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Abstract16

In urban and transportation research, important information is often scattered over a wide variety17

of independent datasets which vary in terms of described variables and sampling rates. As activity-18

travel behavior of people depends particularly on socio-demographics and transport/urban-related19

variables, there is an increasing need for advanced methods to merge information provided by multiple20

urban/transport household surveys. In this paper, we propose a hierarchical algorithm based on a21

Hidden Markov Model (HMM) and an Iterative Proportional Fitting (IPF) procedure to obtain22

quasi-perfect marginal distributions and accurate multi-variate joint distributions. The model allows23

for the combination of an unlimited number of datasets. The model is validated on the basis of a24

synthetic dataset with 1,000,000 observations and 8 categorical variables. The results reveal that25

the hierarchical model is particularly robust as the deviation between the simulated and observed26

multivariate joint distributions is extremely small and constant, regardless of the sampling rates and27

the composition of the datasets in terms of variables included in those datasets. Besides, the presented28

methodological framework allows for an intelligent merging of multiple data sources. Furthermore,29

heterogeneity is smoothly incorporated into micro-samples with small sampling rates subjected to30

potential sampling bias. These aspects are handled simultaneously to build a generalized probabilistic31

structure from which new observations can be inferred. A major impact in term of expert systems32

is that the outputs of the hierarchical model (HM) model serve as a basis for a qualitative and33

quantitative analyses of integrated datasets.34

Keywords. Iterative Proportional Fitting (IPF); Hidden Markov Model (HMM); Hierarchical Model35

(HM); Multi-source information fusion36
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1. Introduction37

Forecasting activity-travel patterns is relevant to many applications and research domains, e.g.38

urban/transportation research, and social sciences (Liu et al., 2013, 2015; Saadi et al., 2017). The39

behavioral realism associated to the simulation of complex urban and transportation systems requires40

highly disaggregated and reliable datasets (Batty, 2007; Axhausen & Gärling, 1992). A major problem41

is that such disaggregated data are not always available (Barthelemy & Toint, 2013). Moreover,42

sampling rates are generally low, i.e. in the best case at most 10% of the total population, as43

data collection for travel surveys/micro-samples is costly, and large-scale surveys, i.e. censuses, are44

systematically subjected to privacy and confidentiality issues (Saadi et al., 2016b). Therefore, in45

urban and transportation research, efficient and flexible methods are required to fuse information46

stemming from multiple micro-samples and aggregate statistics, e.g. socio-demographic marginal47

distributions (Saadi et al., 2016b; El Faouzi et al., 2011; Saadi et al., 2016a; Wu, 2009).48

In this paper, a methodological framework is presented that allows for an intelligent merging of49

multiple data sources. Furthermore, heterogeneity is smoothly incorporated into micro-samples with50

small sampling rates subjected to sampling bias. These aspects are handled simultaneously to build51

a generalized probabilistic structure from which new observations can be inferred. A major impact in52

term of expert systems is that the outputs of the hierarchical model (HM) model serve as a basis for53

a qualitative and quantitative analysis of integrated datasets. In this context, the decision-making54

process can be significantly simplified. Advanced knowledge for extracting relevant information from55

multiple datasets could be replaced by a simpler analysis of a unified dataset that incorporates all56

the information and variable interactions.57

Section 1.1 presents a general overview of the existing methods. Section 1.2 lists the contributions58

of the current study with respect to the existing work.59

1.1. Related work60

In the literature, four types of methods - synthetic reconstruction, combinatory optimization61

(CO), sample free fitting, Monte Carlo Markov Chain (MCMC) simulation-based method - have been62

distinguished (Ye et al., 2017) to merge data from multiple data sources.63

IPF sythetic recontruction-based approaches are commonly used for modeling populations for64

transport and urban systems (Arentze et al., 2007; Beckman et al., 1996; Zhu & Ferreira, 2014;65

Barthelemy & Toint, 2013). IPF procedures consist of fitting a multi-dimensional contingency table66

given a set of target marginal distributions and a single micro-sample derived, for instance, from a67

travel survey. Observed marginal distributions are used as targets for fitting the micro-sample via an68

iterative reweighting procedure. In practice, the contingency tables are initiated with micro-samples69

with low sampling rates, i.e. at most 5 to 10%. This dependency on micro-samples is particularly70

problematic as IPF procedures systematically preserve the error of the related multi-variate joint71

distribution despite the fact that the marginals are fitted quasi-perfectly. Furthermore, applying an72

IPF may be problematic in the case of unavailable micro-samples for disaggregate inputs. In addition,73

the quality of the sample influences the final IPF output. In some situations, when a combination74

of attributes with low probability occurrence is missing within the sample, the synthetic population75

will not include the corresponding set of combined attributes. Setting up the zero element cells with76

very small values has been proposed to tackle this issue; however this would add an arbitrary bias. In77

contrast, IPF procedures are particularly powerful in providing highly accurate synthetic populations,78

when the correspondence between the synthetic and observed populations is evaluated on the basis79

of the marginal distributions.80

Besides, CO can be defined as a micro-data reconstruction approach which performs a random81

selection of households from micro-samples in order to reproduce the characteristics of a specific82
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geographical unit. Different statistical metrics have been proposed to assess the goodness-of-fit of the83

model (Voas & Williamson, 2000). Similar to IPF, CO is a sample-based approach that also suffers84

from the zero-cell problem in the image of IPF.85

Given the fact that disaggregated samples are difficult to obtain in some countries, sample-free86

methods emerged as interesting alternatives. Marginal and/or conditional distributions of partial87

attributes are adopted as input data in order to enable more flexibility. However, when the distribu-88

tions are not consistent across the data sources, a problem occurring especially in the case of discrete89

variables, further adjustments are operated by performing individual shifts. Furthermore, sample-free90

methods are extremely time-consuming and generally require a heavy methodological procedure with91

multiple connected sub-models for generating an individual pool.92

With respect to the Markov Process-based methods, Farooq et al. (2013) used, for instance, an93

MCMC method for population synthesis. Both the full and partial conditional distributions used by94

MCMC method can be calibrated on multiple micro-samples. Despite the relative flexibility in terms95

of data integration, the MCMC-based approach is insufficiently adapted for dealing with datasets96

that have variables with a high number of categories. This is due to the fact that the Multinomial97

Logit Models (MNL), that are used within the simulation procedure, are too sensitive to this type98

of variables. In addition, the method may over-fit the micro-samples if full conditional probability99

distributions are used and substantial information may be lost if partial conditionals are adopted.100

Besides, MCMC simulation-based method can be considered as a sample-free approach as it relies on101

conditional distributions which are calibrated on the basis of different data sources. Both discrete and102

continuous variables can be handled. However, inconsistencies in conditional distributions, may keep103

MCMC from converging towards a stationary state; which would never result in a correct population.104

Saadi et al. (2016b) used an HMM-based approach for synthesizing the population of Belgium.105

The method is highly flexible for fusing multiple micro-samples and shows competitive prediction106

capabilities. Nonetheless, the full dependency on micro-samples often leads to less accurate simulated107

marginal distributions despite accurate simulated joint distributions. In this paper, we propose an108

extension of the HMM by integrating IPF, allowing an efficient multi-source information fusion.109

1.2. Contributions110

The contributions of the current study are defined as follows:111

1. We develop a new hierarchical model for fusing an unlimited number of information sources112

irrespective of the level of aggregation.113

2. The hierarchical model generalizes the HMM by incorporating IPF. In doing so, the quality of114

the simulated multivariate joint distributions is preserved in addition to quasi-perfect marginal115

joint distributions.116

3. Efficient algorithms are designed for smartly calibrating the hierarchical model (HM).117

The remainder of the paper is structured as follows. First, we describe the new modeling frame-118

work. In Section 3, the results are discussed and conclusions are formulated in Section 4.119

2. The Hierarchical Model (HM)120

2.1. Data121

The methodology developed under the present study essentially handles (a) travel surveys which122

include socio-demographics or transport/urban-related variables and (b) corresponding aggregate123

marginal distributions. The variables can be either discrete or continuous but discretized to be124
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handled within the model. Typically, gender (male-female), car ownership (yes-no), socio-professional125

status (student, worker, employee, etc.), residential location (ID of the commune) are, among others,126

considered as discrete variables. The surveys may also include continuous variables such as age -127

between 1 and 100 or travel time. In most cases, continuous variables are discretized into categories in128

order to enable data fusion. In practice, researchers mainly deal with discrete or discretized continuous129

variables. Data can be collected by means of face to face interviews or on-line questionnaires.130

Besides, two types of input must be clearly distinguished in the current modeling framework.131

On the one hand, we have the micro-samples, e.g. travel surveys, which are relatively detailed but132

with small sampling rates, i.e. less than 10%. Also, the links in-between the variables are preserved133

as for each observation, one has information about, e.g. gender, age, socio-professional status and134

many other variables, of a specific anonymized person. On the other hand, we have aggregate data135

which can be derived from national organisms or bureau of statistics independently of each other,136

e.g. pyramid of ages, gender distribution, etc.137

2.2. Model structure138

The structure of the hierarchical model (HM), which enables multi-source information fusion, is139

illustrated in Figure 1. HM includes two important components, i.e. HMM and IPF. The N micro-140

samples and the M aggregate marginal distributions can be used simultaneously as inputs within the141

HM framework. The scaled-up and fused micro-sample enables the connection between HMM and142

IPF. As the multi-source fusion process already takes place within the HMM component, the scaled-143

up and fused micro-sample systematically includes all the variables of interest. IPF enables a direct144

fitting of the marginal distributions based on the observed targets, i.e. second set of inputs. Of course,145

the use of all the aggregate marginal distributions is not mandatory. It depends on data availability.146

Thus, HM is designed to allow enough flexibility towards unavailable marginal distributions. It is147

indeed possible to fit data against a number of marginal distributions which is lower than the total148

number of variables of interest, i.e. M . Finally, HM results in a fused and more accurate dataset that149

can be used in multiple applications, e.g. agent-based modeling of complex urban and transportation150

systems (Batty, 2007; Horni et al., 2016).151
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Micro-sample 1

Micro-sample 2

Micro-sample N

Information 
fusion based 

on HMM
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Fitting to 
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Marginal 1

Marginal 2

Marginal M

Resulting dataset 
including all the 

variables

Figure 1: Structure of the hierarchical model

Regarding the fusion process, the N micro-samples are merged based on HMM using Algorithms152

1 and 2. In doing so, the HMM sequentially learns the configuration structure of the pseudo multi-153

variate joint distribution of the true population. Here, the word ”pseudo” has been used because a154

sample with a very small sampling rate will never statistically replicate an accurate representation of155

the true population.156

157

2.3. Learning158

A new generalized algorithm is proposed in the context of this modeling framework to merge mul-159

tiple data sources and handle missing values, i.e. not attributed (NA) and/or not-a-number (NAN).160

Indeed, (a) standard methods for estimating HMM are not adapted for handling data stemming from161

multiple sources. Instead of estimating the transition probabilities from a single micro-sample, the162

algorithm is designed such that the information about the transition probabilities from a variable to163

another are extracted from their corresponding data source.164

In addition, (b) the way of handling missing data vary from a method to another. A naive165

way is to clear the row with partial information. For example, a full observation, e.g. row in a166

dataset, containing a single NA value can be cleared. This may be problematic if missing values are167

important within the dataset. The overall distributions of the variables contained within the ”cleaned168

sample” might be subjected to major changes compared to the original one. Thus, even if the dataset169

includes observations with partial information, then HMM ignores NA or NAN values and uses the170
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complementary available information for updating the model. This feature is enabled by Algorithm171

2.172

Two hypotheses have been formulated. (A1) In the case of a multi-source information fusion173

operation, we assume that the different micro-samples share at least a common variable in order to174

enable the shift from a sample to another, and for guarantying the fusion process. (A2) The categories175

within the variables are defined as integers starting from 1.176

In order to understand the fusion process, Figure 2 presents an HMM with n variables. The177

variables are symbolized with states and the transition patterns with either continuous or dashed178

arrows. For example, setting up a synthetic dataset of 3 variables, e.g. age, gender, car ownership,179

would require an HMM of length 3, i.e. n = 3. The transition probabilities, T1, T2, ..., Ti, ..., Tn,180

which can also be defined as 2 way tables are estimated from a single data source if all the variables are181

included within the same dataset, from multiple datasets otherwise. For example, the link between182

age and gender would come from sample 1 and the link between car ownership and gender or age183

and car ownership from sample 2. In both cases, assumption A1 is respected as both samples share184

at least a common variable. Detailed descriptive aspects have been included within the Algorithms185

1, 2 and 3 to understand how the algorithms are applied.186
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V1 V2 Vi Vn-1 Vn

T1→ P(V2|V1)

P(Vi|V2) P(Vn-1|Vi) P(Vn|Vn-1)

V1 V2 Vi Vn-1 Vn

P(V2|V1)

T2 → P(Vi|V2)

P(Vn-1|Vi) P(Vn|Vn-1)

V1 V2 Vi Vn-1 Vn

P(V2|V1) P(Vi|V2)

Ti → P(Vn-1|Vi)

P(Vn|Vn-1)

V1 V2 Vi Vn-1 Vn

P(V2|V1) P(Vi|V2) P(Vn-1|Vi)

Tn-1 → P(Vn|Vn-1)

Figure 2: Representation of the transition patterns - Vi represents a variable with a specific number of categories.
The objective is to systematically determine the relation between two adjacent variables by estimating a 2 way table.
The red continuous-dashed arrows symbolize the transition patterns. They can either be estimated from a single or a
combination of datasets. Ti represents a matrix which dimensions depend on the number of categories of the involved
variables Vi and Vi+1.

Before running Algorithm 1, a pre-processing of the variables of interest should be realized. After187

selecting the variables, the micro-samples in which the variables are contained should be collected, e.g.188

from national travel surveys. The link between the transition patterns and their corresponding micro-189

samples needs to be clearly identified. Also, it must be ensured that common variables exist across190

the samples (Assumption 1) and that the categories are represented in terms of integers starting from191

1 (Assumption 2). Finally, the location of the partial transition matrix Tk needs to be pre-defined to192

enable the sequential updating of T .193
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Algorithm 1 Updating of the transition probability matrix T

// Initialize K number of transition patterns

// Initialize N sum over all the variable categories

Set K and N

// Returns an N×N matrix

T ← CreateTable(N,N)

// Loop over the K transition patterns

for k=1 to K-1 do

// Returns a two-columns sample with variables Vk and Vk+1

[Vk,Vk+1] ← GetMicroSample(k)

// Returns the corresponding two-way table P (Vk+1|Vk)
Tk ← Get2DCrossTab(Vk,Vk+1)

// Returns X-Y initial and final locations of Tk with respect to T

[xi,xf,yi,yf] ← GetPositions(k)

// Assign Tk to T within the corresponding location

T[xi→xf,yi→yf]← Tk

end for

Algorithm 2 Get2DCrossTab

function: Get2DCrossTab(Vk,Vk+1)

// Returns the number of levels within the input variable

nk1 ← getNumberOfCategories(Vk)
nk2 ← getNumberOfCategories(Vk+1)

Tk ← CreateTable(nk1,nk2)

for i=1 to length(Vk) do

if Vk[i]="NAN" or Vk+1[i]="NAN" or Vk[i]="NA" or Vk+1[i]="NA" then

// Do not update

else

Tk[Vk[i],Vk+1[i]] ← Tk[Vk[i],Vk+1[i]]+1

end if

end for

return Tk

2.4. Sampling194

After the learning step, a desired number of observations is inferred from the estimated HMM195

structure using Algorithm 3. Theoretically, an infinite number of sequences can be generated based196

on the estimated HMM while preserving all the properties of the population/original dataset. In197
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practice, it will depend on the application needs. In urban and transportation research, the number198

of sequences depends on the size of the populations that we need to synthesize. A sequence is defined199

as a combination of attributes or variables.200

Algorithm 3 describes the adopted procedure for generating combination of attributes from the201

HMM component of HM. Based on the function getDistribution(), the distribution of V1 is ob-202

tained and stored in p. Q stands for the size of the population or the number of observations203

needed. After initializing the variables, we double loop along the columns and rows of A to generate204

sequentially the combination of attributes of the synthetic dataset.205

Algorithm 3 Data sampling

Set Q // Number of observations - size of the dataset

// Returns the density distribution of variable V1
p ← GetDistribution(V1)

// Returns null table of dimensions Q×K+1 to store the set of observations

A ← CreatTable(Q,M)

for j=1 to Q do

γ ← Sample from p

A[j,1] ← γ
for k=1 to K do

// Returns the kth transition table Tk of T
Tk ← GetTransitionTable(k,T)
Sample Vk+1 from Tk = P (Vk+1|Vk) based on Vk (or A[j,k]) and store in A[j,k+1]

end for

end for

2.5. Fitting206

After the sampling, the scaled-up and fused micro-sample is fitted to the target marginal distribu-207

tions to operate the final step of the HM modeling framework. In doing so, an adjusted population/-208

dataset is obtained. Although the cells are updated until the target aggregate marginal distributions209

are fitted, there is no risk of losing the configuration structure of the multi-dimensional table. In210

this regard, Barthelemy & Toint (2013) highlighted that IPF preserves the correlation structure of211

populations based on the odd ratios technique. The preservation of the weights within contingency212

tables is demonstrated in details in Mosteller (1968).213

3. Numerical experiments214

The hierarchical model is tested based on a synthetic dataset of 1,000,000 observations and 8215

random variables with 128, 16, 8, 8, 4, 4, 3 and 2 categories respectively. Data are deliberately het-216

erogeneous and designed in the image of real world situations. In urban and transportation research,217

variables contain multiple categories for representing socio-demographics/transport-related variables.218

The number of categories is even more important if spatial information is included. Therefore, we also219

chose a complex categorical variable with 128 levels. Table 1 presents a detailed statistical description220

of the synthetic dataset.221
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Surveys might be subjected to missing information, e.g. encoding errors during data collection222

or presence of NA/NAN values. This issue is particularly important as the systematic removal of a223

combination of variables because of a missing one may lead to overall changes in terms of variable224

distributions. This aspect has been deeply discussed in Saadi et al. (2016b) by utilizing the survey225

on workforce. Indeed, data synthesis of a higher number of variables would increase the probability226

of finding a higher number of missing values. Saadi et al. (2016b) outlined that for the synthesis227

of three variables, the gender distribution was 49.55% and 50.45% for male and female respectively228

after data cleaning. Regarding the synthesis of 6 variables, the distribution shifted towards 53.97%229

and 46.03% after data cleaning. Furthermore, the synthesis of 6 variables has led to a huge decrease230

in the sample size compared to the original size, i.e. ∆ = −68%. Thus, in the current study, a better231

algorithm has been defined to synthesize any number of attributes based on the original datasets.232

In this regard, performing data cleaning is no longer necessary. Valuable amount of information is233

preserved then.234

Table 1: Statistical description of the synthetic dataset

Variable ID Number of levels Statisttical description
1 128 Truncated normal distribution
2 16 Normal distribution with the following proportions:

1:2% -2:3% -3:4% -4:6%
5:7% -6:8% -7:9% -8:10%
9:10% -10:9% -11:8% -12:7%
13:6% -14:4% -15:3% -16:2%

3 8 Poisson distribution with the following proportions:
1:5% -2:12% -3:18% -4:20%
5:18% -6:14% -7:9% -8:5%

4 8 Poisson distribution with the following proportions:
1:11% -2:19% -3:22% -4:20%
5:14% -6:8% -7:4% -8:2%

5 4 Poisson distribution with the following proportions:
1:15% -2:27% -3:31% -4:27%

6 4 Poisson distribution with the following proportions:
1:10% -2:22% -3:32% -4:36%

7 3 Poisson distribution with the following proportions:
1:8% -2:35% -3:57%

8 2 1:45% -2:55%

In order to underline the influence of the sampling rate on model outputs, five bootstrap samples235

are derived from the original dataset in the following order 10%, 5%, 1%, 0.1% and 0.06%. There is236

no point in considering sampling rates higher than 10%, since such data are typically not available. In237

Section 3.1, we present the practical procedure for model estimation using a single micro-sample and238

all the marginals. The results are compared on the basis of the joint and marginal distributions to239

highlight the performances of HM. In Section 3.2, we illustrate how to fuse multi-source information240

based on another case study considering multiple micro-samples and all the marginal distributions.241

3.1. Model estimation242

To run Algorithms 1 and 2, we identify the positions of the partial matrices Tk based on the243

number of levels (see Table 1). The full transition probability matrix T is of dimension n× n where244
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n = 128 + 16 + 8 + 8 + 4 + 4 + 3 + 2 = 173. The eight variables of the micro-sample are arranged in245

descending order of the number of categories an stored as a matrix of dimension (δ ∗ 1, 000, 000)× 8246

where δ is the sampling rate. We need to compute seven 2-way tables - transition patterns - as 8247

variables are synthesized. T matrix is updated through a sequential read of the transition patterns.248

The values of each variable of Vk and Vk+1 are used as subscripts by Tk for localizing the corresponding249

cell. If NA or NAN values are detected, then the algorithm does not update Tk. Thus, incomplete250

datasets can be used without cleaning procedure as they are implicitly handled by the HM model.251

After estimating T , we run Algorithm 3 to generate a certain number of combination of attributes.252

In this case study, the generated dataset includes 1,000,000 observations to enable a direct comparison253

with the original one, see Table 1. It must be kept in mind that a single micro-sample and all the254

aggregate marginals are available in this case study. V1 is the first random variable which contains255

128 categories. A value between 1 and 128 is sampled based on the weights vector p. Then, we256

loop over the transition patterns to systematically sample the next value based on the corresponding257

two-way table Tk. T includes all the two-way transition tables to sample the next variable from the258

current one, see Algorithm 3.259

In this case study, T is defined by means of 7 two-way tables as 8 variables are handled, i.e.260

T1→128|129→144, T129→144|145→152, T145→152|153→160, T153→160|161→164, T161→164|164→168, T164→168|169→171 and261

T169→171|172→173. Note that T1→128|129→144 is not reported because of its dimensionality 128× 16. The262

dimensions of each single table are associated to the number of categories of two adjacent variables.263

For example, variables 7 and 8 contain 3 and 2 categories, respectively. Thus, T is updated from264

rows 169 to 171 and from columns 172 to 173 using T169→171|172→173 of dimensions 3 × 2. The same265

updating procedure is applied for the rest of the tables using Algorithms 1 and 2. Figure 3 shows266

how the interactions are occurring in-between multiple adjacent variables. As highlighted earlier in267

the paper, the transition patterns are defined as 2-way tables or bi-variate joint distributions. Each268

cell of a table represents the frequency of a combination of two categorical variables within the overall269

number of transitions. For instance, if we consider V5 and V6, then the dimension of the corresponding270

2D table is 4-by-4 and it contains 16 cells.271
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Figure 3: Variable interactions characterized by the probability matrix T , T1→128|129→144, T129→144|145→152,
T145→152|153→160, T153→160|161→164, T161→164|164→168, T164→168|169→171 are respectively associated to the interaction
maps V2 − V3, V3 − V4, V4 − V5, V5 − V6, V6 − V7, V7 − V8

272

The performance of the HM model that has been presented in this paper is compared with273

conventional methods reported in literature. In particular, the HM model is compared to the Direct274

Inflating (DI) approach, in which the sample is replicated multiple times to obtain the final dataset.275

In essence, the DI approach is a basic scaling-up process. A second comparison is made with Iterative276

Proportional Fitting (IPF,) as presented in Beckman et al. (1996). The comparison is made with277

Hidden Markov Models (HMM) (Saadi et al., 2016b).278

Tables 2 and 6 present the marginal errors according to the benchmark methods (DI, IPF, HMM)279

and the new HM approach presented in this paper. One could depict that HM achieves comparable280
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results to that of IPF with quasi-perfect marginals. In contrast, DI and HMM show important281

deviations. Moreover, the evolution of the marginal errors demonstrates that there is a relationship282

between variable dimensionality and importance of the RMSE. Also the RMSE increases if sampling283

rate decreases.284

Table 2: RMSE according to the marginals based on DI, IPF, HMM and HM for a sampling rate of 10%

DI IPF HMM HM
M1 274.36 1.67E-12 281.64 2.48E-11
M2 651.12 4.46E-12 614.60 9.70E-11
M3 937.42 1.03E-11 777.41 1.48E-11
M4 1080.50 1.03E-11 1061.53 0
M5 1419.66 0 1301.56 0
M6 762.06 0 826.85 7.28E-12
M7 651.80 0 283.25 8.42E-12
M8 1954.00 0 2165.00 4.12E-11

Table 3: RMSE according to the marginals based on DI, IPF, HMM and HM for a sampling rate of 5%

DI IPF HMM HM
M1 336.18 2.06E-11 360.05 3.19E-10
M2 785.28 2.50E-11 768.66 2.06E-10
M3 772.67 1.65E-11 799.21 2.53E-11
M4 830.02 1.56E-11 1009.45 1.80E-11
M5 2182.65 3.25E-11 2158.18 3.25E-11
M6 1177.64 3.00E-11 1115.92 0
M7 186.40 0 1037.01 0
M8 464.00 0 242.00 0

Table 4: RMSE according to the marginals based on DI, IPF, HMM and HM for a sampling rate of 1%

DI IPF HMM HM
M1 876.90 1.91E-11 882.35 6.31E-11
M2 3804.71 2.67E-11 3901.08 8.24E-12
M3 3193.39 1.31E-11 3111.55 1.50E-11
M4 2941.89 1.82E-11 2901.29 1.07E-11
M5 2757.62 3.25E-11 3065.11 0
M6 4400.60 2.91E-11 4254.56 3.25E-11
M7 7349.19 3.36E-11 7234.25 3.46E-11
M8 8164.00 8.23E-11 7856.00 0
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Table 5: RMSE according to the marginals based on DI, IPF, HMM and HM for a sampling rate of 0.1%

DI IPF HMM HM
M1 3546.39 1.70E-11 3555.91 2.14E-09
M2 13461.83 1.59E-11 13448.65 1.10E-11
M3 7254.36 2.37E-11 7242.95 1.80E-11
M4 11203.24 1.90E-11 11122.91 1.06E-11
M5 12686.65 4.37E-11 12700.80 1.46E-11
M6 12677.68 2.91E-11 12542.79 0
M7 18078.30 3.36E-11 18499.72 8.40E-12
M8 29264.00 4.12E-11 30059.00 0

Table 6: RMSE according to the marginals based on DI, IPF, HMM and HM for a sampling rate of 0.06%

DI IPF HMM HM
M1 3546.39 1.70E-11 3555.91 2.14E-09
M2 13461.83 1.59E-11 13448.65 1.10E-11
M3 7254.36 2.37E-11 7242.95 1.80E-11
M4 11203.24 1.89E-11 11122.91 1.06E-11
M5 12686.65 4.37E-11 12700.80 1.46E-11
M6 12677.68 2.91E-11 12542.79 0
M7 18078.30 3.36E-11 18499.72 8.40E-12
M8 29264.00 4.11E-11 30059.00 0

In order to investigate the propagation of the error through the HM, Table 7 presents the RMSE285

for different sampling rates based on DI, IPF, HMM and HM. DI means that the bootstrap sample286

has been directly scaled-up and compared to the observed dataset. RMSE of DI and IPF are almost287

equivalent because IPF re-weights the contingency tables with respect to targets while preserving288

the proportions. Thus, even the related errors are preserved. Also, HM and HMM show equivalent289

RMSE’s for the three highest sampling rates. In the case of the extremely small sampling rate,290

i.e. 0.06%, a slight deviation can be observed because of the reweighting procedure enabled by IPF.291

Theoretically the errors of HMM and HM should be exactly the same as highlighted in Section 2, but292

small differences are observed. This can be explained by the fact that at the end of the reweighting of293

the multi-dimensional contingency table, the cell values are rounded. As the later contingency table294

contains a huge number of cells, the cumulation of rounding error leads to a small decrease of the295

errors especially for small sampling rates.296

Table 7: Evolution of the RMSE according to multiple sampling rates and methods

DI IPF HMM HM
10% 0.85 0.85 0.40 0.40
5% 1.23 1.23 0.40 0.40
1% 2.81 2.83 0.40 0.41

0.1% 8.91 10.00 0.45 0.49
0.06% 11.5 13.65 0.49 0.54

Based on the results of Tables 2-6 and 7, we conclude that HM allows the best trade-off as multi-297

variate joint distribution errors are almost preserved as well as those of the marginals. Also, HM is298
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less sensitive to sampling rate variability, i.e. from 10% to 0.06%, as the RMSE increases by +35%.299

When IPF is considered independently, the RMSE increases by +1505.88%. The results reveal that300

the IPF component of HM affects only the marginals but HMM influences the multi-variate joint301

distribution. This can be explained by the fact that the HMM component of HM incorporates more302

heterogeneity into the micro-sample. Indeed, for small sampling rates, some combination of attributes303

are not necessarily covered. This problem is implicitly avoided by HM.304

3.2. Multi-source information fusion305

In this second case study, we suppose that the dataset that we want to synthesize contains the306

same number of variables and variable categories. The only difference is that the variables are included307

within 3 independent datasets in order to illustrate how to perform a multi-source information fusion.308

Table 8 presents the distribution of the variables through the 3 micro-samples (MS) with different309

sampling rates. The sampling rates are deliberately low in order to highlight how efficient is the HM.310

Each single micro-sample contains four variables.311

Table 8: Description of the micro-samples (MS)

MS1 MS2 MS3
M1 ×
M2 × ×
M3 ×
M4 × ×
M5 × ×
M6 ×
M7 ×
M8 × ×
Sampling rate 0.1% 1.0% 2.0%

Based on Table 8, we notice that T1→128|129→144, T129→144|145→152, T145→152|153→160, T153→160|161→164,312

T161→164|164→168, T164→168|169→171 and T169→171|172→173, can be estimated with MS3 (micro-sample 3),313

MS1, MS1, MS3, MS2, MS2, MS2 respectively using Algorithms 1 and 2. In doing so, T is fully314

implemented based on partial micro-samples. Also, multi-source information fusion is made effective.315

The rest of the procedure is similar to what has been described in Section 3.2. Figure 4 presents the316

comparison between the simulated and observed datasets on the basis of the marginals. One could317

depict that HM leads to quasi-perfect marginals regardless of the variable complexity.318

In addition, Figure 5 shows the comparison between the simulated and observed multi-variate joint319

distributions for different combination of variable patterns. There is no risk of under/over-estimation320

as the data points present a good symmetry on both sides of the straight line. Moreover, linear fits (in321

red) and straight lines (in green) are almost systematically overlapped. Slopes are ranging from 0.97322

to 1.00 with extremely small intercepts. Important spread can be observed with respect to patterns323

V1 − V2 − V3, V2 − V3 − V4 and V3 − V4 − V5 because of variable dimensionality. Vi are arranged in324

descending order of number of categories. Thus the combination V1−V2−V3 has the highest number325

of cells. As a result, the density of data points is significant (Figure 5a).326

16



0 50 100 150
0

5000

10000

15000

V
1

F
re

q
u
e
n
c
ie

s

 

 
Data

HM

0 5 10 15 20
0

5

10
x 10

4

V
2

F
re

q
u
e
n
c
ie

s

 

 Data

HM

1 2 3 4 5 6 7 8
0

1

2

3
x 10

5

V
3

F
re

q
u
e

n
c
ie

s

 

 

Data

HM

1 2 3 4 5 6 7 8
0

1

2

3
x 10

5

V
4

F
re

q
u
e

n
c
ie

s

 

 

Data

HM

1 2 3 4
0

1

2

3

4
x 10

5

V
5

F
re

q
u
e
n
c
ie

s

 

 Data

HM

1 2 3 4
0

1

2

3

4
x 10

5

V
6

F
re

q
u
e
n
c
ie

s

 

 

Data

HM

1 2
0

2

4

6
x 10

5

V
8

F
re

q
u
e
n
c
ie

s

 

 

Data

HM

1 2 3
0

2

4

6
x 10

5

V
7

F
re

q
u
e
n
c
ie

s

 

 
Data

HM

Figure 4: Comparison between the simulated and observed marginals
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Figure 5: Comparison between the simulated and observed multi-variate joint distributions

3.3. Implications of the experimental outcomes327

The experimental outcomes presented in the current study may have important implications in328

terms of modeling options. It has been now clearly demonstrated that (a) one should rather use329

a hierarchical procedure to ensure that the dataset is sufficiently accurate regardless the statistical330

indicators used. (b) Micro-samples may suffer from a lack of representativeness as combination of331

attributes with low probability of occurrence may not be captured during data collection. Thus,332
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the HMM component of the HM simultaneously merges multiple datasets in addition to incorpo-333

rating enough heterogeneity to avoid problems related to representativeness or sampling bias. (c)334

The presented framework would make the fusion process more straightforward for researchers and335

practitioners. (d) A major impact in term of expert systems is that the outputs of the HM model336

serve as a basis for a qualitative and quantitative analyses of integrated datasets. In this context, the337

decision-making process can be significantly simplified. Advanced knowledge for extracting important338

information from multiple datasets could be shifted towards a simpler analysis of a unified dataset339

that incorporates all the information and variable interactions.340

3.4. Theoretical comparison341

Table 9 compares HM with HMM and IPF in terms of the strengths and weaknesses based on342

several criteria. Aggregate data, e.g. populations age and gender distributions, are reliable and ex-343

tremely stable. Disaggregate data, e.g. household travel surveys, provide detailed information about344

people, but are generally subjected to small sampling rates leading to a serious lack of represen-345

tativity. HM clearly provides the best trade-off compared to the conventional IPF and the recent346

HMM-based approach.347

IPF HMM HM
Use of aggregate data Yes Partial Yes
Use of disaggregate data Partial Yes Yes
Quasi-perfect marginal distributions Yes No Yes
Accurate multivariate joint distribution No Yes Yes
Information fusion Partial Partial Full

Table 9: Comparison between IPF, HMM and HM

4. Conclusions348

In urban and transportation research, key information about agents, i.e. households or individuals,349

is often included within a wide range of small and independent datasets. To combine the information350

from these independent datasets, we presented a hierarchical model (HM) for (i) allowing multi-source351

information fusion and (ii) achieving higher prediction accuracies.352

Based on the results highlighted in Section 3, the strengths of the proposed research can be353

formulated as follows:354

• HM provides the best trade-off in terms of RMSE minimization, when marginals and joint355

distributions are simultaneously compared. This can be explained by the fact that the principal356

key features of IPF and HMM are combined within a single unified framework.357

• Multiple micro-samples and aggregate marginals can be integrated within HM for allowing358

multi-source information fusion. Also HM shows a lot of flexibility in terms of data availability.359

We mentioned that a partial set of marginals can be used if there is absolutely no data.360

• HM is extremely competitive and relatively robust with respect to sampling rate variability.361

This means that with a sampling rate of only 1%, it is possible to achieve results which are362

almost comparable to a HM calibrated with a micro-sample of 10%. Several applications within363

the field of urban and transportation research assume sampling rates which are around 1% using364

standard methods, i.e. IPF. But the results presented in Table 7 show that with IPF, a still365
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commonly used method, the RMSE is equal to 13.65. In this context, HM emerges as a far366

better alternative for mitigating the error in micro-simulation.367

Besides, further research is needed to overcome weaknesses of the proposed research method:368

• Generalizing the method for handling a wide range of input data format is an important issue.369

A systematic expert system procedure could be more efficient to enable intelligent data fusion370

strategies. Indeed, although the developed fusion method provides interesting results, further371

methodological improvements can be integrated within the modeling framework to make it372

more universal. At this point, surveys and aggregate-based data are handled by the HM.373

However, fusing the current data format with other types of data, e.g. panel data, GPS traces374

of individuals, trip data is still a key challenge.375

• The integration of a feature that allows for multi-level data fusion should be investigated.376

For example, in transportation research, decision-making process can be explained at both377

household and individual levels. Household data is more aggregated than individual level data.378

• To extend the use of the current method within other research fields, additional efforts are379

needed to ensure that HM is relatively robust to scalability, referred to as the number of380

variables that should be synthesized. In this regard, an important issue raises up regarding the381

interaction between scalability and the increase of heterogeneity. Is there a risk of getting a382

reverse effect?383
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