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Abstract: Hyperglycaemia, hypoglycaemia and glycaemic variability in critically ill patients are associated 

with increased mortality and adverse outcomes. Some studies have shown insulin therapy to control 

glycaemia has improved outcomes, but have proven difficult to repeat or achieve safely. STAR (Stochastic 

Targeted) is a model-based glycaemic control protocol using a stochastic model to forecast future 

distributions of insulin sensitivity (SI) based on its current value, to predict the range of future blood glucose 

outcomes for a given intervention. This study presents an improved 3D stochastic model, forecasting future 

distributions of SI based on its current value and prior variation. The percentage difference in the 5th, 50th, 

and 95th percentiles between the current 2D and new 3D models are compared. Results show the original 

2D stochastic model is over-conservative for around 77% of the data, predominantly where prior variability 

was low. For higher prior variation (more than ±25% change in SI), the 3D stochastic model prediction 

range of future SI is wider. The new 3D model was found to have overall narrower 5th – 95th prediction 

ranges in SI, but to retain a similar per-patient (60 – 100%) and overall (92%) percentage of SI outcomes 

correctly predicted within these ranges. These results suggest the new 3D model is more patient-specific 

and will enable more optimal dosing, to increase both safety and performance. This improvement in 

forecasting may result in tighter and safer glycaemic control, improving performance within the STAR 

framework. 
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1. INTRODUCTION 

Hyperglycaemia, elevated blood glucose (BG) concentration, 

is common in adult intensive care units (ICUs) (Capes et al., 

2000, Finney et al., 2003, McCowen et al., 2001). It is 

associated with worsened outcomes (Capes et al., 2000, 

Krinsley, 2003, Krinsley and Grover, 2007). Hypoglycaemia, 

abnormally low BG concentrations, and glycaemic variability 

have also been associated with adverse outcomes and mortality 

(Ali et al., 2008, Bagshaw et al., 2009, Egi et al., 2006, Egi et 

al., 2010, Krinsley, 2009).  

Glycaemic control (GC) using insulin therapy to lower BG 

level has shown beneficial outcomes, but also shown increased 

risk of hypoglycaemia (Chase et al., 2008a, Krinsley, 2004, 

Reed et al., 2007, Van den Berghe et al., 2006, van den Berghe 

et al., 2001). Fixed or ad hoc protocols are typical, but fail to 

capture the inter- and intra- patient variability hindering 

control performance and safety (Chase et al., 2011). It is thus 

important to have a safe and effective glycaemic control 

protocol capable of adapting to patient-specific insulin 

requirements, and able to directly manage risk.  

STAR (Stochastic TARgeted) is a clinically-validated model-

based GC framework with promising clinical results (Evans et 

al., 2012, Fisk et al., 2012b, Stewart et al., 2016a). STAR 

captures patient-specific metabolic state using model-based 

insulin sensitivity (SI), and is able to quantitatively forward 

predict a distribution of future SI and thus its variability. 

Insulin-nutrition treatments are thus selected based on likely 

future BG outcomes for a given intervention, directly 

managing and minimizing hypoglycaemic risk and actively 

targeting a clinically determined glycaemic range (Fisk et al., 

2012a). 

In particular, STAR uses a stochastic model to predict future 

SI (SIn+1) distributions based on a Markov Process dependant 

only on identified current SI (SIn) value (Lin et al., 2008). This 

study investigates the impact of identified prior changes in SI 

on the distribution of future SI values. Identifying trends based 

on the previous change in SI could improve forecasting 

precision, add further patient-specificity, and thus help to 

achieve safer and tighter control by adapting treatment 

according to a new updated stochastic model that further 

segregates patients based on patient-specific response to care. 
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2. METHODS 

2.1 Patients 

This study uses data from 3 cohorts and 2 GC protocols, 

totalling 819 episodes and 68629 hours of treatment. SPRINT 

(Chase et al., 2008b) and STAR (Stewart et al., 2016a) are the 

two protocols used in the Christchurch Hospital ICU and 

Kalman Pandy Hospital ICU. Demographics are summarised 

in Table 1. 

2.2 Model-Based Insulin Sensitivity 

The physiological model is defined (Lin et al., 2011): 

𝐺̇ =  −𝑝𝐺 . 𝐺(𝑡) − 𝑆𝐼 . 𝐺(𝑡)
𝑄(𝑡)

1 +  𝛼𝐺 . 𝑄(𝑡)

+
𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺
 

(1) 

𝐼̇ =  𝑛𝐾 . 𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 +  𝛼𝐼 . 𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡))

+
𝑢𝑒𝑥(𝑡)

𝑉𝐼
+ (1 − 𝑥𝐿)

𝑢𝑒𝑛(𝐺)

𝑉𝐼
 

(2) 

𝑄̇ =  𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
 (3) 

Where G(t) is blood glucose (mmol/L), I(t) is plasma insulin 

(mU/L), Q(t) is interstitial insulin (mU/L), P(t) is glucose 

from dextrose intake (mmol/min), and SI is insulin sensitivity 

(L/mU/min). All other variables and parameters are defined in 

(Stewart et al., 2016b). 

SI is patient-specific and time-varying. It captures patient-

specific response to glucose and insulin administration. It is 

identified hourly on a patient-specific basis from measured 

clinical data, using an integral-based fitting method (Hann et 

al., 2005).  

STAR forecasts SI using a cohort-based stochastic model 

(Figure 1). For any given current SIn, a distribution of future 

SIn+1 at 1-3 hours in future is determined based on a clinical 

data model derived using kernel density methods (Lin et al., 

2008). STAR then determines BG outcome distributions for a 

given intervention, as shown in Figure 1. The 95th percentile in 

SI is used to target a minimum BG for a given intervention to 

ensure safety, as it quantifies to likelihood of hypoglycaemia 

(Fisk et al., 2012a), a risk based dosing approach.  

2.3 Analysis 

 Forward SI variability (%ΔSI) is defined as the hour-to-hour 

percentage change in SI: 

%∆𝑆𝐼𝑖 = 100 × 
𝑆𝐼𝑖 −  𝑆𝐼𝑖−1

𝑆𝐼𝑖−1

 

In contrast to previous work, which constructed a 2D 

stochastic model with one input (SIn) and one output 

(distribution of SIn+1 values), this analysis constructs a 3D 

model, where a future SI (SIn+1) distribution is predicted given 

the current patient metabolic state (SIn) and the previous 

change in SI (%ΔSIn), corresponding to 2 inputs for 1 output. 

To avoid the effect of data outliers skewing distributions with 

small numbers of data points, only the middle 98% of the data 

(SI = [1.0e-7, 2.1e-3] L/mU/min) is used. Data triplets (%ΔSIn-

1, SIn, SIn+1) with SIn outside this range are excluded, leaving 

65492 data triplets, representing 97.7% of the original 66991 

possible data triplets. 

Bins sizes of %ΔSI = 10% and 1e-4 in SIn are used. These bins 

are limited to a range of %ΔSI = ±100% and the observed 

range in SI, bringing the included number of data triplets to 

63209 (94.4% of 66991 triplets). Bins are considered to have 

sufficient data density if at least 100 data triplets are present.  

Boundary bins with less than 100 data triplets are summed to 

improve data density and smooth model extremes by 

transferring data triplets of from extreme bins to the adjacent 

bin along the %ΔSI axis, for a given SIn level, if the number of 

data point in each is lower than 100. If the new total of data 

triplets is still less than 100 in this bin and the next adjacent 

bin, the triplets are transferred to it and so on, starting from 

both extreme edges and moving towards increased data 

density. Bin sizes remain unchanged thus representing 

conservative potential future SI behaviour. 

Finally, the 5th, 50th, and 95th percentile of SIn+1 is computed 

for each bin, quantifying the SIn+1 distribution of future SI 

values given a specific %ΔSIn and a current SIn level. These 

values are compared to the original 2D stochastic model (SIn+1 

as a function of SIn), by computing the difference between the 

previous and new 5th, 50th, and 95th percentiles, as well as the 

change in 90% confidence interval width. This analysis thus 

 
Figure 1 – STAR uses stochastic models to forecast change in SI based on current SI value, and determines BG outcomes for given insulin 

and nutrition intervention.  
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constructs a new model and compares it to the previous model 

to assess where it was conservative and where it added risk. 

Table 1 - Patient demographics for the 3 study cohorts. Results are 

given as median [IQR] where relevant. 

 
SPRINT 

Christchurch 

STAR 

Christchurch 
STAR Gyula 

# episodes 442 330 47 

# hours 39838 22523 6268 

% male 62.7 65.5 61.7 

Age (years) 63 [48, 73] 65 [55, 72] 66 [58, 71] 

APACHE II 19.0[15.0:24.5] 21.0[16.0:25.0] 32.0[28.0:36.0] 

LOS - ICU 

(days) 
6.2[2.7,13.0] 5.7[2.5,13.4] 14.0[8.0,20.5] 

 

 

Figure 2- Number of (%ΔSIn-1, SIn, SIn+1) triplets per bin. Before 

(a) and after (b) merging side bins (along y-axis). 

Importantly, a narrower 90% width denotes less future 

variability allowing more aggressive dosing where the original 

model was too wide and thus too conservative. A wider band 

indicates where the current 2D model is not conservative, and 

less dosing is required to reduce risk. A shift in the 50th 

percentile indicates where the original model was biased.  

The predictive power of the new model is compared to the 

original stochastic model by computing the per-patient and 

overall percentage of SI values that fall within the 5th – 95th 

and 25 – 75th percentile ranges of model predictions. In the 

case of the new model, data points that now fall outside the 

new model range are not yet able to be predicted off, so are 

discarded. Future work will look at establishing methods for 

dealing with unusual and uncommon data extremes. 

In this analysis, forward prediction accuracy of both models is 

compared using all available data triplets. Self-validation is 

carried out by evaluating the per-patient percentage of SI 

outcomes falling into model 25th-75th and 5th-95th percentiles 

prediction ranges. If the ideal 50% and 90% of forward 

prediction within those range for each patient is achieved, it 

indicates a cohort derived model also perfect at per-patient 

level. 

3. RESULTS 

Figure 2 shows the number of triplets (%ΔSIn-1, SIn, SIn+1) per 

bin, before and after merging. It can be clearly seen that 

changes in SI are proportionally greater at lower SI level 

(triangular shape). The yellow areas in Figure 2 (a) and (b) 

contain 91% and 97% of 63209 total triplets respectively. A 

new stochastic model is made from all the triplets falling in the 

yellow bins in Figure 2 (b). 

Figure 3 shows percentage changes in the 5th, 50th, and 95th 

percentiles for SIn+1. Two main regions are identified: 

1. Between %ΔSIn = ±25% the 5th percentile is often higher 

than the prior 2D stochastic model, and the 95th percentile 

lower, regardless of SIn, suggesting the 2D stochastic 

model is conservative in that it over-estimated the width 

of the 90% range of future SIn+1 outcomes. This region 

contains 77% of the data triplets.  

2. Outside %ΔSIn = ±25% for low SIn > 2.3e-4 the 5th 

percentile is lower and the 95th higher, indicating a non-

conservative region with higher risks of hypo- and hyper- 

glycaemia than predicted by the 2D model. 

The percentage change in 50th percentile values in Figure 3 

(b), are all within ± 20%. However, at the bottom left corner, 

larger increases can be observed due to the shift described in 

Region 2. 

Figure 4 shows percentage change in 90% confidence interval 

widths. For conservative regions (Regions 1), a significant 

decrease of ~30-40% is observed, suggesting the new model 

improves predictive power in the middle region of the model 

containing ~ 77% of all binned data. For other regions, 

increases are observed up to 80% or more, allowing the new 

model to more safely deal with large changes in SI. 

For relatively stable SI (±25 %ΔSI), it is more likely for SI to 

remain stable, as reflected in the tighter 90% CI. For current 

SI level > 2.3e-4 L/mU/min following an increase, the extreme 

of possible behaviour, defined by the 5th and 95th percentile, 

are wider.  

Figure 5 shows the interpolated new stochastic model (colour) 

and the original stochastic model (red) for the 5th (a) and 95th 

(b) percentiles. Unlike the original stochastic model, this new 

version clearly changes based on the prior change in SI, with 

an obvious middle conservative region. 

When the predictive power of the new model was tested, it was 

found that 84% of patient SI fell within the bounds of the new 

model. The 16% of SI that did not was either included in the 

initial exclusion definition (2%), or fell within bins later 

collapsed (14%, Figure 2). Of the SI within the model range, 

91.9% of SI predictions (SIn+1) fell within the 5th – 95th 

prediction range, which is close to the expected 90%. 
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However, 59.7% fell within the 25th – 75th range, which is 

higher than the expected 50%, perhaps as a result of combining 

data bins. Per-patient percent time in range is similar for both 

the new and previous model (Figure 6), despite the new model 

prediction ranges being generally significantly narrower (e.g. 

Figure 7). These results suggest the new model has improved 

predictive power over the old model, and that the percent 

change in SI is useful for forward prediction in SI. 

 

 
Figure 3 - Percentage change in 5th (a), 50th (b) and 95th (c) 

percentiles between the original 2D and new 3D models.  

 

Figure 4 - Percentage change in the 90% CI width between original 

stochastic model and triplets within the bins 

 
Figure 5 - Comparison between new 3D stochastic model (colour) 

and original 2D model (red) for 5th (a) and 95th (b) percentiles.  

  

4. DISCUSSION 

The management of SI variability has been previously shown 

to improve predictive power based on patient characteristics 

and observed trends in SI (Penning et al., 2012, Pretty et al., 

2012, Thomas et al., 2014). However, these stochastic models 

consider the patient’s current state only (Lin et al., 2008). 

Adding a new dimension to the model by considering the prior 

change in SI allows the stochastic model to better respond to 

identified SI variability, and, in this case, suggests future SI 

depends on both the prior and current metabolic states. 

The results show that for the 77% of the data within %ΔSI = 

±25%, the prior 2D model is conservative, and the new model 

is thus more patient (response) specific and will allow more 

aggressive dosing. The likelihood of any resulting BG changes 

will also be better predicted. While 2D model conservatism 

reduces hypoglycaemic risk, it also affects performance in 

treating hyperglycaemia. The new 3D model could lead to 

tighter, less variable control, and thus improved outcomes 

(Penning et al., 2015, Signal et al., 2012) with no compromise 

in safety. 
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Figure 6 – Per-patient predictive power of new (red) and old (green) 

stochastic models.  

 
Figure 7 – Excerpt from a patient showing fitted SI, as well as 5th and 

95th predictions of future SIn+1 for both new and old models.  

Testing the predictive power of the new model showed that 

approximately 92% of the SI forward predicted from SI within 

the model bounds fell in the 5th – 95th percentile prediction 

range, which is close to the expected 90%. Per patient 

percentage time within this 5th – 95th range varied between 

patients, partly influenced by the number of hours of SI and 

GC for each patient. In comparison, the previous model has 

more consistent ability to forward predict changes in SI, with 

fewer patients treated in an over-conservative manner (>90% 

of predicted SI in the 5th – 95th range). 

Across all patients, the new models predictive ranges are 

typically significantly narrower (e.g. Figure 7), which suggests 

that the new model has improved predictive power over the 

previous, as it is able to capture changes in SI with comparable 

performance (Figure 6) and narrower predictive ranges where 

appropriate. This should translate in simulation to improved 

GC performance, as narrower predictive ranges in SI 

correspond to narrower predictive ranges in BG, and therefore 

greater certainty in GC outcomes when selecting insulin 

dosing.  

The percentage changes in the 95th and 5th percentiles in the 

non-conservative region suggest two possible behaviours. The 

first says that after a big increase in SI, the metabolic system 

may continue this increase (20-30%). Conversely, the second 

says that after this big increase, SI could also decrease 

drastically (30-40%). These two extremes show how variable 

the metabolic system can be when it has already displayed 

variability the prior hour(s). However, extreme changes may 

also be the result of errors in SI due to BG measurement errors 

or data recoding errors or insulin-nutrition delivery errors. 

Future work should examine the potential effects of these 

errors on stochastic model construction, but in any of the cases, 

the ability to see potential future variability in identified 

behaviour is improved and safety is better assured. 

This analysis used bins of size 10 %ΔSI and 1e-4 SI level. The 

choice of this bin size is motivated by the typical ±10% 

percentage change in SI induced by a BG measurement error 

of 7%, reported for the device used in highly controlled tests 

(SKUP, 2006). Hence, these bin sizes reflect resolution in 

model-based SI, where data with better measurement devices 

could use smaller bins given enough data triplets. 

A limitation of the current model is that it is not yet adapted to 

cope with SI that fall outside of the current model ranges. The 

current model was built off areas of high data density, so these 

SI outliers are generally unusually large changes in SI, or 

unusually high SI, which in reality may reflect inaccuracies in 

data recording or patient-specific deviations from model-

dynamics. Cross-validation is needed to further validate the 

new model. Future work will examine how to manage these 

extreme changes in a conservative manner, and their origins 

and effect on control. 

5. CONCLUSION 

In summary, a new stochastic model based on both the 

previous change in SI and current SI suggests possible 

improvement in performance and safety of the glycaemic 

control STAR protocol. For more than 81% of the data triplets 

used to build the new model, the original stochastic model has 

been shown over-conservative. Outside this range, more likely 

extreme variations were identified. Therefore, it is possible to 

more accurately forecast SI and its variability, and adapt 

control in a manner more specific to patient response. Thus, 

the new model presented has the potential to significantly 

improve predictive power in SI forecasting. This improvement 

in forecasting may improve safety and performance within the 

STAR framework. Future work will effectively analyse the 

impact of this new stochastic model using in silico trials. 
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