulty:

Modelling the Hysteresis effect:

 \rightarrow very complex *non-linear* and *irreversible* phenomenon

This paper:

- 1. Focuses on an **Energy**-Based **Hysteresis** Model,
- 2. Compares two types of implementation in terms of **Efficiency** and **Accuracy**,
- 3. Deals with itsinclusion in **Finite Element** Simulations.

Presentation of the model

2. Types of implementations

- Differential or Variational Approaches
- Direct or Inverse Forms

3. Inclusion in Finite Element Environment(Gmsh/GetDP)

Test Cases: Simple square, T-joint, Three-Phases Transformer

4. Summary of the Results and Conclusion

Kevin Jacques

Energy-Based Hysteresis Model

Presentation of the model

Basic Characteristics

- § Based on **Thermodynamic** Principles
- **Dissipation** \approx Dry friction in mechanics
- Naturally driven by h as **input**

Advantages

- \triangleright Energy Consistency
- \triangleright Naturally vectorial
- \triangleright Easy identification of parameters
- \triangleright Number of cells can be chosen

Mechanical Analogy

Magnetic Field $h \leftrightarrow$ **Force** h_r - reversible part h_i - irreversible part **Magnetic Polarization** *I* ← Elongation

[F.Henrotte& al. 2013]

Presentation of the model

PDE coming from Thermodynamic Principles:

Presentation of the model

The choice of the number of cells allows for a trade-off between accuracy and complexity.

Presentation of the model

Validation of the model for simple experimental configurations (1D).

100Hz, 200Hz and 400Hz (solid lines) and calculated data (points).

- F. Henrotte, A. Nicolet, K. Hameyer, "An energy-based vector hysteresis model for ferromagnetic materials," *COMPEL*, vol. 25, no. 1, pp. 71–80, 2006.
- F. Henrotte, S. Steentjes, K. Hameyer, C. Geuzaine, "Iron Loss Calculation in Steel Laminations at High Frequencies," *IEEE Trans. Mag., vol.* 50, no. 2, pp. 333–336, 2014.

Types of Implementation: DIFF vs. VAR

$$
h - \frac{\partial u^k(|j^k|)}{\partial j^k} - \kappa^k \frac{j^k}{|j^k|} = 0 \ (*)
$$

§ **Simple DifferentialApproach (DIFF):**

Approximation: $\dot{J}^k \parallel \dot{h}_r^k \rightarrow$ Approximated explicit solution of the PDE (*)

Variational Approach (VAR):

Borrows from the theory of plasticity a **variational** formulation

 \rightarrow solve **exactly** the **implicit** PDE $(*)$ by the minimization of a functional

Types of Implementation: DIFF vs. VAR

The Simple Differential Approach is a **rather good approximation** $(RMSD < 0.08T)$

Types of Implementation: DIFF vs. VAR

The Variational Approach is **much slower** (at least 700 times !!!). The Differential one gives similar results in much less time.

Types of Implementation: DIRECT vs. INVERSE

§ **Direct Form (DIR):**

Input: $h \rightarrow$ Output: b

Inverse Form (INV):

Input: $\bm{b} \rightarrow$ Output: \bm{h}

Inversion Techniques:

o Newton-Raphsonwith analytical Jacobian**(NRana)**

o Newton-Raphsonwith numerical Jacobian **(NRnum)**

o Broyden-Fletcher-Goldfarb-Shanno **(BFGS)**

Types of Implementation: DIRECT vs. INVERSE

Types of Implementation: DIRECT vs. INVERSE

Inversion of the *DIFF* **approach:** NRana – KO NRnum– KO BFGS - OK

Inversion of the VAR approach: $BFGS > NRana > NRnum$

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magnetostatic ϕ -formulation) [Direct Model]

Very Good Agreement for the Global Quantities from the VAR and DIFF Approaches

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magnetostatic ϕ -formulation) [Direct Model]

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magnetostatic ϕ -formulation) [Direct Model]

Inclusion in Finite Element Environment (Gmsh/GetDP) T-Joint (magnetodynamic $h - \phi$ -formulation) [Direct Model]

Eddy Current Effects are nowtaken into account

Inclusion in Finite Element Environment (Gmsh/GetDP) T-Joint (magnetodynamic $h - \phi$ -formulation) [Direct Model]

Summary of the Results

At the material level:

- DIFF is much faster than VAR
- Both give similar results in most cases
- Inversion of DIFF is more complicated

Whitin a FE context:

- The overal computational gain of DIFF is less marked
- Results from both approaches were very similar locally and globally (Correspondance was a bit less good for the magnetodynamic case)

Thank you for your attention

Perspectives

Improvements to the Energy-Based Hysteresis Model:

- Stabilize the Inverse Model (If possible)
- Investigate the differential approach without simplification
- Consider anisotropy and magnetostriction
- Extend to 3D test cases
- Compare simulations with measurements in real practical cases
- Clarifying the parameters identification strategy

• …