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Abstract: Hyperglycaemia, hypoglycaemia and glycaemic variability in critically ill patients are associated
with increased mortality and adverse outcomes. Some studies have shown insulin therapy to control
glycaemia has improved outcomes, but have proven difficult to repeat or achieve safely. STAR (Stochastic
Targeted) is a model-based glycaemic control protocol using a stochastic model to forecast future
distributions of insulin sensitivity (SI) based on its current value, to predict the range of future blood glucose
outcomes for a given intervention. This study presents an improved 3D stochastic model, forecasting future
distributions of SI based on its current value and prior variation. The percentage difference in the 5%, 50,
and 95" percentiles between the current 2D and new 3D models are compared. Results show the original
2D stochastic model is over-conservative for around 77% of the data, predominantly where prior variability
was low. For higher prior variation (more than +25% change in SI), the 3D stochastic model prediction
range of future SI is wider. The new 3D model was found to have overall narrower 5" — 95" prediction
ranges in SI, but to retain a similar per-patient (60 — 100%) and overall (92%) percentage of SI outcomes
correctly predicted within these ranges. These results suggest the new 3D model is more patient-specific
and will enable more optimal dosing, to increase both safety and performance. This improvement in
forecasting may result in tighter and safer glycaemic control, improving performance within the STAR

framework.
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1. INTRODUCTION

Hyperglycaemia, elevated blood glucose (BG) concentration,
is common in adult intensive care units (ICUs) (Capes et al.,
2000, Finney et al., 2003, McCowen et al., 2001). It is
associated with worsened outcomes (Capes et al., 2000,
Krinsley, 2003, Krinsley and Grover, 2007). Hypoglycaemia,
abnormally low BG concentrations, and glycaemic variability
have also been associated with adverse outcomes and mortality
(Ali et al., 2008, Bagshaw et al., 2009, Egi et al., 2006, Egi et
al., 2010, Krinsley, 2009).

Glycaemic control (GC) using insulin therapy to lower BG
level has shown beneficial outcomes, but also shown increased
risk of hypoglycaemia (Chase et al., 2008a, Krinsley, 2004,
Reed et al., 2007, Van den Berghe et al., 2006, van den Berghe
et al., 2001). Fixed or ad hoc protocols are typical, but fail to
capture the inter- and intra- patient variability hindering
control performance and safety (Chase et al., 2011). It is thus
important to have a safe and effective glycaemic control
protocol capable of adapting to patient-specific insulin
requirements, and able to directly manage risk.

Copyright © 2018 IFAC

311

STAR (Stochastic TARgeted) is a clinically-validated model-
based GC framework with promising clinical results (Evans et
al., 2012, Fisk et al., 2012b, Stewart et al., 2016a). STAR
captures patient-specific metabolic state using model-based
insulin sensitivity (SI), and is able to quantitatively forward
predict a distribution of future SI and thus its variability.
Insulin-nutrition treatments are thus selected based on likely
future BG outcomes for a given intervention, directly
managing and minimizing hypoglycaemic risk and actively
targeting a clinically determined glycaemic range (Fisk et al.,
2012a).

In particular, STAR uses a stochastic model to predict future
SI (SIy+1) distributions based on a Markov Process dependant
only on identified current SI (SI,) value (Lin et al., 2008). This
study investigates the impact of identified prior changes in SI
on the distribution of future SI values. Identifying trends based
on the previous change in SI could improve forecasting
precision, add further patient-specificity, and thus help to
achieve safer and tighter control by adapting treatment
according to a new updated stochastic model that further
segregates patients based on patient-specific response to care.
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Figure 1 — STAR uses stochastic models to forecast change in SI based on current SI value, and determines BG outcomes for given insulin

and nutrition intervention.

2. METHODS

2.1 Patients

This study uses data from 3 cohorts and 2 GC protocols,
totalling 819 episodes and 68629 hours of treatment. SPRINT
(Chase et al., 2008b) and STAR (Stewart et al., 2016a) are the
two protocols used in the Christchurch Hospital ICU and
Kalman Pandy Hospital ICU. Demographics are summarised
in Table 1.

2.2 Model-Based Insulin Sensitivity
The physiological model is defined (Lin et al., 2011):

G = —pg.G(0) —S,.G(t)%
P(t) + EGP — CNS M
+
Ve
, 1(t)
I'= ng.I(t) —an—n,(l(t) -Q(®) ,
Uex® (@) @
+T+( —-xL) 7
0= n (1) - Q) ® 3

T T 2,00

Where G(%) is blood glucose (mmol/L), /(%) is plasma insulin
(mU/L), Q(?) is interstitial insulin (mU/L), P(%) is glucose
from dextrose intake (mmol/min), and .5; is insulin sensitivity
(L/mU/min). All other variables and parameters are defined in
(Stewart et al., 2016b).

SI is patient-specific and time-varying. It captures patient-
specific response to glucose and insulin administration. It is
identified hourly on a patient-specific basis from measured
clinical data, using an integral-based fitting method (Hann et
al., 2005).

STAR forecasts SI using a cohort-based stochastic model
(Figure 1). For any given current S, a distribution of future
SI,+1 at 1-3 hours in future is determined based on a clinical
data model derived using kernel density methods (Lin et al.,
2008). STAR then determines BG outcome distributions for a
given intervention, as shown in Figure 1. The 95% percentile in
SI is used to target a minimum BG for a given intervention to
ensure safety, as it quantifies to likelihood of hypoglycaemia
(Fisk et al., 2012a), a risk based dosing approach.
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2.3 Analysis

Forward SI variability (%ASI) is defined as the hour-to-hour
percentage change in SI:

SI,: - Sli—l

%ASI; = 100 X ——
i-1

In contrast to previous work, which constructed a 2D
stochastic model with one input (SI,) and one output
(distribution of Sl,+; values), this analysis constructs a 3D
model, where a future SI (SI,+1) distribution is predicted given
the current patient metabolic state (SI,) and the previous
change in SI (%ASI,), corresponding to 2 inputs for 1 output.

To avoid the effect of data outliers skewing distributions with
small numbers of data points, only the middle 98% of the data
(SI=[1.0e-7, 2.1e-3] L/mU/min) is used. Data triplets (%ASI.
1, Sy, Sku+1) with SI,, outside this range are excluded, leaving
65492 data triplets, representing 97.7% of the original 66991
possible data triplets.

Bins sizes of %ASI = 10% and 1e-4 in SI, are used. These bins
are limited to a range of %ASI = £100% and the observed
range in SI, bringing the included number of data triplets to
63209 (94.4% of 66991 triplets). Bins are considered to have
sufficient data density if at least 100 data triplets are present.

Boundary bins with less than 100 data triplets are summed to
improve data density and smooth model extremes by
transferring data triplets of from extreme bins to the adjacent
bin along the %ASI axis, for a given SI, level, if the number of
data point in each is lower than 100. If the new total of data
triplets is still less than 100 in this bin and the next adjacent
bin, the triplets are transferred to it and so on, starting from
both extreme edges and moving towards increased data
density. Bin sizes remain unchanged thus representing
conservative potential future SI behaviour.

Finally, the 5%, 50%, and 95" percentile of S+ is computed
for each bin, quantifying the SI,+ distribution of future SI
values given a specific %ASI, and a current S, level. These
values are compared to the original 2D stochastic model (SIy+1
as a function of SI,), by computing the difference between the
previous and new 5", 50%, and 95" percentiles, as well as the
change in 90% confidence interval width. This analysis thus
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constructs a new model and compares it to the previous model
to assess where it was conservative and where it added risk.

Table 1 - Patient demographics for the 3 study cohorts. Results are
given as median [IQR] where relevant.

SPRINT STAR

Christchurch  Christchurch STAR Gyula
# episodes 442 330 47

# hours 39838 22523 6268

% male 62.7 65.5 61.7
Age (years) 63 [48, 73] 65 [55,72] 66 [58,71]
APACHE 11 19.0[15.0:24.5] 21.0[16.0:25.0] 32.0[28.0:36.0]
LOS -ICU

(days) 6.2[2.7,13.0] 5.7[2.5,13.4] 14.0[8.0,20.5]
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Figure 2- Number of (%ASIn-1, SIn, SIn+1) triplets per bin. Before
(a) and after (b) merging side bins (along y-axis).

Importantly, a narrower 90% width denotes less future
variability allowing more aggressive dosing where the original
model was too wide and thus too conservative. A wider band
indicates where the current 2D model is not conservative, and
less dosing is required to reduce risk. A shift in the 50
percentile indicates where the original model was biased.

The predictive power of the new model is compared to the
original stochastic model by computing the per-patient and
overall percentage of SI values that fall within the 5 — 95
and 25 — 75" percentile ranges of model predictions. In the
case of the new model, data points that now fall outside the
new model range are not yet able to be predicted off, so are
discarded. Future work will look at establishing methods for
dealing with unusual and uncommon data extremes.

In this analysis, forward prediction accuracy of both models is
compared using all available data triplets. Self-validation is
carried out by evaluating the per-patient percentage of SI
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outcomes falling into model 25%-75% and 5%-95% percentiles
prediction ranges. If the ideal 50% and 90% of forward
prediction within those range for each patient is achieved, it
indicates a cohort derived model also perfect at per-patient
level.

3. RESULTS

Figure 2 shows the number of triplets (%ASI,.1, SI, Sly+1) per
bin, before and after merging. It can be clearly seen that
changes in SI are proportionally greater at lower SI level
(triangular shape). The yellow areas in Figure 2 (a) and (b)
contain 91% and 97% of 63209 total triplets respectively. A
new stochastic model is made from all the triplets falling in the
yellow bins in Figure 2 (b).

Figure 3 shows percentage changes in the 5%, 50%, and 95%
percentiles for SIy+1. Two main regions are identified:

1. Between %ASI, - +£25% the 5™ percentile is often higher
than the prior 2D stochastic model, and the 95" percentile
lower, regardless of Sl,, suggesting the 2D stochastic
model is conservative in that it over-estimated the width
of the 90% range of future Sl,+; outcomes. This region
contains 77% of the data triplets.

. Outside %ASI, = +25% for low SI, > 2.3e-4 the 5%
percentile is lower and the 95" higher, indicating a non-
conservative region with higher risks of hypo- and hyper-
glycaemia than predicted by the 2D model.

The percentage change in 50th percentile values in Figure 3
(b), are all within £ 20%. However, at the bottom left corner,
larger increases can be observed due to the shift described in
Region 2.

Figure 4 shows percentage change in 90% confidence interval
widths. For conservative regions (Regions 1), a significant
decrease of ~30-40% is observed, suggesting the new model
improves predictive power in the middle region of the model
containing ~ 77% of all binned data. For other regions,
increases are observed up to 80% or more, allowing the new
model to more safely deal with large changes in SI.

For relatively stable SI (25 %ASI), it is more likely for SI to
remain stable, as reflected in the tighter 90% CI. For current
SIlevel > 2.3e-4 L/mU/min following an increase, the extreme
of possible behaviour, defined by the 5" and 95% percentile,
are wider.

Figure 5 shows the interpolated new stochastic model (colour)
and the original stochastic model (red) for the 5" (a) and 95%
(b) percentiles. Unlike the original stochastic model, this new
version clearly changes based on the prior change in SI, with
an obvious middle conservative region.

When the predictive power of the new model was tested, it was
found that 84% of patient SI fell within the bounds of the new
model. The 16% of SI that did not was either included in the
initial exclusion definition (2%), or fell within bins later
collapsed (14%, Figure 2). Of the SI within the model range,
91.9% of SI predictions (SIy+1) fell within the 5% — 95%
prediction range, which is close to the expected 90%.
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However, 59.7% fell within the 25 — 75" range, which is
higher than the expected 50%, perhaps as a result of combining
data bins. Per-patient percent time in range is similar for both
the new and previous model (Figure 6), despite the new model
prediction ranges being generally significantly narrower (e.g.
Figure 7). These results suggest the new model has improved
predictive power over the old model, and that the percent
change in SI is useful for forward prediction in SI.

100
7
<
B 80
o
T
<]
£
0 0.5 1 1.5 %’
SIn (L/mU/min) X 10-3 60%
a) s
o
c
100 <
408
50 <
— T T 5
7]
< 0 : : g
® i 3
-50 200
Qo
c
-100 o
0 0.5 1 1.5 K
SIn (L/mU/min) X 10-3 :50
b) 0%
100
50
7] + - = -20
e =
2
-50
-100 -
0 0.5 1 1.5 40
SIn (L/mU/min) N 10-3

c)

Figure 3 - Percentage change in 5th (a), 50th (b) and 95th (c)
percentiles between the original 2D and new 3D models.
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Figure 4 - Percentage change in the 90% CI width between original
stochastic model and triplets within the bins
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Figure 5 - Comparison between new 3D stochastic model (colour)
and original 2D model (red) for 5th (a) and 95th (b) percentiles.
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4. DISCUSSION

The management of SI variability has been previously shown
to improve predictive power based on patient characteristics
and observed trends in SI (Penning et al., 2012, Pretty et al.,
2012, Thomas et al., 2014). However, these stochastic models
consider the patient’s current state only (Lin et al., 2008).
Adding a new dimension to the model by considering the prior
change in SI allows the stochastic model to better respond to
identified SI variability, and, in this case, suggests future SI
depends on both the prior and current metabolic states.

The results show that for the 77% of the data within %ASI =
+25%, the prior 2D model is conservative, and the new model
is thus more patient (response) specific and will allow more
aggressive dosing. The likelihood of any resulting BG changes
will also be better predicted. While 2D model conservatism
reduces hypoglycaemic risk, it also affects performance in
treating hyperglycaemia. The new 3D model could lead to
tighter, less variable control, and thus improved outcomes
(Penning et al., 2015, Signal et al., 2012) with no compromise
in safety.
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Testing the predictive power of the new model showed that
approximately 92% of the SI forward predicted from SI within
the model bounds fell in the 5" — 95" percentile prediction
range, which is close to the expected 90%. Per patient
percentage time within this 5% — 95% range varied between
patients, partly influenced by the number of hours of SI and
GC for each patient. In comparison, the previous model has
more consistent ability to forward predict changes in SI, with
fewer patients treated in an over-conservative manner (>90%
of predicted SI in the 5% — 95" range).

Across all patients, the new models predictive ranges are
typically significantly narrower (e.g. Figure 7), which suggests
that the new model has improved predictive power over the
previous, as it is able to capture changes in SI with comparable
performance (Figure 6) and narrower predictive ranges where
appropriate. This should translate in simulation to improved
GC performance, as narrower predictive ranges in SI
correspond to narrower predictive ranges in BG, and therefore
greater certainty in GC outcomes when selecting insulin
dosing.

The percentage changes in the 95" and 5" percentiles in the
non-conservative region suggest two possible behaviours. The
first says that after a big increase in SI, the metabolic system
may continue this increase (20-30%). Conversely, the second
says that after this big increase, SI could also decrease
drastically (30-40%). These two extremes show how variable
the metabolic system can be when it has already displayed
variability the prior hour(s). However, extreme changes may
also be the result of errors in SI due to BG measurement errors
or data recoding errors or insulin-nutrition delivery errors.
Future work should examine the potential effects of these
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errors on stochastic model construction, but in any of the cases,
the ability to see potential future variability in identified
behaviour is improved and safety is better assured.

This analysis used bins of size 10 %ASI and 1e-4 SI level. The
choice of this bin size is motivated by the typical £10%
percentage change in SI induced by a BG measurement error
of 7%, reported for the device used in highly controlled tests
(SKUP, 2006). Hence, these bin sizes reflect resolution in
model-based SI, where data with better measurement devices
could use smaller bins given enough data triplets.

A limitation of the current model is that it is not yet adapted to
cope with SI that fall outside of the current model ranges. The
current model was built off areas of high data density, so these
SI outliers are generally unusually large changes in SI, or
unusually high SI, which in reality may reflect inaccuracies in
data recording or patient-specific deviations from model-
dynamics. Cross-validation is needed to further validate the
new model. Future work will examine how to manage these
extreme changes in a conservative manner, and their origins
and effect on control.

5. CONCLUSION

In summary, a new stochastic model based on both the
previous change in SI and current SI suggests possible
improvement in performance and safety of the glycaemic
control STAR protocol. For more than 81% of the data triplets
used to build the new model, the original stochastic model has
been shown over-conservative. Outside this range, more likely
extreme variations were identified. Therefore, it is possible to
more accurately forecast SI and its variability, and adapt
control in a manner more specific to patient response. Thus,
the new model presented has the potential to significantly
improve predictive power in SI forecasting. This improvement
in forecasting may improve safety and performance within the
STAR framework. Future work will effectively analyse the
impact of this new stochastic model using in silico trials.
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