Comparison Between Differential and Variational Forms of an Energy-Based Hysteresis Model

Kevin JACQUES1,2, François HENROTTE3, Christophe GEUZAINE1, Johan GYSELINCK2

1Department of Electrical Engineering and Computer Science, Applied and Computational Electromagnetics (ACE), University of Liege, Belgium

2Department of Bio-, Electro- And Mechanical Systems (BEAMS) University of Brussel, Belgium

3Institute of Mechanics, Materials and Civil Engineering, MEchanics MAthematics (MEMA), Université catholique de Louvain, Belgium
Introduction

Goal:
Build an **Efficient** Method for calculating **Iron Losses** to improve the **Accuracy** of Simulations of **Energy Conversion Devices**

Main Difficulty:
Modelling the **Hysteresis effect**:
→ very complex **non-linear** and **irreversible** phenomenon

This paper:
1. Focuses on an **Energy-Based Hysteresis** Model,
2. Compares two types of implementation in terms of **Efficiency** and **Accuracy**,
3. Deals with its inclusion in **Finite Element** Simulations.
Energy-Based Hysteresis Model

1. Presentation of the model
2. Types of implementations
 • Differential or Variational Approaches
 • Direct or Inverse Forms
3. Inclusion in Finite Element Environment (Gmsh/GetDP)
 Test Cases: Simple square, T-joint, Three-Phases Transformer
4. Summary of the Results and Conclusion
Energy-Based Hysteresis Model

Presentation of the model

Basic Characteristics
- Based on Thermodynamic Principles
- Dissipation \approx Dry friction in mechanics
- Naturally driven by h as input

Advantages
- Energy Consistency
- Naturally vectorial
- Easy identification of parameters
- Number of cells can be chosen

Mechanical Analogy
- Magnetic Field h \leftrightarrow Force
- h_r - reversible part
- h_i - irreversible part
- Magnetic Polarization J \leftrightarrow Elongation

[F. Henrotte & al. 2013]
Energy-Based Hysteresis Model

Presentation of the model

PDE coming from Thermodynamic Principles:

\[
\begin{align*}
\mathbf{h} &- \frac{\partial u^k(|\mathbf{J}^k|)}{\partial \mathbf{J}^k} - \kappa^k \frac{\dot{\mathbf{J}}^k}{|\mathbf{J}^k|} = 0 \\
\mathbf{h}_r^k &\quad \mathbf{h}_i^k
\end{align*}
\]

- \(\mathbf{J} = \sum_k \mathbf{J}^k \) : Magnetic Polarization [T]
- \(\mathbf{h} \) : Magnetic Field [A/m]
- \(u^k \) : Stored Magnetic Energy Density [J/m^3] (Reversible component)
- \(\kappa^k \) : Pinning Field [A/m] (Irreversible component)
- \(\mathbf{b} = \mu_0 \mathbf{h} + \mathbf{J} \) : Magnetic Induction [T]
Energy-Based Hysteresis Model

Presentation of the model

The choice of the number of cells allows for a trade-off between accuracy and complexity.
Energy-Based Hysteresis Model

Presentation of the model

Validation of the model for simple experimental configurations (1D).

Fig. 11. Comparison between measured data for M23535A at 50Hz, 100Hz, 200Hz and 400Hz (solid lines) and calculated data (points).
Energy-Based Hysteresis Model

Types of Implementation: DIFF vs. VAR

\[h - \frac{\partial u_k(|J^k|)}{\partial J^k} - \kappa^k \begin{bmatrix} \dot{J}^k \\ \dot{h}^k_r \\ \dot{h}^k_i \end{bmatrix} = 0 \quad (*) \]

- **Simple Differential Approach (DIFF):**

 Approximation: \(\dot{j}^k \parallel h^k_r \) \(\rightarrow \) Approximated explicit solution of the PDE (*)

- **Variational Approach (VAR):**

 Borrows from the theory of plasticity a variational formulation
 \(\rightarrow \) solve exactly the implicit PDE (*) by the minimization of a functional
Energy-Based Hysteresis Model

Types of Implementation: DIFF vs. VAR

The Simple Differential Approach is a rather good approximation ($RMSD < 0.08T$)
Energy-Based Hysteresis Model

Types of Implementation: DIFF vs. VAR

The Variational Approach is much slower (at least 700 times !!!). The Differential one gives similar results in much less time.
Energy-Based Hysteresis Model

Types of Implementation: DIRECT vs. INVERSE

- **Direct Form (DIR):**
 - Input: \(h \) → Output: \(b \)

- **Inverse Form (INV):**
 - Input: \(b \) → Output: \(h \)

 Inversion Techniques:
 - Newton-Raphson with analytical Jacobian (**NRana**)
 - Newton-Raphson with numerical Jacobian (**NRnum**)
 - Broyden-Fletcher-Goldfarb-Shanno (**BFGS**)
Energy-Based Hysteresis Model

Types of Implementation: DIRECT vs. INVERSE

Evolution of h through time

$direct \quad h \rightarrow b = b \rightarrow h \quad inverse$
Energy-Based Hysteresis Model

Types of Implementation: DIRECT vs. INVERSE

Computational Time Ratios (Inverse on Direct Forms) (Log Scale)
Differential (dotted) and Variational (solid) Approaches

Inversion of the DIFF approach:
NRana – KO
NRnum – KO
BFGS - OK

Inversion of the VAR approach:
BFGS > NRana > NRnum

Φ(°) - Phase shifting between h_x and h_y excitation fields
Energy-Based Hysteresis Model

Inclusion in Finite Element Environment (Gmsh/GetDP)
T-Joint (magnetostatic ϕ-formulation) [Direct Model]

Very Good Agreement for the Global Quantities from the VAR and DIFF Approaches
Energy-Based Hysteresis Model

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magnetostatic ϕ-formulation) [Direct Model]

For the local fields, both VAR & DIFF approaches produce outputs that are also very similar.
Energy-Based Hysteresis Model

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magnetostatic ϕ-formulation) [Direct Model]

For the local fields, both VAR & DIFF approaches produce outputs that are also very similar.
Energy-Based Hysteresis Model

Inclusion in Finite Element Environment (Gmsh/GetDP)

T-Joint (magneto-dynamic h − φ-formulation) [Direct Model]

Eddy Current Effects are now taken into account

Mesh of a perfectly flux-confining T-joint slab
Energy-Based Hysteresis Model

Inclusion in Finite Element Environment (Gmsh/GetDP)
T-Joint (magneto\textit{dynamic} $h - \phi$-formulation) [Direct Model]

Same global evolution behaviour for VAR & DIFF approaches (some significant differences near extrema)
Energy-Based Hysteresis Model

Summary of the Results

At the material level:

- DIFF is much faster than VAR
- Both give similar results in most cases
- Inversion of DIFF is more complicated

Within a FE context:

- The overall computational gain of DIFF is less marked
- Results from both approaches were very similar locally and globally (Correspondance was a bit less good for the magnetodynamic case)
Thank you for your attention
Perspectives

Improvements to the Energy-Based Hysteresis Model:

• Stabilize the Inverse Model (If possible)
• Investigate the differential approach without simplification
• Consider anisotropy and magnetostriction
• Extend to 3D test cases
• Compare simulations with measurements in real practical cases
• Clarifying the parameters identification strategy
• ...

Kevin Jacques

EnergyCon, 5 April 2016

21