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Independent particle model for nucleon transfer in heavy ion collisions

C. Gnucci and Fl. Stancu
Institut de Physique, B5, Universite de Liege, Sart Tilman, B-4000 Liege I, Belgium

L. Wilets
Physics Department, University of Washington, Seattle, Washington 98195

(Received 3 October 1983)

We formulate a three-dimensional quantum-mechanical model for the study of nucleon transfer
in heavy ion collisions. This model describes the independent particle motion of nucleons initially
separated in two adjacent cubic boxes and brought into contact through a window created in the
separating wall. We calculate the one-sided flux and the spread of the mass distribution and com-
pare them with results derived from other models.

I. INTRODUCTION

The particle exchange mechanism plays an important
role in explaining the dissipative phenomena observed in
heavy ion collisions. ' Within the one-body dissipation
mechanism the relevant quantity for the dissipation rate
is the one-sided current of nucleons which are exchanged
via a window opened between the interacting nuclei.

Recently attempts have been made to derive the one-
sided current on a microscopic basis, starting either from
time-dependent or adiabatic time-dependent Hartree-
Fock wave functions. In such calculations some care
must be taken because the quantum-mechanical defini-
tion of the one-sided current does not always have a
meaning. This is due to the fact that the Wigner
transform of the one-body density may assume regions of
negative values which prevent the extension of the classi-
cal definition of the one-sided current ' to a quantum sys-
tem.

In the present work we formulate a simple three-
dimensional quantum-mechanical model in order to ob-
tain more insight into the dynamics of particle exchange.
This model describes the independent particle motion of
nucleons initially separated in two adjacent cubic boxes
and brought into contact through a window created in the
separating wall. We calculate a time-dependent one-sided
current in two different ways. One is according to the
currently used definition where the flux is evaluated as
in Eq. (3.1) from the Wigner distribution function

f(r, k, t) of the one-body density. The other is given by
the initial conditions of our model and better visualizes
the physics contained in it. We start at t =0 with one box
empty and the other full. At t &0 the window (suddenly)
opens, the wave functions spread out of the filled box, and
the matter flows into the empty box. As the box has a
finite size, the waves travel up to the opposite wall where
they are reflected. We study the correspondence between
this matter flow and the result obtained from the current-
ly used definition of the one-sided current. We also make
a comparison between the presently obtained time aver-
aged and the static one-sided current calculated in Ref. 9,
at the same time indicating the value of the purely geome-
trical flux.

As we deal with an entirely quantum-mechanical sys-
tem which simulates the mechanism of particle exchange
we can also calculate the fluctuations o in the number of
particles. The result is compared to that obtained by
Buck and Feldmeier in a one-dimensional model without
two-body collisions. The above authors indicated that
such a term has a negligible effect on the order of magni-
tude of o .

In Sec. II we give a brief account of the static model
and introduce the time-dependent wave functions. In Sec.
III we present results for the matter flow calculated ac-
cording to various definitions. Section IV deals with the
calculation of the width of the mass distribution, and Sec.
V is devoted to the conclusion.

II. THE MODEL

Our model consists of two adjacent hard-walled cubes
having a length L on each edge and communicating
through a window initially closed. Up to time t =0 the
boxes are equally filled with 3/2 particles each. At t =0
the window opens and the particles move freely from one
box to the other through the window. The geometry is in-
dicated in Fig. 1. The window is situated in the plane
z =0 and extends from x =—w to x =w and from
y = L/2 to y=L—/2. The Hamiltonian is symmetric
under reflections through each coordinate. We denote by
m.; the parity for i =x, y, or z and choose the basis func-
tions

L Z

FIG. 1. Adjacent cubic boxes communicating through a rec-
tangular window of size x =2w, y =L in the z =0 plane.
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u„.(i)=

n;m

1/2
cos i 'lit=+1, n; odd

num
sin i m= —1 n evenl & l

l

(2.1)

which vanish on the planes L;/2, where L„=Lz L——and
L,,=2L,.

The system is described by functions defined inside the
volume occupied by the two cubes. They have total parity
m. =m„m~n; and due to the geometry of the window they
can be factorized as

V=A, 5(z)8(
i
x

i

—w); A,~00,
in a truncated space, i.e., solving the matrix equation

(2 4)

where the summation runs through n =(n„,n, ) and the
coefficients c~„are determined from the boundary condi-
tions imposed on the separating wall which requires the
vanishing of the wave function at z =0, w& ~x

~

&L/2.
Such a condition is automatically satisfied for m;= —1

and achieved only approximately for n; =+1 states. The
procedure has been described in detail in Ref. 9 and it is
equivalent with solving the Schrodinger equation for the
following potential:

P~ „(r )=u„(y)g(x,z), (2.2)
g [(e~ EQ—S„„.+ V~ .]c~„.=0,
n'

where

(2.S)

with p =n„m, a. nd P given by the expansion

~ X~Z = C~~Q~ X Q~ Z

f2 2

(2.3)
and

(2.6)

sin —(n„+n„')w sin —(n„n„' )w—

yp, 2
L

'2, m'

2mn„m——w —p sin
"

for n„=n„',
2 2mn„L

for n„~n„'

(2.7)

for any n, and n,
'

odd, or equivalently m, =+ 1, or else we
have

tirely determined by the initial conditions as the overlap
integrals

V~„=O for m, = —1 (2.8) d„" (L)= I u„PQv and d„* (R)= I u~gdv, (2.10)

as automatically implied by (2.1) and (2.4). Now let us
call N the maximum value taken by n, in the truncated
space where the matrix equation (2.5) is solved. The case
N+ 1 even reduces to N odd due to (2.8). At fixed N odd
and for m, =i, n„runs up to N for p =+1 and up to
N —1 for p = —1. Hence the model has two parameters,
X and A, . Adequate values of these parameters have been
found in Ref. 9. Accordingly, in the present calculations
we choose A, = 10 MeV fm and N = 19 whenever w &L /2.

Now, when the procedure of obtaining the eigenstates
(2.2) of the communicating boxes has been settled, we can
introduce the time-dependent wave functions. At t =0 we
assume that the window is closed and the particles fill one
of the boxes, let us say for example the left box. For
states initially localized in the left box (z & 0) we shall use
the label L. Then at t ~0 the associated single particle
wave function 1(„will evolve in time according to

P„(x,z, t)= Qd„" (L)e P(x,z) .

The variable y is omitted for simplicity but taken into ac-
count in filling up the levels (see Table I). The states P„
initially localizmi in the right box and orthogonal to g„
are defined in a similar way with the associated expansion

71' P
coefficients d«(R). In both cases the coefficients are en-

System

A =32
1 2
2 2
1 2
1 4

(MeV)

29.69
59.40
59.40
59.40

Occupation
number

Eq. (2.15)

0.9998
0.9998
0.9998
0.9994

A =80

1 2
2 2
1 2
1 4
2 2
1 4
2 4
1 6
1 2
3 2

16.11
32.23
32.23
32.23
48.35
48.35
48.35
59.10
59.10
59.10

0.9998
0.9998
0.9998
0.9994
0.9998
0.9994
0.9994
0.9985
0.9998
0.9998

TABLE I. The occupied states in a cubic box at t =0 (closed
window) for A =32 and 80 particle systems. The energy eigen-
value is

'2

p~ =$ /2gtg — ( pl~ +ply + 4 71z ) ~1.
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where hz =2 n =4

2 . 7Tnzu„=—8( —z)sin z '

L 2L

mn„
sin x; n„even, n, even

mn„
cos x; n odd, n, even

and

(2.11)
nz =8

u„(z)=u„(—z); z)0. (2.12)

We are reminded that p is the parity associated with the
eigenstate g under reflections in the x,z plane and m„ is
the parity of the state (2.11) at reflection through the x
axis. The product m„p =+1 serves as the upper index for
the coefficients (2.10) and indicates that the function (2.9)
has a given parity at reflections through the x axis but
mixes symmetric and antisymmetric states P under re-
flections through the z axis.

The integrals (2.10) give

d„'(L)=d„'(R)= 5„na ~

FIG. 2. Eigenstates of the left box L/V 2g„at t =O,x =0.
They are given by the truncated expansion (2.9) containing nine
eigenstates of the big box (fully open window), i.e., X =15. The
value of n,, is specified for each case; n„can take any odd value.

d„~'(L)= —d„~'(R)= g c~~„E,5, , (2.13)
n'

with

within the volume of the left box

J du
~
g„(t =0)

~

= g [d„" (L)]~ . (2.15)

L 1
N , +

z z ~ n +n
1

n, even, n,
' odd.

n —n'
Z Z

(2.14)

In the present work we consider two systems, A =32
and 80 particles, respectively. The occupied states at I; =0
when the window is closed and each box contains 3/2
particles are indicated in Table I for both systems, each
state being four times degenerate. They are given in in-
creasing order of the energy

2
2

(n„+ny+ , n, ) . —

We note that n, is always even, indicating the cancellation
of the wave function at z =0 (closed window). The size L
is chosen such as to have an average density p=0.17 fm
in each box. This gives L=4.55 and 6.17 fm, for 2=32
and 80 particles, respectively. Now we want to approxi-
mate the eigenstates of the left (or right) box by the trun-
cated expansion (2.9). As an example in Fig. 2 we plot g„
at t =O,x =y =0 as a function of z; n„can take any odd
value and the four curves correspond to n, =2, 4, 6, and 8,
respectively. The truncation has been made at E =15, i.e.,
the summation in Eq. (2.9) contains one state with p = —1

(a, even) and eight states with p =+1 [a, (odd) &N]. We
notice that the wave function P„ is very well localized.
We found that a larger space, having X & 15, brings insig-
nificant changes to the wave functions with n, (8 when
w =L/2 and therefore limits the expansion at X =15 for
a fully open window. A quantitative measure of the local-
ization is given by the probability of finding the particle

This is indicated in the last column of Table I for all ini-
tially occupied states. For n, =8 states, unoccupied at
t =0, it is about 0.997, i.e., close to 1 in all cases of in-
terest. The latter will be used in Sec. IV for calculating
the width of the mass distribution.

A comment is necessary about the truncation for the
case w & L /2. A first truncation is made in search for the
state P. Not all these states are physically acceptable.
The vanishing of the wave function on the intermediate
wall is achieved to a very good approximation for the
lowest states. The associated eigenvalue E~~ becomes prac-
tically independent of A, . The highest excited states do not
have such properties. But, in order to localize the wave
function in the left or right box, it turned out that two or
three of the lowest states carry most of the weight for all
occupied and few unoccupied states close to the Fermi lev-
el. Hence the truncated space used in the preceding sec-
tion to define P can be even more restricted in (2.9). A
practical alternative is to keep the same dimension, but in-
stead of E~~ in (2.9), we use the expectation values

(P
~

T
~ P ) of the kinetic energy operator which permits

us to get rid of the region where E~ depends strongly on A,

for the highest excited states. For all the states where the
vanishing of the wave function on the intermediate wall is
well achieved E~ and the expectation value of the kinetic
energy are practically the same. By using (P ~

T
~ P ) in-

stead of E~ one can also ensure the satisfaction of' the con-
tinuity equation. Details are discussed in Ref. 10.

III. MASS EXCHANGE

A measure of the number of nucleons exchanged
through the window is the one-sided flux. ' In this sec-
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tion we calculate the one-sided flux by using two different
definitions and discuss the relation between the two calcu-
lations. We also compare the present results with the stat-
ic ollc-sided flUx.

A. Defmition I
This is an extension of the definition used in classical

mechanics and it makes use of the Wigner distribution

function f(r, k, t) associated with the one-body density of
the quantum system. According to this definition the
one-sided flux in the z direction is given by 5 s

j+ „(r,t)=j+ „(r,t)+j+ „(r,t) . (3.3)

Then, the total flux reads

in the following way. At t =0 the window is closed and
each box contains A/2 particles. The occupied states 1t„
(t =0) of the left box are degenerate with p„(t =0) of
the right box. Adding together the contribution of each
two initially degenerate states we define the one-sided flux
associated with the state n,

j+(r, t)= f,d'k k,f(r, k, t) . J+(r t)=4 X j+.(r t»
n (Occ)

(3.4),

This also represents the expectation value of the
quantum-mechanical operator introduced by Feldmeier. '

Classically the distribution function is positive, hence j+
is also positive, but for quantum systems problems might
arise because the Wigner function can have negative
values. An example has been extensively discussed in Ref.
8.

Using definition (3.1), we calculate the one-sided
current through the window, i.e., at z =0,

N L/2
J+(t)= f dx f dy j+(x,y, O, t) (3.2)

when the sum runs over all occupied states, listed in Table
I and the factor 4 takes into account the spin-isospin de-
generacy. Here by n we mean the set n„,n„,n, . In filling
up the levels in increasing order it is necessary for each
state to add the contribution (fi /2m)(Ir/L) n~ to E~. We
are reminded that the y-dependent part of the wave func-

floil Rppcarlllg Rs thc factoi' ll» (y) lc1118111s lnvR11811t, ln

the process of building up the wave function f„or g„and
was therefore omitted for simplicity.

From the Wigner function,

f„(r,kr)= , jd re '"''Q"„ry —g„r—— (3.5)

of each occupied state we calculate j + „and j+ „according to definition (3.1), and making the operations (3.2)—(3.4), we
obtain

J+( )= g gd„" (L)d„" (L)FI' e
m I ~ „( )

(3.6)

C «C»»8 ~ rr
' (nz —nz )Sl (nz —nz ) +(nz +nz )Sl (nz +nz )—

2 2n, n
I

(3.7)

where Si(x) is the sine integral" and

m„ I„m„8," „=5, „— V,*„,
n~ n~ n~ n~ 2 n~ n~

(3.8)

(i /A)(EJ' —EI', )t=1 for all a,a' . (3.9)

with V ', given by an expression like (2.7), where p is re-
nx nx

placed by m„and n by n . %e have I'~
~ =I'~ which im-

plies that J+(t) of Eq. (3.6) is in fact real. This quantity
77 P

has been expressed in terms of d„," (L) only due to the re-
lations (2.13).

In Figs. 3(a) and (b) the dotted line shows J+(t) ob-
tained at w =L/2 for A =32 and 80 particle systems,
respectively. The result has been given over 8 full period
which can be easily calculated. The one-sided current
J+(t) returns to its initial zero value whenever

(3.10)

Relation (3.10) gives a period of J+(t) because any other
difference E~ E~ is 8 mul—tiple of Ei+ Eq+ when-
w =L/2, Rnd tllls 1118kcs colldltloil (3.9) fulfllllcd fol' ally
a whenever t = T. Relation (3.10) gives T =2.09 X 10 s
for A =32 and T =3.85 && 10 I s for A =80.

Contrary to the periodical behavior at the fully open
window Eqs. (3.9) have no unique solution at w&L /2 be-
cause E~ are no more sim. ply related and the current be-
comes aperiodical. This is illustrated in Figs. 4 and 5 for
the A =32 system at w =1.6 and 1 fm. One can sce that
Rt w = 1.6 fIIl thc dcvlatloll fl'0111 pcrlodlclty ls still small,
but at w = 1 fm the periodicity has been entirely lost.

Ail lntcrcstIng qllRIltl'ty Is 'thc tlIIlc Rvcl'agc J+ of tlm
current. Its analytic expression is

For the first two modes Ei+ (n„=n~=n, =1) and Ez+
(n„=l, nz

——1, n, =3) of the same parity the Eq. (3.9) is
satisfied if

J =—,g g[d„." (L)]'F~.
n (occ) a

(3.11)
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0.15"

0.4"

0.3.
E

0.2.

J ~opto

0.10.

0.05.E

0

0 -0.05.

t(10 s)

(b)

t(10 s )

FIG. 5. Same as Fig. 3(a) but for w =1 fm, k=10 MeV fm,
N =19.

0.6"

I 04, .

V

0.2"

0

t{10 s)

FIG. 3. The one-sided curr. nt J+ (dotted line) and J (full

line) as a function of time at m =L/2. The parameters of the
model are A, =O, N =15. (a) A =32 particles, (b) A =80 particles.
The arrows indicate J+ of Eq. (3.11) and J,~„=j,~„X2wL with

j,~„ from (3.12).

fi 1
Jopen= g nzSi(7rnz) .

m 1.4 „(,) (3.12)

We note that a given n, can correspond to several sets
n„,n~ and its multiplicity must be taken into account in
(3.12).

As an example, values of J+ are given in Table II for
w = 1 and 1.6 fm and l. /2 for the 2 =32 particle system.
In Table II we also reproduce the values of the static one-
sided current obtained in Ref. 9 for the same values of ur,

A, , and N. It seems that there is a good agreement between
the two results, the static value being somewhat smaller in
all cases. The difference between the two results can be
explained by the rearrangement in the eigenvector space of
dimension N through definition (2.9) when each com-

ponent P has a weight
~

d„"
~

& 1, while in the static
calculations the weight is either l or 0.

For completeness we also reproduce the purely geome-
trical current obtained by multiplying the window area
with the static one-sided flux j,p,„obtained at maximum
opening

0.3" B. Definition II

0.2-

0.1.

0

pen

Now we consider one box full with A/2 particles and
the other empty at t =0. Let us choose the full left box.
The window opens at t &0 and the particles flow into the
other box. The current J (t) is obtained as in Eq. (3.2),
but from the flux j ( r, t)

~ z 0 given by the contribution of

-0.1" TABLE II. The one-sided current for the A =32 particle sys-
tem at three different window sizes w; J+ [Eq. (3.11)], J,o,„,
(Ref. 9), J,~„=j,~„X2wL with j,~„ from Eq. (3.12).

t(10 22 s)

FIG. 4. Same as Fig. 3(a) but for w=1.6 fm, A, =10~ MeVfm,
X=19.

(fm)

1

1.6
L/2

J+
(c fm ')

0.075
0.187
0.288

Jstatic

{cfm ')

0.063
0.162
0.254

Jopen

(c fm ')

0.112
0.179
0.254
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d t t s of theleftbox o lyall initially occupie s a e

j (r, t) ~, 0——4 y j„(r,t) ~, =0,
n (occ)

(3.13)

anical definitionwhere for j„we use e q
~ I. the uantum-meehan

J„r, , 0— r t)' p„(r,t)j, 0. (3.14)
' (,t) ~, 0—— Im[p„(r, t

2.9) and definitions (2.3) andnd 2.13), weUsing expansion (2. an
obtain

J'(t) =-
En I„„( )

(3.1S)

1nd n
" odd. Although by definitio

' ''nd+where n is even and n, o
ecif it in the summimplies a&n we speci y

'
h

fusion hclc oI' below.
ull

Rvo1d Rny coQfu
( ) is represented by a u

an see that there is an interval staline. In Rll cases one can see
and J are very siIn'ing at t =0 where J+ iIn'

deci cases. Its cngval increases as m

reflection on t e oppo
doIIllllate II1 R la gr e time interva
positive and nega tive values showing e

ains always positive.g p box while J+ remain
J and J are c oseThe region where ~+ a s

. the particles leave the
. 8 construction a

ture before the re . t e paflection sets in, I.e., t e pa
0 and trave into

'
ence between J+ and J shows that J+,practical coincidence between J+ an

1.C.,
e ri ht box is neg 1gi etially present in t e rig

contribution 1s ncg 1glwhenever such a c
dk, in the ca cu a io

3. )
' f' d. These considera-3.1,' is entirely justi ie .

4

ion d in Figs. 6 and 7 for the system wit

t =0. Comparing J+ ——J+ +J+ rom
see that J+ ecomes2+, ains dominant from2&10 s, while J+ remain

t =0 up to t-2&10 s. n e

J =—,'(J +J ),
II 1 JL)

(3.16)
J+ —I (J+

are given by Eqs. (3.6) and (3.1S),
hen qually filled withhen the two boxes are equ

do 1 h o mbecomes zero an on
J and J+ become equal. In Fig. we
a ll d J defined as the currenR quantity ca c
tained from

d kk,f (r, k, t),k~O (3.17)

f sociated with the ull
m

' 0 can see that over

I' fuIIC't1011 IS RS

m t right box. ne
0 0

left box and the emp yJ is ncgligib c, 1the interval where J+
1 mentioned. In ac,

d d th f t th t thin the Appendix anof some algebra hke in p d
1on 1s symmetric un cl

k~ —k, one can show that J+ an a
opposite sign.

E MASS DISTRIBUTIONIV. THE %IDTH OF THE

in h shown results for thedin section we ave s
current which givess a measure o t c nu

ualltity Of 111teleat. IScav 1ons Rnot cr quRQ
e mass or charge distribution. %bilethe width of the mass or charge is ri u

current is relate
idth of the mass distribution is ex-

o d it matrix. Withinof the two-body ensi y
f the particle numbethe present model the variance cJ o

0.10.

0.05 .
,
''

I

-0.05"

t(10 22 s)
current for the full left box with 2/2FIG. 6. Thc onc-sided current or c A /2

'
ht box: J+ (dotted line) an uparttcles, empty rIght box: + u

=1 fIYl andA = pafunction of time at u =
ters are A, =10 MeVfm, %=19.

' . 6 but fu11 line gives J defined accord-FIG. 7. Same as Fig. 6 but u ine
ing to (3.2) and (3.17).



17S4 C. GNUCCI, FI.. STANCU, AND I,. %II.ETS

where the expectation value ( ) is taken with respect to
the ground state. In the present model this state is a
Slater determinant. Hence,

in one box can be easily calculated.
We define the particle number operator in one box like

in Refs. 7 and 12. If we arbitrarily choose the left box
this operator is

Ng ——g nl(i)= g [1—8(z;)], (4 1)

(4.4)OL = 0 nl Q

where 0 and u represent occupied and unoccupied states,
respectively. We discuss the case of two equally filled
boxes. Then the states o, u can either be chosen to have a
definite parity or be represented by wave functions initial-

ly localized in the left or right box as given by Eq. (2.9).
In the first version the procedure would be close to a two-
center shell model description. ' In the second version the
parities are mixed in the wave functions, but for continui-
ty we maintain this basis such as it has been defined in
ec. II. Then the matrix element (o

~
ni,

~

u ) is given by

with A the total number of particles and 8(z;) the step
function

{4.2)

The variance is

—(igAX EJ' —E;~)~
)] for o&u, (4.5)

{4.3) S

(o ~nl
~

u)= —,
' g d,+'(L)d„+'(L)[1+(e " +e

where the plus (minus) sign is related to the case where both states
~
o) and

~

u) are initially localized in the left (right)
box. If

~

o ) and
~

u ) are initially in different boxes the expression is

(4.6)
a+0, u

with the + (—) sign for ~o) in the left (right) box,
respectively. If the number of states u is large enough the
orthogonality between

~

u) and
~
o) is well satisfied,

which implies

g d+'(L)d„+'(L)=0 for o&u . (4.7)

Using (4.7) and adding up the four contributions given by
(4.5) and (4.6), we obtain

oL, ——2 g ~ g d,+'(L)d+'(L)e

The calculated value of oL, is shown in Figs. 8(a) and (b)
for the systems A =32 and 80, respectively, at io =L/2.
One can notice a periodical structure again, like for the
current J+. Each time the condition

(i /fi)E&t
e =1 for all a

is fulfilled, oL goes to zero. This takes place at the same
period T given by (3.10), which can be easily seen if we
use lllstead of (4.9) the equation

(i /A)(E&~ Ef)t—
8 =l,

also consistent with (4.8). As already mentioned
period T for A =80 is about twice as large than that for
A =32. If we average over a period, the formula (4.8)
gives

g [d.+'(L)d„+'(L)]' (4.10)
0+8 &+0~Q

because the coefficients d„" are real. This uantity
should be compared to the classical value7'3 of oz which
at large & teilds towai'ds 2 /4, where 3 is the total number
of particles. Thc ratio bet%'ccn 0L Rnd thc asymptotic
classical value is 2/8 for 2 =32 and 4.88/20 for A =80,

tt&o 22s)

PIG. 8. The width of the mass distribution gL as a fgnctio~
of time at m =L/2 and N =15. (a) 3 =32 particles; (b) A =80
paIticles.
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i.e., it has the same order of magnitude as that found in
Ref. 7 from a one-dimensional model. This confirms the
conclusion given in Ref. 7 that when the particles both at
the left and right are forced to move in the same potential
the mass dispersion is very small, as in time-dependent
Hartree-Fock calculations. It would be interesting to ex-
tend the present study to the case where the two boxes
have different sizes in order to see whether a increases in
such a case.

V. CONCLUSIONS

We have formulated a simple three-dimensional
quantum-mechanical independent particle model in order
to get more insight into the quantities describing the ex-
change of nucleons between heavy ions. In this model the
colliding nuclei are represented by two adjacent cubic
boxes communicating through a rectangular window. The
window suddenly opens with a given size and we calculate
the time evolution of the one-sided current and of the
width of the mass distribution at constant opening.

We have used two different definitions to calculate the
one-sided flux of the window formula. One is the current-
ly used definition introduced as an extension of the classi-
cal definition and based on the Wigner distribution func-
tion obtained from the single particle wave functions of
the communicating system. The other is the quantum-

I

mechanical definition applied in the case where one box is
filled and the other box is empty. The calculations show
that both definitions give similar results in the time inter-
val before the reflection on the opposite wall sets in. We
consider that such similarities bring support in using the
extended classical defitiition where the integration over
positive momenta only [see Eq. (3.1)] is not a priori justi-
fied in quantum mechanics.

The calculated width of the mass distribution crL has a
periodical structure, like J+, due to the finite size of the
system. The ratio between the time average of oL and its
asymptotic classical value has the same order of magni-
tude as that obtained by Buck and Feldmeier in a one-
dimensional system. Our calculations therefore support
the conclusion of Ref. 7 according to which the smallness
of crL is the combined effect of the Pauli principle and the
use of an identical mean potential for both nuclei.

One of us (C.G.) acknowledges financial support from
the Institute Interuniversitaire des Sciences Nucleaires.

APPENDIX

By using definition (2.9) and relations (2.13) one can
write the density matrix associated with a state n initially
occupied in the left box as

ann
(Al)

i.e., as a sum of two distinct terms: the first term contains
products of states g and P of the same parity, while in
the second term one wave function carries the parity —p
of the initially occupied state and the other has the oppo-
site parity p.

By using the same relations one finds that the density
matrix p„associated with a state n initially occupied in
the right box is given by the difference between the same
two terms.

In calculating J+ „orJ+ „according to (3.5), (3.1), and
(3.2) one can treat the two terms separately. Making the

(A2)

J+ =4 X J+.= 2 (J+ —J') .
n (occ)

(A3)

In (A2) J'+ is given by (3.6) and originates from the first
term in (Al) and J is given by (3.15) and originates from
the second term of (Al). Similar considerations are valid
for (A3) derived from p„.

I

summation over all occupied states, each four times de-
generate, one obtains

J+ ——4 g J+„,'(J——
n (occ)
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