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Abstract

Active particles, and more generally active matter, are known for their ability to
move in a given medium by harnessing energy in their surrounding or by carrying
their own energy reservoir. A large field of interest regarding active particles is
their collective behaviour due to the interactions between individual components
of the active system. Examples can be found in biology, medicine, microfluidic or
chemistry. In this thesis, the role of individuals in active matter is investigated
in two peculiar systems: walking droplets and magnetocapillary microswimmers.
Each system lies at an liquid-air interface and relies on the deformation of the
liquid surface in their dynamics.

Walking droplets are known to propel themselves thanks to the standing capillary
waves they generate at each impact on the liquid interface. The persistence time
of those waves can be controlled which allows to keep images of the droplet on
the interface and to alter the particle motion. This is the memory of the walking
droplets. Changing this persistence time allows to change the number of images
of the droplet and to explore different dynamics. The limit of extremely large
persistence time is considered in this manuscript. In free space, this unique wave
memory dynamics allows to generate the first example of deterministic run and
tumble dynamics widely encountered in biology. This behaviour finds its origin
in the wavefield which traps temporarily the walking droplets. The properties of
this run and tumble dynamics are shown to by directly related to the memory
stored in the wavefield. If placed in an harmonic potential, the walking droplet
is forced to continuously interact with this own wavefield. It is shown that the
waves self-organise. In this case, the energy stored in the wavefield mimics an
equipartition of energy as well as a minimisation principle.

Magnetocapillary microswimmers use the liquid interface in order to self-assemble
and the liquid underneath in order to move thanks to hydrodynamic interac-
tions and non-reciprocal deformation. This thesis models two different exper-
imental microswimmers: the linear microswimmer better known as the Najafi-
Golestanian microswimmer and the triangular magnetocapillary microswimmer.
In each case, the non-reciprocal deformation required for the swimming dynam-
ics is at the centre of the discussion. For the linear structure, non-reciprocity is
produced by breaking the spatial symmetry of the swimmer. We also discuss
the importance of the particles inertia in this low Reynolds dynamics. For the tri-
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angular structure, a new swimming mechanism is highlighted where the particles
rotation and the structure deformation act cooperatively to generate the trans-
lation of the swimmer along the interface. This findings constitute the first step
towards the modelisation of larger structures and more efficient swimmers for
application in microfluidic.
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Résumé

Les particules actives, où plus généralement la matière active, sont connues pour
leur capacité à se déplacer en puisant de l’énergie dans leur milieu environnant
ou bien en portant avec elles leur propre réservoir d’énergie. L’une des sources
principales d’intérêt concernant les particules actives est leur comportement col-
lectif, dû aux interactions entre les individus constituant la matière active. De
nombreux exemples peuvent être donn’es allant de la biologie à la médecine,
en passant par la microfluidique et la chimie. Dans cette thèse, le rôle des indi-
vidus dans la dynamique de la collectivité est étudié au sein de deux systèmes:
Les gouttes marcheuses et les micronageurs magnétocapillaires. Chacun de ces
systèmes se déplace à une interface liquide/air et utilise la déformation qu’ils y
induisent dans leur dynamique.

Les gouttes marcheuses se déplacent grâce aux ondes stationnaires d’origine capil-
laire qu’elles laissent sur la surface liquide à chacun de leur impact. Le temps de
persistance de ces ondes est contrôlable et permet de garder sur la surface des
“images” de la goutte sous forme de sources d’ondes. Ces ondes ont la pro-
priété d’altérer la dynamique de marche de la goutte. Le nombre d’images est
directement relié au temps de persistance de ces ondes et leur nombre permet
d’explorer diverses dynamiques inédites. Il s’agit de la mémoire de la goutte, en-
codée sur l’interface. La limite d’un large temps de persistance, et donc d’un large
nombre d’images, est au cœur de ce manuscrit. Dans un premier temps, l’accent
est mis sur la dynamique en espace libre, où la goutte marcheuse produit une
dynamique dite de “run and tumble”, que l’on retrouve essentiellement en biolo-
gie et qui ici trouve sa source dans le piège temporaire que forment les ondes
sous la goutte lors de son déplacement. Contrairement aux études existantes, les
gouttes marcheurses constituent le premier exemple de “run and tumble” déter-
ministe dont les propriétés sont directement reliées à la mémoire de la goutte.
Ensuite, l’accent est mis sur la dynamique en espace confiné. Dans ce cas, les
ondes sur la surface s’auto-organisent afin de reproduire une équipartition de
l’énergie stockée dans l’interface ainsi qu’une principe de minimisation global de
cette énergie.

Les nageurs magnétocapillaires utilisent la déformation de l’interface comme un
moyen de s’auto-organiser. De plus le liquide sous l’interface est utilisé pour trans-
mettre les interactions hydrodynamiques entre chaque composant du nageur. Les
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recherches présentées dans ce manuscrit cherchent à modéliser deux systèmes
différents: le nageur de Najafi et Golestanian, de structure linéaire, et le nageur
triangulaire. Dans chaque cas, la condition de déformation non-réciproque nécés-
saire à la nage est au coeur de la discussion. Dans le premier système, cette con-
dition est remplie en brisant la symétrie spatiale du nageur. Les effets de l’inertie
des particules sont aussi mis en avant. Dans le second système, la nage de la
structure est possible grâce à un mouvement de balancier du centre de masse dû
à la déformation de la structure et à la rotation individuelle de chaque bille. C’est
ce mouvement coopératif au sein de la structure qui est responsable de la nage.
Les recherches présentées dans ce manuscrit constituent le premier pas vers la
modélistion de structures plus complexes et plus efficaces pour des applications
en microfluidique.
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1
Introduction

An active particle is characterised by its ability to drive itself far from equilibrium
[7], either by carrying its own energy reservoir or by harvesting energy from its sur-
rounding. As a result the active particle is able to move in its environment without
external forces, contrarily to passive particles which rely on external potentials.
Nature provides countless examples of active systems. The more intuitive are
humans themselves. We harvest energy through the air we breath, the food we
ingest and the water we drink. We store this energy into glucose and fat thanks
to our organs. And finally, we use this energy by burning ATP when walking or
running through muscular contraction. In this everyday example, our movement
is possible due to the friction between our feet and the ground, allowing us to
walk around. For animals, other moving strategies have been developed. Some
birds and insects flap their wings and fly in the sky by propelling the air behind, re-
lying only on gravity when decreasing their altitude [177, 163, 26, 164]. This flying
dynamics is a direct consequence of Newton’s third law of motion. By pushing
the air downwards, the bird moves upwards by conservation of momentum. Still
in the animal reign, fishes, aquatic mammals and cetaceans swim in rivers, seas
and oceans by displacing water along their bodies. Basically, the strategy is the
same as the one used by birds. Water is pushed backwards and the swimmer
moves forwards [65]. Many dynamics can be observed depending on the fish
morphology [161]. Other techniques can be found for water-walking arthropods
or larvae. They can move at an interface by generating vortices thanks to their
legs [84] or deform the interface and use capillary interactions to generate thrust
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[83]. When looking at smaller scale, previously presented techniques may lose
their efficiency and new ones are necessary. This is the case for micro-organisms
such as bacteria or spermatozoon when swimming in biological fluids. Because
of the important dissipation induced by viscosity at such scales, pushing water
backwards does not provide significant thrust [149]. As a consequence, in order
to swim, new strategies are developed. Bacteria such as Escherichia coli rotates
an helical stiff flagellum for propulsion [10] while spermatozoon of most species
use the whip-like motion of a flexible filament [107, 72]. Finally, the cellular and
molecular level offers some examples. Cells use actin-myosin molecular motor
for motion [108] and interactions between bacterial pathogen and actin filaments
have also been observed [167]. Finally, enzymes processing DNA and RNA slide
along the strands using the chemical energy associated to the polymerization pro-
cess [78]. This list is certainly non-exhaustive but aims at giving an overview of
the richness of the examples found in Nature.

Beyond biology, artificial active systems have been engineered. Transport tech-
nologies give the most intuitive examples and find their roots almost two centuries
ago when thermodynamics emerged and first allowed for the transformation of
fuel into mechanical work. Nowadays, robotics aims at developing always more
efficient autonomous moving robots. Biomimetism gives clues about their realisa-
tion by getting inspiration from nature. Some of those robots aim at mimicking
birds [66, 133, 30], sea serpents [34] or water striders [85]. At much smaller scale,
self-propelled and autonomous systems constitute a major source of interest be-
cause of their potential applications in medicine and pharmaceutical engineering,
from biohybrid systems assisting fertilisation and drug delivery [116, 115, 191] to
fully artificial systems aiming at capturing and transporting pathogens [23, 126] and
detect neurotoxins in liquid thanks to micromotors [166]. Numerous questions
can be raised about their efficiency, their propulsion mechanism and the control
one has on their motion. As a consequence, numerous models, either theoret-
ical and experimental, aim at understanding the behaviour of active particles in
hope of developing more efficient technologies. Some researches focus on Janus
micromotors, particles with two or more distinct chemical or physical properties
[7]. They have the ability to move thanks to light-triggered electrophoresis [102]
or thanks to catalytic reactions in hydrogen peroxide H2O2 with partial platinum
coating [62, 17]. For the sake of control, external fields are usually used to trig
the self-propulsion. Those techniques can be sonic, electric or magnetic [186].
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At the intersection between biology and technology, biohybrid microswimmer
are designed. One can cite Dreyfus’ microswimmer, made of a chain of magnetic
colloids linked with DNA and attached to a red blood cell [45] or Nawroth’s
jellyfish made of rat cardiomyocytes and PDMS [125]. Beyond medical and bio-
logical applications, active particles are also observed when a system manages to
harness energy from a mechanical vibration or from a field oscillation. For exam-
ple, vibrobots achieve to move horizontally along a vertically shaken solid surface
thanks to the deformation of their inclined “legs” [159]. Vertically vibrated disks
with two “legs” of different materials have been seen to move horizontally using
the different frictions and elastic deformations of those legs [41, 40]. The key for
such a motion is the polar asymmetry of the particle which can be achieved by
different means [192]. When dealing with liquid surface, the vertical shaking can
sustain waves an active particle can use. This is the case of walking droplets which
move by bouncing above the interface, propelled by the waves they create after
successive impacts [33]. For a floating droplet, surface waves can be triggered on
its surface therefore being propelled along the interface [49].

But one of the greatest interest about active particles is their collective dynam-
ics. Many collective behaviours can be observed in nature such as flocks of birds
[144, 193], schools of fishes [6, 187] or swarms of insects [5, 38, 13] and bacteria
[79, 190, 81]. The phenomenon of active turbulence has been observed with
microtubules [169] and with bacteria [118, 43, 39]. Spontaneous pattern forma-
tion arises with chemotactic bacteria [18]. One could also cite the observation of
crystal structures using Thiovulum majus [140], an extremely fast moving bacteria
or phase transition in 2D biofilms [184]. When dealing with motor proteins and
solutions of actin filaments, pattern formation can also be seen [157, 96]. With hu-
mans, interactions between individuals lead to interesting questions about crowd
motion [90] or the dynamics in traffic jam [95]. A more exhaustive review of
collective behaviours in nature can be found in [181, 113]. Away from biologi-
cal examples, artificial active systems also display collective dynamics. Vibrobots
are able to produce self-organisation [159] and crystallisation [16]. Janus particles
produce clusters despite their active nature [22, 70, 175]. Finally, mixing biologial
materials and engineering, bacteria are used to powered micromotor in order to
harness energy from their self-propulsion [183] A review about active systems
collective dynamics can be found in [7].
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Figure 1.1: Overview of the richness of behaviours observed in active matter as a function of the
number of individuals in the system. The systems considered in this manuscript are indicated with
boxes. The specific dynamics considered in each chapter is highlighted in bold characters.
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In such systems, individuals and interactions between individuals have a deep influ-
ence on the dynamics of the collectivity. Indeed, in schools of fishes, it has been
shown experimentally using three-spine sticklebacks that the information about
a threat or an obstacle propagates inside the school through quorum decision-
making [187]. Another example is the collective motion in plagues of locusts. The
driving mechanism in this case is the cannibalistic interactions between individuals
[5]. Basically, a locust wants to feed on the preceding locust in the plague while
running away from the following one. This highly inspiring driving mechanism re-
sults in migratory bands in the plague. If considering vibrobots [159], when put
alone on a vibrated solid surface it only rotates and does not translate. But when
another vibrobot is placed next to it, a translation of the pair can be seen as a
result of their mutual interaction. Walking droplets also rely in the vibration of
the liquid surface in order to achieve propulsion [33]. The vibration sustains the
waves resulting from the impacts of the droplet. The result is many images of
droplet kept on the interface [52] in the form of wave sources which drive it
along the interface. Increasing the number of those images generates complex
trajectories [139] and even chaotic dynamics [138]. Finally, as a last example,
when dealing with swimming dynamics at very small scale, interaction between
many individuals is often used as a way to circumvent the highly restricting scallop
theorem. This is the case of magnetocapillary swimmers made of floating beads
on liquid interface [111, 77, 75, 124, 71]. A brief overview of the behaviours ob-
served in active matter as a function of the number of individuals in given in Fig.1.1

In this manuscript, the question we raise is how to generate an active propulsive
mechanism from the collective interaction between passive individuals at an inter-
face? To investigate this question, we will consider two distinct systems: walk-
ing droplets [33] and magnetocapillary microswimmers [77]. Both systems have
been shown to be able to move along an air-liquid interface when increasing the
amount of individuals in the dynamics. The investigation run through this thesis is
essentially based on numerical simulations and theory.

This manuscript is structured as follows. The first part is dedicated to the walk-
ing droplet dynamics. We explore the dynamics in the case of a large amount
of individuals on the interface both in free space and in confining potentials. A
short state of the art is given before investigating each geometry. The second
part is dedicated to the magnetocapillary swimmer dynamics and investigates the
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cooperative dynamics of the individuals on the interface in order to achieve a
swimming dynamics. Both free space and confining potentials are considered in
order to evidence different propulsion mechanisms. Before giving the result of
the analysis, the state of the art is given. The last chapter of this manuscript gives
the conclusions of this work and possible perspectives.
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Part I

Walking droplets
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2
State of the art

In recent years, an experiment has attracted lots of attention because of its peculiar dy-
namics mimicking behaviours usually found in quantummechanics: the walking droplet
experiment [19, 20]. The droplets involved in that study possess an unusual property.
Their motion along an oscillating liquid surface is due to their interaction with the waves
they create after each impact. Meanwhile, the waves sense the environment and al-
low the droplets to react to the presence of obstacles while moving. This symbiosis can
be seen as a macroscopic wave-particle duality [147] and has led to the observation
of numerous dynamics usually expected in the quantum world. As a few examples,
let us cite the diffraction of particles [31, 46, 1, 148], the tunnel effect [51, 88, 123],
the quantification of orbits in confined area and potentials [59, 128, 130], the quan-
tification of observables [139, 104, 100] or even the intermittent dynamics between
eigenstates in confining potentials [138, 100].

2.1 The bouncing droplet experiment

The walking droplets experiment was originally conceived by Couder and his co-
workers in order to prevent the coalescence of oil droplets in an oil reservoir [32].
The key idea is to shake the reservoir vertically. Thanks to the air layer between
the droplet and the oil bath during impact, the drop bounce for a long time
(typically minutes to hours) onto the surface. The air layer, by lubrication, exerts
an upward force which can prevent coalescence. The vibration, if sufficiently
strong, allows for the regeneration of the air layer between impacts, keeping the
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A,fA,f

Figure 2.1: (top) Diagram of the bouncing droplet experiment. An oil droplet bounces onto an oil
bath vertically shaken with an amplitude A and a frequency f . (bottom) Snapshots of the bouncing
droplet dynamics. The oil droplet never touches the surface underneath (oscillating black area)
thanks to the air layer in between. The air layer is not visible here given its small thickness oscillating
between 100 nm up to 10 µm [172]. The droplet has a radius a = 0.76 mm, a kinematic viscosity
ν = 5 cSt while bouncing on a bath of kinematic viscosity ν = 1000 cSt oscillating at f = 50 Hz.
Credit: Damien Robert, ULiege.

bouncing dynamics going. A schematic of the experiment is given in Fig.2.1 as
well as an experimental snapshot of one period of the bouncing dynamics. The
strength of the vibration is measured through its dimensionless acceleration noted
Γ, which is defined by

Γ =
4π2Af2

g
, (2.1)

where A and f are the sinusoidal vibration amplitude and frequency, g measures
the gravity acceleration. One usually notes by γ = 4π2Af2 the surface accelera-
tion. In order to get some intuition, let us discuss the case of a completely inelastic
ball. It would bounce continuously only if Γ > 1 [69], since no energy restoration
is considered in this model. This condition corresponds to a surface acceleration
4π2Af2 greater than the gravity g. In this case, the ball cannot follow the surface
motion because of gravity, the latter “falling down” with higher acceleration.

The case of the bouncing droplets dynamics is more complex to describe since the
deformation of both the droplet and the oil surface has to be taken into account.
The importance of deformations in the bouncing dynamics is quantified through
the Ohnesorge number Oh [173, 89]. This number measures the importance of
the viscous damping of oscillations relative to their restoring forces, namely inertia
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and capillarity

Oh =
η

√
ργa

= ν

√
ρ

σa
, (2.2)

where η is the fluid dynamic viscosity, ν is the kinematic viscosity, σ is the fluid-air
surface tension and a is the typical length scale of the dynamics. Typically, when
considering the droplet one chooses its radius while, when considering the sur-
face one chooses the radius of the impact area. Ohnesorge numbers lesser than
one (Oh ≪ 1) corresponds to important oscillations of the system where elastic
energy storage might affect the dynamics .This limit corresponds to large droplets
with low viscosity, large density and surface tension. This is the case depicted in
Fig.2.1. On the contrary, Ohnesorge numbers greater than one (Oh ≫ 1) lead
to dynamics where deformations can be neglected. This case is usually found for
highly viscous and small drops whose density and surface tension are relatively
small.

Large Ohnesorge numbers for both the droplet and the bath (Ohdrop ≫ 1 and
Ohbath ≫ 1) correspond to the first experiments on bouncing droplets [32]. The
case of deformable drops on rigid surface (Ohdrop ≪ 1 and Ohbath ≫ 1) leads
to the investigation of the droplet modes of deformation [44]. This regime also
leads to the observation of resonant and antiresonant behaviours in the droplet
bouncing dynamics [87]. This study allows the design of band-pass and band-stop
filter selecting or suppressing a given size of droplet [89]. Finally, this regime leads
to the observation of oil-water emulsions thanks to the bouncing dynamics and
without contact from a external body [174]. The case of rigid droplets on de-
formable surface (Ohdrop ≫ 1 and Ohbath ≪ 1) is the one leading to walking
droplets.

Let us focus on this last regime. It has been studied by Couder and co-workers
[147] and later intensively characterized by Bush and co-workers [189, 121, 122,
20]. Some observations can be made. The coalescence can be avoided for Γ < 1

as seen around a = 0.4 mm, contrarily to the completely inelastic ball because of
the energy stored in the surface deformation. Above this coalescence threshold,
it appears that different bouncing modes are encountered in the experiments as
a function of the droplet radius a and the dimensionless acceleration Γ. A sum-
mary of their experimental investigation is given in Fig.2.2. For the lowest values
of Γ, the coalescence of the droplets is always observed (black shaded area). For

33



Figure 2.2: (Top) Experimental bouncing diagram showing the bouncing dynamics of a droplet of
radius a = R0 for a dimensionless acceleration Γ. For this figure, the forcing frequency f is set to
60Hz. The droplet and bath viscosity is ν = 50 cSt. Each colour of the figure corresponds to a
different dynamics. (Bottom) Spatio-temporal diagram illustrating the (2, 1)-bouncing mode. The
upper curve corresponds to the droplet while the lower curve corresponds to the shadow it casts.
One sees that the droplet bounces once while the surface oscillates twice. Diagram taken from
[121]. Spatio-temporal diagram taken from [189].

higher acceleration, (m,n)-modes are reported. An (m,n)-mode corresponds
to n different bounces of the droplet while the surface oscillates m times. After
p = LCM(m,n) surface periods of oscillation, LCM being the Least Common
Multiple of m and n, the dynamics repeats. For example, the (2, 1)-mode cor-
responds to one bounce of the droplet meanwhile the surface oscillates twice.
The bouncing period is therefore twice the forcing period of the interface. This
mode is illustrated at the bottom of Fig.2.2. For the highest values of Γ, the Fara-
day instability is observed (purple shaded area). This instability, which leads to
the spontaneous formation of standing waves on the liquid surface, is discussed
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Figure 2.3: Side view of the Faraday instability. In this case, the instability shows a square symmetry.
Credit: Lucie Domino, ESPCI.

in the next section. Between the (2, 1)-mode and the Faraday instability lies the
walking regimeWalk. Other dynamics are also observed, such as a chaotic bounc-
ing (chaos) resulting from a Period Doubling Cascade (PDC) [173] or intermittent
walking dynamics (int). Those regimes are not of interest in the present discussion.
Similar diagrams for other forcing frequencies can be found in [122].

One can observe from Fig.2.2 that the walking regime occurs near the Faraday
instability. Indeed, bouncing droplets harness energy from the interface through
Faraday waves emitted below the instability threshold to become walking droplets.
The coupling mechanism between the droplet and the waves will be discussed
after a short introduction to the Faraday instability.

2.2 The Faraday instability

The Faraday instability, first reported by Michael Faraday in 1831 [54], arises when
a liquid surface is vertically shaken up to a threshold acceleration ΓF . The result
of this instability is the spontaneous formation of a sustained pattern of standing
waves. The symmetry of the pattern is fixed by the geometry of the tank contain-
ing the liquid and also by the forcing acceleration [9]. An example of this instability
is given in Fig.2.3.

Benjamin and Ursell [9] suggested a model for which the wave amplitude ζ(x, y, t)
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can be decomposed among a family of orthogonal eigenfunctions ζm(x, y) with

ζ(x, y, t) =

∞∑
m=0

am(t)ζm(x, y). (2.3)

The orthogonal eigenfunctions ζm(x, y) are chosen by the boundary conditions
of the problem. As studied by Kumar [99], for fluid of low viscosity and infinite fluid
depth, in the linear regime the amplitude am(t) can be described by a damped
angular Mathieu equation

äm + 2νk2ȧm + ω2
0

(
1 +

γk

ω2
0

cos (2πft)

)
am = 0, (2.4)

with the dispersion relation for gravito-capillary waves reading

ω2
0 = (2πf0)

2 = gk +
σ

ρ
k3, (2.5)

where k is the wavenumber associated to the mode ζm(x, y). The stability of
each mode has been studied analytically in [99] and depends on the value of γ .
The least stable mode, i.e. the one which appears first as the forcing acceleration
γ is increased, is the sub-harmonic mode fF = f/2. Using Eq.(2.5), the Faraday
frequency fF gives a wavenumber kF = 2π/λF . The instability threshold for
the least stable mode can be studied via Floquet analysis or via the two variables
expansion method. It gives

ΓF =
2

gk

√(
ω2
0 −

1

4
(2πf)2

)2

+ (2πνk2f)2. (2.6)

Therefore, for Γ < ΓF , the liquid surface remains still despite the vertical oscil-
lation. For Γ slightly above ΓF , the surface deforms and standing waves appear
spontaneously on the interface. The pattern of standing waves corresponds to
the least stable mode fixed by Eq.(2.4), whose symmetry is given by the bound-
ary conditions. For Γ largely above ΓF , multiple modes are triggered and a
chaotic behaviour is expected. This last regime will not be discussed further in
this manuscript.
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2.3 From bouncing to walking

The relation between the Faraday instability and the bouncing dynamics comes
from the resonance between each phenomenon [33]. Indeed, looking at Fig.2.2,
one observes that close to the Faraday instability the droplet can bounce once dur-
ing two oscillations, i.e. the (2, 1)-mode, depending on its size. In other words, in
this case, the bouncing frequency is half of the oscillation frequency and therefore
matches the Faraday frequency fF = 1/τF = 1/2f . As a consequence, Faraday
waves are triggered locally and below the theoretical threshold given by Eq.(2.6).
Because the instability described by Eq.(2.4) corresponds to a Hopf supercritical
bifurcation [52], perturbations of the interface triggered below the threshold, i.e.
for Γ < ΓF , decay over a time τM ∝ τF / (ΓF − Γ). Note that this time can
be significantly greater than the typical viscous time τV ∝ 1/2νk2 arising from
Eq.(2.4). This property allows the global wave field to reach high amplitudes since
the damping time τM can be extremely large compared to the bouncing time τF .

Finally, since the walkers sense their environment with their wavefield [31, 51], let
us focus on its shape. In the case of walking droplets in large tanks, the emitted
waves are cylindrical waves, as studied intensively by Eddi et al. in [52]. They
considered the wavefield generated by the single impact of a steel bead on the
liquid interface for different values of Γ below the threshold. In this case, standing
cylindrical waves were observed within a circle defined by the initial propagating
wave front due to the impact. As expected and as already discussed above,
when the interface is shaken vertically the standing waves created by the impact
last longer. From all those observations, they model the wave created by a single
impact ζi at position r⃗i and time ti as

ζi (r⃗, t; r⃗i, ti) =ζ0 cos (2πfF (t− ti)) J0 (kF |r⃗ − r⃗i|)

× exp

(
− t− ti

τM

)
exp

(
−|r⃗ − r⃗i|

δ

)
, (2.7)

where ζ0 is the amplitude of the wave. The second factor accounts for the tem-
poral oscillation of the wave. The third factor corresponds to the wave shape,
here given by a cylindrical Bessel function of the first kind and zeroth order. The
fourth factor is the temporal decrease of the wave amplitude linked to the thresh-
old proximity. Finally, the last factor accounts for an empirical additional decrease
of the wavefield with the distance from the wave source. This decrease is charac-
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terized by the coefficient δ and was measured in some experiments [52]. Since
the bouncing dynamics is periodic, the factor cos (2πfF (t− ti)) is expected to
always have the same value during the experiment. As a consequence, one usually
drops this factor, defining ζ ′0 = ζ0 cos (2πfF (t− ti)). For the sake of simplicity,
the prime will be removed throughout this manuscript so that no misunderstand-
ing occurs. The global wavefield made of the contribution of N impacts on the
surface therefore writes

ζ(r⃗, t) =
N∑
i=1

ζ0J0 (kF |r⃗ − r⃗i|) exp
(
− t− ti

τM

)
exp

(
−|r⃗ − r⃗i|

δ

)
. (2.8)

This expression is said to be a stroboscopic description of the wavefield since it
considers periodic successive instants of the dynamics.

Let us now focus on the walking mechanism. The amplitude of the global wave
field is the key parameter that leads the dynamics from purely vertical to vertical
and horizontal. This assertion can be proved via a simple model inspired by
Protière et al. [147]. The droplet gets a kick of momentum coming from the
slope of the emitted waves. Expressed as a force, this effect reads

F⃗w = −C∇⃗ζ(r⃗, t), (2.9)

where C is a coupling constant which measures the intensity of the kick. There-
fore, one can write down a Newton’s equation for the droplet horizontal motion

m⃗̇v + βv⃗ + C∇⃗ζ(r⃗, t) = 0, (2.10)

wherem is the droplet mass and β is a viscous damping coming from the friction
between the droplet and the underlying air layer during impacts. Let us assume
the droplet at the origin of the reference frame and assume a perturbation r⃗ of
this position. All the previous impacts being located at the origin, the wavefield
underneath the droplet writes

ζ(r⃗) =
N∑
i=1

ζ0J0 (kF |r⃗|) exp
(
−i τF
τM

)
exp

(
−|r⃗|
δ

)
. (2.11)

The sum in this expression runs over all previous impacts. Without any loss of
generality, one can assume δ → ∞ and N → ∞ and obtains for the wavefield
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gradient

∇⃗ζ(r⃗) = − ζ0kF

1− exp
(
− τF

τM

)J1 (kF |r⃗|) r⃗

|r⃗|
. (2.12)

Finally, assuming a stationary speed, i.e. ⃗̇v = 0⃗, and a motion along a straight line
r⃗ = v⃗τF , one has the following transcendental equation

|v⃗| = C

β

ζ0kF(
1− exp

(
− τF

τM

))J1 (kF τF |v⃗|) . (2.13)

This equation shows a pitchfork bifurcation with the parameter τM . This equation
has two solutions depending on the amplitude of the right-hand size prefactor as
shown in Fig.2.4. On the one hand, for τM ≪ τM,c the stable solution is |v⃗| = 0

(dashed purple line). On the other hand, for τM ≫ τM,c, the zero-speed solution
becomes unstable and one has, as the stable solution (plain orange line),

kF τF |v⃗| ≃ 2
√
2

√√√√
1−

2β
(
1− exp

(
− τF

τM

))
Cζ0k2F τF

. (2.14)

For this expression, the expansion J1 (kF τF |v⃗|) = kF τF |v⃗|/2 + O(kF τF |v⃗|)3

was used. A finite value to the spatial damping δ only smooths the bifurcation
and decreases the equilibrium speed for a given value of τM . As a consequence
of this bifurcation, the walking droplet begins to move along a straight line, only
interrupted because of obstacles and external potentials.

One has a unique object to deal with. On the one hand, the walker can move
horizontally along the interface thanks to the wave it creates by its successive
impacts. The self-propulsion and the droplet energy harvest come from the sus-
tained vertical vibration of the liquid surface. On the other hand, the wave shape
is dictated by the geometry of the walker environment which allows to react to
the presence of obstacles. This property is usually described as a macroscopic
wave-particle duality [147]. A picture of a walker is given in Fig.2.5. The wavefield
in the form of a horseshoe can be seen before the droplet.
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Figure 2.4: Illustration of Eq.(2.13) and the associated pitchfork bifurcation. The dashed and plain
lines account to the function (1− exp (−τF /τM )) kF τF |v⃗| for τM/τF = 5 (purple dotted line)
and τM/τF = 25 (orange plain line). The blue dotted curve corresponds to C′J1(kF τF |v⃗|)
where C′ = Cζ0k

2
F τF /β has been set to C′ = 0.2. For τM/τF = 5 the blue dotted curve

is only intercepted once which corresponds to the stable solution |v⃗| = 0. For τM/τF = 25
the blue dotted curve is intercepted twice. The previously stable solution |v⃗| = 0 has become
unstable. The second intersection at kF τF |v⃗| ≃ 2.5 is the new stable solution. It changes with
the value of τM/τF .

Figure 2.5:Walking droplet and its associated wave field. The waves are generated by the droplet
by its successive impacts which are sustained by the oscillation of the surface. In return, the waves
propel the droplets. Credit: Boris Filoux, ULiege.

2.4 Modelling the wavefield

Note that the shape of the wave field has been discussed in some studies. The
wavefield description in Eq.(2.8) has been obtained from experimental investiga-
tion in free space by Eddi et al in [52]. In another study, in order to consider
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obstacles and other geometries, Dubertrand et al [46] suggested to describe the
walker global wavefield with Green functions, more specifically their imaginary
part. In their framework, the wavefield due to a single impact is given by the
differential equation (

∇2 + k2F
)
G (r⃗, r⃗i) = δ (r⃗ − r⃗i) , (2.15)

and the field by
ζi(r⃗) = −4ζ0ImG (r⃗, r⃗i) . (2.16)

In Eq.(2.15), δ (r⃗ − r⃗i) is the Dirac delta and accounts for a single impact at
position r⃗i and G is the Green function. The differential operator

(
∇2 + k2F

)
selects only waves with a wavenumber k = kF . They justify their hypothesis by
considering the wavefield generated a single impact in free space and comparing
this result to their model. They obtain

G (r⃗, r⃗i) = −H
(1)
0 (kF |r⃗ − r⃗i|)

4i
. (2.17)

The function H(1)
0 = J0 + iY0 is the Hankel function of first kind and zeroth

order. When taking the imaginary part of this solution, one finds back the wave-
field observed by Eddi et al., namely cylindrical bessel functions. This approach
has the great advantage to take into account the geometry of the experimental
setup while being theoretically tractable in many situations. As a first example, in
their article the authors considered the motion of walker through a single slit. The
wavefield in this geometry is shown in Fig.2.6(a) in the case of Neumann boundary
condition. In this case, the Green function is expressed with angular and radial
Mathieu functions, usually encountered in situation showing an elliptical symme-
try such as the single slit. This method gives the complex interference pattern
before the slit, which gives rise to the scattering dynamics discussed in [46]. As a
second example, one can focus on the wave pattern generated by the interaction
with a semi-infinite line as depicted in Fig.2.6(b). Once again, one observes that
interference pattern before the line as well as a shadow region beyond the line
are produced by the model.

Other models have been proposed for the wavefield description. Oza et al sug-
gested a continuous model based on an integro-differential equation [129]. The
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Figure 2.6: Wavefield generated by a single impact at coordinate (x0, y0) = (−λF ,−3λF ) on
a liquid surface based on the model of Dubertrand et al. (Left) Interaction with a single slit using
Neumann boundary condition. The wavefield is obtained using the algorithm presented in [86]
(Right) Interaction with a semi-infinite line with Neumann boundary condition. In each case, shadow
regions are observed behind the obstacles while complex interference patterns arise before them.

wavefield is not only created by the successive impacts on the surface but inte-
grated over the whole trajectory. This model has been the subject of intensive
studies for its calibration [121, 122]. Another numerical model, suggested by
Milewski et al. [119, 47], describes the waves directly through the Navier-Stokes
equations. All models were shown to be able to reproduce experimental findings.

2.5 Path memory driven dynamics

Once a droplet is set into motion, the liquid surface keeps trace of the past trajec-
tory of the particle. Indeed, all previous impacts generate standing waves which
alter the long term dynamics, as seen from Eq.(2.11). This property is named
the wave-memory of the walking droplet. Furthermore, the ratio τM/τF = Me

is called the memory. This quantity measures the number of previous impacts
which affect the droplet motion. In other words, thanks to the surface vertical os-
cillation approximatelyMe images of the droplets generate standing waves which
alter its long term dynamics. The value of the memory Me, and therefore the
number of fictive immobile droplets on the surface, defines roughly three regimes:

1. The first regime appears for small memory, typicallyMe ≲ 20. In this limit,
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the description of the wave interaction is made in the Frenet frame related
to the droplet. In the tangential direction of the motion, the wavefield
effect corresponds to a self-propulsive term. This limit was described by
Labousse and Perrard in [103]. It is shown that the propulsion arising from
the wavefield can be assimilated to a Rayleigh-type friction, i.e.

C∇⃗ζ =
m

Tv
v⃗

(
|v⃗|2

V 2
0

− 1

)
(2.18)

where Tv is the relaxation time to the equilibrium velocity V0. This type of
nonlinear damping can be found in music when describing the motion of a
clarinet reed [63] and in the description of self-propelled systems [152, 50].
This term leads to damping for |v⃗| > V0 and is propulsive for |v⃗| < V0.
This model was later applied to the experiments made by Eddi et al. [51].
In this experiment, a walking droplet is compelled to interact with a sub-
marine obstacle. Since the depth of the fluid layer influences the Faraday
instability, the motion of the droplet above the obstacle is modified. They
observed that the crossing dynamics of the droplet above the obstacle
can only be described statistically with probability P ∝ exp

(
−cL/V 2

0

)
, L

being the obstacle size and c a constant. It was shown in [88] that this dy-
namics comes from an unknown statistics of impact angles which, because
of the Rayleigh-type friction, gives the Boltzmann-like crossing probability.
In the perpendicular direction of the motion, for slightly higher memory
parameters, Bush et al. showed that the wavefield has the effect of an addi-
tional mass in the dynamics [21]. Indeed, they demonstrated that the force
exerted by the wavefield is proportional to the acceleration of the walker
which, once injected in the walker equation of motion, mimics an additional
mass related to its velocity. Newton’s equation for the walker reads

d

dt
(mγB(|v⃗|)v⃗)︸ ︷︷ ︸

p⃗

+β(|v⃗|)v⃗ = −∇U(r⃗), (2.19)

where β(|v⃗|) is a non-linear damping factor, similar to the one obtained by
Labousse and Perrard for Eq.(2.18) and U(r⃗) accounts for external poten-
tials. The factor γB(|v⃗|) is the hydrodynamic boost factor and accounts for
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the additional mass stored in the wavefield. It reads

γB(|v⃗|) = 1 +
gζ0k

2
F τ

3
M

2τF

√
1 + (kF τM |v⃗|)2

3 . (2.20)

It is claimed in [21] that this boost factor tends to mimic the Lorentz factor
encountered in special relativity.

2. The second regime appears for intermediate value of the memory Me,
roughly for 20 ≲ Me ≲ 100. In confined systems, this regime leads to the
self-organisation of the wave sources on the liquid interface. A first example
can be found in the paper of Perrard et al. [139]. In this article, the walking
droplet is confined within an harmonic potential. The core of the droplet is
made of ferrofluid and a magnet is placed above the liquid surface, mimick-
ing a confining potential. Depending on the stiffness k of the potential and
the average velocity V0 of the walker, different trajectories are observed:
circle, lemniscates or trifolium. Those eigenstates are shown in Fig.2.7. As
discussed in the same article, for those trajectories, the average radius ⟨|r⃗|⟩
(and therefore, the average energy ⟨U⟩ = k⟨|r⃗|⟩2/2) as well as the average
angular momentum ⟨Lz⟩ are quantified. Those trajectories and their prop-
erties were investigated by Labousse et al. [104]. They showed that the
confining potential forces the walker to interact with sources emitted in the
past. The interaction between the walking droplet and its past trajectory
generates a self-organization of the wave sources in pivotal points, curving
the overall trajectory. Furthermore, it has been shown that the overall dy-
namics of the walker and the symmetry of the trajectory were related to
the minimization of field modes. Quantification also occurs for other con-
fining systems. Quantified trajectory radii have been observed with Coriolis
force [59] or, theoretically, with Coulomb potential [171]. Finally, without
any confining potential, for sufficiently important wave amplitude, a circular
motion can be made stable. In such a case, the centripetal force does not
come from an external force field. Instead, it comes from the wave field
created by the droplet. This leads to a self-orbiting motion, as studied in
[105].
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Figure 2.7: Eigenstates in an harmonic potential. (a) Circle, (b) Lemniscate, (c) Trifolium. For those
trajectories, the average radius ⟨|r⃗|⟩ and the average vertical angular momentum ⟨Lz⟩ are quanti-
fied. The memory parameter ranges from Me = 15 to Me = 100. Those eigenstates have been
obtained using the algorithm described in Appendix A.

Figure 2.8:Overall trajectory of a walker in a circular corral for several acquisition time. The instan-
taneous speed of the walker is indicated from blue to red. The color bar indicates the speed in
mm/s. The radius of the corral is R = 14.3 mm/s. Alongside an oscillating density of presence
in the radial direction, the speed is also shown to oscillate. Diagram taken from [80].

3. Finally, the last regime occurs for the high value of the memoryMe. In this
limit, the dynamics becomes chaotic and ultimately leads to probabilistic
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dynamics. The transition to chaos has been considered in a few articles.
Perrard et al. focused on the case of a walking droplet in an harmonic po-
tential [138]. They showed that for high memory, the dynamics oscillates
randomly from an eigenstate to another, e.g. from a lemniscate to a circle.
The transition to chaos was also studied by Tambasco et al. in the case of
a walking droplet submitted to the Coriolis force [171]. The particle fol-
lows a period doubling cascade as the memoryMe increases. The walking
droplet, initially in a circular trajectory, begins wobbling to reach a chaotic
motion. Yet, the study of the dynamics in the chaotic regime has been the
subject of a only few studies, only focusing on the dynamics of a walker in
circular and elliptic corrals, either experimentally [80], numerically [67, 68]
or theoretically [150]. In this case, it is shown that the walker’s overall tra-
jectory can only be described statistically. The probability density function
of the position relative to the center of the cavity |r⃗| can be compared to
the eigenmode of the cavity: the maxima and minima of the PDF match
those of the least stable standing wave triggered by the successive impacts
of the droplet on the liquid surface. The PDF of the speed |v⃗| is also related
to the eigenmodes of the cavity. This result is shown in Fig.2.8.

2.6 Conclusion

Walking droplets correspond to a new type of active matter, driven by the mem-
ory of this past. This memory is encoded in the surface with standing cylindrical
waves which mimic many fictive immobile bouncing droplets. The persistence
time of those standing waves, and therefore the number of images, is experimen-
tally controlled through the vertical vibration of the interface. As a consequence,
the walking droplets harvest energy thanks to the waves, which are maintained
because of the vertical vibration. The continuous extraction of energy is only
counterbalanced by the friction of the droplet with the underlying air layer.

In the following two chapters, the dynamics in the case of large memory parameter
Me is explored. The question raised in this first part of the manuscript is How
this memory driven dynamics behave when a large amount of waves extend on the
interface? The dynamics in free space, where the droplet can flee away from its
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waves, is explored in Chapter 3. The dynamics in a confining potential, where the
droplet is forced to interact with its past, is investigated in Chapter 4.
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“The lesson of Lord Rayleigh’s solution [regarding RandomWalks]
is that in open country the most probable place to find a drunken
man who is at all capable of keeping on his feet is somewhere
near his starting point.”

Karl Pearson, Nature, 10/08/1905

3
Walkers in free space

This chapter is dedicated to the analysis of the walking dynamics in the regime of high
memory, in free space. We show that the high memory regime triggers a diffusive-like
behaviour. The overall dynamics is shown to be made of ballistic phases interspersed
by sudden changes in direction. This mimics a run-and-tumble dynamics, largely en-
countered in biology in the case of foraging animals and bacteria or in the case of
proteins prospecting for a specific site along a DNA strain. We show that this diffusive
dynamics is due to a Shil’nikov bifurcation leading to a chaotic evolution of the velocity.
The resulting diffusive properties are investigated and discussed as a function of the
memory of the system.

The results presented in this chapter are summarized in the following article.

• Hubert M., Perrard S., Labousse M., Vandewalle N. & Couder Y., Memory-
driven run and tumble deterministic dynamics, Submitted (arXiv:1807.02413).

3.1 Introduction

The walkers dynamics has been widely studied in the low and intermediate mem-
ory regime. Numerous examples have been discussed in the previous chapter.
Yet, studies in the high memory regime are scarce and only considered peculiar
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geometries [67, 68, 80, 156]. This observation finds two main explanations. On
the one hand, experimentally, the memory parameter is subject to large incer-
titudes especially in the high memory regime. Since the memory parameter is
related to the inverse to the distance to the Faraday threshold, i.e.

Me ∝ 1

ΓF − Γ
, (3.1)

a small incertitude on Γ leads to a large incertitude onMe. Indeed, using logarith-
mic differentiation, one gets

δMe ∝ Me2δΓ, (3.2)

where the δ’s correspond to the incertitudes on the memory and dimensionless
acceleration. The incertitude on Γ can arise from a leak of horizontality in the
experimental set-up as well as from a too large experimental cell. In the later
case, elastic deformations of the cell can be expected, spatially modifying the
memory because of enhanced vertical vibrations. Indeed, the elastic oscillations
of the cell superpose to the vertical forcing in this case. On the other hand, the
results presented in this section show chaotic dynamics on a large spatial scale,
with trajectories covering surfaces far more important than the area of existing
experimental cells. As a consequence, size effects would be important in the ex-
periments and cannot allow the study of the wave dynamics without boundary
effects. Because of those two reasons, numerical simulation has been chosen over
experiments in order to isolate the characteristics of a wave-memory.

The numerical scheme used to solve the walking dynamics corresponds to the
one briefly described in [105], used in [105, 14, 59] and more extensively dis-
cussed in Appendix A. In a few words, the numerical scheme corresponds to
an event-driven method which focus on the two peculiar instants: the droplet
take-off and its landing on the surface. Because the algorithm is event-driven, the
wavefield description follows the stroboscopic description seen in Eq(2.8). For fur-
ther informations, the reader is invited to refer to Appendix A. In the following,
the Faraday wavelength corresponds to λF = 4.75 mm for a Faraday frequency
fF = 40 Hz. A time step in simulation corresponds to a bounce of the droplet
on the surface, i.e. δtsimu = 1/40 s.
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3.2 From a ballistic to a diffusive dynamics

As stated in Chapter 2, at low memory and in free space the walker is known
to make a stable rectilinear motion [129]. Yet, numerically, when approaching
Me = 150, the rectilinear dynamics destabilizes and gives rise to an erratic and
diffusive motion. In this section, we will describe the trajectory of the walker over
the vibrating interface as the memory parameterMe changes in this high memory
regime.

3.2.1 Trajectories for increasing memory parameter

The trajectories for increasing memory parametersMe are illustrated in Fig.3.1. In
this figure, the walker evolves in free space, only submitted to its own wavefield
without external forces. Note that despite all the trajectories are shown on the
same plot, they have been obtained independently. Interactions between walkers
are therefore non-existent. For each trajectory, only the memory is changed with
Me = 15, 150 and 1500. The initial conditions are the same for each memory
parameter. The dynamics has been integrated over 2.5 105 time steps, allowing
visual comparison between each behaviour.

One observes on Fig.3.1 that forMe = 15 (solid blue line), the dynamics indeed
gives a rectilinear trajectory. This observation holds for memory parameters up
to Me ≈ 100. When reaching Me = 150 (solid purple line), the rectilinear
trajectory is no longer observed. Instead, it shows sudden changes of direction.
Long rectilinear motions alternate with re-orientation phases, leading to an over-
all diffusive process. The length of the rectilinear phase can reach hundreds of
wavelengths, as seen from Fig.3.1. For this memory, one also observes that the
walker covers a considerable area during its overall motion. BetweenMe = 100

andMe = 150, the transient dynamics shows the same diffusive process. But the
walker eventually ends moving along a stable straight line. The closer the memory
parameters is to Me = 150, the longer this transient dynamics. For the highest
memory considered in this figure, Me = 1500 (solid orange line), the dynamics
remains diffusive. The overall trajectory is more packed and the area covered by
the walker is smaller than previously forMe = 150. This is due to the smaller rec-
tilinear parts of the dynamics, as seen in Fig.3.1. While not being shown here, even
higher memories lead to even denser trajectories and even smaller covered areas.
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Figure3.1:Numerical trajectories of a walker in free space for different memories over two decades:
Dark blueMe = 15, PurpleMe = 150 and OrangeMe = 1500. Each trajectory is obtained with
the same initial conditions and integrated over 2.5 105 time steps. The squares correspond to the
zooms in Fig.3.2(a) and (c).

Let us focus on the changes of direction in the trajectories in Fig.3.1. The result is
given in Fig.3.2(a) and (c). This figure considers zooms on the trajectories for the
two highest memories of Fig.3.1, i.e. Me = 150 and Me = 1500. One observes
that during changes of direction, the walker wobbles in a small region before
escaping in a random direction. As the memory increases, the walker wobbles
more often, explaining the frequent changes of direction observed in Fig.3.1. Let
us analyse the motion of the walker during this wobbling phase. Figure 3.2(b)
zooms on a single wobbling phase forMe = 150. Red arrows indicates the over-
all direction of motion while black arrows focus on three peculiar points of the
trajectory. Point R (for Reflection) shows a sudden inversion of the direction of
motion, from downwards to upwards, but the walker keeps moving along the
same line. At point D (for Deviation), the walker changes its direction of motion
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Figure3.2: Zooms on the trajectories in Fig3.1 forMe = 150 ((a) and (b)) andMe = 1500 ((c) and
(d)). The same data range has been considered along the x and y axis to allow comparison. Figures
(a) and (c) focus on area of 50λF × 50λF . Figures (b) and (d) zoom on area of 10λF × 10λF ,
which correspond to the squares on Fig.(a) and (c). Red arrows on Fig.(b) give the direction of
motion and black arrows give peculiar points of the dynamics: Reflection (R), Deviation (D), Escape
(E).

and begins its wobbling motion. Finally, at point E (for Escape), the walker starts
a new rectilinear trajectory, leaving the wobbling area. The same mechanism can
be observed in Fig.3.2(d) which considers a memoryMe = 1500. The sole differ-
ence is the duration of the wobbling phase and the area covered during this phase.

This kind of dynamics reminds of the “Run and Tumble” dynamics widely en-
countered in biology. For example, the E. Coli bacteria has the same dynamics
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when searching for nutriments [10]. Indeed, the bacteria alternates between lin-
ear motion (named the “run” phase) and short time erratic motion leading to a
change of direction (named the “tumble” phase). The latter has a duration of a
tenth of a second and occurs approximatively once per second for this bacteria
[11]. This intermittent dynamics has been demonstrated to be especially efficient
when “preys” are looking for specific “targets”, either food, sexual partner or shel-
ter. Therefore, this foraging strategy is also encountered in the case of wandering
albatrosses [182]. Their rectilinear flights above the ocean are only interspersed
with food foraging when the albatrosses dive into the ocean to catch fishes. The
same dynamics can also be observed at the molecular level in the case of the in-
teraction between DNA and a protein. The protein looks for a specific sequence
along the DNA by alternating two distinct processes. The protein binds to a non-
specific site of the strand via a weak electrostatic interaction and then slides along
the DNA. At some point, the protein detaches and diffuses in the bulk in search
of the specific sequence. Those two processes together have been proved to
be two orders of magnitude more efficient than 3D diffusion alone [185]. More
informations about intermittent search strategies in nature can be found in [8].

Nevertheless, models of intermittent search strategies are stochastic and follow
a probabilistic description, not a deterministic one. The duration of both the run
phase and the tumble phase is described using probability distribution functions
[8, 4]. The case of the walker dynamics is deterministic since it follows the laws
described in Chapter 2 and the algorithm described in Appendix A. None of
them considers stochastic ingredients. Therefore, the walking droplet dynamics
appears to be one dynamics, if not the only one, leading to the observation of
a deterministic Run and Tumble dynamics. Furthermore, the properties of this
deterministic Run and Tumble dynamics is seen to be controlled by the memory.
By analogy with the studies of foraging animals, we will refer to the erratic phases
as “tumbling phases” and to the rectilinear phases as “run phases”. Since the
walker evolves in free space, the only origin for this Run and Tumble dynamics
can only come from the waves below the particle. As a consequence, we will
study in the forthcoming section the wavefield beneath the walker as it comes
closer to a R-point.
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3.2.2 Wavefield structure

The walker being only compelled to interact with its own past, i.e. the waves
on the surface, the chaotic-like trajectory and the subsequent diffusive dynamics
can only arise because of the wavefield. In Fig.3.3, the dynamics of the wavefield
is illustrated for a memory parameter Me = 150. Each subplot corresponds to
different instants of the dynamics around a R-point. The whole plot covers 35
bounces of the walker, each subplot being distant of 5 bounces. Note that the
wavefield is only drawn along the direction of propagation of the walker for the
sake of simplicity. The walker position relative to the wavefield is indicated by
a black dot. Let us now describe the wavefield evolution. Before the R-point,
the walker builds up its wavefield, increasing its amplitude. When comparing
Fig.3.3(a) and Fig.3.3(e), the walker comes back to the same position relative to
the wavefield: the walker appears both time at the bottom of the waves it creates.
Yet, the global amplitude has increased. Because the amplitude increases and the
wavelength λF is fixed, the wave force F⃗w becomes more important. Between
Fig.3.3(g) and Fig.3.3(h), the positive slope of the interface is able to completely
stop the walker. Because it remains still above the interface, the walker accumu-
lates impacts at the same position which in returns increases globally and signif-
icantly the wavefield amplitude. As a result, the walker moves backwards. The
increase of the wavefield amplitude which eventually stops the walker is therefore
the key to the wobbling motion. This behaviour contrasts with what is expected
for a stable walk along the surface for lower memory parameters. Indeed, in such
a case, the walker experiences always the same propulsive force since its position
relative to its wavefield remains unchanged. An equilibrium is found between the
kick of momentum provided by the wavefield and the average drag experienced
during the surfing phase. This argument is discussed mathematically in Section 2.3.
As a consequence, the wavefield keeps a constant amplitude and the wobbling
phase cannot be started.

Let us try to understand how the wavefield amplitude increases. For this purpose,
one needs to understand how the wavefield amplitude reacts to the relative po-
sition of two impacts. Two impacts which are distant of nλF , n being an integer,
generate waves that interfere constructively, resulting in an enhanced global am-
plitude. On the contrary, two impacts being distant of (n + 1/2)λF interfere
destructively, leading to a smaller global amplitude. As it can be deduced from
Fig.3.3, the walker accelerates and decelerates relative to its wavefield. In par-
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Figure 3.3: Time evolution of the wavefield near a R-point at TR = 456τF for Me = 150. Only
the wavefield in the direction of propagation is depicted. The walker position is indicated by the
black dot. The time is indicated on each subplot. At the instant t = TR , the walker is not able
to climb the wavefield it has created. While the walker remains almost motionless, the wavefield
builds up underneath (t = TR + 5τF ). The particle is then propelled in the opposite direction.

ticular, the walker spends a few period bouncing at the crest of its waves (see
Fig.3.3(b,c)) while moving quickly when at the bottom (see Fig.3.3(d,e,f)). The
density of impacts along the trajectory therefore oscillates with the Faraday wave-
length. This assertion is proved with Fig.3.4. This figure shows the wavefield 16
bounces before the R-point discussed in Fig.3.3. Beside the wavefield, the density
of impacts along the trajectory is displayed in purple. The darker the shade, the
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Figure 3.4:Wavefield under the walker at time t = TR − 16τF for Me = 150. The wavefield is
only drawn along the rectilinear trajectory of the walker. The black dot gives the walker position on
the wave field. The purple line gives the density of impacts on the surface along the trajectory. The
more opaque the line is, the denser the sources distribution. One can see a resonance between the
density oscillation and the wavefield structure, which explains the increase of amplitude observed
in Fig.3.3.

more impacts can be found. It can be seen that when the walker sits at the crest
of its wave more impacts can be found. On the contrary, on the bottom of the
wavefield, fewer impacts are seen. Because dark shaded area are distant of λF ,
the global amplitude increases during the motion of the walker. A 2D visualisation
is also given in Fig.3.5. The left part of this figure corresponds to the dynamics
at Me = 50 while the right part of this figure has been obtained for Me = 150

16 bounces before the R-point described previously. In the left side of Fig.3.5,
the usual horseshoe pattern of the wavefield around the walker is recovered [52].
For the right side of this figure, modulation of the pattern behind the walker is
seen, as a result of the oscillating density of impacts. There is therefore a reso-
nance between the fluctuating velocity of the walker and the amplitude of the
wavefield. The role of the memory in the amplifying process can be understood
as follows. For low memory, the temporal damping of the waves is important.
It means that even if the speed oscillated, the constructive interferences process
would be limited thanks to the important temporal damping. On the other side,
for high memory parameters, this temporal damping cannot limit the growth of
the wavefield, ultimately leading to the reflection of the walker at a R-point. After
the R-point, the has to interact with its own wavefield and the many images of its
past. This acts as a trap which the walker eventually leaves.
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Figure 3.5: Comparison between the 2D wave field generated by a walker for different memory
parametersMe. (Left)Me = 50 shown the wavefile for a stable rectilinear trajectory. A horseshoe
pattern is visible. (Right) Me = 150 shows the wavefield at t = TR − 16τF . Modulation are seen
behind the walker.

We have shown in this section that a diffusive motion can be observed, which
mimics a Run and Tumble motion. The memory parameter tunes this dynamics
which finds its origin in the positive feedback between the fluctuating speed and
the waveforce and increases the wavefield amplitude.

3.3 Chaotic evolution of the speed

It has been discussed in the previous section that the oscillating speed of the
walker is the mechanism triggering the wobbling dynamics by increasing the wave-
field amplitude. In this section, we will consider the time evolution of the walker
speed and the chaotic dynamics which arises as the memory Me is increased.

3.3.1 Time series

Let us consider the time series describing the walker speed as the memory param-
eterMe is changed. Figure 3.6 shows the walker speed during the first thousand
steps of the particle dynamics. Only the horizontal velocity is considered and it
is obtained via an eleven points differentiation scheme based on the impact po-
sitions of the walker. The vertical bouncing dynamics is neglected. The memory
parameters Me considered corresponds to the three memories investigated in
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Fig.3.1. One observes that two distinct dynamics can be observed. For low mem-
ory parameters (Me ≤ 100), the walker speed is constant after a transient regime.
This transient has a duration of a few tens of bounces and shows speed fluctua-
tions. They are damped towards the equilibrium value. Note that the duration of
the transient as well as the equilibrium speed is a function of the memoryMe: the
higherMe, the longer the transient and the higher the equilibrium speed. On the
contrary high memory parameters (Me ≥ 150) lead to chaotic-like behaviours.
For intermediate memory parameters (Me = 150, see Fig.3.6(b)), the speed fluc-
tuations are seen to increase slowly with time in comparison with high memory
parameters (Me = 1500, see Fig.3.6(c)). Furthermore, erratic fluctuations last
longer for higher memory parameters (see Fig.3.6(c)) than for lower memory pa-
rameter (see Fig.3.6(b)). The transition from the increasing fluctuation part and
the erratic fluctuation part arises when the walker speed reaches zero because of
the high speed fluctuations. In between Me = 100 and Me = 150, the transient
dynamics gives this increasing speed fluctuation. During a transient, erractic fluc-
tuations arise. But after this transient the speed eventually reaches a equilibrium
constant value. The closer the memory parameter is to Me = 150, the longer
this transient becomes. At Me = 150, even after 107 bounces, no decrease of
the speed fluctuations is seen in simulation. Comparing the observations made re-
garding the trajectories and the speed time series allows the following conclusion.
Rectilinear trajectories shorten likewise increasing speed fluctuations parts in the
time series. The wobbling parts of the trajectories increase the same way chaotic
speed evolution arises. As a consequence, the walker diffusive behaviour in real
space must be triggered by a chaotic process in the velocity space of the walker.
Especially, in the time series, the part where the speed fluctuations are seen to
increase corresponds to the run phase while the chaotic evolution corresponds
to the tumble phase.

It is worth noticing that fluctuations in time series, either damped (Fig.3.6(a)) or
maintained Fig.3.6(b,c)), are common features of time delayed systems. As the
result of an Hopf bifurcation [151, 53], this property is widely observed and also
used in engineering in order to suppress unwanted oscillations in mechanical sys-
tems, e.g. for the cranes stabilisation when transporting loads [82] or for the
anti-rolling motion of sailing ships [120]. Spontaneous oscillations are also ob-
served in physiology with the Cheynes-Stokes respiration [112]. This is a disease
where the patient’s breathing “is characterized by a crescendo-decrescendo pattern

59



 0

 10

 20

 0  200  400  600  800  1000

 

t/τF

(c)

 0

 10

 20

v
 [

m
m

/s
] (b)

 0

 10

 20

 

(a)

Figure 3.6: Speed as a function of time for the trajectories displayed in Fig.3.1: (a) Me = 15, (b)
Me = 150, (c) Me = 1500. The gray areas correspond to the tumble phases. Low memories
lead to stable dynamics where initial velocity perturbations rapidly decrease towards the velocity
equilibrium value. High memories give unstable dynamics with chaotic-like evolution. For Me =
150 the perturbation grows exponentially over a period of a few hundreds of Faraday periods τF .
For Me = 1500 the dynamics is mainly chaotic-like, with increasing and fluctuating perturbations
arising over a few tenths of periods τF .

of hyperventilation alternating with apnea or hypopnea that occurs at the nadir of the
crescendo-decrescendo pattern during sleep” [93]. Nevertheless, the time delay in
the walking droplet dynamics is implemented in a rather unique fashion. In all
the examples cited above, the delay in the system is injected only once and the
control parameter is the distance to the delay τ . As an illustration, let us give the
example found in most textbooks [151, 53]

ẋ(t) = −x(t− τ), (3.3)

where τ is the delay. It is at the opposite of the walking droplet dynamics where
multiple delays are considered with a temporal distance τF , as seen in Eq.(2.8).
The walking droplet dynamics therefore defines a novel class of time delayed
systems. Let us now describe the chaotic process observed in the velocity space.
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Figure 3.7: Flow in the (|v⃗|, |∇⃗ζ|/ζ0)-space: (a) Me = 15 and (b) Me = 150. Low memory
parameters give a stable fixed point at (v⋆,∇ζ⋆/ζ0) = (9.295, 2.544 10−2). The flow in this
case converges rapidly to this fixed point. The high memory case shows a unstable fixed point
ejecting the flow outwards.

3.3.2 Shil’nikov chaos

When looking at Fig.3.6 and Fig.3.1, one sees that the memory parameter defines
roughly two regimes. A first regime of decreasing speed fluctuations is observed
forMe < Mec where the wave force reaches an equilibrium value. And a second
regime of increasing oscillations, of both the speed and the wave force, joined to
periods of erratic fluctuations forMe > Mec. In this analysis, the critical memory
parameter Mec has yet to be defined. Since the chaotic process is triggered by
the wavefield, we study the dynamics in the (|v⃗|, |∇⃗ζ|)-space. The first regime for
Me < Mec possesses a stable fixed point (v⋆,∇ζ⋆/ζ0) = (9.295, 2.544 10−2)

in the (|v⃗|, |∇⃗ζ|)-plane, as illustrated in Fig.3.7(a) for Me = 15. The speed here
is expressed in mm/s. The flow in the phase space spirals into the fixed point at
a rate which decreases as the memory increases. Note that the position of this
fixed point changes as the memory increases, especially for low memory. When
the memory parameter Me crosses its critical value Mec, the flow spirals out of
the fixed point, as observed from Fig.3.7(b) for Me = 150. The eigenvalues at
the unstable fixed point are imaginary, complex conjugate, with positive real parts.
The flow does not reach a limit cycle after spiralling out. Instead, the walker en-
ters a tumble phase where erratic fluctuations appear. This last behaviour is not
shown in Fig.3.7 for the sake of clarity. Ultimately, at the end of a tumble phase,
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the walker speed and the wave force are close to the value of the unstable fixed
point. The flow spirals out of this fixed point again. The erratic phase can there-
fore be seen as a mechanism re-injecting the flow back at the vicinity of the fixed
point, giving rise to a homoclinic orbit linking the fixed point to itself in a phase
space of a much larger dimension.

A similar behaviour, a homoclinic orbit leading to chaotic dynamics, has been ob-
served in many other systems. One can cite the Belousov-Zhabotinskii chemical
reaction [2], an experimental illustration of the so-called Brusselator developed by
Prigogine [146]. In [2], the Belousov-Zhabotinskii reaction is made using malonic
acid CH2(COOH)2, sodium bromate NaBrO3 and cerium sulfate Ce2(SO4)2 con-
tinuously mixed in heated sulphuric acid H2SO4. Each chemical is injected with
three feed lines into the reactor at a given flow rate, which is the control pa-
rameter of the experiment. The authors showed that the concentration of ceric
ions Ce4+ in solution oscillates and those fluctuations increase strongly with time
before dropping to zero and starting again. This behaviour is shared with the
walking droplet dynamics. The authors demonstrated that this chaotic behaviour
originates from a Shil’nikov-type bifurcation, which describes the homoclinic or-
bits that departs from a saddle point and returns to itself after an infinite period
[117].

In order to illustrate the Shil’nikov bifurcation and the subsequent homoclinic
chaos, let us consider the Rössler model [154]. It is defined as follows

ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c),

(3.4)

where a, b and c are constant. This system is shown to exhibit a Shil’nikov bifur-
cation for a = 0.18, b = 0.2 and c = 15 [3], leading to a homoclinic chaos as
depicted in Fig.3.8. The system shows two fixed points

x⃗⋆± = (ap±,−p±, p±) with p± =
c±

√
c2 − 4ab

2a
. (3.5)

Figure 3.8 focuses on x⃗⋆− and on the flow around this fixed point. Given the
small values of a and b compared to c, x⃗⋆− ≈ 0⃗. In Fig.3.8, the flow spirals out
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Figure3.8: Chaotic attractor for the Rössler model with parameters a = 0.18, b = 0.2 and c = 15.
The fixed point x⃗⋆

− near 0⃗ is unstable in the (x, y)-plane and stable in the z-direction. The flow
spirals out of in the (x, y)-plane before jumping in the z direction.

of the fixed point in the (x, y)-plane. Once reaching large values of x and y,
the flow jumps vertically in the z direction and is reinjected near the stable fixed
points. The two time scales associated with the two phenomena, the spiralling
divergence out of the fixed point and the reinjection at the center, are largely
different. Indeed, linear analysis at the fixed point gives the following eigenvalues
for each direction λx,y ≈ 9 10−2 ± 1i and λz ≈ −15 for a = 0.18, b = 0.2

and c = 15. Since the rate of divergence and convergence is given by the real
part of those eigenvalues, one sees that the time scale associated with the two
processes differs from more than two orders of magnitude. The ratio of the two
time scales ν = |Reλz/Reλx,y| defines the saddle index of the fixed point, which
in our case gives ν ≫ 1.

With those definitions, one could discuss the condition required to observe a
Shil’nikov-type homoclinic chaos. The following theorem is adapted from [165]
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and is given without proof.

Theorem 1 Given the third-order automonous system

dx⃗

dt
= ψ(x⃗), t ∈ R, x⃗ ∈ R3,

where ψ is a C2 vector field on R3. Let x⃗⋆ be an equilibrium point for this ODE and
let suppose the following

• the equilibrium point is a saddle focus whose characteristic eigenvalues defines
a saddle index ν > 1,

• there exists a homoclinic orbit based at x⃗⋆.

Then, the system exhibits homoclinic chaos.

Clearly, the Rössler system satisfies the condition of this theorem, rationalizing
the chaos one observes. Note that this type of chaos is also observed in other
systems: in Chua’s circuit [117], in the Rosenzweig-MacArthur food chain model
[101], and in the well-known Lorenz model for peculiar values of its parameters
[162].

Let us study the walking droplet dynamics under this perspective. We need a
3D-phase space to apply the Shil’nikov theorem. The (|v⃗|, |∇⃗ζ|)-plane illustrated
in Fig.3.7 gives the unstable part of the phase space. In order to complete the
phase space, one needs a variable that brings the flow back to the unstable plane
of the phase space. Empirically, we choose as the third axis of the phase space
the θ̇-axis, describing the change of orientation θ of the velocity vector in real
space. Indeed, as seen from Fig.3.1, during the run phase of the dynamics, the
orientation of the velocity remains constant, the trajectory being rectilinear and
this gives θ̇ = 0. Furthermore, after a tumble phase, the walker is always seen
in a rectilinear phase, which indicates the existence of an homoclinic loop in the
(v,∇ζ/ζ0, θ̇)-space. As a consequence, the flow is expected to spiral out of
the saddle focus (v⋆,∇ζ⋆/ζ0, 0) along the (θ̇ = 0)-plane and to converge back
to the saddle focus along the θ̇-axis. This assertion is proved thanks to Fig.3.9
which shows the flow in the (|v⃗|, |∇⃗ζ|, θ̇)-space during a run-phase for a walker
with a memory parameter Me = 150 during 3000 bounces. The run phase is
shown in orange and the tumble phases in purple. Both the early instants of the
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Figure 3.9: Flow in the (|v⃗|, |∇⃗ζ|, θ̇)-space around the unstable saddle focus for Me = 150. The
run phase is shown in orange and the tumble phases in purple. Both the early instants of the
folliwing run phase and the later instants of the previous one are shown. The flow in injected near
the saddle focus from below the (θ̇ = 0)-plane. The flow then spirals outwards in this plane before
distabilizing and being ejected out of the plane. The dynamics is shown over 3000 bounces.

10
-3

10
-2

10
-1

10
0

10
1

 20500  21000  21500  22000  22500  23000  23500

v
-〈

v
〉 [

m
m

/s
]

t/τF

(b)
10

-3
10

-2
10

-1
10

0
10

1

d
θ/

d
t 

[r
a
d
/T

]

(a)

Figure 3.10: Fluctuations around the saddle focus along the θ̇ direction (a) and along the |v⃗| di-
rection (b). The fluctuations are given in logarithmic scale in order to evidence exponential de-
crease/increase around the saddle focus. The colour code used is the same as in Fig.3.9: Orange
accounts for the run phase and purple for the tumble phases. Those time series corresponds to
the same flow depicted in Fig.3.9.

following run phase and the later instants of the previous one are shown. The
flow in injected near the saddle focus from below the (θ̇ = 0)-plane. The flow
then spirals outward in this plane before destabilizing and being ejected out of the
plane. In order to conclude about the existence of a Shil’nikov type chaos, one
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has to measure the saddle index of the saddle focus. For this purpose, we have
plotted in Fig.3.10 the time series relative to θ̇ and (|v| − ⟨v⟩), ⟨v⟩ being the av-
erage speed expected to give a good approximation of the saddle focus position.
Similarly to Fig.3.9, the run phase is drawn in orange and the tumble phases in
purple. For each plot, semi-logarithmic scale has been used along the vertical axis
in order to evidence exponential evolution and to extract Lyapunov exponents.
Along the θ̇ direction (Fig.3.10(a)), one has Reλz ≈ −1.535 10−2 T−1 and in
the (|v⃗|, |∇⃗ζ|)-plane (Fig.3.10(b)), one has Reλx,y ≈ 8.53 10−4 T−1. Given the
definition of the saddle index, it yields ν ≈ 18 which indicates indeed a Shil’nikov
type chaos thanks to theorem 1.

We have seen in this section that the chaotic dynamics in the velocity space is due
to a Shil’nikov-type chaos. This chaos is due to a homoclinic bifurcation linking a
saddle focus to itself in the (|v⃗|, |∇⃗ζ|, θ̇)-space. The flow spirals out of the saddle
focus along the (|v⃗|, |∇⃗ζ|)-plane and eventually is ejected out of this plane once
|v⃗| has reached zero. After some time, the flow is injected back near the saddle
focus and the dynamics repeats. The first part of this process corresponds to the
run phase while the reinjection process corresponds to the tumble phase. As
a consequence, the diffusive process observed in the real space comes from a
chaotic process in the velocity space. Given this conclusion, let us analyse the
diffusive dynamics from a statistical description.

3.4 Large scale diffusion

Let us focus on the trajectories and their statistical description. The overall dy-
namics of the walker is made of two contributions: run stages when the walker
travels along a straight line with a fluctuating speed around a constant mean and
tumble stages when the walker remains in a small region of the plane because
of erratic fluctuations of the velocity trapped into its own waves. For increasing
memory parameters Me the duration of the run stages decreases and tumble
stages appears more frequently. Let us describe statistically each process before
studying the walker mean squared displacement and diffusive properties.

66



3.4.1 Statistical description of the dynamics

The run and tumble stages of the dynamics are detected thanks to the instanta-
neous curvature of the trajectory

C(t) = |ẋ(t)ÿ(t)− ẏ(t)ẍ(t)|
(ẋ2(t) + ẏ2(t))3/2

. (3.6)

The instantaneous velocity and acceleration are obtained via an eleven points
differentiation scheme based on the impact positions of the walker. The walker
is considered to be in a run stage if C(t) < |λ−1

F | during at least 50 bounces. By
tracking the value of the curvature during the simulation, the duration of each run
stage can be computed. We focus on the Probability Distribution Function (PDF)
of the time spent in the run stage, namely ∆Trun. The tumble phase will be
discussed later in this section. Figure 3.11 gives the PDF of ∆Trun for a memory
parameterMe = 150 andMe = 1500. Thanks to the logarithmic scale, the PDF
is seen to follow an exponential distribution

P(∆Trun) ∼ exp (−∆Trun/τrun) , (3.7)

where τrun is the average time spent in the run stage. The average time τrun is
seen to decrease significantly with the memory parameter. It is interesting to note
that this probability distribution cancels the existence of Levy flights in the dynam-
ics usually considered for the statistical description of Run and Tumble dynamics
[8]. Indeed, the Levy flight PDF is given by the power law P(drun) ∼ d−α

run where
drun is the distance travelled during a run stage and α is a positive real number
such as 1 < α < 3.

Memory is seen to alter the PDF in Fig.3.11. Figure 3.12 gives the average time in
the run phase τrun as a function of the memory parameter. A double logarithmic
scale has been used. One sees that τrun is indeed decreasing as Me increases.
Furthermore, τrun diverges near a peculiar value Mec below which no tumbling
phase is seen. One therefore has an infinitely long run phase, i.e. the stable rectilin-
ear trajectory expected for low memory. Beyond the singularity, τrun decreases
as a power law, as illustrated in the inset of Fig.3.12. In this inset, the inverse value
of τrun is displayed as a function of (Me −Mec), in double logarithmic scale to
evidence the power law. The value ofMec has been obtained by fitting the data
with the function c(x−Mec)

b and gives Mec = 146.41± 6.44. The exponent
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Figure 3.12: Average time spent in the run stage τrun as a function of the memory parameterMe.
Double logarithmic scale has been used. The vertical dashed line gives the value of the critical
memory parameter Mec = 146.41 ± 6.44 giving the appearance of a tumbling motion. (Inset)
Focus near the critical memory parameter Mec in order to prove the power law dependence
between Me and τrun . The solid gray line gives the power law τrun ∝ (Me−Mec)

b where
b = 0.42± 0.09.

of the power law is found to be b = 0.42±0.09 such as, near the singularity one
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has
τrun ∝ (Me−Mec)

−0.42 . (3.8)

We therefore possess the critical memory parameter triggering the chaotic pro-
cess and diffusive dynamics. It is worth noticing that this analysis is hard to perform
on the tumble phase. Indeed, one cannot use the complement of the run phase
definition, namely a tumble phase defined by C(t) > |λ−1

F |. Indeed, the curvature
of the trajectory varies a lot during the tumble phase and even vanishes for a few
bounces. As a consequence, the algorithm detects a short term run phase and
the tumble phases are measured as being shorten than what they really are. As
a consequence, we have limited ourselves to the study of the run stage only.

The overall dynamics can be shown to be isotropic. In other words, there is no
correlation between the angle at which the walker enters and leaves a tumble
stage. This is proved by Fig.3.13 which shows the PDF of the difference between
the outward angle θ1 and inward angle θ2 for the same tumble stage in the dy-
namics. One observes that the PDF is given by a uniform distribution, namely

P(θ1 − θ2) ∼ U (0, π) . (3.9)

This distribution is independent of the memory parameter value. A natural conse-
quence of this result is that the walker diffuses in space uniformly without following
a peculiar direction. In statistical terms, it means that the PDF describing the po-
sition of walker r⃗ has a zero mean value like a random walk. In physical terms, it
means that the walker has no drift velocity when diffusing.

3.4.2 Diffusive dynamics

Finally, we consider the Mean Squared Displacement (MSD) of the walker. Sta-
tistically, this corresponds to the second moment of the r⃗(t) distribution and
measures the spreading of the distribution around its mean as a function of time.
Since the first moment of this distribution is equal to zero, this is also the square
of the standard deviation of the distribution. Mathematically, it is defined as

⟨r⃗(t)2⟩ = 1

N

N∑
p=1

∣∣∣r⃗(pτF )− r⃗ ((p+ t)τF )
∣∣∣2, (3.10)
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where N is the number of positions considered in the sum. Two limit cases can
be distinguished. If ⟨r⃗(t)2⟩ ∝ t2, ballistic behaviour is obtained. If ⟨r⃗(t)2⟩ ∝ t

the dynamics is said to be diffusive. In between those two limits, the dynamics is
said to be super-diffusive. Figure 3.14 shows the walker MSD for several mem-
ory parameters as a function of time in double logarithmic scale. Power laws are
observed, as expected. Two behaviours can be observed depending on the mem-
ory parameter of the walker. For low memory parameters,Me = 100 in Fig.3.14,
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Figure 3.14:Mean squared displacement as a function of the time in double logarithmic scale. The
different colors correspond to different memory parameters. From the darkest blue to the light-
est yellow: Me = 100, 200, 375, 500, 1000, 2000, 5000, 10000. Data have been acquired over
2.5 106 bounces of the walker. Ballistic behavior is observed for small time scale. Diffusive behav-
ior is observed for long time scale. (Inset) Focus on the intermediate time scale. Superdiffusive
behavior is seen for 101 < t < 103 with a stable exponent. This exponent is seen to vary only
due to the memory parameterMe as seen in Fig.3.15.

ballistic behaviour is observed for all time scales. For higher memory parameters,
three regimes have to be distinguished depending on the time scale one considers.
For small time scales (t/τF < 10), ballistic dynamics is observed. But contrarily to
low memory dynamics, for higher memory parameters super-diffusive behaviour
arises with ⟨r⃗(t)2⟩ ∝ tα for intermediate time scales (10 < t/τF < 103). The
exponent α is seen to depend on Me as depicted in Fig.3.15. For longer time
scale (t/τF > 103), the dynamics is diffusive without influence of the memory
parameter. Let us discuss those results. The ballistic behaviour obtained for low
memory parameters corresponds to the rectilinear trajectory shown in Fig.3.1.
Thanks to Eq.(3.10), for a steady velocity v⃗0, the MSD is ⟨r⃗(t)2⟩ = |v⃗0|2t2 which
rationalise this observation. For higher memory parameters, the appearance of
the tumbling dynamics leads to a diffusive behavior for long time scales, as ex-
pected. Yet, short time scales give ballistic behaviour. When comparing this time
scale to the distance travelled by the walker using ∆x = ⟨v⟩10τF , one sees that
it corresponds to half a Faraday wavelength. This means that the walker does not
change its direction of motion below this distance. This result joins the observa-
tions made by Labousse et al [105] in their experimental and numerical studies of

71



1.4

1.5

1.6

1.7

1.8

1.9

2.0

10
1

10
2

10
3

10
4

α

Me

Me
c

10
-1

10
0

10
0

10
1

10
2

10
3

2
-α

Me-Me
c

0.4
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exponent is shown to change as 2− α ∼ (Me−Mec)

−0.415 near the critical point.

self-orbiting motion. In their article, they shown that the walker is capable of self-
trapping because of its wavefield. The walker begins orbiting along trajectories of
quantified radii. The shortest possible radius is given by the first zeroth of J0 and
corresponds to 0.38λF . Furthermore, they showed that for high memory and
chaotic-like trajectories, the overall motion of the walker is made of loops remi-
niscent of the self-trapping dynamics. Those observations rationalise the ballistic
motion of the walker for small time scales.

The intermediate time scale dynamics dynamics is quantified in Fig.3.15. This fig-
ure shows the exponent α of the superdiffusive dynamics as a function of the
memory parameter in semi logarithmic scale along the x-axis. Two regimes can
be seen, separated by a critical memory parameter Mec. Below Mec, ballistic
behaviour is seen with α = 2. This result corresponds to the ballistic dynamics
for low memory. Above Mec, the exponent decreases from α = 2 to α ≃ 1.4

for the highest memory. Note that Note that the exponent seems to decrease
beyond this value for even higher memory parameters. Similar exponents can
be observed for the self-avoiding random walk where the particle avoids places
it already has visited. The walking droplet can be seen as a kind of self-avoiding
random walker since it is propelled by its past position and only interacts with
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past positions when trapped in its wavefield.

The transition between the two regimes in Fig.3.15 has been studied by con-
sidering the evolution of α around Mec. The inset of Fig.3.15 gives, in double
logarithmic scale, the evolution of 2− α as a function of Me−Mec. One has a
power law given by

2− α ∝ (Me−Mec)
0.415 , (3.11)

withMec = 140.18± 5.75. The exponent of the power law b = 0.415± 0.047.
This critical memory parameters and the exponent of the power law are close to
the ones obtained for the average time spent in the run phase. This observation
indicates that the evolution of the run stage with memory drives the evolution
of the superdiffusive dynamics. Nevertheless, its origin requires further investiga-
tions.

Similar dynamics have been observed in other systems tuned by memory. An
interesting example is given by non-markovian random walks. Schütz and Trimper
[160] suggested the following model. The walker position xt+1 is related to the
previous position xt by

xt+1 = xt + σt+1, (3.12)

where σt+1 = ±1. The exact value of σt+1 is chosen within the memory of
the system. This memory is made of the vector σ⃗ = (σ1, σ2, . . . , σt) containing
all the previous values of σ. An integer j is chosen in the interval {1, t} with a
uniform probability, i.e. j ∼ U(1, t), and one has

σt+1 =

{
σt with probability p,

−σt with probability 1− p.
(3.13)

Therefore, memories can be remembered wrong with a probability 1 − p. De-
pending on the value of p, two dynamics are observed. For p < 3/4, the dy-
namics is diffusive with ⟨x2t ⟩ ∝ t. For p > 3/4, anomalous diffusion arises with
⟨x2t ⟩ ∝ t4p−2. The peculiar case p = 1 gives a ballistic dynamics since the same
choice σ is made at each iteration of the model. Despite showing anomalous
diffusion and including memory, the anomalous diffusion observed comes from
the wrongness of the memories. An extension of this model has been proposed
by Cressoni et al [36, 57, 37, 35] in which only a fraction f < 1 of the whole
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memory σ⃗ is conserved. The choice for σt+1 is therefore restricted to the inter-
val {1, ⌊ft}, where ⌊ refers to the integer part. In this example, f would play the
same role as Me in the walking droplet dynamics. As a function of both p and
f , different diffusive mechanisms are seen. Small values of f favours anomalous
diffusion while large values of f leads to normal diffusion. Those properties relate
to the observations made for the walkers as the memory parameter varies. In-
deed, lowMe gives ballistic dynamics and highMe gives diffusion. An exhaustive
list of the effects of f on the dynamics is beyond the scope of this manuscript.
A complete description of the dynamics in the (p, f) parameters space can be
found in [36]. It is worth noticing that, contrarily to the walking droplet case, this
dynamics is stochastic for p ̸= 1 since the memory is randomly altered.

Memory effects and diffusive dynamics were also studied by Freund and Grass-
berger in [60] with their Red queen’s walk. Similarly to the walking droplets dy-
namics, they encoded the memory within a 2D field and diffusion is observed.
Very small time scales leads to super diffusion while normal diffusion is observed
for long time scales, similarly to a true self-avoiding walk. Surprisingly, it is worth
noticing that this model is deterministic and yet gives anomalous diffusion and
normal diffusion for different time scale. Further comparisons could therefore be
interesting.

3.5 Conclusion

We showed in this chapter that a walker may move above the surface in straight
line or mimicking a run and tumble dynamics depending on its memory. Low
memory parameters give a ballistic motion as described in previous works. High
memory parameters give the newly observed diffusive motion. This new be-
haviour finds its roots in the wavefield generated by the walker. Beyond a critical
valueMec, the wavefield has the ability to reflect the walker in the opposite direc-
tion, forcing the walker to interact with its own past wavefield. As a consequence,
the walker begins an erratic motion in a closed region of the surface, trapped by
those waves. After a few tens of bounces, the walker eventually evades the trap
and begins a new rectilinear part of this dynamics before being reflected again.
This process can also be studied from the speed point of view. Ballistic phases
show a fluctuating speed with increasing fluctuations. When the fluctuations get
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the walker to stop, the erratic phase of the dynamic is triggered. The walker speed
is shown to evolve chaotically. The underlying chaotic process can be described
by a Shil’nikov bifurcation, giving birth to a homoclinic chaos in the (|v⃗|, |∇⃗ζ|, θ̇)-
space. The overall consequence of this chaotic dynamics is the diffusion of the
walker. At small time scale, ballistic dynamics is observed and for large time scale,
diffusion is seen. In between, anomalous diffusion arises with an exponent for the
mean squared displacement decreasing with the memory parameterMe. There-
fore, we relate the microscopic properties of the dynamics (the memoryMe) to
the macroscopic properties of the diffusion (the exponent α of the mean squared
displacement).

The most striking result is that the run and tumble dynamics one observes is
deterministic. So far, models for this dynamics are stochastic and the duration
or length of the run phase is chosen randomly. Typically, its duration follows a
Lévy distribution or exponentials distribution [8]. In our case, the run and tum-
ble dynamics comes from a set of deterministic rules as seen in Chapter 1 with
Eqs.(2.10) and (2.11) or in Appendix A. To our knowledge, this is the first ex-
ample of a deterministic approach of the run and tumble dynamics. Moreover,
the diffusive process is obtained only with one particle in free space, without in-
clusion of obstacles, as in the Lorentz gas model [42]. The diffusive dynamics is
only obtained via the nonlinear interaction of the walker with its past, through the
wavefield it generates. The images of the past positions of the walker mimic as
many interacting particles, allowing the walker to reach the thermodynamic limit
usually required to observed this kind of dynamics.
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4
Walkers in harmonic potentials

The walkers’ dynamics in free space allows the particle to leave the trap the waves
create. In other words, the walker escapes the trap of its own memory, leading to
the diffusive dynamics discussed in the previous chapter. Therefore, interactions with
the wave trap are time-limited. We ask the question of the continuous interaction
between the walker and its memory by placing it in harmonic potentials of various
stiffness, namely in region of space where its potential energy writes

U(r⃗) =
mω2

2
|r⃗|2, (4.1)

ω = 2πf being the angular frequency and f the frequency of the potential, m being
the walker mass. As stated in the introduction, the walker dynamics in harmonic poten-
tial has already been largely studied in the low memory regime and in the intermediate
memory regime. Especially, the latter study has demonstrated that the walker follows
stable trajectories at intermediate memory parameters. These eigenmodes quantify
the average potential energy and average kinetic momentum. At the edge of chaotic
dynamics, Perrard et al. showed that the walker erratically alternates between one
eigenstate to another. Nevertheless, to our knowledge, there is no extensible study of
the walker dynamics in the high memory limit.

The particle trajectory and velocity is described in the first part of this chapter, from
a statistical point of view. We show that the memory acts as a thermal bath whose
properties are tuned via the memory parameter Me. A Fokker-Planck equation is
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used to compute an equivalent temperature tuned by the memory. The wave dynam-
ics is presented in the second half of the chapter. The waves are described thanks to
Graff’s addition theorem which allows for an efficient computation of the energy. We
show that the time correlation of the walker dynamics leads to two major properties:
equipartition of energy within the different wave modes and a global energy minimi-
sation process which keeps a relatively low energy compared to uncorrelated dynamics.

4.1 Particle dynamics statistical description

We first focus on the particle dynamics for various values of the memory param-
eter Me and frequency of the confining potential f . The statistical description
follows.

4.1.1 Trajectories in harmonic potentials

Once immersed within an harmonic potential, the walker remains in an enclosed
region of space. Depending on the value of the frequency f and the value of the
memory parameterMe, the confinement is expected to be more or less efficient.
Let us begin with a description of the dynamics for increasing memory parameters.
In Fig.4.1, a walker is immersed in an harmonic potential with a natural frequency
f = 100 mHz. The memory parameters investigated areMe = 10 (a),Me = 89

(b) and Me = 250 (c). Increasing the memory increases the complexity of the
dynamics. Low memory parameters give a circular trajectory. This limit was stud-
ied by Labousse and Perrard [103] and later by Bush et al [21]. The intermediate
memory parameters lead to the self-organisation of sources on the interface [104].
As a consequence, the trajectory can be different from a circle and other eigen-
states can be observed [139]. In the dynamics illustrated in Fig.4.1(b), a trifolium
is seen. Finally, for high memory parameters, the dynamics becomes chaotic with
features similar to the dynamics explored in the previous chapter. Nevertheless,
because of the harmonic potential, the walker is compelled to remain in a close
region of space. This is the regime of interest in this chapter.

Let us now study the effect of the frequency on the walker dynamics. Figure 4.2
shows the influence of the frequency f on the dynamics for a walker in the very
high memory regime, i.e. Me = 1000. Two frequencies are considered: f = 100

mHz and f = 250 mHz. The left-hand side of this figure shows the trajectory
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(a)

5λF

(b)

5λF

(c)

5λF

Figure 4.1: Trajectories within an harmonic potential for increasing memory parameters and for a
fixed natural frequency f = 100 mHz. (a) Me = 10, (b) Me = 89 and (c) Me = 250. Each
trajectory displayies 104 bounces.

over 10000 steps (resp. 25000 steps) for the frequency f = 250 mHz (resp.
f = 100 mHz). Two different simulation times have been considered in order
to have the same coverage within the harmonic potential despite having different
confinement. Note that the scale of each sub-plot is different. The trajectories
appear to be chaotic in each case, and made of succession of sharp changes of
direction, loops and even reminiscence of the eigenstates observed in the same
harmonic potential for much lower memories. Excursions in region of high po-
tential energy is also observed, especially in the low frequency case. Large loops
left the center of the potential and reach distance up to 15λ. Finally, the walker
tends to remain at the center of the potential, barely travelling away. Given the
chaotic evolution of the position, we discuss the dynamics from a statistical point
of view. The right-hand side of Fig.4.2 gives a heat map of the probability to find
the walker at a given position in the long term dynamics. Simulation times are
2.5 105 steps for f = 250 mHz and 106 steps for f = 100 mHz. Once again,
the scale of each figure is not the same since the confinement varies. One sees
that both figures are almost identical and axis-symmetric, only differing from each
other by small details. This last observation points out that a common description
lies in the dynamics.

In order to evidence a common feature in the dynamics, we consider the Proba-
bility Distribution Function (PDF) in the physical space P(r⃗) and the PDF in the
velocity space P(v⃗). The corresponding results are given in Figs.4.3 and 4.4. We
investigate different frequencies at the given memory parameterMe = 2500. For
Fig.4.3, the results show Maxwell-Boltzmann distribution with a mean value and
standard deviation directly related to the stiffness of the harmonic potential. The
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Figure 4.2: Trajectories within an harmonic potential for several confinement in the high memory
regime with Me = 1000. (Top) f = 250 mHz, (Bottom) f = 100 mHz. (Left) Trajectories
followed by the walker. (Right) Probability density function displaying the probability P(r⃗) to
find the walker at a given position. Note that the scale along each direction is not the same for
f = 250 mHz and f = 100 mHz. As a consequence, the time of simulation for each confinement
is different in order to have the comparable statistics.

larger the frequency, the larger the area covered by the walker. The inset of this
figure shows the same PDF but as a function of the potential energy of the walker
at position r⃗, namely U(r⃗) = mω2|r⃗|2/2, in semi-logarithmic scale. One sees
that the PDF writes

P(r⃗) ∼ exp (−βU(r⃗)) , (4.2)

where β is related to the standard deviation σ of the distribution. Note that an
unitary mass has been considered. This last formula indeed gives the Maxwell-
Boltzmann distribution when focusing on P(|r⃗|). One has

P(|r⃗|) ∼ ω2|r⃗| exp
(
−βω

2|r⃗|2

2

)
. (4.3)

Even though only one memory parameter is displayed here, coefficient β depends
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Figure 4.3:Walker dynamics statistical description: probability distribution function in the physical
space. The probability P(|r⃗|) is given for several frequencies for the memory parameter Me =
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Figure 4.4: Walker dynamics statistical description: probability distribution function in the veloc-
ity space. The probability P(|v⃗|) is given for several frequencies for the memory parameter
Me = 2500. Frequencies investigated ranges in the interval f ∈ [10, 250] mHz. The proba-
bility distribution function is shown to be mostly independent from the frequency of the harmonic
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statistics but this one is not given by a Gaussian distribution. The dashed black line accounts for the
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slightly on Me which indicates that the memory plays the role of temperature.
Let us now focus on the PDF associated with the speed of the walker P(v⃗).
Once again Maxwell-Boltzmann-like distribution are observed. Contrarily to the
previous investigation, the frequency has merely no effect on P(v⃗). In the in-
set of Fig.4.4, the same probability is plotted as a function of the kinetic energy
K = m|v⃗|2/2 in semi-logarithmic scale. This time, one observes that the PDF
differs from a simple exponential law, since a maximum is observed away from
K = 0. The maximum in the PDF describing the kinetic energy find its source
in the propulsion mechanism of the walker. Indeed, the particle harness energy
from the oscillation of the surface through the Faraday waves emitted by the
drop. Thanks to this mechanism the walker is an active particle, moving without
external forces. In the low memory regime, the propulsion can be modelled with
a non-linear Rayleigh friction. As described in [152], propulsive mechanisms give
a global maximum in P(v⃗) which differs from zero.

4.1.2 Stiff harmonic potentials

In the previous section, the natural frequencies investigated were rather low com-
pared to experimental values in previous studies (f ≈ 1 Hz in the stiffest potential
investigated in [139], assuming a speed of 10 mm/s). Let us take a look at the
dynamics in stiff harmonic potentials in the high memory regime. Figure 4.5 gives
the trajectory (a,b), the PDF of the position (c) and the PDF of the velocity (d)
for a walker in an harmonic potential with a natural frequency f = 1 Hz for
Me = 1000. Even though the dynamics could look similar to the low frequency
regime, Figs.4.5(c) and (d) show some deviations to the results shown in Figs.4.3
and 4.4. Indeed, in the inset of each figure, the PDFs P(r⃗) and P(v⃗) for the low
frequency regime are indicated with a dashed line. The results for the high fre-
quency regime are given with black dots. One observes that for P(r⃗), compared
to the low frequency case, the PDF in the high frequency case decreases with a
lower slope for small distances and drops with a higher slope for large distances.
Regarding the P(v⃗), small deviations are seen between each curve especially for
high kinetic energy. The high frequency case is seen to display more often large
values of |v⃗| than the low frequency case.

In this chapter, we will only focus on the low frequency case where such devia-
tions are not seen in the PDFs. We will therefore restrict ourselves to frequency
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Figure 4.5: Statisical description of a walker in a stiff harmonic potential with f = 1 Hz. The
memory parameter is set to Me = 1000. (a) Walker trajectory within the potential during 5000
bounces. (b) Heat map giving of the walker position in the potential. (c) PDF for the position to
the center |r⃗|. (Inset): PDF as a function of the potential energy U(r⃗). (d) PDF for the speed |v⃗|.
(Inset): PDF as a function of the kinetic energy K . The dotted lines correspond to the result in
Fig.4.4
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lower than f ≤ 0.25 Hz. Note that stiffer harmonic potentials (f > 5 Hz) lead
to unstable numerical simulations. Furthermore, because of numerical limitations,
frequencies lower than f = 10 mHz have not been studied extensively. Never-
theless similar dynamics are still observed in this limit.

In the following section, we discuss further the analogy between the memory
parameter and a measure of the temperature of the surface. We will also discuss
the shape of the PDF related to the speed of the walker through a mean field
approach.

4.1.3 Model “à la Langevin”

In order to understand the statistical observations made in the previous section,
we focus on the force the wavefield exerts on the particle F⃗w = −∇⃗ζ . Especially
we consider the statistical properties of the components of this force, namely
Fw,x = F⃗w.e⃗x and Fw,y = F⃗w.e⃗y in a cartesian coordinate system (e⃗x, e⃗y) fixed
in the laboratory. Since the dynamics in the harmonic potential does not show
preferential direction as the walker moves along the interface, the same proper-
ties are expected for each component. We therefore focus only on Fw,x. We
study the wavefield force from three different points of view: (i) with time series,
(ii) with probability distribution functions, and (iii) with the absolute correlation
function.

Time series relative to Fw,x are shown in Fig.4.6 for an harmonic potential at
frequency f = 100 mHz and memory parameters Me = 25, Me = 250 and
Me = 2500. In the case of the lowest memory parameter, the time series shows
an oscillating value of the force Fw,x, with a period of a few hundreds of Fara-
day periods. The intermediate memory regime leads to a situation where global
oscillations are still observed but superposed with erratic fluctuations. Finally, at
high memory parameters, an overall noisy time series is observed. The previously
observed oscillations have disappeared in this limit. The oscillating time series ob-
served for low memory can be easily understood when looking at the trajectory
of the walker. As it has been shown in Fig.4.1(a), in harmonic potentials and low
memory, the trajectory of the walker is a circle. In the case of f = 100 mHz, the
radius of the trajectory is approximately of 5λF . For a speed of approximately 10
mm/s, it gives a period of revolution of 15 s or 600 bounces, which corresponds
to the observations in Fig.4.6(a). The force exerted by the wavefield along the
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Figure 4.6: Time series of the force Fw,x = −∂xζ(r⃗) exerted by the wavefield on the walker for
different memory parameters and at the frequency f = 100 mHz. (a) Me = 25, (b) Me = 250,
(c) Me = 2500. As the memory parameter is increased, coherence disappears in the time series,
which become more and more chaotic.

x-direction therefore oscillates with a period equal to the period of revolution
around the centre. For the intermediate memory parameters, bursts intersperse
with slow oscillations, reminding of the chaotic behaviour observed in the previ-
ous chapter. Indeed, the global orbital motion is conserved as evidence by the
slow oscillations of the force. But short-term erratic fluctuations are observed
because of “traps” created in the wavefield as seen in Fig.4.1(c). The behaviour
at high memory shows only chaotic fluctuations. Indeed, no correlation can be
seen in this random-like time series, mimicking some noise in the dynamics. In
order to characterise this noise, we focus firstly on the PDF of Fw,x.

Figure 4.7 shows the PDF of Fw,x for the same memory parameters investigated
in Fig.4.6 and the same frequency f = 100 mHz. The case of low memory
gives an arcsine distribution. This one can easily be understood since the values
of Fw,x arise from a sine-like function. This distribution is bounded by the two
values defining the maximum and minimum of the time series. For high memory
parameters, the distribution is a Gaussian, centred around zero. The case of in-
termediate memory shows features of both limits. Three local maxima appear.
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Figure 4.7: Probability Distribution Function (PDF) of Fw,x = −∂xζ(r⃗), for the memory param-
eters investigated in Fig.4.6 and a frequency f = 100 mHz. (Orange circles) Me = 25, (purple
squares) Me = 250, (blue crosses) Me = 2500. The PDF is shown to evolve from an arcsine
distribution at low memory parameter to a gaussian distribution at high memory parameter. In
between, the PDF shows feature of both distribution.

One at the center, which corresponds to the maximum of the high memory case
and two on the sides which correspond to the two maxima of the arcsine dis-
tribution. Furthermore, the sharp cut-off of the arcsine distribution is smoothed,
giving a Gaussian-like tail to the distribution.

In order to end the statistical description of the time series depicted in Fig.4.6,
we focus on the absolute autocorrelation function of those signals. The absolute
autocorrelation function is given by the following formula

Cx(t) =
1

N

N∑
p=1

x ((p+ t)τF )x (pτF ) , (4.4)

which is the discrete convolution of the time series with itself. Note that the
absolute autocorrelation gives a function which is centred around the mean value
of Fw,x and is not normalized to one. The corresponding results are shown in
Fig.4.8(a,b,c). The same memory parameters as well as the same frequency as
Fig.4.6 are considered. The case of low memory shows an oscillating autocorre-
lation with the same period as the corresponding time series. This result can be
understood by computing the convolution of a cosine function with itself, which
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gives back another cosine function with the exact same frequency. For interme-
diate and high memory parameters, temporal decorrelation is observed. This
decorrelation appears faster with high memory parameters. The case of interme-
diate values ofMe shows exponentially decreasing and oscillating autocorrelation
while for high values ofMe one has a peak whose extension does not go beyond
a hundred Faraday periods. For even high memory parameters, this peak width
decreases up to about ten periods. This loss of temporal correlation is concomi-
tant with the appearance of noisy fluctuations in the time series. In this last case,
if one rescales the time t by the memory time τM , this peak finally reduces to a
Dirac delta.

All those observations allow us to conclude that the inclusion of memory in the
dynamics can be reduced to an uncorrelated, Gaussian distributed signal, i.e. a
white noise. This type of noise is the very basics of the description of Markovian
processes, which appear in statistical physics in the mathematical discussion of
random walks and diffusion [136], in finance when describing a market dynamics
[134] or in population biology [137] and foraging strategies [28, 182]. Neverthe-
less, Markovian processes are considered memoryless since the event at time t+1

is completely uncorrelated to the event at time t. This consideration is appealing
for two major reasons. Firstly, the walker dynamics is driven by memory. The
walker can walk on the interface solely because of its previous impacts. Remov-
ing the memory from the dynamics only gives a vertically bouncing droplet. The
dynamics is therefore non-Markovian. Secondly, the decorrelation observed ap-
pears when the memory is increased. This means that adding more souvenirs of
the trajectory in the dynamics mimics a white noise and gives a chaotic evolution.
The temporal decorrelation appears when it is least expected. It worth reminding
that this dynamics is deterministic and this artificial white noise is exactly the same
for the same initial conditions.

The following results may lead to a curious conclusion. Indeed, in the cartesian
coordinate system, the statistics regarding F⃗w mimics the properties of a white
noise. Nevertheless, the walker is propelled by its previous impact. Therefore,
the correlation in the dynamics must be seen somewhere. In order to evidence
the properties of the memory stored in the interface, we focus on the compo-
nent of the wave force in the Frenet frame associated to the particle. The force
decomposes into two components, Fw,t and Fw,n which are the components
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Figure 4.8: Absolute autocorrelation function for the force exerted on the walker: (a,b,c) Fw,x the
force along the x-direction (d) Fw,t the force along the tangential direction (e) Fw,t the force along
the normal direction. (a) Me = 25, (b) Me = 250 and (c,d,e) Me = 2500. (Inset): Focus on the
early instant of the autocorrelation functions. The y-axis in the inset is the same as in the main plot.

tangent and normal to the trajectory respectively. They define as

Fw,t = F⃗w.
v⃗

|v⃗|
, (4.5)

Fw,n =
∣∣∣F⃗w − Fw,t.

v⃗

|v⃗|

∣∣∣. (4.6)

Figure 4.8(d,e) shows the correlation function for those two components of the
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force. The inset of each plot focuses on the early instants of the correlation func-
tion. One sees that the correlation function for the normal component is equal
to zero for t > 10τF . On the contrary, for the tangential component, a non-zero
value is obtained with fluctuations in the early instants. The fluctuation has a pe-
riod of about ten bounces. This is where the correlation in the walking dynamics
is seen, in the tangential direction of the trajectory. It is also interesting to focus
on the period of the early oscillations. Assuming a speed of approximately 10
mm/s, it gives 2.5 mm which is half a Faraday wavelength. Those oscillations are
thus associated with the wavy nature of the memory and remain of the fluctuating
waveforce studied in the previous chapter.

All those observations allow for a mean field approach of the problem. We
reduce the effect of the wavefield to a white noise η⃗(t) and the correlation in the
tangential direction to a non-linear damping factor ϕ(|v⃗|) of propulsive nature.
As a consequence, one can write the following Langevin equation for the walker:

˙⃗v + ϕ(|v⃗|)v⃗ + ω2r⃗ = η⃗(t). (4.7)

The white noise η⃗(t) has the following properties

⟨η⃗(t)⟩ = 0, (4.8)

Cη(t) = 2Dδ(t). (4.9)

The PDF P(r⃗, v⃗) associated to this Langevin equation is known to be a solution
of the following Fokker-Planck equation [152, 25]

∂P
∂t

+ v⃗ ∇⃗rP − ω2r⃗ ∇⃗vP = ∇⃗v

(
ϕ(v⃗)v⃗P +D∇⃗vP

)
, (4.10)

where ∇⃗r and ∇⃗v correspond to the nabla operator in physical and velocity
space respectively. Observations made from Fig.4.3 as well as theory regarding
self-propelled systems [152, 170] suggest the following empirical solution

P(r⃗, v⃗) = N exp

(
−βω

2|r⃗|2

2

)
exp

(
−Φ(v⃗)

D

)
(4.11)

whereD is a diffusion coefficient, N a normalisation constant and β−1 the equiv-
alent thermal energy. The function Φ(v⃗) corresponds to the potential energy in
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the velocity space, related to the non-linear damping ϕ(|v⃗|)v⃗. One has

Φ( ˙⃗r) =

∫ v⃗

0
ϕ(u⃗)u⃗ du⃗. (4.12)

Note that the solution given in Eq.(4.11) cannot lead to a detailed balance from
the Fokker-Planck equation [25]. Indeed in the case of active brownian particles
trapped in a harmonic potential, entropy production has to be considered and,
as a consequence, fluctuation-dissipation relations have to be modified.

Note that, thanks to Eq.(4.11), Fig.4.4 gives the shape of the potential in velocity
space. Indeed, by fitting the PDF on this figure, one can access Φ(v⃗). From the
literature, two models of self-propulsion has been considered. The first model,
which corresponds to the Rayleigh friction [152, 103], gives

ϕ(v⃗) = −ϕ0|v⃗|
(
1− |v⃗|2

v20

)
→ Φ(v⃗) =

ϕ0|v⃗|2

2

(
|v⃗|2

2v20
− 1

)
. (4.13)

The second model, which is a harmonic potential in velocity space around a non-
zero value [152], gives

ϕ(v⃗) = ϕ0 (|v⃗| − v0) → Φ(v⃗) =
ϕ0
2

(|v⃗| − v0)
2 . (4.14)

Each model has been tested and fitted on numerical data. The one minimizing the
χ2 value is always the latter. This result is illustrated in the inset Fig.4.4 with the
black dotted line. One can observe that this model indeed reproduces correctly
the PDF. This is surprising since the former model is the one corresponding to
the low memory regime analysis performed by Labousse and Perrard [103].

Given the result of Eq.(4.10), let us analyse deeper the PDF given in Fig.4.3 by con-
sidering the inverse value of the coefficient β . By analogy with statistical physics,
this coefficient would play the same role as the thermal energy KBT and would
henceforth be referred to as the effective temperature. Figure 4.9 gives the ef-
fective temperature β−1 as a function of the memory parameter in double loga-
rithmic scale in order to evidence power laws. The analysis has been performed
over two orders of magnitude of memory parameters. Different frequencies have
been considered, from f = 10 mHz up to f = 250 mHz. One sees that all
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frequencies collapse on the same line, with the exception of the case f = 250

mHz which is slightly above the others and increases more significantly at high
memories. The power law has an exponent b = 0.096 ± 0.021, where the un-
certainty corresponds to a 95% confidence interval given by the fitting algorithm.
The power law has been fitted considering all five frequencies. It is worth noticing
that β−1 also measures the width of the PDF P(r⃗). Figure 4.9 shows that the
PDF does not widen much as the memory increases. One could have expected
a more important exponent b for the power law. For example, one could have
thought that the effective temperature could have scaled as β−1 ∝ Me. Indeed,
the active property of the walker comes from the wavefield, more specifically
from the waveforce F⃗w . Assuming that each impact on the surface generates
waves that add up together, one has |F⃗w| ∝ Me since the wavelength is fixed.
As a consequence, the driving mechanism having an efficiency increasing linearly
with the memory parameters, the effective temperature could have behaved in
the same way. Given the measures value of the exponent, another ingredient has
to be taken into account. This could come from the wavy nature of the reservoir.
Indeed, on the interface, standing waves arising from previous impacts could in-
terfere destructively, leading in a relatively small overall amplitude.

In this section, we studied the dynamics of a walker trapped in an harmonic po-
tential from a statistical point of view. We show that, in the limit of small frequen-
cies, i.e. large potentials, the walker dynamics can be described by the tools of
non-equilibrium statistical physics. Indeed, the probability distribution function re-
garding the position |r⃗| of the walker can be described by P(r⃗) ∼ exp(−βU(r⃗)).
The PDF for the speed | ˙⃗r| can be described by P(v⃗) ∼ exp(−Φ(v⃗)/D). We
show that the coefficient β increases with the memory and plays the role of an
effective temperature. The rather slow increase of the effective temperature with
the memory can come from the wavy nature of the noise. Adding wave sources
on the surface does not necessary leads to an equal increase of the wave field
amplitude because of interference effect. The velocity potential Φ(v⃗) has been
shown to be correctly approximated by ϕ0(|v⃗|−v0)2/2. It is worth noticing that
the time correlation which appears in the dynamics is completely absent from this
description. Indeed, when studying the wave force applied to the droplet, one
observed that the inclusion of memory break the time correlation in the time se-
ries. As a consequence, the wave force acts as a thermal noise in the dynamics. In
order to go beyond this mean field approach, we suggest to study the wavefield
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Figure 4.9: Evolution of the effective temperature β−1 as a function of the memory in double
logarithmic scale. Coefficient β has been obtained fitting the PDF given in Fig.4.3 for memory
parameters ranging from Me = 250 to Me = 25000 for different frequencies: Crosses f =
0.010 Hz, reverse triangles f = 0.025 Hz, squares f = 0.050 Hz, circles f = 0.100 Hz,
triangles f = 0.250 Hz. The black dashed line accounts for a fitted power law with exponent
b = 0.096± 0.021, where the uncertainty corresponds to a 95% confidence interval given by the
fitting algorithm.

dynamics and the influence of time correlation.

This mean field approach cannot evidence time correlation within the walker dy-
namics. Indeed, neither the PDF (regarding the position, velocity or force) nor
the correlations functions can distinguish the walker from an active Brownian par-
ticle. Nevertheless, some questions are raised, especially regarding the evolution
of β−1 as a function of the memoryMe. To investigate further the dynamics, we
will know focus on the wave dynamics in order to understand how the propulsive
mechanism is affected by the memory.

4.2 Wave dynamics statistical description

As it has been seen in the last section, despite increasing significantly the number
of images on the surface, and therefore the number of standing waves, the PDF
describing both the position and the velocity of the particle does not change as
much as one could have expected. In order to understand the results presented in
the previous section, we focus on the waves dynamics, especially from a statistical
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point of view. Before considering the description, we first introduce the tools
required for this investigation.

4.2.1 Graff’s addition theorem

The wave description can be challenging especially in the high memory regime
where the number of impacts considered is tremendous. The cylindrical symme-
try of the harmonic potential gives us the possibility to reduce this difficulty, by
using Graff’s addition theorem. This theorem allows to express Bessel functions
Jn from one reference point to another reference point. In our case, waves
would be no longer expressed around the impact point but around the center
of the harmonic potential. Since we are only interested in the Bessel function of
zeroth order J0, we will not consider the general expression of the theorem but
only apply it for this peculiar Bessel function.

Let us consider an impact at coordinate r⃗j and study the resulting surface de-
formation at coordinate r⃗, as depicted in Fig.4.10. For the sake of simplicity, the
origin of the reference frame is set at the center of the harmonic potential. The
vectors r⃗ and r⃗j define respectively the angles θ and θj with the x-axis. The
interface elevation ζj(r⃗) is given by

ζj (r⃗) = ζ0J0(kF |r⃗ − r⃗j |). (4.15)

Graff’s addition theorem allows to express ζj(r⃗) in terms of the distances |r⃗| and

93



|r⃗j | to the origin. The surface elevation writes

ζj (r⃗) = ζ0

∞∑
p=−∞

Jp(kF |r⃗|)Jp(kF |r⃗j |) exp (ip (θ − θj)) , (4.16)

i being the imaginary unit. The functions Jp are the cylindrical Bessel functions
of first kind and p-th order. For a collection of N impacts r⃗j , the total wavefield
writes

ζ (r⃗) = ζ0

N∑
j=1

∞∑
p=−∞

Jp(kF |r⃗|)Jp(kF |r⃗j |)eip(θ−θj)

= ζ0

∞∑
p=−∞

 N∑
j=1

Jp(kF |r⃗j |)e−ipθj


︸ ︷︷ ︸

ap

Jp(kF |r⃗|)eipθ (4.17)

Note that, when considered, memory effects appear in the ap coefficients. In this
case, the amplitude writes

an =
N∑
j=1

Jp(kF |r⃗j |) exp(−ipθj) exp
(
− j

Me

)
. (4.18)

The functions Jp(kF |r⃗|)eipθ correspond to the eigenmodes of the decomposi-
tion while the coefficients ap correspond to their amplitude. Note that both
eigenmodes and amplitudes are complex quantities. The real part of the eigen-
modes Jp(kF |r⃗|)eipθ are illustrated in Fig.4.11 for several values of p. The imag-
inary part is obtained by a counterclockwise-π/2p rotation in the (x, y)-plane.
A given mode shows p nodal lines. Furthermore, as the index p increases, a flat
area appears at the center of the mode. This is a direct consequence of the rela-
tion between the Bessel functions Jp and their derivatives around zero. The k-th
derivative J (k)

p can be related to all Jm with p− k ≤ m ≤ p+ k with

J (k)
p (0) =

1

2k

k∑
m=0

(−1)m
(
k

m

)
Jp−k+2m(0) (4.19)

Since all Jm(0) = 0 for m > 0, the derivative J (k)
p vanishes for k < p. The
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Figure 4.11: Eigenmodes used in Graff's addition theorem. From left to right, from top to bottom:
p = 0, 1, 2, 5, 10, 20. Only the real part has been plotted, imaginary part are obtained by a
counterclockwise-π/2p rotation in the (x, y)-plane. One observes that the eigenmodes possess
p nodal lines and have a wavelength equals to the Faraday wavelength. As the index p increases, a
flat area is observed around the origin.

first non-vanishing derivative is encountered for k = p, since appears J0(0) = 1.
This result means that, for increasing value of p, even more derivatives at zero
vanish. As a consequence, the function Jp flattens more around zero as p in-
creases. In another words, one can show that the radius of the flat area increases
linearly with p. Therefore, impacts close to the center of the harmonic potential
do not trigger high order eigenmodes since ap =

∑N
j=1 Jp(kF |r⃗j |)e−ipθj . Be-

cause the walker trajectory is confined due to the harmonic potential, another
consequence is that not all eigenmodes are triggered along the walker trajectory.
Only a limited amount of eigenmodes has to be considered in the description of
the global wavefield, significantly decreasing its complexity. Therefore, one can
substitute the knowledge of a few tens of eigenmodes to the knowledge of all
the previous positions of the walker. Even for an infinitely large amount of wave
sources, only a finite number of eigenmodes is required to describe the wavefield.

From the definition of the eigenmode amplitude in Eq.(4.17), one can understand
how a given eigenmode becomes relevant in the wavefield description. An impact
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in the yellow parts of the figure displayed in Fig.4.11 increases the corresponding
eigenmode amplitude. On the contrary, an impact in blue parts of Fig.4.11 de-
creases the amplitude of the corresponding eigenmode. Finally, an impact in the
pink areas does not change the amplitude of the corresponding mode.

4.2.2 Energy of the wave field

Graff’s addition theorem gives us a handy way to compute the wavefield energy
arising from the deformation of the interface. The energy E defines as follows

E =

∫ ∞

0

∫ 2π

0
ζ(r⃗)2rdrdθ. (4.20)

Using the addition theorem, it yields

E

ζ20
=

∫ ∞

0

∫ 2π

0

∞∑
p=−∞

∞∑
p′=−∞

apap′Jp(kF |r⃗|)Jp′(kF |r⃗|)ei(p+p′)θrdrdθ.

(4.21)
The integration over the azimuthal coordinate greatly simplifies this integrand since∫ 2π

0
ei(p+p′)θ = 2πδ(p+ p′), (4.22)

where δ is the Kroenecker symbol. The expression of the energy reduces to

E

ζ20
= 2π

∫ ∞

0

∞∑
p=−∞

apa−pJp(kF |r⃗|)J−p(kF |r⃗|)rdr. (4.23)

Since Jp(x) = (−1)pJ−p(x), one has

ap = (−1)pa†−p, (4.24)

where † denotes the complex conjugate. As a consequence, the wave energy
expression reduces to

E

ζ20
= 2π

∞∑
p=−∞

|ap|2
∫ ∞

0
Jp(kF |r⃗|)2rdr. (4.25)
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The integral in this expression does not converge. Indeed, as solution of the
Helmholtz equation, all the Jp(x) scale as x−1/2 because of energy conservation.
More specifically, for large arguments, the Bessel functions can be approximated
by

Jp(x) ≃
√

2

xπ
cos
(
x− pπ

2
− π

4

)
. (4.26)

Therefore, the integrand scales as Jp(kF |r⃗|)2r ∼ 1 which leads to a divergent
integral. One elegant solution is to integrate up to a given radius R and to nor-
malize the result by the diameter of the corresponding circle of integration. To
integrate on all position, the limit R→ ∞ is used. This approach gives

lim
R→∞

1

2R

∫ R

0
Jp(kF |r⃗|)2rdr =

1

2π
. (4.27)

This relation implies that all eigenmodes have the same energetic cost since the
final result does not depend on p. Finally, the energy writes

E

ζ20
=

∞∑
p=−∞

|ap|2. (4.28)

A last simplifcation can be made using Eq.(4.17). The sum over p can be reduced
to p ∈ [0,∞[ instead of p ∈]−∞,∞[ since ap and a−p share the same modulus.
It yields

E

ζ20
= |a0|2 + 2

∞∑
p=1

|ap|2. (4.29)

We have now an efficient way to measure the wave energy as a superposition
of central eigenmodes Jp(kF |r⃗|)eipθ . All the ap are stored in a double-infinite
vector a⃗ = (. . . , a−p, . . . , a−1, a0, a1, . . . , ap, . . . ) which describes exactly the
state of the interface at each instant. The modulus of this vector gives the energy
stored in the interface. In particular, the value of |ap|2 gives the energy stored in
the eigenmode of index p.

It is worth noticing that this approach does not consider the spatial damping
exp(−|r⃗− r⃗j |/δ) included in the wavefield description in Eq.(2.8). Nevertheless,
two reasons have led us to consider Graff’s theorem in this study. First, without
Graff’s theorem, the wave energy computation is extremely costly from a numer-
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ical point of view. Indeed, one needs to integrate ζ2(r⃗) over a vast area (typically,
seven times the area covered by the walker [14]). Because a statistical description
is needed, this integration needs to be repeated several millions times for each set
of parameters. The numerical resources available for this study were not sufficient
for such a massive computation. Secondly, again because of numerical resources,
the wavefield dynamics has been described for two confinement only: f = 100

mHz and f = 250 mHz. In such case, considering the value δ = 2.5λF (see
parameters in Appendix A), the walker is confined in a region of space where the
wave sources still affect its trajectory (see Fig.4.2) and therefore δ is not expected
to affect much the results obtained.

4.2.3 Statistical description

We first illustrate the instantaneous wavefield underneath the walker in Fig.4.12
for Me = 1000 and f = 100 mHz. Since the wavefield is made with the super-
position of numerous wave sources located along the trajectory of the walker, the
previous positions are indicated with black vanishing points. The more opaque
points correspond to the more intense wave sources. Given Graff’s theorem, we
can now study the walker wave dynamics.

Let us begin with the time series of the eigenmode amplitude |ap| and their evo-
lution as the memory parameter increases. Figure 4.13 gives the time series for
the modulus of a0, a20 and a40 for a walker with a memory parameterMe = 25

and 2500 and immersed in an harmonic potential of natural frequency f = 100

mHz. The case of Me = 25 gives constant values of the amplitudes which de-
creases with p. On the contrary, the case of Me = 2500 gives erratic signals.
Yet, in the latter case, amplitude of fluctuations and average value decrease with
p. Both behaviours can be understood when considering the trajectory of the
walker in each case. For Me = 25, the walker moves along a circular trajectory
with a fixed radius. As a consequence, given the definition of the ap, they only
have a single constant value. And since the Bessel functions Jp becomes flatter
and flatter near zero for increasing values of p, the constant value of ap decreases.
For Me = 2500, the chaotic aspect of the trajectory reflects in the eigenmode
amplitudes.

In order to characterize the chaotic time series in Fig.4.13, we consider their sta-

98



Figure 4.12: Instantaneous wavefield underneath the walker for Me = 1000 and f = 100 mHz.
The vanishing black line corresponds to the past trajectory of the walker. The opacity of the
trajectory gives the intensity of the corresponding wave sources, the more opaque being the more
intense.

tistical properties. In Fig.4.14, the probability distribution function of |ap|2 are
given in semi logarithmic scales for the memory parameter Me = 2500 and for
an harmonic potential with natural frequency f = 100 mHz. This figure only
displays the PDF for p = 0, . . . , 7. One observes an exponential distribution for
each value of p. Similar distributions are also seen for higher values of p. As a con-
sequence, the eigenmode amplitudes |ap| should follow a Gaussian distribution.
Note that the choice of considering the modulus of an is justified by the fact that
the real and imaginary parts of the amplitude show the same distribution. One
sees that the value of p does not significantly change the distribution, put aside
the case p = 0. This result can be appealing. Indeed, given the axis-symmetry of
the trajectory and given the definition of ap, one might think that arms

p = 0 for
p > 0. Nevertheless, because of the factor exp(−j/Me) in the definition of the
amplitude, the spatial symmetry is broken. As a consequence, arms

p ̸= 0. Yet, the
PDFs are narrower in the case p > 0 than the case p = 0.

Let us now characterize the PDFs shown in Fig.4.14. Especially, the ap following
a Gaussian distribution, we only need to focus of the standard deviation of the
distribution. An indirect way to obtain this value is to consider the root mean
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Figure 4.13:Modulus of the eigenmode amplitude ap as a function of time for differens values of p
and different values of the memory parameterMe. The harmonic potential has a natural frequency
f = 100 mHz. (Blue) Me = 25, (Orange) Me = 2500. From top to bottom: p = 0, p = 20 and
p = 40.

squared value of ap for a given simulation. Given the PDF of |ap|2 in Fig.4.14, one
has

P(ap) =
1

2πσ2p
exp

(
−|ap|2

2σ2p

)
, (4.30)
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Figure 4.14: Probability Distribution Function for |ap|2 for a memory parameter Me = 2500 and
a frequency of harmonic potential f = 100 mHz. Logarithmic scale along the y-axis has been
used. From dark blue to yellow: p = 0, . . . , 7. Exponential distribution can be seen leading to a
Gausssian distribution of the amplitudes |ap|.

which gives

arms
p =

√
⟨|ap|2⟩, (4.31)

=

√∫
R2

|ap|2
2πσ2p

exp

(
−|ap|2

2σ2p

)
dap, (4.32)

=
√
2σp. (4.33)

The value of arms
p is given in Fig.4.15 for memory parameters ranging fromMe =

200 to Me = 10000 and for frequencies f = 100 mHz and f = 250 mHz.
A few observations can be made. First, one observes that in the case of each
frequency investigated, the root mean squared values of ap shows a Gaussian-like
profile. Especially, from this figure, one can conclude that the eigenmodes ap of
lower index p have the largest PDF, since arms

p has the largest value. Second, small
frequencies f are shown to activate more eigenmodes than large frequencies f
since the Gaussian-like profile seen in Fig.4.15 is wider in the former case than in
the latter case. Third, one observes that as the memory parameterMe increases,
more eigenmodes are solicited since the Gaussian profile becomes wider. For
example, considering the case f = 250 mHz, the Full Width at Half Maximum
(FWHM) of the Gaussian-like profile goes from p = 15 for Me = 200 up to
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p = 30 for Me = 10000. Fourth, the arms
p are shown to increase only slightly

with the memory parameter when p is relatively small. For example, boosting the
memory parameter fromMe = 200 toMe = 10000 for f = 100 mHz does not
even double the value of a0. On the contrary, the same boost for Me increases
more than ten times the value of a100. A non-linear increase is therefore observed.
Fifth, the arms

p has the same order of magnitude for each frequency investigated,
with arms

0 ≈ 8 in each case. Sixth, in the case f = 100 mHz, the lowest memory
parameter gives a different profile. Indeed, since the caseMe = 200 does not trig
a fully chaotic regime, the associated PDF shows reminiscence of lower memory
dynamics. Let us explain and interpret some of those observations. The large
Gaussian-like profiles observed for arms

p at low frequency f can be explained
via the area covered by the walker overall trajectory. As stated in the end of
Section 4.2.1, eigenmodes of high order p are only triggered for large values of
kF |r⃗|, and therefore vast trajectories, given the mathematical properties of the
Bessel function Jp. Since the area covered by the walker is larger in low frequency
harmonic potentials, more eigenmodes are required in the wavefield description.
Interestingly, the case f = 250 mHz requires approximatively 40 modes against
100 for f = 100 mHz. The ratio of modes required changes as the ratio of
frequency involved. Regarding the eigenmodes triggered as the memory increases,
the vast area covered by the walker cannot explain such an increase. Indeed,
Fig.4.9 which gives the effective temperature of the bath, also gives the standard
deviation of P(r⃗). One sees in Fig.4.9 that the standard deviation does not even
double fromMe = 200 toMe = 10000, while the FWHM for f = 250 mHz in
Fig.4.15 doubles for the same variation. Finally, one might think that the amplitude
of the eigenmodes would increase linearly with the amount of standing wave
sources on the interface. But, as stated before, the increase is not so significant.
The ap statistical description therefore raises some questions that are difficult
to answer with the results actually available. Before giving us new insight in the
following section, we discuss the energy stored in the wavefield.

Having described the statistical properties of the eigenmodes and their associated
amplitude, let us now consider the energy of the wavefield. The time series for
the ap being chaotic and given the relation defining the energy E in Eq.(4.29),
the wavefield energy time series is also chaotic. As a consequence, we will study
its statistical properties. Figure 4.16 gives the PDF of the wavefield energy as a
function of the memory parameter Me for a walker immersed in an harmonic
potential of stiffness f = 100 mHz. The PDF are given in semi logarithmic scale
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Figure 4.15: Average value of the modulus of the eigenmode amplitude as a function of p, for
several values of the memory parameter and frequency of the harmonic potential. (Left) f = 100
mHz, (Right) f = 250 mHz. From blue to orange, Me = 200, 500, 1000, 2000, 5000, 10000.
Statistics are obtained over 2.25 106 bounces.

along the y-axis. This figure shows that, as the memory parameter increases, the
distribution shifts towards high energy while becoming wider. This figure also
shows that the PDF can be approximated by a Gamma distribution. In the case
of higher frequency f (not shown here), the energy distribution is only narrower
and shows a smaller mean value. This can be understood by considering Fig.4.15.
Smaller frequencies require less eigenmodes in the description of the wavefield
compared to larger harmonic potentials. As a consequence, less terms are con-
sidered in Eq.(4.29). Since, the arms

p has the same order of magnitude for small
index p for each frequency, this rationalizes the observation.

Finally, we study the influence of the memory parameter on the average energy
of the wavefield. This last analysis is given in Fig.4.17, in double logarithmic scale
for the two frequencies investigated in this section. Power laws are observed.
The exponent for those power laws are b = 0.380 ± 0.021 for f = 100 mHz

and b = 0.335± 0.021 for f = 250 mHz. The errors are given by the fitting al-
gorithm and correspond to an interval of confidence of 95% on the resulting value.

The results of this section, regarding the ap and E statistical description, raise
some questions that the mean field analysis in Section 4.1 cannot answer. Indeed,
the rms value of ap are seen to change with the memory in a way that the
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Figure 4.17: Average energy stored in the wavefield as a function of the memory, in double loga-
rithmic scale, for f = 250 mHz (orange points) and f = 100 mHz (blue crosses). Exponents
for the power laws are b = 0.38 (f = 100 mHz) and b = 0.33 (f = 250 mHz). Statistics are
obtained over 2.25 106 bounces.

statistical description for the walker cannot justify. As a consequence, the increase
of energy stored in the wavefield with the memory cannot be explained. But
an ingredient has been forgotten in our argumentation: the correlation along
the walker trajectory. Therefore, in the following section, we will build a model
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without time correlation in order to evidence the missing mechanism and find
some explanation for the ap and E statistical dynamics.

4.2.4 Wave dynamics without temporal correlation

In order to have some intuition of the dynamics of the wavefield generated by a
walker, let us create the model of a randomly generated wavefield. It will give us
a point of comparison with the previous analysis. Indeed, such a randomly gener-
ated wavefield breaks all the possible spatial correlation between successive wave
sources. Here is how the model is built. Statistically, we know the distribution
of impacts of a walker on the surface from Fig.4.3. As a consequence, one also
knows the distribution of waves sources on the interface. From the knowledge of
the statistics, we suggest to create a wavefield made of ramdomly chosen sources
on the interface. Mathematically, it builds as follows. Given the distribution P(r⃗)

describing the walking droplet positional statistic, a collection {s⃗} of N random
positions is considered with the jth item of the collection given by

s⃗(j) ∼ exp (−βU(s⃗)) , (4.34)

U being given by Eq.(4.1) and β by Fig.4.9. The last item in the collection is
assumed to be the oldest regarding to the temporal damping of the waves. The
wavefield is therefore given by

ζ (r⃗, t) = ζ0

∞∑
p=−∞

bp(t)Jp(kF |r⃗|) exp(ipθ), (4.35)

with

bp(t) =

N∑
j=1

Jp(kF |s⃗j |) exp(−ipθj) exp
(
− j

Me

)
, (4.36)

where the symbol bp is the uncorrelated wave amplitude, as opposed to the cor-
related case ap. For the following analysis, two cases have been considered. We
have taken the distribution of impacts for f = 100 mHz and f = 250 mHz

for a memory parameter Me = 1000 as calibrations for this study. Those two
cases allow to investigate the effects of the stiffness of the harmonic potential on
the random wavefield dynamics. Note that, because of the small effects of the
memory on the width of the impacts distribution (see Fig.4.9), considering only
the case Me = 1000 does not significantly change the results presented here
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Figure 4.18: Average value of the modulus of the eigenmode amplitude for a randomly created
wavefield as a function of p, for several values of the memory parameter and different calibrations.
Impacts distribution calibrated with the walker dynamics for (Left) f = 100 mHz, (Right) f = 250
mHz. From blue to orange, Me = 200, 500, 1000, 2000, 5000, 10000. Statistics are obtained
over 2.25 106 bounces. As the memory parameter is increased, only the average values increases.

below.

Since the wave sources are picked up randomly, the time series associated to the
bp are stochastic and need to be described statistically. Their distribution is Gaus-
sian, likewise the walker dynamics presented in Fig.4.14 and therefore they do not
need further illustration. We analyse the width of those Gaussian distributions by
considering the root mean squared value of the amplitude bp, namely brms

p . The
corresponding results are given in Fig.4.18 for memory parameters ranging from
Me = 200 to Me = 10000 and for the two calibrations presented above. This
figure corresponds to Fig.4.15, but in the case of a random wavefield. Several ob-
servations can be made. Some of them differ from the dynamic of the wavefield
created by a walker. The curve describing the evolution of brms

p is similar to the
case of the walker, for the two calibrations. Yet, in the case of the random wave-
field, the curve does not get larger as the memory increases. Only the overall
amplitude increases, identically for all index p. In the case of a random wavefield,
the value of brms

p can be computed exactly, since two impacts on the surface are
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independent. Knowing the distribution s⃗(i) ∼ exp(−βU(s⃗)), one has

⟨|bp|2⟩ = c

∫ ∞

0
|r⃗|Jp (kF |r⃗|)2 exp

(
−|r⃗|2

2σ2

)
d|r⃗|.

= c σ2 exp
(
−k2Fσ2

)
Ip
(
k2Fσ

2
)
, (4.37)

where σ is the standard deviation of the PDF P(s⃗) and Ip is the modified Bessel
function of second kind and p-th order. There is only one unknown parameter,
the proportionality coefficient c. This expression can be fitted on the numerical
results in Fig.4.18. The fit is given with the black curve in the case of the largest
memory parameters displayed. As one can see, Eq.(4.37) fits correctly the data.
The same observation can be made for all memory parameters and frequencies
investigated. Equation (4.37) also justifies that the width of the curve in Fig.4.18
does not change with the memory parameter. Indeed, once σ is known, the
width cannot change.

The lower frequencies required more eigenmodes for the description of the wave-
field, similarly to the wavefield generated by a walker. Nevertheless, as seen when
looking at the y-axis of each plot in Fig.4.18, the value of brms

p are different for
the two dynamics. For f = 100 mHz, brms

0 ≈ 14 while for f = 250 mHz,
brms
0 ≈ 24. This result also contrasts with the walker dynamics, where results
were almost identical. Furthermore, the effect of the memory is also different in
the walker and in the random case. In Fig.4.18, the Gaussian profile one observes
only increases in amplitude while in Fig.4.15 the Gaussian profile gets wider as the
memory parameter is increased. Finally, the increase of amplitude arising in the
random wavefield dynamics is much more important than the one observed in
the case of a walker.

The energy E of the wavefield can also be studied and requires a statistical de-
scription as well. The probability distribution function of the energy is given in
Fig.4.19 for the calibration at f = 100 mHz and for several memory parameters
ranging from Me = 200 to Me = 10000. The PDF for a random wavefield
appears to be similar to the one obtained for the walkers. Indeed, as seen in the
figure, the gamma distribution also fits the PDFs correctly. Nevertheless, for a
random wavefield, the PDFs are narrower and the average value of the wavefield
energy increases much more with the memory. This last assertion can be proved
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Figure4.19: Probability distribution function for the energy stored in the randomly created wavefield
for an impact distribution calibrated with f = 100 Hz. Logarithmic scale is used along the y axis.
From blue to orange: Me = 200, 500, 1000, 2000, 5000, 10000. The solid gray line corresponds
to a fit using a Gamma distribution. Statistics are obtained over 2.25 106 bounces.

10
2

10
3

10
4

10
2

10
3

10
4

〈E
〉/ζ

0

2

Me

Figure 4.20: Average energy stored in the randomly created wavefield as a function of the memory,
in double logarithmic scale. Each calibration (f = 0.100 Hz and f = 0.250 Hz) gives the same
result. One has a linear increase of the energy with the memory parameter. Statistics are obtained
over 2.25 106 bounces.

by analysing the average value of the wavefield energy as a function of the mem-
ory, as given in Fig.4.20. In this case, a linear increase is observed, contrarily to
Fig.4.17.
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We can explain this behaviour as follows. For the sake of simplicity, let us consider
a 1D system where a collection of N sources {s(j)} is located randomly and
uniformly in the interval [0, λF ]. The wavefield writes

ζ(s, {s(j)}) =
N−1∑
j=0

ζ0 cos

(
2π

λF
(s− sj)

)
exp

(
− j

Me

)
︸ ︷︷ ︸

ζj

. (4.38)

The average energy is given by

⟨E⟩ = 1

λNF

∫ λF

0
. . .

∫ λF

0
ζ(s, {s(j)})2ds(1) . . . ds(N), (4.39)

=
1

λNF

∫ λF

0
. . .

∫ λF

0

N−1∑
j=0

N−1∑
k=0

ζjζk ds
(1) . . . ds(N). (4.40)

Since the impacts are uncorrelated, the product ζjζk gives the Dirac delta δ(j−k)
and it yields

⟨E⟩ = ζ20
2

N−1∑
j=0

exp

(
− 2j

Me

)
, (4.41)

=
ζ20
2

1− exp
(
−2N

Me

)
1− exp

(
− 2

Me

) . (4.42)

In the last line, the result regarding geometric series was used. Finally, assuming
N → ∞ and Me ≫ 1, one has

⟨E⟩ = Me
ζ20
4

+O
(
Me−2

)
. (4.43)

Therefore, the energy scales linearly with the memory.

With all the results regarding the randomly generated wavefield, let us compare
the uncorrelated case with the walker case.
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4.2.5 Comparison

In the beginning of this chapter dedicated to the statistical description of the parti-
cle dynamics, we conclude that a mean field approach cannot distinguish a walker
from a thermally activated particle. Indeed, the time correlation which is at the
root of the walker dynamics completely disappear. The walker therefore mimics
a Brownian active particle, which is assumed to have a markovian dynamics. Nev-
ertheless, this conclusion is no longer valid when considering the wavefield and
its statistical properties. The two model considered, i.e. the walker wavefield and
the randomly generated wavefield, show distinct behaviours despite being built
on the same PDF P(r⃗). Let us discuss the effect of the time correlation in the
wavefield dynamics.

The first difference appears when considering the rms value of ap and bp, namely
Figs.4.15 and 4.18. Both show a Gaussian-like profile but their evolution with
Me differs. In the walker case, this profile essentially widens with only a slight
increase of amplitude. On the contrary, the random case shows only an increase
of amplitude without widening the profile. The difference can only come from
coherence within the walker dynamics. Looking back at Fig.4.2, one sees that the
walker make large loops far from the center of the potential. Such a motion has
two consequences. Firstly, because the walker moves away from the center, it
excites high index eigemodes with a large number of impacts. Secondly, while
moving away from the center, low index eigenmodes are only slightly excited
and can relax towards zero. The overall effect is a coherent injection of energy
in eigenmodes of large index. As a consequence, distributions P(ap) widen for
p≪ 1 and the corresponding rms values arms

p increase. On the contrary, for low
index eigenmodes, the injection of energy is limited.

One can also discuss this observation from a dynamical point of view. Let us imag-
ine that, at some point during the walker motion, low index eigenmodes would
have an very high amplitude (which would indicate large value of arms

p ). This situ-
ation would correspond to a pump at the centre of the confining region. Because
the walker is driven by the slope of the wavefield, it would move in opposite
direction of the gradient of the wave, namely away from the center. This is how
the loops observed in Fig.4.2 arise. Therefore, the energy tends to be injected
equally in all eigenmodes in order to limit their amplitude. This tendency to limit
the growth of a given mode has already been observed in the intermediate mem-
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ory regime when discussing quantified trajectory in harmonic potentials [139, 104].

Beside this limited storage of energy in each eigenmode, interferences arise. In-
deed, looking at Figs.4.17 and 4.20, one sees that the energy increase is limited in
the walker case compared to the random case. The former gives ⟨E⟩ ∝ Me0.38

for f = 100 mHz while the latter gives ⟨E⟩ ∝ Me. Destructive interferences
appear along the path in order to limit the amplitude of the wavefield. This last
property mimics a minimisation principle of the energy stored in the wavefield.

As a consequence, correlations along the path of the walker tend to inject energy
equally in all modes, a way to mimic an equipartition theorem for the wavefield,
and also tend to organize the wave sources in order to favour destructive interfer-
ences in the wave dynamics. Given those two observations, one could develop a
more precise model of the confined walker dynamics in the high memory regime.

4.3 Conclusion

This chapter has been dedicated to the investigation of the continuous interaction
of the walker with its wavefield in an harmonic potential. Both the effect of the
memory and the stiffness of the potential were investigated. In such a confine-
ment, the walker is seen to behave like a thermally activated Brownian particle.
Indeed, the wavefield it creates mimics a thermal bath. The noise this thermostat
generates can be well approximated by a white noise, i.e. Gaussian-distributed
and uncorrelated in time. We have shown that the addition of memory in the
dynamics increases the effective temperature of this thermostat but also removes
the correlation in the dynamics. In order to understand this apparent paradox,
the dynamics of the wavefield has been considered. The organisation of the wave
sources on the interface tend to spontaneously mimic an equipartition of energy
in the different wave mode available. Furthermore, destructive interferences arise
along the walker trajectory in order to limit the amplitude of the global wavefield.
As a consequence, the limited increase of the effective temperature with the
memory parameter comes from this minimisation principle. Indeed, by promot-
ing destructive interference, the increase of amplitude of the wavefield is limited.

This last conclusion can also be applied to the previous chapter, in the case of the
run and tumble dynamics. Indeed, we have seen that the walker is trapped in its
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wavefield during a tumble phase but eventually escapes. Considering the wave
trap dynamics under the perspective of the minimisation principle, one can now
understand how the walker escape the trapping area. Indeed, promoting destruc-
tive interferences decrease the wavefield and opens a way out for the particle.

Some questions can be asked regarding the statical description of the walker
dynamics in confining potential. One of them is the entropy of the system. Indeed,
The Fokker-Planck equation for the walker is know to lead to entropy production
once the active particle is trapped in an harmonic potential. It would therefore
be interesting to study further this particle dynamics and the wave dynamics by
taking entropy production into account.
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Part II

Magnetocapillary microswimmers
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5
State of the art

From the movie ”Fantastic Voyage” to Richard Feynman’s seminal talk “There’s Plenty
of Room at the Bottom” where he suggested that in the future one would “swallow
the surgeon” [58] , people have always fantasised about nanoscale technologies and
their applications in medical fields. Today technologies are not far from those wonders:
biohybrid micropropellers have been designed in order to circumvent and treat fertility
issues with so-called “spermbots” [116, 115, 191], micro/nanomotors are used to track
cancer cells and also used for drug delivery [61, 191], magnetic colloids can be used
to trigger the apoptosis of cancer cells [109] and micromotors have also been used
to capture and transport [92] of bacterium [23] and anthrax spores [126]. Before
realising such experiments, one needs to understand the motion and dynamics of
microscopic and nanoscopic devices. In particular, in this second part of the thesis, we
will focus on microswimmer, i.e. meso/microscopic structures and objects which can
deform and move into fluids thanks to hydrodynamic interactions [149, 107]. Recent
experiments have shown that magnetically-powered microswimmers could be created
using millimetric magnetic beads on air/water interfaces [111, 77, 75, 76, 74, 168].

5.1 Low Reynolds number swimming strategies

Large mammals like cetaceans and fishes use a different swimming strategy than
“small organisms” such as bacteria or sperms to move themselves into a fluid.
Indeed, in the former case, the animal relies on inertia to propel itself into the
fluid [65]. The beating motion of its fins or flippers pushes the water backwards.
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Thanks to Newton’s third law, the animal moves in the opposite direction of the
propelled fluid. This dynamics also corresponds to the strategies used by humans,
such as breaststrokes or crawl, to swim. In the case of bacteria or sperms, the
effect of viscous damping relative to inertia does not allow the organism to use
similar strategies. Let us consider a numerical example. An Escherichia Coli bac-
terium of effective radius a moving at speed v within a fluid of viscosity η will
experience in first approximation a drag force of intensity F⃗d = −6πηav⃗. Con-
sidering inertia, Newton equation for this bacterium gives the typical coasting time
and distance τ = 2a2ρ/9η and ∆x = vτ , ρ being the bacteria density. Consid-
ering a = 1 µm, v = 30 µm/s, η = 10−3 Pa.s and ρ ∼ 103 kg/m3, one has a
coasting time τ ∼ 10−7 s and distance ∆x ∼ 10−11 m. As a consequence, the
bacteria cannot rely on the inertia of the fluid, alike fishes or aquatic mammals.
The effect of viscosity is too important and stops the bacteria almost instanta-
neously. Instead, their swimming dynamics rely on the concept of non-reciprocal
deformation.

5.1.1 Stokes equation and the Scallop theorem

The equation describing locally the dynamics of a fluid is given by the Navier-
Stokes equation

ρ
∂u⃗

∂t
+ ρ

(
u⃗.∇⃗

)
u⃗ = −∇⃗p+ η∆u⃗ (5.1)

where ρ is the fluid density and η its dynamic viscosity, u⃗ is the local flow velocity
and p the local pressure. In the special case of swimming, the pressure field p arises
from the deformation of the swimmer while u⃗ is the flow induced by dynamics.
Note that no external volume forces are considered for a swimmer since it is
expected that a swimmer only rely on its deformation to achieve propulsion. This
equation can be greatly simplified when considering small obstacles or objects into
a flow of small magnitude. Indeed, assuming that the object has a typical length L
and the flow a typical speed U aside assuming a stationary flow, one can write

ρUL

η

(
u⃗′.∇⃗′

)
u⃗′ = − L

ηU
∇⃗′p+∆′u⃗′ (5.2)
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where primed variables correspond to dimensionless quantities. The prefactor in
the left-hand side of the equation defines the Reynolds number Re as

Re =
ρUL

η
(5.3)

which measures the relative effect of inertia and viscosity. For example, let us
consider the swimming dynamics of a human and a bacteria. For a human, L ∼ 1

m, U ∼ 10−1 m/s, ρ = 103 kg/m3 and η = 10−3 Pa.s, the Reynolds number
is of the order of Re ∼ 105. This result indicates that inertia greatly overcomes
viscosity in the flow dynamics. This corresponds to the intuition of pushing water
backward when swimming breaststrokes. For a bacteria in water, L ∼ 10−6

m with U ∼ 10−5 m/s. As a consequence, the Reynolds number scales as
Re ∼ 10−5 which leads to a dynamics dominated by viscosity. This result also
corroborates the intuition developed earlier in this section: bacteria cannot rely
on inertia. As a consequence, Eq.(5.2) reduced to the Stokes equation in the limit
Re → 0, which in dimensioned form writes

η∆u⃗ = ∇⃗p (5.4)

The Stokes equation has two important properties: it is rate-independent and
time-reversible. The rate independence arises from the observation that no
explicit time dependence can be seen in Eq.(5.4). There is no advantage for
the swimmer to deform rapidly (∂p/∂t ≫ 1) compared to slow deformations
(∂p/∂t ≪ 1). Indeed, whatever the rate of deformation, the flow u⃗ would be
the same over a deformation sequence and so will be the swimming speed. This
observation strongly contrasts with the intuition one has when swimming at high
Reynolds number. In this case the strokes rate has an influence on the flow gener-
ated. The second property, the time reversibility observed in Eq.(5.4), says that if
one reverses the deformation sequence of the swimmer (p → −p) one obtains
the opposite flow (u⃗ → −u⃗). This observation leads to the concept of recipro-
cal and non-reciprocal motion. If a sequence of deformation is identical to itself
when read backward (i.e. like a palindrome) then the deformation is said to be
reciprocal. Such a sequence cannot lead to a net motion along the fluid because
of the time reversibility of the Stokes equation. Indeed, imagine decomposing the
deformation sequence in two halves. The first half of the deformation sequence
would produce a flow. But because of time reversibility, the second half would
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Figure 5.1: Illustration of the swimming strategy of a scallop. The scallop swims into water at high
Reynolds number by closing and opening its shell at different rates. This strategy is unefficient at
low Reynolds number since this motion is reciprocal and since low Reynolds swimming strategies
cannot rely on the rate of deformation to change the flow one produces.

cancel the effect of the former. On the opposite, a non-reciprocal deformation,
i.e. which breaks the time reversibility of the sequence, can create a net flow and
therefore gives rise to a swimming dynamics. Let us give an example illustrating
each property. Figure 5.1 provides a schematic of a scallop (or a mussel if one
want to discuss this picture the Belgian way). Scallops are known to move into
water at high Reynolds number by closing and opening their shell at different rate.
This deformation is described by a sole degree of freedom and cannot lead to a
motion at low Reynolds number because of time reversibility. One could think
that closing and opening the shell at different rate would work. This strategy in-
deed works at high Reynolds number. They close their shell rapidly, expelling
water at high velocity therefore moving the opposite direction. The shell opening
is made slowly in order to generate a flow of small intensity and therefore min-
imizing an opposite thrust. At low Reynolds number, each displacement of the
shell would generate the same flow. As a consequence, the closing of the shell
cancels the opening and the scallop remains immobile at low Reynolds number.

More generally, deformation relying on one degree of freedom cannot lead to any
efficient swimming strategy at low Reynolds number. Named by Purcell [149], the
scallop theorem states that since the rate of deformation does not matter at least
two degrees of freedom are mandatory to observe a object swimming at low
Reynolds number. In his paper [149], Purcell gave an example of a functioning
microswimmer. Imagined as the extension of a scallop, his three link swimmer is
made of two hinges and three rigid rods as depicted in Fig.5.2(a) and (b). This
model mimics the propulsion mechanism of a flagella or a sperm. The deforma-
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tion of this swimmer is described by the two angles θ1 and θ2 which measures the
relative position of each arm. This model has therefore two degrees of freedom
and may be expected to swim for a non-reversible deformation. Fig.5.2(a) gives
the non-reciprocal deformation. The arms move in the sequence right → left
→ right → left which is not a palindrome and which is therefore non-reciprocal.
Note that the direction of swimming can also be guessed. Indeed, this sequence
depicts a wave travelling from left to right with the swimmer catching only half a
wavelength of it. Because momentum would be given to the liquid in the direction
of the propagating wave, the swimmer travels from right to left. As a compari-
son, a reciprocal deformation of the swimmer is provided in Fig.5.2(b). The arms
move according to the sequence right → left → left → right which is reciprocal.
The ability to swim can easily be described in a phase space constructed with the
different degrees of freedom. Figures 5.2(c) and (d) show that a non-reciprocal
deformation corresponds to an open cycle in the deformation space. On the
contrary, a reciprocal deformation does not show any cycle.

5.1.2 Models for microswimmers

During last decades, lots of efforts have been made to model and craft microswim-
mers. Regarding modelisation, lots of energy has been dedicated to the under-
standing of the swimming strategy of microorganisms. One can cite the work
of Gray and Hancock regarding the propulsion of sea-urchin spermatozoa [72].
They considered waves propagating along the flagellum of the spermatozoon and
the subsequent locomotion. More recently, Farutin et al modelled the motion of
Eutreptiella gymnastica known to swim by deforming its body. In their study, they
considered a sphere whose deformation is described as a sum of axisymmetry
spherical harmonics Yl,0 and showed that the swimming velocity is linearly pro-
portional to the excess area, which is related to the amplitude of the spherical
harmonics in the deformation [55]. Theoretical researches have also focused on
the minimal model leading to a swimming motion, following the idea of Purcell
and his three link swimmer. By far, the most known model is the one studied by
Najafi and Golestanian [124, 71]. This model is originally made of three beads
placed along a line and linked by two arms as depicted in Fig.5.3. The arm length
changes through time in a periodic fashion. Being one dimensional, this model
allows an easier analytical investigation of this swimmer. In particular, it has been
shown [71] in the case of a continuous deformation that non-reciprocity is well
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Figure 5.2: (a) Non-reciprocal deformation of the Purcell three link swimmer. The sequence leads
to a swimming motion going from right to left. (b) Reciprocal deformation. (c) Cycle in the (θ1, θ2)
phase space for a non-reciprocal deformation. The enclosed area is known to be proportionnal
to the distance travelled during a cycle. (d) Cycle in the (θ1, θ2) phase space for a reciprocal
deformation.

achieved when the arm oscillations are in quadrature of phase. The velocity of
this swimmer scales as

V =
κ

2
ωA1A2 sin (∆ϕ) (5.5)

where theA’s are the amplitude of deformation, ω the angular frequency of defor-
mation and ∆ϕ the relative phase shift between the arm oscillations. The phase
shift is here a measure of the non-reciprocity of the deformation. The constant
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Figure 5.3: (Top) Schematic representation of the Najafi-Golestanian swimmer. Three spheres of
respective radii a1 , a2 and a3 are linked together by two arms of variable lengths L1(t) and
L2(t). (Bottom) Sequence of deformation of the Najafi-Golestanian swimmer. The arms deform
according to the sequence left→ right→ left→ right which is non-reciprocal, leading to an overall
displacement ∆ at the and of one cycle.

κ accounts for the geometry of the swimmer and has been extensively studied in
[132]. It is worth noticing that the quantity A1A2 sin (∆ϕ) corresponds to the
area enclosed by the swimmer deformation in the phase space made by both axes
(A1, A2). Nevertheless, this model is kinematic. The arms deformation is known
a priori without considering the energetic cost of such a deformation neither its
dynamical origin. This model has known numerous extensions due to its analyt-
ical tractability. For example, Pande et al [131, 142] adopted a more dynamical
approach. Instead of assuming the deformation of the swimmer, they considered
knowing the forces acting at each instant. The link between the beads is not due
to length-varying rods but due to springs. In this framework, they showed that
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the speed of the swimmer may still be expressed as Eq.(5.5) but with parameters
A1, A2 and ∆ϕ depending on the forces and spring considered. Note that this
model was also studied numerically via Lattice-Boltzmann simulations [141]. The
Najafi-Golestanian model has also been extended to a two-dimensional analysis.
Earl et al [48] considered a triangular geometry, where the two oscillating arms
of the swimmer are separated by an angle θ. Such a swimmer is shown to make
circular motion during its cycle of deformation.

Beside theoretical investigations, lots of efforts have been made in realising exper-
imentally microswimmers. In 2005, Dreyfus et al [45] realised a microswimmer
with micrometric superparamagnetic colloids linked together with double strained
DNA. The result is a flagellum reacting to time-dependent magnetic fields. This
flagellum was attached to a red blood cell for a spermatozoon-like microswimmer.
The result was a biohybrid microswimmer. For magnetic fields of around 10 mT

and frequency of 10 Hz, this swimmer could reach speed up to 15 10−3 L/T

where L is the swimmer length and T is the period of the time-dependent mag-
netic field. This experiment was studied theoretically one year later by Gauger
et al [64] and by Roper et al [153]. In 2013, Williams et al also considered
spermatozoon-like swimmer [188]. Their difference with the experiments of
Dreyfus et al was the use of synthetic material alongside biological one. The
flagellum and head of the swimmer was made of PDMS while the deformation
the flagellum is made using cardiomyocytes on precise areas of the flagellum. The
use of biological material removed the necessity of magnetic fields to generate
the non-reciprocal deformation. Non-reprocity can also be achieved using the
proximity to an interface. In such case, the position of the swimmer relative to
the interface changes the viscous drag. As a consequence, swimming dynamics
can be obtained with a swimmer with one degree of freedom. For example, such
a swimmer was obtained by Tierno et al [176] with two paramagnetic colloidal
particles of different radii in a precessing magnetic field.

Recently, a new experiment developed in our lab and involving magnetic material
has attracted lots of attention [178, 179, 111, 106, 77, 75]. It consists in millimet-
ric ferromagnetic beads trapped at an air-water interface as depicted in Fig.5.4.
Since those particles are made of a metallic alloy, they float thanks to their wet-
ting properties instead of buoyancy. The capillary attraction between those beads,
the so-called Cheerios effect [180], is counterbalanced by dipole-dipole magnetic
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Figure 5.4: Schematic of the magnetocapillary swimmer experiment. Magnetic beads (in black)
float at the air-water interface thanks to their wetting properties in a square tank filled with water.
Three sets of Helmholtz coils generate magnetic fields. The horizontal pair generates a vertical and
constant field in order to counterbalance the capillary attraction through dipole dipole repulsion. An
equilibrium position can be obtained and is fully controllable. The vertical pairs of coils generate time
dependent fields which deforms the structure. Images are taken from the top and the experiment
is lit from below. Credit: Galien Grosjean, ULiege.

repulsion. Indeed, the horizontal coils depicted in Fig.5.4 induce magnetic dipoles
and therefore dipole-dipole repulsion. This experimental set-up has been used to
study the self-assembling dynamics of these beads [178, 179]. In particular, triangu-
lar and linear structures can be obtained [27]. Using horizontal time-dependant
magnetic field, it has been shown that non-reciprocal motion can be achieved
with those structures. The linear structure has led to the experimental realization
of the Najafi-Golestanian microswimmer, as shown in Fig.5.5(top). The triangular
structure is shown to be the most efficient in terms of speed [77, 75]. It is pictured
in Fig.5.5(bottom).
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Figure 5.5: (Top) Picture of the experimental realization of the Najafi-Golestanian microswimmer
using millimetric ferromagnetic beads at an air-water interface. The linear structure is obtained
thanks to a strong horizontal magnetic field which keeps a stable alignment. (Bottom) Picture of
the triangular swimmer. For each picture, the beads diamater is 500mm. Credit: Galien Grosjean,
ULiege

Figure 5.6: Picture illustrating the suspension of one bead at the air-water interface because of the
partial wetting of the beads. One sees that, at the contact line and given the wetting angle, capillary
forces pull the particle upward, preventing it to drown in the water. Nonetheless, most of the
particle is underwater. Finally, one can see the important deformation of the interface due to the
weight of the particle. This curvature is the key to the ``Cheerios effect''. Credit: Galien Grosjean,
ULiege

5.2 Magnetocapillary microswimmer

Let us focus more deeply on this experiment. We will first describe the static
case, where the magnetic fields are constant before illustrating the dynamics in
the case of time-dependent magnetic fields.

5.2.1 Static magnetic fields - Self-organisation

As it can be seen in Fig.5.5, the beads used seem to float on the surface, with-
out touching each other while remaining at a given constant interdistance. This
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equilibrium is due to the self-organisation of the beads on the interface thanks to
two effects: the capillary interactions between the beads which are mediated by
the liquid-air interface curvature and the dipole-dipole magnetic interaction due
to the magnetization induced by the coils.

Let us describe the self-assembling process by considering the attractive force of
the experiment, the so-called “Cheerios effect”. This force, nicknamed after the
famous brand of cereals, originates from the curvature of the liquid interface. In-
deed, the beads in the experiments are made of an alloy of chrome and steel with
a density of ρb = 7830 kg/m3. Yet, due to the small size of the beads, ranging
from 2a = 397 µm to 2a = 1mm in diameter, they can be trapped at the air wa-
ter interface while being denser than water. This apparent floatability comes from
the partial wetting of the beads. The capillary forces prevent particles from drown-
ing. This property is pictured in Fig.5.6, one observes that most of the volume is
immersed in water. The interface is significantly deformed because of the bead
weight. Indeed, its weight pulls the interface downwards which deforms in return.

As stated before, this curvature of the interface is key to the “Cheerios effect”. For
the sake of intuition, imagine another particle, identical to the first one, suspended
at the interface in its vicinity. Because of the curvature created by the former,
the latter will slide along the interface and fall into the depression. This results
in an attraction between each particle, mediated by the overall curvature. A
complete demonstration of the resulting force can be found in [180, 135, 98].
The surface profile due to one bead can be expressed in terms of a Poisson
equation expressing the pressure balance at the interface. One has

σ∇2h = ρgh, (5.6)

where h is the height of the interface. This equation expresses the balance be-
tween the capillary interaction due to the curvature and the hydrostatic pressure
caused by the deformation [180]. Given the axis-symmetry of the problem, one
can express the Laplacian in cylindrical coordinate, which gives

∂2h

∂r2
+

1

r

∂h

∂r
=
ρg

σ
h. (5.7)

Solutions of this equation are the modified Bessel function of the first kind K0
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and of the second kind I0. Since one expects that h → 0 for r → ∞, the final
solution is only expressed in terms of K0. Therefore, one has [135]

h(r) = −qK0

(
r

lc

)
(5.8)

where lc =
√
σ/gρf is the capillary length and q is called the capillary charge and

depends on the boundary conditions along the particle. It writes

q =
1

6

a3

l2c

(
2− 4

ρ

ρf
+ 3 cosα− cos3 α

)
+O

(
a4

l3c

)
, (5.9)

where αi is the three-phase contact line angle on the beads [24, 135, 97]. Note
that q scales as a length and can be extended to particles of any shape. In the
q expression, the density of the air has been neglected compared to the bead
density ρ and water density ρf . The q’s can either be positive or negative de-
pending on the curvature of the interface created by the floating objects, namely,
depending on the value of αi and the ratio ρ/ρf . A positive sign (q > 0) corre-
sponds to an object deforming the air-water interface downwards, in the same
way than the metallic beads previously introduced. In the contrary, a negative sign
(q < 0) corresponds to an upward curvature of the interface. An example would
be an air bubble trapped beneath the air-water interface. Those quantities have
been defined by analogy with interacting electric charges through the Coulomb
potential. Indeed, the capillary interaction potential is obtained by multiplying the
capillary charge q by the deformation induced by the neighbouring bead. For two
objects labelled i and j whose inter-distance reads r⃗ij , one has [98]

Uc(r⃗ij) = 2πσqihi(r⃗ij),

= −2πσqiqjK0

(
|r⃗ij |
lc

)
. (5.10)

The factor 2π comes from geometric arguments and the factor σ appears as a link
between the energy Uc and the deformation hi induced by the bead i. Note that
this expression has been obtained using the superposition principle. The deple-
tions created by each bead are assumed to be independent. This is not the case
for particles close to each other. Indeed, the curvature of the interface should
be a solution of Eq.(5.7) and the superposition principle is shown to be valid for
large interdistance only. For close particles, other techniques are required.
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Figure 5.7: Magnetisation curve for beads with a diameter D = 500 µm, giving the magnetic
dipole µ as a function of the magnetic field magnitude B. Black points correspond to experimental
measurements made by Silhanek and his team at Liège University. The gray dashed line accounts
for the paramagnetic approximation of the beads magnetization. The shaded area corresponds to
the range of experimental values being far from the magnetic saturation.

As a consequence, once trapped at the interface, two or more beads with the
same capillary charge attract. One needs another mechanism to intervene in
order to maintain a stable equilibrium configuration. In this experiment, repulsive
dipole-dipole interactions are used as the stabilizing force. Indeed, as stated at
the beginning of the previous section, the beads are made of an alloy of chrome
and steel which confers them a strong magnetic susceptibility. As a consequence,
once placed within magnetic fields, those beads posses a magnetic dipole and
therefore interact through magnetic dipole-dipole interaction. Two beads with
dipole µ⃗i and µ⃗j and interdistance r⃗ij have an interaction potential given by

Um(r⃗ij) =
µ0
4π

(
µ⃗i.µ⃗j
|r⃗ij |3

− 3 (µ⃗i.r⃗ij) (µ⃗j .r⃗ij)

|r⃗ij |5

)
, (5.11)

where µ0 is the void magnetic susceptibility. Since the magnetic dipole µ⃗ is at the
root of the interaction, a proper understanding of the magnetisation is mandatory.
The alloy from which the beads are made has an interesting property. Despite be-
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ing ferromagnetic, the alloy has a magnetization curve with almost non hysteresis,
as shown in Fig.5.7. Furthermore, this figure shows that the magnetization grows
linearly with the amplitude of the magnetic field applied. As a consequence, de-
spite being ferromagnetic, the beads mimic paramagnetic properties. Finally, the
spherical shape of the beads gives two other important properties. Firstly, un-
like to usual paramagnetic materials, the magnetic susceptibility χ of the alloy is
extremely important. Indeed, since the bulk material is ferromagnetic by nature,
its bulk magnetic susceptibility is important with χbulk = 300 [106]. Because
of the spherical shape of the particles, the bulk susceptibility is not the effective
susceptibility, which is given by [127]

χ =
3χbulk

3 + χbulk
≈ 3 (5.12)

which is several order of magnitude larger than any other usual paramagnetic
material. This observation explains why this material is often referred to as “super-
paramagnetic”. The value of χ corresponds to the gray dashed line in Fig.5.7 and
is in perfect agreement with the experiments. Second, the beads behave like
point-like magnetic dipole thanks to their spherical symmetry [91], whatever their
size. As a consequence of all those properties, one can express the magnetic
dipole has

µ⃗i =
4πa3iχB⃗

3µ0
+ µ⃗ri (5.13)

where ai is the beads radius and B⃗ is the total external magnetic field. Note that
the magnetic dipole µ⃗i and the external magnetic field are collinear. The vector
µ⃗ri accounts for the remnant magnetic dipole. In terms of equivalent magnetic
field, it has been measured at 0.015 mT. It has a very small amplitude compared
to magnetic fields used in experiments. Note that the magnetic saturation is never
reached in the experiments. The experimental range of magnetic field is given in
the red shade area in Fig.5.7, which corresponds to |B⃗| ∈ [−8, 8] mT.

Given the two interactions above, a structure can self-organise into a stable con-
figuration. Given the horizontal coils depicted in Fig.5.4, the beads can acquire a
vertical magnetic dipole. Those dipoles generate a horizontal repulsion for parti-
cles trapped at the interface. This magnetic repulsion is counterbalanced by the
capillary attraction which keeps the particles at close. Equilibrium is found when
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Figure 5.8: Structure observed experimentally for beads of diameter 2a = 500 µm pinned at an
air-water interface. The capillary attraction between the ferromagnetic beads is conterbalanced by
a vertical magnetic field (out of the plane of the picture). The beads being magnetic, the induced
magnetic moments (out of the plane of the picture) give a repulsion between the particle. Note
the 6-fold symmetry which originates from the interaction potentials. Pictures taken from [111].

the overall potential energy is minimised with

U =
1

2

∑
i ̸=j

Um(r⃗ij) + Uc(r⃗ij),

=
1

2

∑
i ̸=j

(
4π

9µ0

a3i a
3
jχ

2|B⃗z|2

|r⃗ij |3
− 2πσqiqjK0

(
|r⃗ij |
lc

))
, (5.14)

In this expression, we neglected the remnant contribution to the magnetic dipoles
given their small amplitudes. The potential energies involved in the definition
above naturally lead to an axisymmetric structure with a 6-fold symmetry, given
their mathematical definition. Indeed, only the magnitude of the interdistance
|r⃗ij | defines them. The structures one observes are illustrated experimentally in
Fig.5.8 for a number of beads increasing from 1 to 8. The bead diameter in this
figure is 2a = 500 µm and the vertical magnetic field is kept constant.

Adding a horizontal magnetic field can deform the global structure but also lead
to new stable ones. The effect of a constant horizontal contribution was investi-
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Figure 5.9: Possible configurations for a three-beads structure pinned at an air-water interface with
a vertical and an horizontal magnetic field. From left to right: increasing magnitude of B⃗x . The case
B⃗x = 0⃗ is depicted in the far left and gives the regular triangle. For non-zero magnitude of B⃗x ,
the triangle deforms to an isoceles. Above the critical value B⃗⋆

x , the linear structure can be made
stable [27]. Finally, important horizontal field values lead to the collapse of the structure. Credit:
Galien Grosjean, ULiege.

gated by Chinomona et al. [27]. In their aticle, they demonstrated theoretically
that for a “sufficiently strong” horizontal magnetic field B⃗x, a rectilinear structure
of three beads can be made stable. Their condition has a complex expression but
can be approximated by |B⃗⋆

x| ≈ |B⃗z|/2. Later, this work was used and validated
by Grosjean et al for their experimental realisation of the Najafi-Golestanian mi-
croswimmer [75]. The different structures obtained for a three-beads assembly
with a horizontal contribution B⃗x to the magnetic field are depicted in Fig.5.9.
Four situations are considered. With B⃗x = 0⃗, a regular triangle is found, similarly
to the results shown in Fig.5.8. For increasing values of B⃗x, the triangle deforms
to an isosceles one. The shorter side of the triangle is the one aligned with the
horizontal field. When reaching the threshold value B⃗x = B⃗⋆

x, the linear structure
can be observed. Finally, for large values of B⃗x, the beads touch each other. The
decreasing distance between the beads finds its explanation in the dipole-dipole
interaction. Indeed, when a horizontal field is added, the interaction between the
horizontal component of the dipoles is attractive, decreasing the relative efficiency
of the magnetic repulsion induced by B⃗z . Note that the system is bistable once
B⃗x > B⃗⋆

x, the linear and triangular structures can both be observed.

The linear and triangular structures are both able to swim, using different strategies
nonetheless. Their swimming dynamics is the core of the second part of this
thesis. Before discussing their theoretical studies and numerical modelling, let us
first discuss briefly their experimental realization.
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5.2.2 Time-dependent magnetic fields - Swimming dynamics

The horizontal motion of the assembly is only possible if a non-reciprocal defor-
mation is achieved, as discussed above in this chapter. For this purpose, time-
dependent magnetic fields are used. The global magnetic field is therefore made
of three contributions. The vertical field B⃗z which gives the dipole-dipole repul-
sion. The horizontal field B⃗x, henceforth referred to as “offset”, stabilises the
rectilinear structure and gives reproducible initial conditions from an experimen-
tal point of view [77]. And finally, the time-dependent magnetic field B⃗osc(t),
also horizontal, which can give the non-reciprocal deformation. It is worth notic-
ing that thanks to the Helmholtz coils, the magnetic fields applied are spatially
homogeneous and therefore no net force of magnetic origin is to consider. The
translation of the swimmer is only due to the hydrodynamic interaction and the
non-reciprocal deformation.

Let us briefly describe the hydrodynamic interactions involved in the swimming
dynamics. When a sphere moves into a fluid, it creates a flow. A second sphere,
immobile, would therefore be dragged into the induced flow and set into motion.
The force F⃗h exerted from the former sphere to the latter and mediated by the
fluid is called hydrodynamic interaction. In the case of low Reynolds number flows,
the mathematical expression of those forces can be derived. A more complete
description is given in Appendix B. In a few words, for the sake of intuition, let us
develop further the example discussed a few lines ago. A sphere labelled j , with
a velocity v⃗j , exerts a force F⃗h,i on a neighbouring sphere labelled i which reads

F⃗h,i =
9πηaiaj
2|r⃗ij |

(
v⃗j +

r⃗ij(r⃗ij .v⃗j)

|r⃗ij |2

)
, (5.15)

where r⃗ij = r⃗i−r⃗j and points from sphere j to sphere i. This effect is the means
by which systems at low Reynolds number can swim. Indeed, from a dynamical
point of view, the forces involved into hydrodynamic interactions break Newton’s
third law of dynamics: for the force F⃗h,i due to j and applied to i, there is no
opposed force with the same magnitude originating from i and applied to j . In
the peculiar case of swimming, it means that in a collection of particles the sum of
all internal forces can be different from zero and therefore gives an overall motion.
The key for such a dynamics is a non-reciprocal deformation.

Non-reciprocal deformation is observed for the triangular and the linear config-
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Figure 5.10: Non-reciprocity illustrated for the triangular case. Snapshots illustrating the deforma-
tion of the triangular swimmer during a period of the magnetic field oscillation for beads of diameter
2a = 500 µm. Black disks account for the actual position of each beac while yellow disks corre-
spond to their initial position. Deformation and motion can therefore be tracked. The swimmer
starts in an regular configuration. It rotates counterclockwise (t = T/4) before being an isosce-
les (t = T/2). The swimmer then rotates clockwise (t = 3T/4) before being equilateral again
(t = T ). The swimmer is back at its initial configuration but has moved from its initial position.
Adapted from [77].

urations, as shown in Figs. 5.10 and 5.11. For each figure, the non-reciprocal
dynamics is illustrated using snapshots during a whole cycle of deformation. For
the triangular configuration, Fig.5.10 shows two mains features. Firstly, the struc-
ture oscillates around its center, clockwise (see t = T/4) and counter-clockwise
(see t = 3T/4). Secondly, the triangle deforms, oscillating between a regular
structure (see t = 0) and an isosceles one (see t = T/2). Interestingly, both
oscillations are in quadrature of phase, fulfilling the condition of non-reciprocity.
The dynamics from t = 0 to t = T is not the same as the one observed when
“rewinding” the dynamics, i.e. when considering the dynamics from t = T to
t = 0. This observation testifies that the deformation is non-palindromic and
therefore non-reciprocal. Since non-reciprocity is achieved, the assembly can
swim along the interface, as it can be seen in Fig.5.10. The linear configuration
also displays a non-reciprocal deformation. Figure 5.11 gives snapshots of the
deformation dynamics for a microswimmer at f = 2 Hz. One period of the os-
cillating field is illustrated. The blue vertical dashed lines give points of reference
in order to track the deformation over one cycle. One sees that each particle
oscillates around its initial position. In particular, the two left particles are at their
closest at t = 0.19 s approximatively while the two particles of the right are at
their closest at t = 0.31 s. As a consequence, a phase shift exists between each
oscillation. Given the theory of Najafi and Golestanian [124, 71], non-reciprocity
is achieved. Note that if the swimmer seems motionless, it is only because of its
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Figure5.11:Non-reciprocity illustrated for the linear case. Snapshots illustrating the deformation of
the triangular swimmer during a period of the magnetic field oscilaltion for two beads of diameter
2a = 500 µm and one bead of diameter 2a = 397 µm. The magnetic field is applied along the
horizontal direction and oscillates at f = 2 Hz. The two first particles approach until being at their
closest at t = 0.19 s. The two last particles are at their closest for t = 0.31 s approximatively.
The swimmer is back to its initial configuration at the end of the cycle. Adapted from [75].

low velocity. Indeed the linear configuration swims at 12 µm/s at its best [75]
while the triangular configuration swims up to 300 µm/s [77].

5.2.3 Applications

Given its efficiency, the triangular swimmer is a candidate of choice for microflu-
idic applications. Beside its speed reaching values up to one radius per period of
oscillation (v = a/T ), the triangular is shown to be completely and remotely con-
trollable. By changing “slowly” the orientation of the oscillating field, the swimmer
can make U-turns, loops and changes of direction [77]. In this context, “slowly”
means slower than the period of oscillation of the field. This remote controllabil-
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Figure 5.12: Remote controllability illustrated. Changing the orientation of the oscillating field B⃗(t),
the letters S, W, I and M can be drawn when tracking the swimmer trajectory. U-turns, loops and
curved trajectories are seen. Credit: Galien Grosjean, ULiege.

ity is illustrated in Fig.5.12 where the the swimmer draws the letters S, W, I and
M when tracking its trajectory while changing the orientation of the field.

Given its manoeuvrability, the swimmer could, for example, be used for mixing
fluid at low Reynolds number. It is worth noticing that mixing at low Reynolds
number is a challenging task. Indeed, mixing usually rely on turbulence in the fluid.
At low Reynolds number, it is no longer possible. Looking back at Eq.(5.2), one
can see that the advection term (u⃗.∇⃗).u⃗ responsible of turbulence is neglected
in this limit. As a consequence, other mechanisms are required. One of those
strategies is based on the idea of creating multiple layers of fluids to obtain a com-
plex entanglement mimicking a mixing process. This is the same idea as the baker
doing his croissants by creating multiple layers of puff pastry. And because pastries
have inspired multiples ideas in chaos theory, the principle of creating complex
entanglement of layer of fluids is called chaotic advection [15]. This process is illus-
trated with the linear structure in Fig.5.13. Food dyes have been added to water
in the experiments to follow the creation of the layers. A linear structure was
formed by increasing B⃗x (see Fig.5.13(b)). A horizontal rotating field forces the
rod to rotate at its frequency. The induced flow drags the dyes and the layers are
created (see Fig.5.13(c)). Because flows are reversible at low Reynolds number,
rotating the field backwards bring back the bulk to its initial state (see Fig.5.13(d)).
The sole difference observed is the gray shaded area in Fig.5.13(d) which is due
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(a) (b)

(c) (d)

Figure 5.13: Mixing food dyes at low Reynolds number using a magnetocapillary swimmer. (a)

A Swimmer is placed where the mixing is required. (b) The beads are assembled into a linear
structure and a rotating magnetic field is applied. (c) After approximately eight turns clockwise,
layers of dyes are formed around the rod. (d) After approximately eight turns counter-clockwise,
the surface is back at its original state. Only a gray zone is visible where the thermal diffusion of
the dyes have occurred. Credit: Galien Grosjean, ULiege.

to the thermal diffusion of the dyes between each layer of fluid.

Finally, this swimmer has been shown to be able to transport cargo of different
types along the interface, from polystyrene beads to sesame seeds [76]. The
swimmer captures the cargo via capillary interaction. In those cases, manoeuvra-
bility is conserved but the locomotion requires more than 3 beads for propulsion.
Indeed, because of cargo attaches to the beads, this cargo restrains their motion.
In this situation, restrained beads do no longer participate to the non-reciprocal
deformation. As a consequence, more beads are required.
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5.3 Conclusions

Despite the rich behaviour illustrated in the previous sections, the theoretical de-
scription of the dynamics of magneto-capillary swimmers is challenging [27]. The
second part of this thesis is dedicated to the investigation of the dynamics in two
cases: the case of 3 particles in free space only submitted to time-dependent
magnetic fields and the case of 3 confined particles in time-dependent magnetic
field. The former case corresponds to the Najafi-Golestanian configuration and
gives a proper realization of this swimmer. The latter case investigated is the tri-
angular swimmer. Therefore, in the two following chapter, we ask the question
what is the cooperative dynamics required in this system in order to order to obtain a
non-reciprocal deformation? We will develop the theoretical framework required
to understand the cooperative interactions of the beads on the interface and dis-
cuss how a global self-propulsive dynamics is achieved.

136



6
Magnetocapillary linear swimmer

As stated in the beginning of this part of the manuscript, the three-beads magnetocap-
illary microswimmer can be stabilised into a linear configuration by adding an offset
of high amplitude. This condition is approximately found for |B⃗x|/|B⃗z| = 0.586

[75, 27]. This geometry corresponds to the one using by Najafi and Golestanian in their
seminal study of micro-swimmers [124, 71]. As an experimental validation of their
work, we managed to move this structure along the interface using time-dependent
magnetic fields.

This chapter will be divided in two parts. First, we will seek for a way to generate a
non-reciprocal deformation of this microswimmer. We show that using beads of dif-
ferent size can lead to non-reciprocity. Second, this system is solved from a dynamical
point of view in order to complete Golestanian kinematic study in [124, 71]. A linear
model for the magnetocapillary microswimmer is proposed and a full theoretical in-
vestigation closes this chapter. Especially, the optimisation and miniaturisation of this
microswimmer is discussed.

All the results presented in this chapter can be found in the following articles.

• Lagubeau G., Grosjean G., Darras A., Lumay G., Hubert M. & Vandewalle
N. Statics and dynamics of magnetocapillary bonds, Phys. Rev. E, 93, 053117
(2016).
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• Grosjean G., Hubert M. & Vandewalle N. Realization of the Najafi-Golestanian
microswimmer, Phys. Rev. E, 94, 021101 (2016).

6.1 Seeking non-reciprocity

When dealing with low Reynolds number dynamics and locomotion, creating a
non-reciprocal deformation is not a trivial task. In the forthcoming sections, we
will show how to generate this non-reciprocity using beads of different sizes in
the structure. This leads to different interactions between each pair of beads and
therefore break the spatial symmetry of the swimmer. Under a time-dependent
magnetic field, each pair will oscillate with a different phase shift and therefore
fulfil the swimming condition of Najafi and Golestanian in Eq.(5.5) [71].

6.1.1 Experimental background

Let us give some experimental background to this section. Experiments has
been provided by Galien Grosjean from Liege University. The beads consid-
ered through this chapter have a diameter ranging from 2a = 793 µm down
to 2a = 397 µm. The beads are placed at an air-water interface and float thanks
to their wetting properties. Since they have strong ferromagnetic properties as
described in Chapter 5, in order to counterbalance the capillary attraction be-
tween beads at the interface, a vertical field B⃗z is applied. The amplitude of this
field is |B⃗z| = 4.5 mT. This vertical field is provided by a pair of horizontal
electric coils in the Helmholtz configuration as depicted in Fig.5.4. In order to sta-
bilise the three beads assembly into a linear configuration, an intense and constant
horizontal field B⃗x is also applied [27] with an amplitude |B⃗x| = 2.2 mT. The
deformation is due to a superimposed oscillating field B⃗osc(t) applied parallel to
B⃗x. The peak amplitude of this field is |B⃗osc| = 0.5 mT and its frequency f
ranges between 0.1 Hz and 5 Hz. It follows that the global magnetic field writes

B⃗(t) =
(
|B⃗x|+ |B⃗osc| sin(ωt)

)
e⃗x + |B⃗z|e⃗z, (6.1)

where ω = 2πf is the angular frequency of the oscillating field. All the vector
fields and a schematic of the assembly are given in Fig.6.1
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Figure 6.1: Schematic of the three beads self-assembly in the collinear case. A vertical field B⃗z

magnetises the beads and induces a repulsive dipole dipole interaction. An high intensity horizontal
field B⃗x gives a stable linear configuration has described in [27]. Finally, a small amplitude oscillating
field B⃗osc(t) deforms the structure. Non-reciprocity is obtained by considering beads of different
sizes, as shown in this figure.

As it has been discussed previously, beads of different sizes are required for the
non-reciprocal deformation of the assembly. The reason is simple: identical beads
would create identical forces on each other. Since we are dealing with internal
forces for this deformation, identical forces would lead to an immobile bead at
the center of the system and two beads oscillating in opposition of phase on
the sides. As a consequence, different forces and therefore different beads are
required. Using two beads of 500 µm and one bead of 397 µm, it has been
possible to obtain a swimmer swimming up to 15 µm/s. This corresponds to a
Reynolds number up to 10−1. In the next section, the magnetocapillary potential
is investigated in the linear regime in order to quantify completely the effect of
the size on the interactions.

6.1.2 Linear analysis

Let us consider the interaction between a pair of beads. An illustration of the
forces acting in the system is given in Fig.6.1. On the one hand, we know from
Chapter 5 that the capillary interaction is described by

Uc(r⃗) = −2πσq1q2K0

(
|r⃗|
lc

)
, (6.2)

where r⃗ lies in the horizontal plane. For the sake of simplicity, we define Γ =

2πσq1q2 which measures the magnitude of deformation of the interface and also
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Figure 6.2: Schematic for the two beads interaction. Because of the liquid surface deformation,
beads attract through the capillary interaction F⃗c = −∇⃗Uc . To prevent the contact between the
beads, magnetic fields are applied and leads to a magnetic dipole-dipole interaction F⃗m = −∇⃗Um .

gives the typical energy stored in the surface deformation. On the other hand,
the beads are also submitted to magnetic fields in order to induce dipole-dipole
interactions and to stabilize the structure. Given the large amplitudes of magnetic
fields considered in this chapter, the remnant contribution of the magnetic dipole
can be neglected. As stated in Section 5.2.1, in equivalent field unit, the remnant
contribution is measured to be given by 0.015 mT which is more than ten times
smaller than the magnetic fields one uses. For a magnetic field given by B⃗ =

|B⃗z|e⃗z + |B⃗x|e⃗x, the magnetic interaction potential is given by

Um(r⃗) =
4πχ2a31a

3
2

9µ0

(
|B⃗2

z |+ |B⃗2
x|
(
1− 3 cos2 θ

)
|r⃗|3

)
, (6.3)

where θ is the angle between the vector r⃗ joining the two beads and the hori-
zontal field B⃗x.

We can make the magnetocapillary potential dimensionless by considering Γ as
a unit of energy and by considering the substitution |r⃗| = rlc. The dimensionless
total potential U is given by

U = −K0 (r) +

(
Mz +Mx

(
1− 3 cos2 θ

))
r3

, (6.4)
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whereMz andMx are the magnetocapillary numbers and defines as

Mi =
4πχ2a31a

3
2|B⃗i|2

9µ0l3cΓ
, (6.5)

In this expression, i = {x, z}. The equilibrium position (r̃⋆, θ⋆) is obtained by
cancelling the gradient of this potential.

∂U

∂r

∣∣∣
r⃗⋆

= K1 (r)− 3
Mz +Mx

(
1− 3 cos2 θ

)
r4

= 0, (6.6)

1

r

∂U

∂θ

∣∣∣
r⃗⋆

=
6Mx sin θ cos θ

r4
= 0. (6.7)

The stability, and therefore the natural frequencies, are obtained thanks to the
second derivative

∂2U

∂r2

∣∣∣
r⃗⋆

= −K0 (r)−
K1 (r)

r
+ 12

Mz +Mx

(
1− 3 cos2 θ

)
r5

, (6.8)

1

r2
∂2U

∂θ2

∣∣∣
r⃗⋆

=
6Mx

(
cos2 θ − sin2 θ

)
r5

. (6.9)

Equations relative to the azimuthal direction give the equilibrium angles

θ⋆ =
nπ

2
, n ∈ N. (6.10)

Stable positions are found for even values of n while unstable positions appear for
odd values of n given Eq.(6.9). As a consequence, for the stable azimuthal equi-
librium position, the equilibrium distance is given by the transcendental equation

r4 ⋆K1 (r
⋆) = 3 (Mz − 2Mx) . (6.11)

This equation predicts a saddle-node bifurcation with 3 (Mz − 2Mx) being the
bifurcation parameter as shown in Fig.6.3. Indeed, the Bessel K1(r) function is
decreasing as 1/r for r ≪ 1 and decreasing as exp(−r) for r ≫ 1. As a conse-
quence, r4 ⋆K1 (r

⋆) has an unique global maximum, giving an upper bound for
3 (Mz − 2Mx) = 3.3408. Above this critical value, no solution is found. Physi-
cally, it means magnetism always overcomes the capillary attraction, bringing the
particles infinitely away from each other. Below this critical value, two solutions
are found, one stable and one unstable. Indeed, given Eq.(6.11), Eq.(6.8) can be
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Figure6.3: Illustration of the r4K1(r) function and the corresponding saddle-node bifurcation. The
horizontal gray dotted line gives a peculiar value of the constant 3(Mz − 2Mx). The left-hand
side of the curve (plain purple) gives a stable equilibrium interdistance while the right-hand side of
the curve (dashed orange) gives the unstable equilibrium interdistance. A saddle-node bifurcation
is found for 3(Mz − 2Mx) = 3.3408, above which magnetism always repels the beads infinitely
appart. The corresponding highest stable equilibrium interdistance is found for r/lc = 3.41387

rewritten as
∂2U

∂r2

∣∣∣
r⃗⋆

= −K0 (r) +
3K1 (r)

r
, (6.12)

which gives a positive value for the lowest equilibrium distance and negative for
the largest. Note that in this expression, the second derivative depends only
parametrically on the magneto-capillary numbers through Eq.(6.11). For the pa-
rameters considered experimentally, typical stable distances between the beads
give r < 1. Such a range of values gives the possibility to express the Bessel func-
tions as K0(r) ≃ log(r) and K1(r) ≃ 1/r. In this case, the equilibrium position
and stiffness can be expressed in terms of the magneto-capillary numbers. In first
approximation, one has

r = (3Mz − 6Mx)
1
3 → |r⃗| =

(
4πχ2a31a

3
2

3µ0Γ

(
|B⃗z|2 − 2|B⃗x|2

)) 1
3

, (6.13)

and

k =
3

(3Mz − 6Mx)
2
3

→ k =

(
3µ0Γ

5
2

4πχ2a31a
3
2

1

|B⃗z|2 − 2|B⃗x|2

) 2
3

. (6.14)
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Those expressions are only valid if r < 1 or |r⃗| < lc. In this those expressions,
the Bessel function K0(x) has been neglected given its small value compared to
K1(x)/x. It is worth noticing that Eq.(6.13) does not depend on the size of the
beads since Γ ∝ a31a

3
2 as it can be seen from Eq.(5.9). This property has been

observed experimentally by Vandewalle et al in [179]. Contrarily to the distance
between the beads, the stiffness does depend on the beads size. Finally, the
natural frequency is related to the ratio between the stiffness and the reduced
mass of the systemmr = m1m2/(m1 +m2), which gives in first approximation

ω0 =

(
3Γ

4πρ

a31 + a32
a31a

3
2

) 1
2

(
3µ0Γ

4πχ2a31a
3
2

1

|B⃗z|2 − 2|B⃗x|2

) 1
3

. (6.15)

Note that this formula does not consider the mass of fluid dragged by the beads
motion. This mass was estimated in [106] and is given by mfluid = mr/16.
In Eq.(6.15), the second factor on the right hand side does not depend on the
particle size but the first factor does. Therefore, in order to have different values
of ω0, different radii are necessary. Indeed, Γ, ρ and χ cannot be changed since
they depend on the magnetic structure of the alloy, the beads wetting properties
and density. Given the experimental device, the magnetic fields B⃗z and B⃗x are
the same for each particle at the interface. Only remains the radius of the beads in
order to generate a difference of natural frequency. Since the natural frequencies
ω0 depend on the radii involved, different pairs of beads do not oscillate with the
same phase shift relative to the external field when driven out of equilibrium. This
last property is fundamental in swimming systems since it gives the possibility to
fulfil the Golestanian condition in Eq.(5.5).

This linear analysis can be verified experimentally. Figure 6.4 gives the distance
between two beads compared to the capillary length lc as a function of the mag-
netocapillary numberMz . Different bead sizes have been considered. The color
code used depends on the ratio |r⃗|/2a. Finally, the dotted gray line corresponds
to Eq.(6.13). No fitting parameter has been used. One sees that the theory cap-
tures the experimental data. Only the beads with the lowest ratio |r⃗|/2a gives
small differences. This difference can come from the expression of the capillary
potential which is valid only in the limit |r⃗|/2a≫ 1 [135].

The natural frequency expression can also be verified. Before verifying the validity
of Eq.(6.15), let us consider the method used to obtain this information. Figure
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netocapillary number Mz for different bead radii a. Points account for the experiments and the
dotted line to Eq.(6.13): Squares 2a = 500 µm, Circles 2a = 397 µm and Crosses 2a = 793
µm. The color of each point is directly related to the ratio |r⃗|/2a which measure the validity of the
capillary potential expression in Eq.(5.10). Experimental data has been provided by G. Grosjean.
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Figure 6.5: Amplitude of oscillation of a pair of beads submitted to a weak time-dependent oscil-
lating field as a funciton of its frequency. Points account for experimental data while the dotted
line corresponds to a resonant curve. The beads considered have a diameter 2a = 500 µm and
the fields are in the ratio |B⃗z|/|B⃗x| = 2.4. Errorbars on the amplitude are smaller than the point
size. (Inset) Comparison between the measured natural frequency and the theoretical natural fre-
quency given by Eq.(6.15). Different bead sizes are considered: Squares 2a = 500 µm, Circles
2a = 397 µm and Crosses 2a = 793 µm. Points are colored depending on the value of |r⃗|/2a.
Experimental data has been provided by G. Grosjean.
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6.5 shows the amplitude of oscillation for a time-dependent fields of fixed am-
plitude as a function of the frequency. This analysis results in a resonance curve
with a peak at f ≈ 2 Hz. This curve can be fitted using the theory of forced
linear oscillator. The result is given by the dotted gray line on the plot. The fitting
procedure gives the natural frequency fexp and also the viscous damping time τv
of the oscillator. The latter being defined by the ratio of the reduced mass of the
system to the Stokes drag. Nevertheless, there is another significant information
in this plot. Such a resonant curve is only observed for a linear forced oscillator
with a relatively large damping time where the particles inertia plays a role. Indeed,
the resonance peak in this case come from the inertia in the system. This obser-
vation can be counter-intuitive since we are dealing with low Reynolds number
dynamics. The explanation comes from the difference that exists between the
particles inertia, measured through the quality factor Q = ω0τv/2 and the fluid
inertia measured through the Reynolds number defined in Eq.(5.3). Basically, the
difference between each dimensionless number comes from the different density
involved. As a consequence, one can have a low Reynolds dynamics where the
flow inertia is negligible and a relatively high quality factor where the beads inertia
becomes relevant. Finally, the inset of Fig.6.5 gives a comparison between the nat-
ural frequency measured experimentally and the theoretical frequency computed
from Eq.(6.15). One sees that the theory captures correctly the experimental
data. Once again, only particles with a small ratio |r⃗|/2a deviate from the theory.

This section has given us the main properties of the magnetocapillary interaction.
The magnetocapillary potential can be reduced to a linear spring potential with a
natural frequency that depends on the radius on the beads involved. We have
also seen that the particles inertia plays a significant role in the dynamics. Based
on those observations, in the next section, we will try to build a minimal model
for the microswimmer.

6.2 The inertial Najafi-Golestanian magnetocapillary microswimmer

Let us build a minimalist model. The approach is the following: the condition
derived by Najafi and Golestanian (see Eq.(5.5)) was obtained through cinematic
hypothesis. Indeed, they assumed the deformation of each arm of the structure
without discussing their dynamical origin. Using this kinematic description and
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the theory of hydrodynamic interaction, they obtained their formula expressing
the speed of the swimmer. We aim here at filling the gap in this approach by
discussing the system from a dynamic point of view. This approach will give a
more realistic description of the swimmer deformation based on the properties
of the magnetocapillary potential. Once the deformation is computed, the result
will be used in the Golestanian condition in order to obtain the swimming velocity
of the magnetocapillary swimmer. In the forthcoming section, we first develop
the model then compare it with the experiments performed by Galien Grosjean
at Liege University. The validity of each hypothesis is then discussed and aberrant
behaviours are highlighted.

6.2.1 A dynamical minimalist model

Given the results of the linear analysis, we can describe the Najafi-Golestanian
microswimmer as three beads linked by two different hookian springs of stiffness
ka and kb and having an identical rest length L = |r⃗|. The beads are at position
x1, x2 and x3 respectively. The asymmetry of the three-beads swimmer is only
taken into account in the stiffness of the springs. As a consequence, for the sake
of mathematical simplicity, we assume the beads to be identical. Therefore the
mass m are identical as well as the Stokes damping factor µ = 6πηa. Note
that three beads are the minimal number required, only two beads won’t swim
in virtue of the Scallop theorem. Following this idea of a minimal model, the
Stokeslet is removed from the analysis, since the hydrodynamic interactions are
already integrated in the Golestanian condition. We will seek for the mathemat-
ical expressions of the elongation (x2 − x1 − L) and (x3 − x2 − L) and use
them in the Najafi-Golestanian condition in Eq.(5.5). Note that the validity of
those approximations will be discussed later in this chapter. The beads are also
submitted to an external forcing F sin (ωt) which originates from the magnetic
dipole-dipole interaction. Given all those assumptions, including the beads inertia
observed in Fig.6.5, the Newton equation for each bead writes

mẍ1 + µẋ1 − ka (x2 − x1 − L) = −F sin (ωt) ,

mẍ2 + µẋ2 + ka (x2 − x1 − L)− kb (x3 − x2 − L) = 0,

mẍ3 + µẋ3 + kb (x3 − x2 − L) = F sin (ωt) , (6.16)

It is worth noticing that no net force acts on the fluid. Indeed, each force can-
cels another in this set of equations. This corresponds to the idea of an actual
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swimmer which only moves itself in the fluid by inducing flows in the bulk. As a
consequence, there is no Stokeslet generated in average by the swimmer over a
cycle of deformation. We now study the oscillators in terms of the elongations
ya = mω2(x2 − x1 − L)/F and yb = mω2(x3 − x2 − L)/F . In order to
suppress redundant parameters, the equations are considered in dimensionless
form. Defining t = ωt, Ω2

a = ka/mω
2, Ω2

b = kb/mω
2 and β = µ/2mω, one

has

ya + 2βya + 2Ω2
aya − Ω2

byb = sin (t) ,

yb + 2βyb + 2Ω2
byb − Ω2

ayb = sin (t) . (6.17)

This system can easily be solved in Fourier space. Defining the Fourier transform
ŷi, i = {a, b} as

ŷi =

∫ ∞

−∞
yi(t)e

iωtdt,

yi =
1

2π

∫ ∞

−∞
ŷi(ω)e

−iωtdω, (6.18)

one has the following set of algebraic equations

− ω2ŷa + 2iωβŷa + 2Ω2
aŷa − Ω2

b ŷb =
1

2i
(δ(ω + 1)− δ(ω − 1)) ,

− ω2ŷb + 2iωβŷb + 2Ω2
b ŷb − Ω2

aŷa =
1

2i
(δ(ω + 1)− δ(ω − 1)) . (6.19)

Given the delta functions, only two frequencies remain in the Fourier transform,
namely ω = ±1. The corresponding amplitude are

ŷ±a =

(
3Ω2

b − 1
)
± 2iβ

Ω2
aΩ

2
b − ((2Ω2

a − 1)± 2iβ)
((
2Ω2

b − 1
)
± 2iβ

) = ρae
±iϕa

ŷ±b =

(
3Ω2

a − 1
)
± 2iβ

Ω2
aΩ

2
b − ((2Ω2

a − 1)± 2iβ)
((
2Ω2

b − 1
)
± 2iβ

) = ρbe
±iϕb (6.20)
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where ŷ+i = ŷ−†
i . After inverse Fourier transform, the elongation ya and yb are

given by

ya =
ŷ+a e

it − ŷ−a e
−it

2i
= ρa sin (t− ϕa)

yb =
ŷ+b e

it − ŷ−b e
−it

2i
= ρb sin (t− ϕb) (6.21)

Given the solutions for the elongation in Eq.(6.21), one can analyse the swimming
dynamics of the swimmer. Before computing the swimming speed, we focus on
the non-reciprocal deformation of the swimmer by considering its trajectory in the
(ya, yb) phase space. This result can be found in Fig.6.6 for both the experiments
and the theory. The theoretical frequencies Ωa and Ωb are calculated considering
the frequencies extracted at the end of Section 6.1.2. Four frequencies of oscillat-
ing field are considered: f = 0.3 Hz, f = 1.5 Hz, f = 3.0 Hz and f = 4.0 Hz.
One sees that both experimentally and theoretically, an open cycle can be seen,
testifying of the non-reciprocal deformation, as discussed in Section 5.1.1. One
sees that the cycle is closed for the lowest frequency and open for increasing fre-
quencies. For the highest frequency, the cycle is seen to close again. Beside, the
oscillations amplitude is seen to decrease after f = 1.5 Hz as expected from the
theory of forced oscillator. Finally, one sees that the experimental cycles are well
reproduced by the thoery. Only the highest frequency shows some difference
which might be due to the effect of the fluid inertia in the experiment because of
the high frequency of the oscillating field which is not taken into account in the
theory. Given this proof of concept, let us consider the swimming velocity of the
magnetocapillary self-assembly.

We know that non-reciprocal deformation is possible. Therefore, let us consider
the formula derived by Golestanian [71]. He demonstrated that the velocity of
the swimmer is given by

V = lim
∆t→∞

κ

2∆t

∫ ∆t

0
(yayb − yayb) dt. (6.22)

where κ is a geometric factor. In the case of spheres, it expresses as

κ =
3a1a2a3

(a1 + a2 + a3)
2

(
1

L2
a

+
1

L2
b

− 1

(La + Lb)
2

)
, (6.23)
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Figure 6.6: Deformation of the Najafi-Golestanian microswimmer in the configuration space. Each
column accounts for a different frequency: (a) f = 0.3 Hz, (b) f = 1.5 Hz, (c) f = 3.0 Hz
and (d) f = 4.0 Hz. Experiments (top) and theory (bottom) are considered. Values required for
the theoretical curves has been obtained from experiment, leaving no free parameter. Despite
differences at high frequency, one sees that the model reproduces correctly the dynamics for low
frequency. Experimental data has been provided by G. Grosjean.

where La and Lb are the natural length of each oscillator, identical in our case by
hypothesis. Injecting the solution obtained previously in Eq.(6.21), one gets

V =
κ

4i

(
ŷ+a ŷ

−
b − ŷ−a ŷ

+
b

)
=
κ

2
Im
(
ŷ+a ŷ

+†
b

)
︸ ︷︷ ︸

W

. (6.24)

This last relation can be developed further in order to recover the condition
required for non reciprocity, namely

Im
(
ŷ+a ŷ

+†
b

)
= ρaρb sin (ϕb − ϕa) . (6.25)

By analogy with Thermodynamics, we refer to the quantity ρaρb sin (ϕb − ϕa)

as the “work”W performed by the system in order to achieve propulsion. This
quantity measures the area of the ellipsis in the (ya, yb)-plane. As it can be
seen, the swimming velocity is related to the Fourier coefficients ŷ+a and ŷ+b .
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Figure 6.7:WorkW as a function of the dimensionless frequencies Ωa and Ωb for different values
of the dimensionless dissipation β . (a) β = 0.1, (b) β = 0.2, (c) β = 0.5 and (d) β = 1.0. Dashed
white lines account for the two resonances observed Eq.(6.26). Note that the bissectrix of each
plot corresponds to a line of zero velocity since the swimmer becomes reciprocal. One observes
that, as the dissipation increases, the resonance peaks widen and decrease in amplitude.

Developing this expression gives the velocity as a function of the parameters of
the Najafi-Golestanian micro-swimmer, namely the dimensionless frequencies Ωa

and Ωb and the dimensionless friction parameter β

V =
κ

2

6β
(
Ω2
b − Ω2

a

)∣∣∣Ω2
aΩ

2
b − ((2Ω2

a − 1) + 2iβ)
((
2Ω2

b − 1
)
+ 2iβ

) ∣∣∣2 . (6.26)

Restoring dimensioned quantities, one obtains

V =
κ

2

3µF 2ω2 (kb − ka)∣∣∣kakb − ((2ka −mω2) + iµω) ((2kb −mω2) + iµω)
∣∣∣2 (6.27)
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Figure 6.8: Speed of the Najafi-Golestanian microswimmer as a function of the frequency of the
oscillating field. Both experiment (blue circles) and theory (orange and purple dashed lines) are
displayed. Experiments have been done for beads with diameters 2a = 500 µm, 500 µm and
397 µm with fields of intensity |B⃗z| = 4.5 mT , |B⃗x| = 2.2 mT and |B⃗osc| = 0.5 mT. Each
point is the average over three independant experiments. Errorbars correspond to the standard
deviation around those average values. Theory has been calibrated on Grosjean's experiments,
using the value given in Ref.[75]. The two dashed line account for the two damping experienced
by the beads given their size. Purple: 2a = 397 µm, Orange: 2a = 500 µm. Only one fitting
parameter is used which is the amplitude of the velocity. Experimental data has been provided by
G. Grosjean.

The modulus of Eq.(6.26) is illustrated in Fig.6.7 for four values of β , and is plotted
with a color map as a function of Ωa and Ωb. The same colour code is used for
each subplot to allow comparison. One sees that the line Ωa = Ωb defines a
mirror symmetry in the function. It finds its source in the a ⇌ b anti-symmetry
in the V formula. Changing Ωa to Ωb and in return changing Ωb to Ωa simply
change the orientation of the swimmer. As a consequence, the swimmer swims
at the same speed but in the opposite direction. Resonance curves can also be
seen in each subplot. They widen and decrease in amplitude as the damping
becomes more important. Those resonance curves are highlighted with white
dashed lines in Fig.6.7(a). The position of those curves can be easily found from
Eq.(6.26). Cancelling each factor in the denominator leads to the following reso-
nance curves: Ωa = 1/

√
2 and Ωb = 1/

√
2.

Let us now compare the model to the velocity measured in experiments. Fig-
ure 6.8 gives the speed of the Najagi-Golestanian microswimmer as a function of
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the frequency of the oscillating field f = ω/2π. Experimental data have been
provided by Galien Grosjean from Liege University. As a remainder, for the
experimental measurements in this figure, the vertical field magnitude is set to
|B⃗z| = 4.5 mT. The offset field is set to |B⃗x| = 2.2 mT while the oscillating
field is set to |B⃗osc| = 0.5 mT. In order to induce the asymmetry required for the
non-reciprocal deformation, three beads of different radii are considered. One
has two beads of diameter 2a = 500 µm and one bead of diameter 2a = 397

µm on the extremity of the linear structure in order to assure spatial asymme-
try. This leads to two different natural frequencies for the two bonds between
each pair of particles. One has experimentally fa = 1.810 Hz and fb = 2.093

Hz, the latter being the natural frequency of the asymmetric pair. In order to
fit Eq.(6.27) onto the experimental data, one needs the prefactor κF 2/m2 and
the dissipation coefficient β . The latter can be easily computed given the ex-
pression of the Stokes drag. One has for 500 µm-beads µ/m = 9.195 and
for 397 µm-beads µ/m = 14.586. The parameter κF 2 will be used as the
unique fitting parameter and corresponds to the vertical scaling of the fit. The
theoretical model corresponds to the dashed lines in Fig.6.8. Two curves are
displayed because of the two values possible for β . Indeed, the model consid-
ers an identical damping acting on each bead for the sake of simplicity. The two
curves account for the damping experienced by each type of beads. The “cor-
rect” behaviour is expected to be situated in between those two extreme curves.
One observes from the figure that the theory is in good agreement with the
experimental data. The velocity increases, reaches a plateau where resonance
takes place and finally decreases towards zero. One can explain the origin of the
plateau from the theoretical curves. Indeed, for the lowest damped case, the
plateau shows two maxima which come from the resonance of each oscillator at
Ωa = 1/

√
2 and Ωb = 1/

√
2. In dimensioned units, those two conditions read

f =
√
2fa = 2.560 Hz and f =

√
2fa = 2.960 Hz which corresponds to the

location of the two maxima.

As stated in the beginning of this section, an important assumption has been made
in this calculation. The hydrodynamic interaction has been removed from New-
ton’s equation and only considered “artificially” using the Golestanian condition.
In order to discuss the validity of this approximation, in the next section, we
compare our model with an already existing one.
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6.2.2 The overdamped limit

To our knowledge, there is no theoretical formalism for the inclusion of the par-
ticles inertia in the Najafi-Golestanian microswimmer and, more generally, in any
microswimmer model. The only exception is the numerical work done by Pickl
et al. including numerically the beads inertia in their simulations [143]. In order
to justify our approach, we decide to consider our model in the overdamped
limit, namely m → 0. This limit was considered by Pande et al. in [131]. Solving
the dynamics by integrating hydrodynamic interactions through the Oseen tensor
(see Appendix B), they computed the swimmer velocity as a function of its pa-
rameters. The authors obtained, in the case of forces of same amplitude without
phase shift,

Vo =
7a2πω2ηF 2 (ka − kb)

4L2
(
k2ak

2
b + 8π2ω2η2a2

(
2k2a + 2k2b + kakb + 18π2ω2η2a2

)) (6.28)

where Vo refers to their solution, obtained with the Oseen tensor. In this expres-
sion, η = µ/6πa comes from the Stokes drag coefficient µ and corresponds to
the water dynamical viscosity already defined in Eq.(6.16).

Given this point of comparison, the same analysis is performed with our model.
This approach will give a velocity V which can be compared with Vo. The mis-
match between each result is expected to give a measure of the error made. In
the m→ 0 case, the equations of the dynamics read

µẋ1 − ka (x2 − x1 − L) = −F sin (ωt) ,

µẋ2 + ka (x2 − x1 − L)− kb (x3 − x2 − L) = 0,

µẋ3 + kb (x3 − x2 − L) = F sin (ωt) . (6.29)

We define the following dimensionless quantities: t = ωt, Ω′
a = ka/µω, Ω′

b =

kb/µω, ya = (x2 − x1 − L)ωµ/F and yb = (x3 − x2 − L)ωµ/F . The
dimensionless equations are therefore given by

ya + 2Ω′
aya − Ω′

byb = sin (t) ,

yb + 2Ω′
byb − Ω′

ayb = sin (t) . (6.30)

The corresponding Fourier coefficients are found using the same calculus than for
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the inertial case and write

ŷ+a =
3Ω′

b ± i

3Ω′
aΩ

′
b ± 2i

(
Ω′
a +Ω′

b

)
− 1

,

ŷ+b =
3Ω′

a ± i

3Ω′
aΩ

′
b ± 2i

(
Ω′
a +Ω′

b

)
− 1

. (6.31)

Knowing the Fourier coefficients, the velocity is computed using Eq.(6.22). Bring-
ing back dimensioned quantities, the velocity reads

V =
κ

2

F 2

µ2ω
Im
(
ŷ+a ŷ

+†
b

)
. (6.32)

Developing this expression further gives

V =
7a2πω2ηF 2 (ka − kb)

4L2
(
k2ak

2
b + 8π2ω2η2a2

(
2k2a + 2k2b + kakb + 18π2ω2η2a2

)) , (6.33)
= Vo. (6.34)

It is surprising to observe that the hydrodynamic approach based on the Oseen
tensor [131] and our model coincide perfectly. This observation can find some
explanation in the article of Felderhof [56]. In his article, he discussed a theory
of N beads submitted to one-body forces and two-body forces. As an example,
the former would be the sin(ωt) force in our model and the latter the spring
force acting between two spheres. Felderhof assumed that the motion of each
bead around its initial position can be described, in the long term dynamics, by
two contributions: a cyclic perturbation ξ(t) and a net translation due to hydro-
dynamic interactions Vot. He showed that the time evolution of the perturbation
ξ(t) can be made independent of the speed Vo from a discussion based on the
different order of a Taylor expansion. The time evolution of the perturbation
ξ(t) belongs to the first order of the expansion while the speed Vo belongs to
the second order. The idea behind his model is to solve the first order of the
dynamics and access the ξ(t) before solving the speed Vo. In our model, the idea
is essentially the same: the elongation ya and yb are solved before considering
the velocity and using the Golestanian condition.
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Figure 6.9: Evolution of the ``work''W as a function of the dissipation coefficient β for fa = 2.96
Hz, fb = 2.56 Hz and f = 1 Hz. Double logarithmic scale has been used to evidence power
laws. For low viscosities, W increases linearly with β as the phase shift increases between the
two deformations. For large viscosities, the workW decreases as β−3 . This is due to the limited
deformation of the arms because of viscous effects.

6.2.3 Optimisation and aberrant behaviours

Since Pande’s model and our approach give the same velocity in the overdamped
limit, the properties of the former model are expected to be seen in the latter.
Pande’s model is known to behave unintuitively when changing the viscosity of the
surrounding medium. For high viscosities the swimmer velocity decreases with
increasing viscosity while for low viscosities the velocity is seen to increase for
increasing viscosity. The former case has been referred to as conventional regime
while the latter corresponds to the aberrant regime [131]. This kind of unintuitive
behavior was observed in microbiology with the dynamics of bacteria in viscous,
gel-like media [12, 158]. Let us consider the inertial model in Eq.(6.27) to see if
the aberrant regime holds.

Considering the case of large viscosity, one obtains

β ≫ 1 ⇒ V ∝ β−3, (6.35)

while low viscosity gives

β ≪ 1 ⇒ V ∝ β. (6.36)
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Those limits correspond to the scaling observed by Pande et al. [131] in the over-
damped limit with the Oseen tensor approach. As a consequence of those two
limits, it is expected to observe a global maximum in the function V(β). Pande
et al. discussed this dynamics in terms of a ratio of time scale. They defined Γ as
the ratio between the relaxation time scale, which measures the time required
for the beads to reach instantaneous equilibrium and the swimming cycle which
corresponds to the period of a swimming stroke. They argue that, for Γ ≫ 1,
the beads cannot reach equilibrium during a swimming stroke. Increasing β in
this limit reduces the amplitude of oscillation which, as a consequence, decreases
the velocity. For Γ ≪ 1, an increase of viscosity β does not change the ampli-
tude since the beads are in equilibrium with the external forcing at each instant.
The increase of speed comes from the hydrodynamic coupling which increases
with the viscosity (see Appendix B). It is interesting to observe that our approach
does not consider explicitly the hydrodynamic interactions but only the condition
of non-reciprocity with Eq.(6.22). Yet, the increasing velocity for small increasing
viscosity is recovered. Since our model gives easily access to the elongation, let
us study this property deeper.

The key to locomotion is the workW = Im(y+a y
−
b ) = ρaρb sin (ϕb − ϕa)which

measures the non-reciprocity in the dynamics. Equations (6.20) give the evolution
of the amplitude ρa and ρb. The following scaling are observed

β ≪ 1 ⇒ ρi ∝ 1,

β ≫ 1 ⇒ ρi ∝ β−1, (6.37)

where i = {a, b}. Those two dependencies correspond indeed to the interpre-
tations made by Pande et al.. Low viscosities do not alter the amplitude. High
viscosities decrease the amplitude since the beads cannot follow the external
forcing. Simply considering those last results does not explain neither the conven-
tional nor the aberrant evolution of the velocity V . The last ingredient defining
the workW is the phase shift sin (ϕb − ϕa). One can easily show that

tan (ϕb − ϕa) =
6β
(
Ω2
b − Ω2

a

)
(3Ω2

a − 1)
(
3Ω2

b − 1
)
+ 4β2

(6.38)
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which gives the following asymptotic behaviours

β ≪ 1 ⇒ tan (ϕb − ϕa) ∝ β,

β ≫ 1 ⇒ tan (ϕb − ϕa) ∝ β−1. (6.39)

Since sin(x) = tan(x) + O(x3), those scalings hold for the sine of the phase
shift. As a consequence, the conventional and aberrant dynamics of the swimmer
comes from the phase shift induced dynamically in the system. It increases for
small increasing viscosity, increasing the swimming efficiency in return. For large
increasing viscosities, the phase shift decreases towards zero, breaking the non-
reciprocity condition.

6.3 Conclusion

This chapter was dedicated to the theoretical investigation of the experimental
Najafi-Golestanian microswimmer. We focused on the condition required in or-
der to achieve a non-reciprocal deformation of the microswimmer. Analysing the
magnetcapillary potential, a condition has been founds. This microswimmer has
to be made of three beads of different radii in order to break the spatial symme-
try of the swimmer. Under a time-dependent external field, the two halves of
this swimmer does not oscillates identically. Both oscillations occur at the same
frequency but not with the same phase shift relative to the external perturbation.
As a consequence, non-reciprocity is achieved and a translation of the swimmer
can be seen on the interface.

In order to build a minimalist model, we have mixed the Golestanian’s kinematic
approach with a dynamical investigation of the deformation. This dynamical model
considers the beads inertia and no hydrodynamic coupling. The interaction be-
tween the beads are made linear. In this hybrid approach, the deformation of the
swimmer is solved beforehand and then injected in the Golestanian condition.
This method reproduce correctly the experimental findings, both in terms of de-
formation cycle and swimmer velocity. Our hybrid model have been compared to
an exact solution of the dynamics through the Oseen tensor in the overdamped
limit. The two approaches gives identical results which testify of the validity of
our approach. As a consequence of those results, our hybrid model could lead
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to way for the investigation of the role of the particle inertia in microswimmers.
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7
Three-beads magnetocapillary

microswimmer

As stated at the beginning of this part, soft ferromagnetic beads pinned at an air-
water interface can move spontaneously along the interface once submitted to time
dependent magnetic fields. The three-beads dynamics, the simplest magnetocapillary
microswimmer able to swim [111], has been largely studied experimentally [111, 77].
Yet, it remains a theoretical [27] and numerical challenge [168]. In this chapter, we
will isolate the key mechanism giving rise to the swimming dynamics, namely the in-
dividual beads rotation. From this observation, numerical simulations are performed
in order to investigate systematically the swimming dynamics. A minimalist model is
proposed to explained the observations made from the numerics.

7.1 Seeking non-reciprocity

Before developing a theoretical model for the triangular swimmer presented in
Chapter 5, the experiments are briefly described and the main results are dis-
cussed. Based on the experiments, numerical simulations are performed.

7.1.1 Experimental background

Let us give some experimental background to this section. Experiments involving
the triangular swimmer have been performed by Galien Grosjean from Liege Uni-
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versity and are fully described in [77]. The beads considered through this chapter
have a diameter 2a = 500 m. They have strong ferromagnetic properties as
described previously in chapter 5 and 6. The beads are placed at an air-water
interface and float thanks to their wetting properties. Three magnetic fields are
applied to the system in order to counterbalance the capillary attraction and in
order to generate the non-reciprocal deformation. Those magnetic fields are gen-
erated by three sets of Helmholtz coils as depicted in Fig.5.4. The vertical field has
an amplitude ranging in |B⃗z| ∈ [3, 10] mT. The two other fields are horizontal,
one is constant and the other is time-dependent. The constant field, named “off-
set”, defines the x-axis in the experiments. Its amplitude ranges in |B⃗x| ∈ [0, 1]

mT. Given its small amplitude compared to the vertical field, isosceles triangles
are seen instead of linear structures. The purpose of this field is to ensure repro-
ducible experiments [77]. The time-dependent field is applied with an angle α
relative to B⃗x. This field varies sinusoidally in time with a frequency f ∈ [0.1, 3]

Hz and with a peak amplitude |B⃗x| ∈ [0, 2] mT. This field is responsible of the
non-reciprocal deformation required for low-Reynolds number swimming. All
those fields are illustrated in Fig.7.1. Mathematically, the total magnetic field B⃗(t)

writes

B⃗(t) =
(
|B⃗x|+ |B⃗osc| cosα cos(ωt)

)
e⃗x

+ |B⃗osc| sinα cos(ωt)e⃗y

+ |B⃗z|e⃗z, (7.1)

with ω = 2πf . A typical experimental result is given in Fig.7.2 for three beads
and illustrates the deformation sequence of the swimmer. Two degrees of free-
dom are involved: the deformation of the triangle and the oscillation of the self-
organized structure. Figure 7.2(a) shows the value of the internal angles of the
triangle αi as a function of time. Each colour corresponds to different vertex. Or-
ange areas indicate “platy” isosceles triangles with two angles αi < 60 and one
angle αi > 60. Yellow areas account for “pointy” isosceles triangles with two
angles αi > 60 and one angle αi < 60. In Fig.7.2(b), the rotation of the structure
is recorded as a function of time around its equilibrium angle. It shows a sinusoidal
oscillation in quadrature with the oscillation from “platy” to “pointy” isosceles. Ac-
cording the Golestanian condition of non-reciprocity in Eq.(5.5), one might expect
those two degrees of freedom to make the non-palindromic sequence of defor-
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Figure 7.1: Schematic of the fields used in the experiments. The three beads are submitted to a
vertical constant field B⃗z in order to overcome the capillary attraction. A small amplitude constant
field B⃗x ensures the reproductibility of the experiments. Finally a time-dependent field B⃗osc(t) is
applied with an angle α relative to B⃗x .

mation responsible of the swimming dynamics. This non-reciprocal sequence is
illustrated schematically in Fig.7.2(c). Under those conditions, the swimmer can
reach speed of about one sphere radius per period of the external field (V = af )
which leads to Reynolds number Re < 10−1 for a typical frequency f = 1 Hz.

7.2 Numerical simulations of magnetocapillary swimmers

An attempt of numerical simulations have been made by Harting and his team
using Lattice-Boltzmann simulations [168]. This numerical method aims at solving
a fluid dynamics using a coarse-grained approach on a given lattice [155]. This
method allows for solving the fluid dynamics as well as the particles swimming
motion and the surface deformation. Nevertheless, the precision of this method
is comparable to the massive amount of numerical resources it requires. In order
to allow for an extensive study of the triangular swimmer dynamics, we develop
a force-based method where all interactions, even hydrodynamic ones, are de-
scribed by forces. This method is numerically cheaper and therefore gives the
possibility to explore the parameter space extensively. Nevertheless, the infor-
mation about the flow dynamic is lost in the process.
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θ

Figure 7.2: Experimental investigation of the triangular swimmer dynamics. (a) Deformation dy-
namics. Each colour corresponds to the value of a given vertex of the triangle. The color code
is explained in the schematic in the right hand part of the figure. The triangle is seen to deform
from a flat isosceles triangle (``platy'' isosceles) to a pointy isosceles triangle (``lepto'' isosceles).
(b) Orientation of the swimmer as a function of time as defined in the right hand side of the figure.
One sees that the deformation and the orientation are in quadrature of phase. (c) Schematic rep-
resentation of the non-reciprocal deformation in the configuration space. An open cycle is clearly
visible. Adapted from [77]

In the following, a brief description of the method is presented before giving some
results provided by our numerical integration.

7.2.1 Building the numerics

Each bead is characterised by this radius ai and density ρ which give their volume
Vi = 4πa3i /3, their massmi = 4πa3i ρ/3 and moment of inertia Ii = 8πa5i ρ/15.
Their capillary charge qi has been measured experimentally in order to compute
the capillary attraction F⃗c between two beads i and j at the interface. The qi’s
values are stored in Tab.7.1. The total capillary attraction acting on particle i from
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all particles j ̸= i derives from the potential in Eq.(5.10) and writes

F⃗c,i(r⃗ij) = −
∑
i̸=j

∇⃗Uc(r⃗ij),

= −2π
σ

lc

∑
i ̸=j

qiqjK1

(
|r⃗ij |
lc

)
r⃗ij
|r⃗ij |

, (7.2)

where r⃗ij = r⃗i− r⃗j is the vector pointing from particle j to particle i. Note that
the superposition principle is used here. As already discussed in Chapter 5, this
approximation is only valid for large distances between the beads.

The magnetic properties of the beads are known from Fig.5.7. The beads magne-
tization is given by

µ⃗i =
4πa3iχB⃗(t)

3µ0
+ µ⃗ri , (7.3)

with χ = 3 and |µ⃗ri | given in Tab.7.1. The resulting magnetic dipole-dipole inter-
action derives from Eq.(5.11) and gives

F⃗m,i(r⃗ij) = −
∑
i ̸=j

∇⃗Um(r⃗ij),

=
3µ0
4π

∑
i̸=j

(
(r⃗ij × µ⃗i)× µ⃗j

|r⃗ij |5
+

(r⃗ij × µ⃗j)× µ⃗i
|r⃗ij |5

− 2r⃗ij(µ⃗i.µ⃗j)

|r⃗ij |5
+

5r⃗ij(r⃗ij × µ⃗i).(r⃗ij × µ⃗j)

|r⃗ij |7

)
. (7.4)

Beside the magnetic force due to the dipole-dipole interaction, the beads are
submitted to an external magnetic torque τ⃗m. It tends to align the remnant
magnetic dipole of each bead with the external field. Note that this torque has
no effect on the paramagnetic part of the magnetization since it is parallel to the
external field B⃗(t). Therefore, the torque writes

τ⃗m,i = µ⃗ri × B⃗(t). (7.5)

We assume in this description that the remnant magnetization is fixed in the
molecular lattice of the material. As a consequence, a change of orientation of
the remnant magnetization will also lead to a rotation of the beads. This effect
has been observed experimentally [74] and briefly described in [73]. The forces
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and torques here above are the driving mechanisms of the dynamics. They are
the means by which energy is injected to the microswimmer. The dissipation of
this energy is due to the hydrodynamic interaction with the surrounding medium.
Yet, the hydrodynamic interactions are also the means by which the motion of the
swimmer is possible. Their description requires a brief discussion. It was shown in
the previous chapter that the particle inertia plays a role in the deformation cycle.
The hydrodynamic interaction as described in Appendix B does not consider such
effect but only a perfectly overdamped regime. Nevertheless, even though the
swimmer dynamics shows that inertia plays a role in experiment, we assume that
a particle j with velocity v⃗j interacts with a neighbouring particle i at distance r⃗ij
according to (

F⃗i, τ⃗i

)
= µ̂−1

ij (v⃗j , ω⃗j) , (7.6)

where µ̂ij is the mobility matrix whose full expression is given in Appendix B.
This approach describes the hydrodynamic interactions as forces related to the
velocity of the other beads on the interface. In the context described in Appendix
B, this leads to the following force

F⃗h,i =
∑
j ̸=i

{
9πηaiaj
2|r⃗ij |

(
Î+

r⃗ij ⊗ r⃗ij
|r⃗ij |2

)
.v⃗j

+
3πηaiaj(a

2
i + a2j )

2|r⃗ij |3

(
Î− 3

r⃗ij ⊗ r⃗ij
|r⃗ij |2

)
.v⃗j

+
6πηaia

3
j

|r⃗ij |3
(ϵ̂.r⃗ij) .ω⃗j +O

(
1

|r⃗ij |4

)}
− 6πηaiv⃗i (7.7)

where (ϵ̂.r⃗ij) .ω⃗j = r⃗ij × ω⃗j and (r⃗ij ⊗ r⃗ij) .v⃗j = r⃗ij(v⃗j .r⃗ij). The two first
terms correspond to the Translation/Translation (TT) coupling of the hydrody-
namic interactions. The third term corresponds to the Rotation/Translation (RT)
coupling. Note that we choose to limit ourselves to O(|r⃗ij |−4). Indeed, beyond
the third order in |r⃗ij |−1, triplet of beads are involved [114]. We choose to
consider only pair interactions for the sake of simplicity. Regarding rotation, the
hydrodynamic torque is simply given by

τ⃗h,i = −8πηa3i ω⃗i. (7.8)
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Diameter 2a (µm) Cap. charge q (µm) Remnant magn. |µ⃗r| (nA/m)

397 6 1.1732
500 12 2.3437
793 45 9.3502

Table 7.1: Summary of the different properties of the beads used. Both the capillary charge q and
the remnant magnetization |µ⃗r| are given

For the rotation dynamics, only the zeroth order in |r⃗ij |−1 is considered for sim-
plifying further analytical investigations. Given those forces and torques, Newton’s
equations of motion write

mi
˙⃗vi + F⃗h,i + F⃗c,i + F⃗m,i = 0, (7.9)

Ii ˙⃗ωi + τ⃗h,i + τ⃗m,i = 0. (7.10)

Since the beads are trapped at the air interface, the first equation is only consid-
ered in the (x, y)-plane while the second is only considered in the z-direction. In
Eq.(7.9), one-body forces and two-body forces are considered. In Eq.(7.10), only
one-body torques are taken into account.

Finally, the equations are integrated via a simple self-made Euler integration scheme
in C/C++. The numerical stability of the equations has been verified in the case
of the 3-beads dynamics, using an integration time step δtsimu = 510−4/f .

7.2.2 Results

Using the algorithm described in the previous section, one can now investigate
the swimming dynamics numerically. We first show that the deformation of the
triangle can be correctly reproduced and that the swimmer indeed swims along
the interface. Figure 7.3 gives the deformation and the orientation of the triangle
in numerics with parameters close to the one used for Fig.7.2. One sees from
Fig.7.3(a) that the triangle again changes periodically from a platy-isosceles trian-
gle to a lepto-isosceles triangle and vice-versa. In the meantime, the structure
oscillates as depicted in Fig.7.3(b). Yet, some differences from the experiments
are visible. Two angles have exactly the same value and the phase-shift between
the deformation and the oscillation is not optimal in contrast with Fig.7.2. Nev-
ertheless, the main features are reproduced. Beside those two ingredients, the
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Figure 7.3: Swimming dynamics in numerical simulations. (a) Deformation as a function of the
dimensionless time, (b) orientation, (c) center of mass translation. The simulation parameters are
|B⃗z| = 3 mT,|B⃗x| = 0.5 mT, |B⃗osc| = 0.75 mT, f = 2 Hz and α = 0. The color code used
is the same as the one considered in Fig.7.2.

triangle is shown to swim at the interface as testified by Fig.7.3(c) which gives the
displacement of the center of mass as a function of time. One indeed sees that
onto the oscillation of the center of mass, an overall translation is visible.

The swimmer being able to swim, let us analyse its efficiency. One way to analyse
the efficiency of a swimming organism is to measure its dimensionless velocity
V/2af . This quantity measures the actual speed of the swimmer and compares
its value to 2af . This speed would be the one of a swimmer travelling a distance
2a equal to the size of a bead during a period 1/f equal to the swimming strokes
period. Let us first analyse the dimensionless speed V/2af as a function of the
amplitude of the oscillating field B⃗osc. The result is given in Fig.7.4 in double log-
arithmic scale for several different frequencies. The vertical field is set to 5 mT

while the offset is set to 0.1 mT. The important value of |B⃗z| is considered in or-
der to remain in the small deformation regime where linear theory is expected to
hold. Please note that the oscillating field and the offset are perpendicular which
yields α = π/2. The curves order from the lowest frequency (f = 0.5 Hz)
to the higher frequency (f = 5 Hz) from top to bottom. The speed is seen
to increase quadratically with the amplitude of the field, as indicated by the solid
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Figure 7.4: Dimensionless speed of the swimmer V/2af as a function of the amplitude of the
oscillating field B⃗osc in double logarithmic scale. The vertical field amplitude has been set to |B⃗z| =
5 mT and the amplitude of the offset is |B⃗x| = 0.1 mT. Different values of the frequency have
been considered: Blue crosses: f = 0.5 Hz, Purple squares: f = 1 Hz, Pink circles: f = 2 Hz,
Orange triangles: f = 5 Hz. The power law is evidenced by the black solid line.

black line in the plot. Note that other amplitude of B⃗z and B⃗x have been in-
vestigated. Identical dependencies are observed for different magnitude of those
fields. Differences only appear for important offsets and small intensities of the
vertical field. Indeed for those two limits the beads are close to each other and
nonlinear behaviours are observed because of the non-linearity of the magneto-
capillary potential.

We then choose to study the evolution of the dimensionless speed with the fre-
quency f of the oscillating field. The corresponding result is given in Fig.7.5 in
double logarithmic scale. While B⃗z has been fixed to 5 mT in this analysis, the
magnitude of both B⃗osc and B⃗x has been varied. Similarly to the previous analysis,
the angle α = π/2 has been considered. The speed evolution is seen to change
according to power laws. Several regimes are observed for each set of parameters
investigated. For low frequency, the dimensionless speed increases linearly with
f . The end of this regime depends on B⃗x. Above f = 1 Hz the dimensionless
speed change as f−5. The transition to this regimes is seen to be independent
of both field intensities. The behaviour described here has been observed for
other sets of parameters. Nevertheless, similarly to the previous case, extreme
values of the fields give different behaviours. Once again, this is assumed to be
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Figure 7.5: Dimensionless speed of the swimmer V/2af as a function of the frequency of the
oscillating field B⃗osc in double logarithmic scale. The vertical field amplitude has been set to |B⃗z| =
50mT. Different values of the offset and oscillating amplitudes have been considered: Blue crosses:
|B⃗x| = 0.1 mT and |B⃗osc| = 0.1 mT, Purple squares: |B⃗x| = 0.2 mT and |B⃗osc| = 0.1 mT,
Pink circles: |B⃗x| = 0.2 mT and |B⃗osc| = 0.2 mT, Orange triangles: |B⃗x| = 0.5 mT and
|B⃗osc| = 0.2 mT. The power laws are evidenced by the black solid lines.

due to nonlinear dynamics given the large beads oscillations and close proximities.

The value of the vertical magnetic field can also be changed. Figure 7.6 shows the
dimensionless speed as a function of the vertical field magnitude. A unique set
of parameters is considered here since the same behaviour has always been ob-
served. The speed is seen to decreases as f−14/3. These rather intriguing power
laws is justified in the following section thanks to the linear model developed later.
Yet, a small explanation can be given. Since all the interactions are shown to de-
crease with the distance between the spheres, especially the hydrodynamic and
magnetic interaction, the motion of the swimmer is expected to be less efficient
for large interdistances. Since the interdistance is directly related to the vertical
field intensity [179], a decreasing speed is expected.

Finally, we consider the influence of the offset intensity on the dimensionless
speed evolution. The corresponding result is given in Fig.7.7 in double logarithmic
scale for different values of the oscillating field frequency. Similarly to the previous
analysis, the oscillating field and the offset are perpendicular to each other. The
curves correspond to different frequencies, which order from left to right from
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Figure 7.6: Dimensionless speed of the swimmer V/2af as a function of the amplitude of the
vertical field B⃗z in double logarithmic scale. The offset field amplitude has been set to |B⃗x| = 0.1
mT and the amplitude of the oscillating field is |B⃗osc| = 0.1 mT. Its frequency is f = 1 Hz. The
power law is evidenced by the black solid line.

the lowest (f = 0.2 Hz) to the highest frequency (f = 2 Hz). One observes
that no power law is visible on the graphs. A single maximum is seen and moves
towards low value of |B⃗x| as the frequency decreases. This observation aligns
with the observation already made in Fig.7.5 where the swimming speed peak is
seen to displace as the offset intensity is varied. Beside this observation, one can
also see that decreasing the field frequency f increases the swimming speed.

Given all the forces presented in the previous section and integrated in the nu-
merical simulation, it becomes difficult to understand which part of the system
drives the swimming mechanism. The advantage of numerics over experiments
is the choice of the physical ingredients used in the algorithm. Cancelling each
force while keeping the other active gives the possibility to evidence the propul-
sive strategy in the dynamics. Following this idea, we choose to consider the
Rotational-Translational hydrodynamic (RT) coupling in the dynamics. This cou-
pling corresponds to the third term in Eq.(7.7), namely

F⃗RT
h,i =

∑
j ̸=i

6πηaia
3
j

|r⃗ij |3
(ϵ̂.r⃗ij) .ω⃗. (7.11)

Taking this force into account drastically changes the swimming dynamics of the
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Figure 7.7: Dimensionless speed of the swimmer V/2af as a function of the frequency of the
oscillating field B⃗osc in double logarithmic scale. The offset field amplitude has been set to |B⃗x| =
0.1 mT and the vertical field amplitude is |B⃗z| = 5 mT. Different curves account for different
frequencies: Different values of the frequency have been considered: Blue crosses: f = 0.2 Hz,
Purple squares: f = 0.5 Hz, Pink circles: f = 1 Hz, Orange triangles: f = 2 Hz.

assembly, as shown in Fig.7.8. This figure gives the motion of the center of mass
as a function of time for the same set of parameters. We have considered
|B⃗z| = 3 mT, B⃗osc = 1 mT, B⃗x = 0.5 mT and f = 1 Hz. The only dif-
ference between each panel of the figure is the RT coupling. On the left-hand
side of Fig.7.8, the RT coupling has not been considered while being consider in
the right-hand side of the figure. The difference is obvious: the inclusion of the
RT coupling gives the possibility for the beads assembly to swim along the fluid
interface.

Given this last result, in the following section we will develop a toy model which
aims at giving some insight of the results we obtain in this section. More specifically,
we will justify the power laws observed in each figure already presented.

7.3 Gaining insight with a toy model

If the RT coupling is the key force that leads to the displacement of the assembly,
it means that the rotation of the beads in the oscillating field is at the core of the
swimming dynamics. Let us try to understand how the beads individual rotation
can alter the motion of the center of mass. Figure 7.9 illustrates the model. In the
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Figure 7.8: Evidence of the importance of the Rotational-Tranlational hydrodynamic (RT) coupling
in the swimming dynamics. Each plot shows the motion of the center of mass along the x (blue)
and y direction (pink) as a function of the dimensionless time tf . (left) RT coupling disabled, (right)
RT coupling enabled. The vertical field B⃗z is set to 3 mT, the oscillating field B⃗osc has an amplitude
of 1 mT and frequency of 1 Hz. The offset B⃗x is set to an amplitude of 0.5 mT.

Figure 7.9: Finding the hydrodynamic centre of rotation: a step-by-step approach. (a) The beads
rotates in order to align their remnant magnetization in the external magnetic field. The velocity
field around each particle is given by the rotlet, as described in App.B. (b) The RT coupling between
the beads rotation and translation forces the beads to move in the induced flow. The dashed
blue arrows give the hydrodynamic force induced by a single neighbouring beads. The solid blue
arrow on each bead gives the resulting total hydrodynamic force arising from the RT coupling. (c)
From the force resulting from the RT coupling, one can find the hydrodynamic centre of rotation.
This point is found by tracing the line perpendicular to the resulting total force on each bead. The
intersection, the hydrodynamic centre, is indicated by the purple circle at the intersection of the
oranged dotted lines.

following, for the sake of simplicity, all beads are supposed identical. As shown
in Fig.7.9(a), all beads rotate in the fluid and supposedly identically. The rotation
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of each bead is due to the interaction between the remnant magnetization and
the external field. As a consequence of this rotation, each bead is the source
of a rotlet, a point-like torque, as described in Appendix B. In our example, all
beads rotate counter-clockwise, so does the flow around each bead. This flow
induces forces, as depicted in Figure 7.9(b). Each blue dashed arrow comes from
the interaction of a bead with a neighbouring one. The direction of the arrow is
perpendicular to the line joining the pair of beads involved. The total force on
each bead can be found by simple geometrical construction. This force is given by
the solid blue arrow. Each of these arrows points in the same direction, counter-
clockwise in this example, because of the identical rotation of each sphere on the
surface. Using again a geometrical construction, one observes that those three
solid blue arrows define a center of rotation which is not the center of mass, we
name this point the hydrodynamical center of rotation of the triangle. It is found by
drawing the line perpendicular to each solid blue arrow. The intersection of each
line is this hydrodynamic center. This point is indicated by a circle in Fig.7.9(c)
and clearly differs from the center of mass of the structure. The center of mass
corresponds to the purple point in the figure. Appendix C gives the mathematical
expression of the hydrodynamic center. Finally, because of the global rotation of
the structure, the center of mass rotates around the hydrodynamic center. In
this example, the triangle is a “lepto” isosceles and the hydrodynamic center of
rotation is below the center of mass. In the case of a “platy” isosceles triangle,
the center of mass is above the hydrodynamic centre.

On the one hand, the hydrodynamic centre is located above or below the center
of mass depending on the triangle configuration. On the other hand, the individ-
ual rotation of the beads rotates the center of mass around the hydrodynamic
centre clockwise and counter-clockwise. The result is the global translation of the
center of mass after a cycle of deformation. The translation mechanism is illus-
trated thanks to Fig.7.10. The cycle begins with a triangle in the “lepto” isosceles
configuration and oriented to the right, as depicted in Fig.7.10(a). Because of the
beads rotation, the overall structure also rotates in the counter-clockwise direc-
tion. Since the hydrodynamic centre and the center of mass do not coincide, the
latter moves as indicated by the dashed gray line in Fig.7.10(b). In Fig.7.10(c), the
shape of the triangle changes to a “platy” isosceles triangle. As a consequence, the
hydrodynamic centre is now below the center of mass. Note that the center of
mass has not moved during the deformation. Finally, in Fig.7.10(d) the beads ro-

172



(a) (b)

(c)(d)

Figure 7.10: Non-reciprocal deformation of the triangular swimmer. The center of mass is repre-
sented by the purple point. The hydrodynamic centre of rotation is given by the purple circle. The
gray dashed curve gives the displacmeent of the center of mass from its starting position. The trian-
gle begins the cycle in the ``lepto'' isosceles configuration and oriented to the right (a). Because of
the beads rotation, the triangle orients to the left, moving the center of mass around the hydrody-
namic centre (b). Then, the triangle shape-shifts to a ``platy'' isosceles triangle, without moving the
center of mass but changing the position of the hydrodynamic centre (c). After this deformation,
the beads rotate in the other direction and change the orientation of the triangle back to the right.
Meanwhile, the center of mass rotates around the hydrodynamic centre and continues to move
(d). Finally, the triangle comes back to its initial shape.

tate in the clockwise direction. Because of the new position of the hydrodynamic
centre, this new rotation does not cancel the previous one. On the contrary, one
sees that the center of mass moves further away from its starting point. When
the triangle comes back in its initial shape, the center of mass is assumed to remain
immobile. Therefore, at the end of the cycle, the triangle has moved the distance
given with the gray dotted line.

Now that the motion of the triangle has been understood, let us quantify its
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displacement as a function of the experimental parameters.

7.4 Quantifying the swimming dynamics

Scaling for the swimming dynamics can be extracted from Fig.7.9. First of all, we
need to express the deformation of the triangle. A first method considers the an-
gle α which measures the angular deviation from a regular triangle. For example,
for an isosceles triangle, the vertex values are (π/3 + α, π/3 − 2α, π/3 + α),
the second value corresponding to the main vertex. This deformation can be ex-
pressed in terms of the sides length of the triangle, which gives a second method.
For an isosceles, one can write (d, d − Adef , d) where the second value is the
side opposed to the main vertex and Adef is the amplitude of deformation. As
stated in Appendix C, α and Adef are related. Given those definitions, the model
can be studied more deeply.

In a few words, the translation of one bead comes from the individual rotation
of the neighbouring ones. As a result, the structure rotates around the hydrody-
namic centre. Assuming a solid rotation of the triangular structure, if one knows
the instantaneous velocity of the beads around the hydrodynamic centre, one ac-
cesses the velocity of the center of mass through classical mechanics arguments.
For this purpose, the only requirement is the distance between the hydrodynamic
centre and the center of mass. Indeed, this distance can be seen as a hydrody-
namic lever. Therefore, let us first access the individual bead velocity due to the
rotlets. The flow field induced by a rotlet is given in Appendix B and scales as

|v⃗i| ∝
|ω⃗j |
|r⃗ij |2

. (7.12)

The translation of the center of mass can be obtained assuming a solid rotation
of the structure. Indeed, in such case, the angular velocity of one bead around
the hydrodynamic centre is also the angular velocity of the center of mass around
the hydrodynamic center. From this property, the translational speed of both the
beads and the center of mass can be linked to each other through their distance to
the hydrodynamic centre. The details of the calculus giving the distance between
the center of mass and the centre of rotation is given in Appendix C. In the
small deformation approximation, this distance scales as Adef while the distance
between the beads and the hydrodynamic centre scales as r⃗ij . As a consequence,
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|v⃗i|
|r⃗ij |

∝ V
Adef

. (7.13)

Mixing Eqs.(7.12) and (7.13) yields to the scaling

V ∝ Adef
|ω⃗j |
|r⃗ij |3

. (7.14)

As we will see later, the beads rotation and the triangle deformation are described
dynamically. As a consequence, the phase shift between the rotation of the beads
and the deformation of the structure may not be exactly given by π/2. Instead,
the phase shift might be given by the parameter of the experiments, similarly to
the Najafi-Golestanian swimmer discussed in the previous chapter. As a conse-
quence, in order to take into account the imperfect non-reciprocity of the global
deformation, we choose to include empirically a factor sin∆ϕ in the previous
formula. Finally, for the sake of simplicity, we choose to relate the velocity |ω⃗j |
to the amplitude of rotation of one bead. It yields |ω⃗j | ∝ Arotω. The final form
of the scaling therefore reads

V ∝ 1

|r⃗ij |3
ωArotAdef sin∆ϕ. (7.15)

It is worth comparing this formula to Golestanian’s in the case of the linear swim-
mer. Najafi and Golestanian obtained

V ∝ 1

|r⃗ij |2
ωA1A2 sin∆ϕ. (7.16)

Our scaling gives the same result except for the denominator. Indeed, the authors
obtained the |r⃗ij |−2 factor as a result of the Stokeslet. Since the Rotlet has
a higher exponent, the |r⃗ij |−3 in our formula makes sense. As a consequence,
both formula express the same dynamics based on the same ingredients. In order
to develop further Eq.(7.15), one needs to know how Arot and Adef are related
to the parameters of the experiments. We will first study the rotation of the
beads and then the deformation of the assembly.
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7.4.1 The beads dynamics

From Eq.(7.10), one can write down the Newton equation describing the beads
rotation

I| ˙⃗ω|+ 8πa3η|ω⃗|+ |µ⃗r||B⃗x| sin(θ) + |µ⃗r||B⃗osc(t)| sin(θ − α) = 0. (7.17)

Let us consider this equation in the linear regime, i.e. θ ≪ 1. This limit is obtained
for a small oscillating field amplitude and an intense vertical field. Let us also
consider the case α = π/2 already considered in the simulations in Section
7.2.2 which greatly simplifies the analysis. With those assumptions, the equation
simplifies to

I| ˙⃗ω|+ 8πa3η|ω⃗|+ |µ⃗r||B⃗x|θ = |µ⃗r||B⃗osc(t)|. (7.18)

This is exactly the equation of a damped and forced linear spring. The exter-
nal forcing comes from the oscillating field. The forcing amplitude is given by
|µ⃗r||B⃗osc(t)|. Note that being in the linear regime, the beads rotation frequency
is given by the external field frequency f . The stiffness is given by the interaction
potential with the offset B⃗x. It means that the offset defines a natural frequency
for the rotation. As a consequence of this equation, the angular dynamics can be
described using the linear resonance theory. For the temporal evolution of the
rotation, one has θ(t) = Arot cos(ωt− ϕ) with

Arot =
|µ⃗r||B⃗osc|√(

|µ⃗r||B⃗x| − Iω2
)2

+ 64π2η2a6ω2

, (7.19)

tanϕrot = − 8πa3ηω

|µ⃗r||B⃗x| − Iω2
. (7.20)

Let us extract the scaling of the amplitude Arot for further comparisons with the
numerics. The oscillation is linearly proportional to the oscillating field amplitude

Arot ∝ |B⃗osc|. (7.21)
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The velocity scales differently with the frequency depending on its value compared
to the resonant frequency. This leads to

Arot ∝

1 if f ≪
√

|µ⃗r||B⃗x|/I,

f−2 if f ≫
√
|µ⃗r||B⃗x|/I.

(7.22)

The value for the transition frequency can be estimated and gives
√

|µ⃗r||B⃗x|/I =

0.68 Hz for the numerical parameters used in the simulations.

7.4.2 The triangle dynamics

For the description of the triangle dynamics, we will use the results of the pre-
vious chapter. Indeed, the deformation of triangle can be described in terms of
variation of the sides length Adef . The previous chapter has shown that the in-
teraction between a pair of beads can be described by a linear forced spring in
the small deformation regime. Its stiffness is directly related to the parameters of
the experiment. The relation is given in Eq.(6.14). As a consequence, forced by
an external field, the amplitude Adef is expected to be given by the theory of
resonance

Adef =
F√

(k −mrω2)2 + 36π2η2a2ω2
, (7.23)

tanϕdef = − 6πηaω

k −mrω2
, (7.24)

where we have assumed a viscous damping given by the Stokes formula. In those
expression, F is the amplitude of the forcing and mr is the reduced mass of
the pair, already introduced in the previous chapter. Since the force finds its
origin in the magnetic dipole-dipole interaction, its amplitude scales as |r⃗ij |−4.
Furthermore, in the linear regime, F ∝ |B⃗osc|. Therefore, the elongation Adef

scales as

Adef ∝ |B⃗osc|
|r⃗ij |−4

, (7.25)

and for the frequency, one has

Adef ∝

{
1 if f ≪

√
k/mr,

f−2 if f ≫
√
k/mr.

(7.26)
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From Chapter 6, one knows that the transition frequency is given approximately
by
√
k/mr = 2 Hz.

Before mixing all the scaling together, let us consider the phase difference be-
tween each oscillation. Given the tangent of ϕdef and ϕrot, using elementary
trigonometric relations, one has

tan∆ϕ =
tanϕrot − tanϕdef
1 + tanϕrot tanϕdef

. (7.27)

Two scaling arises

tan∆ϕ ∝

{
f if f ≪ 1,

f−1 if f ≫ 1.
(7.28)

Since the limit f ≪ 1 and f ≫ 1 gives small values of tan∆ϕ, the scaling pre-
sented here also holds for sin∆ϕ.

As a consequence, from Eq.(7.15) and mixing all scaling together, one sees that

V ∝ |B⃗osc|2, (7.29)

which corresponds to the scaling observed in Fig.7.4. Regarding the evolution of
the velocity as a function of the frequency, the dependencies of Adef , Arot and
sin∆ϕ have to be taken into account. It yields

V ∝

f2 if f ≪
√

|µ⃗r||B⃗x|/I,
f−4 if f ≫

√
k/mr.

(7.30)

Once made dimensionless, the two scaling of Fig.7.5 are recovered. One should
note the boundaries of each scaling. Indeed, the speed increases as f2 only below
|µ⃗r||B⃗x|/I . This boundary is defined by the offset B⃗x. This is also the case in
Fig.7.5. On the contrary, the last scaling, i.e. v0 ∝ f−4, is only valid for f ≫ k/mr .
From the last chapter, we have derived the expression of k as a function of the
experimental parameter. Especially, we have shown that the stiffness k is inde-
pendent of the value of f and only depends on B⃗z when B⃗x ≪ B⃗z . In the
case described in Fig.7.5, the vertical field B⃗z is always more than ten times more
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intense then the offset. As a consequence, in Eq.6.14, |B⃗x|2 can be neglected
before |B⃗z|2. This observation explains why the last scaling is independent of
each experimental parameter.

Finally, we can describe the speed as a function of the distance between each
beads. One has

V ∝ |r⃗ij |−7. (7.31)

Knowing from the previous chapter that |r⃗ij | ∝ |B⃗z|
2
3 in the case of small offset

magnitude, one has
V ∝ |B⃗z|−

14
3 . (7.32)

This scaling, only valid for small values of B⃗z as described in the previous chapter,
corresponds to the observation made in Fig.7.6.

The toy model developed in this section, based on the swinging motion of the
centre of mass around the hydrodynamic centre, is shown to capture correctly the
numerical simulations. Indeed, each scaling is rationalised through the rotational
dynamics of each beads and the deformation dynamics of the triangle.

7.4.3 Remarks about the Najafi-Golestanian microswimmer

It worth noticing that the beads rotation has been only introduced in this chap-
ter despite the discussion of about the Najafi-Golestanian in the previous chap-
ter. The beads rotation in this case can indeed be neglected when considering
Eq.(7.17) and its solution. When a strong offset B⃗x is applied to the system, the
individual rotations are highly constrained. Indeed, as we have seen earlier, the
offset plays the role of a confining potential and its stiffness is directly related to
B⃗x. Since, in order to stabilize the linear structure discussed in Chapter 6, an in-
tense offset is required, the rotation are limited. Another limiting effect has to be
taken into account. Still because of the offset, the beads are rather close to each
other in the linear structure. The amplitude of oscillations, and therefore B⃗osc, is
small to prevent the contact between the beads. Since the rotation is driven by
the oscillating field, the rotation are expected to be even more negligible.
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7.5 Conclusion

The triangular three-beds assembly can swim at an air-water interface thanks to
time-dependent magnetic fields. Interestingly, the way the swimmer harnesses
power from the external fields is different from the Najafi-Golestanian microswim-
mer. In the latter case, the non-reciprocal deformation comes from the spatial
asymmetry of the linear structure. In the triangular one, the non-reciprocal defor-
mation is driven by the rotation of each bead which adds to the triangle defor-
mation to achieve propulsion. The result is a swinging motion where the centre
of mass rotates above and below a peculiar point: the hydrodynamic centre of ro-
tation. This centre is determined by the hydrodynamic interaction between pairs
of beads. It was shown in this chapter that depending on the isosceles triangle
obtained, i.e. lepto or platy isosceles, the centre of rotation is respectively below
and above the centre of mass. This is this property that is at the root of the
non-reciprocal deformation.

A toy model was developed in order to capture of essence of the dynamic. The
speed of the triangular swimmer is shown to scale as V ∝ ωArotAdef sin∆ϕ/l

3.
This relation resembles Golestanian’s which means that despite the very differ-
ent propulsive mechanisms in each system, the same properties can be observed.
Finally, based on a linear analysis where the beads rotation and the triangle defor-
mation were decoupled, the evolution of the swimming speed with each parame-
ter was studied. The toy model captures correctly the numerical results and only
needs to be compared to experiments and applied to larger assemblies.
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8
General conclusion and future work

8.1 Conclusion

In this thesis, we asked the question of the effect of a collection of passive individ-
uals on the net translation of the assembly and especially the effect of the number
of individuals. Two systems were investigated: walking droplets and magnetocap-
illary microswimmers.

In the first system, the walking droplets harness power from the interface thanks
to waves produced at each impact. The persistence time of those waves is con-
trolled through the vertical oscillation of the liquid surface. From a mathematical
point of view, those wave sources can be seen as images of the particles which
affect the horizontal dynamics of the droplet. This property is the wave memory
of the walker. Given the control over the wave persistence time, the number of
images of the surface, and therefore the size of the wave memory, can be con-
trolled. In the first of this thesis, the high memory regime has been studied.

In Chapter 3, we discussed this wave driven dynamics in free space. In this case,
when entering the high memory regime, the walking droplet is seen to move ran-
domly on the surface. The walker alternates between straight line motion and
sudden changes of orientation, an equivalent of run and tumble dynamics. The
appearance of this dynamics is due to the positive feedback loop between the
wavefield amplification and the walking droplet speed fluctuation. This feedback
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loop eventually traps the walker in this own waves over a small period. When
the droplet leaves the traps, it enters a new run phase with a fluctuating speed.
The alternation between the run phase and the tumble phase appears to last for-
ever resulting in a global diffusive dynamics. The root mechanism is a Shil’nikov
type bifurcation leading to a homoclinic chaos. Finally, we showed that the diffu-
sive dynamics of the walker on the interface is controllable through the memory
parameter. Indeed, the large number of images of the droplet emitting standing
waves in the high memory regime allows the walker to enter the thermodynamic
regime and to display a diffusive behaviour. The more images there is, the less
efficient is the diffusive process. In a few words, the walking droplet dynamics in
the high memory regime gives the first example of a perfectly tunable determin-
istic run and tumble dynamics.

In Chapter 4, we trapped the walker in an harmonic potential in order to pro-
voke the continuous interaction of the walker which its own wavefield. In this
situation, the memory is seen to mimic a thermal bath, a white noise, with an
effective temperature related to the memory of the droplet. This observation
reinforces the idea that the memory indeed allows the walker to enter the ther-
modynamic regime. Surprisingly, time correlation is seen to disappear despite the
non-markovian process at the root of the dynamics. In order to gain insight on
the walker dynamics, the wave dynamics was investigated. The investigation of
this unique wave-based thermostat shows two main features. First the energy
stored in the wavefield is relatively limited because of favoured destructive inter-
ferences. This property is to due the correlation between two impacts on the
surface. Second, the energy is stored almost identically in the degrees of freedom
of the wavefield. This second property finds its origin in the walker driving mech-
anism: the interplay between the droplet wave generation and the slope of the
global wavefield. As a consequence, the wave dynamics mimics a minimisation
principle and an equipartition of energy in the system.

The second system explored in this manuscript, the magnetocapilary microswim-
mers, uses hydrodynamic interactions and non-reciprocal deformations to achieve
propulsion. The non-reciprocal deformation is due to the magnetocapillary in-
teractions between the beads. In this dynamics, the particles are driven out-of-
equilibrium thanks to time-dependent magnetic fields. This second part of the
thesis was dedicated on the creation of non-reciprocal deformation in a magne-
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tocapillary swimmer.

In Chapter 6, we explore theoretically the magnetocapillary three-beads Najafi-
Golestanian microswimmer. In order to achieve a non-reciprocal deformation in
this linear structure, a deep investigation of the magnetocapillary potential was
necessary. A simple method to generate non-reciprocal deformation is to con-
sider different beads sizes in the assembly. This leads to interactions between
beads with different natural frequency, which breaks the spatial symmetry of the
swimmer. The model developed in this chapter is an hybrid toy model, mixing
Golestanian’s kinematic swimming condition and a dynamical inertial model. In
this hybrid approach, the deformation is computed beforehand and then injected
in the Golestanian’s condition. The model correctly captures the experiment and
is shown to give the same results as exact models in the overdamped limit.

In Chapter 7, the three-beads triangular microswimmer was theoretically inves-
tigated. The non-reciprocal deformation in this case is different from the linear
structure. The triangle uses two ingredients to swim: the individual rotation of
each beads and the oscillation between one isosceles triangle (lepto-isosceles)
to another (platy-isosceles). The key mechanism is the swinging motion of the
triangle centre of mass around the hydrodynamic centre of rotation. This one is
the result of the hydrodynamic forces coupling the individual rotations to the
beads translation. Based on this idea of swinging dynamics, a toy model has been
developed based on geometrical and dynamical arguments. A Golestanian-like
condition of swimming as been recovered. This theoretical investigation gives the
first step towards the investigation of large swimming assembly of magnetic beads
on air-water interface.

Given the limited amount of individuals considered in the dynamics in the case of
the magnetocapillary swimmer, analogies between the two systems investigated
are limited. Further investigations of the swimming dynamics regarding the effi-
ciency as a function of the number of particles are therefore necessary. We end
this thesis by giving a few ideas a further investigations which aims at developing
further the question raised in this manuscript.
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8.2 Future work

8.2.1 Walking droplets

Walking droplets make up a quite unique system because of the feedback due
to the waves on the particle. News geometries and memory storage can be
considered in numerical simulations. For example, one can consider 3D waves.
Indeed, in actual experiments, the droplets in compelled to move on the air-oil
interface and to be propelled by 2D cylindrical waves. Thanks to numerics, one
can extend this dynamics to 3D spherical waves for a droplet bouncing into a
fourth dimension. A mental picture of this numerical experiments would be the
one of a particle flickering in space and emitting a 3D wave each time it lightens
up. This flashings would correspond to the bouncing of the droplet in te 2D case.
Following the model of Dubertrand et al, the wavefield in this situation is given
by

ζi (r⃗, t; r⃗i, ti) =ζ0 cos (2πfF (t− ti)) j0 (kF |r⃗ − r⃗i|)

× exp

(
− t− ti

τM

)
exp

(
−|r⃗ − r⃗i|

δ

)
, (8.1)

where j0 is the spherical Bessel function of zeroth order and first kind and the
vectors r⃗ are three dimensional. Since mathematically the ingredients used in
the dynamics are similar to the 2D case, self propulsion is observed in numerics.
Differences appears in the intermediate memory regime. Figure 8.1 shows the
dynamics in a 3D harmonic potential for increasing memory parameters. One
sees that the walker initially moves along a circle for low memory. As the mem-
ory increases, the motion destabilizes in the direction perpendicular to the initial
plane of motion. Finally, for the more important memory parameters, the trajec-
tory self-structures into a spherical shell hollow in the inside. This system could
be used to analyse further the analogies between memory driven dynamics and
quantum mechanics. Indeed, such trajectories also shows quantification of their
macroscopic observables ⟨U⟩ and ⟨L⟩. But, contrarily to 2D dynamics, the quan-
tification in 3D dynamics is expected to touch other observables (Lz in the case
of the electron around a proton).

Back in the 2D experiments considered into this manuscript, new confining po-
tentials can be considered. For example, one can consider double-well harmonic
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potentials and investigate how the dynamics in each well couples with the other.
Such a potential reads

U(r⃗) =
U0

L4

(
x2 − L2

)2
+

4U0

L2
y2. (8.2)

In this expression, U0 is the high of the energy barrier between the two wells
and 2L their distance. In the intermediate memory regime, the passage from
one well to the other strongly depends on the natural frequency ω = 2πf =√

8U0/L2 associated to the wells. Figure 8.2 gives two examples of the dynamic
encountered in numerical simulations. The color in the plot indicates the direction
of rotation. The center of the wells are indicated with the black dots. The top
figure shows a walker blocked in the right well, in a lemniscate state, despite a
barrier lower than its average kinetic energy (U0 = 0.8⟨K⟩). The bottom figure
shows a coupling between a trifolium of the left hand side and a circle in the
right hand side. Contrarily to the top figure, the barrier is higher than the kinetic
energy of the walker at every instant of the dynamics (U0 = 2⟨K⟩). Despite this
difference of energy, the walker is able to climb the barrier in a stable trajectory.
The difference between those two dynamics comes from the eigenstates which
seems to possess blocking or transmitting properties. This potential can serve
to explore new analogies with quantum mechanics as briefly discussed at the
beginning of Chapter 2.

8.2.2 Magnetocapillary microswimmers

The systems explored in this manuscript has been made of three floating mag-
netic beads. Nevertheless, experiments have shown that larger assemblies can
still swim with different efficiency depending on the amount of beads on the in-
terface [111]. For example, 4-beads assemblies where shown to be especially
non-efficient. Assemblies of 5 and 6 beads where also shown to swim but with
increasing efficiency. The model developed in Chapter 7 can only explain the
4-beads dynamics. Therefore further analysis are necessary. The 4-assembly is
shown to deform back and forth into a rhombus when time-depending magnetic
fields are applied. The hydrodynamic center of rotation can be computed in this
case. It can be shown that the high level of symmetry of the rhombus makes
that the center of mass and the hydrodynamic center coincide. As a result, the
swinging mechanisms observed in Chapter 7 and illustrated in Fig.7.10 cannot be
observed. Regarding the 5 and 6-beads assemblies, such cases give multiple hy-
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Figure 8.1: Dynamics of a walker in a 3D harmonic potential at frequency f = 1 Hz for variying
memory parameters: (a)Me = 10, (b)Me = 20, (c)Me = 30, (d)Me = 40. All structures have
a cylindrical symmetry and are hollow inside. All trajectories display 20000 flickering in the fourth
dimension.

drodynamic centres of rotation. A new description has to be found in order to
understand the swimming dynamic observed.

The numerics presented in Chapter 7 does not allow to solve the fluid dynamics
along the particle dynamics. A integration of the fluid dynamics in the numerics
could allow to investigate further the interaction between the assembly and its
environment. This idea could be implemented using another numerical scheme,
the lattice-Boltzmannmethod for example. As a consequence, multiple swimmers
dynamics due to hydrodynamic interactions could be explored as well as potential
applications in microfluidic such as the mixing process induced by swimmer.
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Figure 8.2: Dynamics of a walker in a 2D double-wells harmonic potential for varying parmaeters.
Top Me = 20, f = 700 mHz and U0 = 0.8⟨K⟩, bottom Me = 15, f = 300 mHz and
U0 = 2⟨K⟩. The color code indicates the direction of rotation (blue: clockwise, red: counter-
clockwise) and the gray line gives λF in each direction.

8.2.3 Biomimetic self-assembled swimmers

3D printing technologies give the possibility to craft objects of any shape with
an extreme ease. Mixing those techniques with magnetic materials can provide
objects that can self-assemble and react to external magnetic fields. This idea has
been used in our lab using the system depicted in Fig.8.3(a,b). Pieces of ABS a few
centimetres long are filled with magnetic cylinders has indicated in the figure. Two
cylindrical magnets are placed in the arms with their magnetic moment pointing
in the same direction. Two additional magnets are placed in the central part and
are anti-parallel. The pieces are also asymmetric. Indeed, the disk at the center
has not the radius on each side of the two arms. The purpose of those mag-
nets is double. The two central magnets allow to generate large, centipede-like
structures thanks to attractive dipole-dipole interactions (see Fig.8.3(c)). The two
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(a)

(b)

(c)

Figure 8.3: Biomimetic self-assembled swimmers: (a) Schematic description of the PDMS used in
the experiments. Arrows give the direction of the magnets in the arms, plus and minus sign gives the
directions of the vertical magnets. (b) Swimming dynamics of this ``swimmer'' at the air interface
in presence of blue dye. A small offset field is applied along the direction of motion. The oscillating
field is applied perpendicularly to the direction of motion. (c) Assembly of 18 pieces under a unique
time-dependant magnetic field applied in the direction perpendicular to the swimmer axis. Credit:
Ylona Collard, ULiege.

magnets in the arms tend to align the pieces in external horizontal magnetic fields
and therefore deform the structure.

This object has been shown to be able to swim along air-water interfaces, floating
also because of its wetting properties. The dynamics being at higher Reynolds
number than the dynamics explored in this manuscript (Re ≈ 200)), the theory
of hydrodynamic interactions does not hold any more. The propulsive mecha-
nism now comes from the vortices emitted by the structure and mainly ejected
backward, as evidenced in Fig.8.3(b). Indeed, an oscillating and horizontal mag-
netic field is applied to the system. The swimmer swims perpendicularly to this
oscillating field. Interestingly, adding more and more pieces to the structure com-
pletely change the system which mimics sea worms swimming dynamics as shown
in Fig.8.3(c). In all case, the system is shown to swim along the interface. Despite
those extremely promising experiments, a proper theoretical understand is still
lacking. The link between the swimming speed and the vortices emitted has to be
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understand. Furthermore, the dynamics of larger assemblies still need to be un-
derstood. Nevertheless, given its simplicity, this experiment can assume the role
of toy model in order to understand the dynamics of insects and fishes moving in
and onto water using similar propulsive mechanisms.
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A
Numerical simulations of walking droplets

The numerical simulations of walking droplets are made in C/C++. We provide
here an exhaustive description of the algorithm we used.

Simulations are made using the assumption that the vertical and the horizontal
dynamics are not coupled to each other. The vertical dynamics corresponds to
the completely inelastic bouncing ball. The horizontal dynamics is related to the
interaction between the droplet and its wavefield.

A.1 Vertical dynamics

Since the dynamics of an inelastic bouncing ball is periodic and does not show
transient behavior [69], this part of the simulation is solved once and for all. The
results one obtains are used to compute the horizontal dynamics.

We assume that the surface vertical elevation is given by

zs(t) = A sin(ωst). (A.1)

Because the droplet impacts on the surface are assumed to be inelastic, once
the contact occurs, the droplet vertical speed relative to the surface is equal to
zero. In other words, the droplet has the same vertical speed as the surface. As
a consequence, the droplet only leaves the surface when the surface acceleration
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z̈s has a magnitude such as

z̈s = Aω2
s ≥ g, (A.2)

with A being the forcing amplitude and ωs the angular frequency of oscillation.
Indeed, in such case, the surface “falls down” with an acceleration higher than the
droplet one, i.e. g. The take-off instant t⋆ can be easily extracted, knowing that
it corresponds to the first instant z̈s matches g

t⋆ =
1

ωs
arcsin

(
g

Aω2
s

)
. (A.3)

Therefore, the take-off velocity and the take-off height can be computed. Because
the droplet vertical speed is always given by the surface velocity when both are
in contact, one has

ż(t⋆) = Aωs

√
1−

(
g

Aω2
s

)2

, (A.4)

and
z(t⋆) =

g

ω2
s

. (A.5)

The droplet, when leaving the surface, is only submitted to its weight, giving a
trajectory and a vertical speed

z(t) = z(t⋆) + ż(t⋆)(t− t⋆)− g

2
(t− t⋆)2, (A.6)

ż(t) = ż(t⋆)− g(t− t⋆). (A.7)

The landing instant t+ is found by assuming z(t+) = zs(t
+). Numerically, the

solution is obtained via the Bisection method with a relative precision of 10−6.
Once t+ has been obtained, the landing velocity ż(t+) can be computed.

The knowledge of both t⋆ and t+ defines two distinct parts of the motion. During
∆tfly = t+ − t⋆, the droplet is assumed to have a parabolic trajectory. During
∆tsurf = 4π/ωs−t++t⋆, the droplet is in contact with the surface and interacts
with its own wavefield. Knowing ż(t+) gives a measure of the amplitude of the
standing waves on the surface.
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A.2 Horizontal dynamics

This part of the dynamics is solved by an event-driven algorithm. Only the two
instants t⋆ and t+ are considered, since one knows the dynamics of the droplet
between each.

A.2.1 Parabolic trajectory

Between t+ and t⋆, the only forces acting on the droplet are the external forces,
since no contact with the surface occurs. As a consequence, the motion along
the x and y directions is given by

∆xfly = ẋ(t⋆)∆tfly +
ΣFx

2m
∆t2fly, (A.8)

∆yfly = ẏ(t⋆)∆tfly +
ΣFy

2m
∆t2fly, (A.9)

where ∆xfly = x(t+) − x(t⋆) (resp. ∆yfly = y(t+) − y(t⋆)) is the distance
travelled between the impact point and the take-off point along the x-direction
(resp. along the y-direction). In this manuscript, we only consider external forces
arising from harmonic potentials. This gives

ΣFx

m
= −ω2x, (A.10)

ΣFy

m
= −ω2y, (A.11)

where (x, y) is the distance from the center of the harmonic potential and ω its
natural frequency.

The impact point (x(t+), y(t+)) is stored in a memory array in order to com-
pute the total wavefield on the surface. Note that trajectories presented in this
manuscript are realised considering the impact points.

A.2.2 Interaction with the surface

At impact, i.e. at t = t+, the droplet loses part of its velocity because of the
inelastic interaction with the interface. The vector locally perpendicular to the
wavefield is computed as follow. Knowing the position of all previous impact, the
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wavefield gradient ∇ζ(r⃗)(t+) is computed. The wavefield writes

ζ(r⃗, t+) =ζ0

5Me+1∑
n=1

J0

(
2π

|r⃗(t+)− r⃗n|
λF

)
×

exp

(
−|r⃗(t+)− r⃗n|

δ

)
exp

(
− t

+ − nτF
Me τF

)
. (A.12)

The Bessel function J0 as well as the Bessel function J1 discussed below are
computed thanks to the algorithm found in the Numerical Recipes [145]. In the
equation, the sum over the previous impacts is truncated for practical purpose.
Indeed, since the wave amplitude is multiplied by exp (−(t+ − nτF )/Me τF ),
the last sources are negligible compared to the first ones. We choose to truncate
the series at the 5Me + 1th term since exp(−5) = 6.7 10−3 ≪ 1. The wave
amplitude ζ0 is calibrated via energetic arguments. Assuming that the droplet
relative kinetic energy is converted into potential energy for elevating the fluid to
the height ζ0 leads to

ζ0 = ϵ
(
ż(t+)−Aωs cos

(
ωst

+
))2

cos
(
ωst

+
)2
. (A.13)

The third factor in the right-hand side of this equation accounts for a correction
to the amplitude because of the phase of the surface oscillation at impacts. The
gradient of the field writes

∇ζ(r⃗, t+) =− ζ0

5Me+1∑
n=1

exp

(
− t

+ − nτF
Me τF

)
×(

2π

λF
J1

(
2π

|r⃗(t+)− r⃗n|
λF

)
+

1

δ
J0

(
2π

|r⃗(t+)− r⃗n|
λF

))
×

exp

(
−|r⃗(t+)− r⃗n|

δ

)
r⃗(t+)− r⃗n
|r⃗(t+)− r⃗n|

. (A.14)

Finally, the normal vector n⃗(r⃗, t+) writes as

n⃗(r⃗, t+) =
(
−∂xζ(r⃗, t+),−∂yζ(r⃗, t+), 1

)
. (A.15)

Since the amplitude ζ0 is small compared to the wavelength λF , this expres-
sion verifies the condition |n⃗| = 1 + O (ζ0/λF ). We seek for the vector

p⃗(r⃗, t+) = C1n⃗(r⃗, t
+)+C2

(
˙⃗r(t+)− żs(t

+)e⃗z

)
, perpendicular to n⃗(r⃗, t+) and
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unitary. This vector lies in the plane formed by n⃗(r⃗, t+) and
(
˙⃗r(t+)− żs(t

+)e⃗z

)
.

Mathematically, those conditions write

p⃗(r⃗, t+).n⃗(r⃗, t+) = 0, (A.16)

p⃗(r⃗, t+).p⃗(r⃗, t+) = 1. (A.17)

Since the impact of the droplet with the surface is assumed to be completely
inelastic, the relative velocity along the normal vector n⃗(r⃗, t+) is reduced to zero.
As a consequence, the relative speed of the droplet is

vsurf (t
+) =

(
˙⃗r(t+)− żs(t

+)e⃗z

)
.p⃗(r⃗, t+), (A.18)

and this velocity is oriented along p⃗(r⃗, t+).

Between the instant t+ and 4π/ωs + t⋆ = t+ + ∆tsurf , i.e. the new take-off
instant, the droplet is submitted to a lubrication force. This force is assumed to
decrease exponentially the speed with

vsurf (4π/ωs + t⋆) = vsurf (t
+) exp

(
−
∆tsurf
TV

)
, (A.19)

where Tv is the damping time. The distance travelled on the surface between
those two instants is obtained by time integration of the previous equation

dsurf = vsurf (t
+)TV

(
1− exp

(
−
∆tsurf
TV

))
. (A.20)

Therefore, one has

∆xsurf = dsurf

(
p⃗(r⃗, t+).e⃗x

)
, (A.21)

∆ysurf = dsurf

(
p⃗(r⃗, t+).e⃗y

)
, (A.22)

ẋ (4π/ωs + t⋆) = vsurf (4π/ωs + t⋆)
(
p⃗(r⃗, t+).e⃗x

)
, (A.23)

ẏ (4π/ωs + t⋆) = vsurf (4π/ωs + t⋆)
(
p⃗(r⃗, t+).e⃗y

)
, (A.24)

where ∆xsurf = x(4π/ωs + t⋆) − x(t+) and ∆ysurf = y(4π/ωs + t⋆) −
y(t+). The new position (x(4π/ωs + t⋆), y(4π/ωs + t⋆)) and the new velocity
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Parameter Value (Unit)

Forcing amplitude A 160 (µm)
Forcing frequency fs 80 (Hz)

Forcing angular frequency ωs 502.655 (rad/s)
Dimensionless acceleration Γ 4.12 (−)

Faraday wavelength λF 4.75 (mm)
Faraday frequency fF 40 (Hz)

Faraday angular frequency ωF 251.327 (rad/s)
Spatial damping δ 2.5 (λF )

Restitution coefficient ϵ 0.006 (−)
Damping time TV 45 (ms)

Time above surface ∆tfly 14.36 (ms)
Time on surface ∆tsurf 10.64 (ms)

Table A.1: List of the parameters used in the numerical simulations.

(ẋ(4π/ωs+ t
⋆), ẏ(4π/ωs+ t

⋆)) are used for a new “parabolic trajectory” phase.
This algorithm is repeated until a given number of iteration is realised.

A.2.3 Discussion regarding the algorithm

This numerical scheme of integration has some pros and cons. On the one hand,
since the dynamics is integrated via an event-driven algorithm, the simulations
are fast, with a duration only proportional to the walker memory. At memory
Me = 100, for 2.5 105 time steps, simulations are completed under 30 seconds
on a desktop computer. This allows for long simulations and statistical analy-
sis of the dynamics. Furthermore, since exact equations are considered in the
scheme of integration numerical precision is not an issue. On the other hand,
some drawbacks exist. Indeed, because the vertical and horizontal dynamics are
independent in the numerics, this algorithm does not allow the analysis of chaotic
bouncers [189] neither does it consider the relation between Γ and Me. This
therefore limits the comparison between numerics and experiments. Further-
more, the wave description is not exact but only an approximation as described
in [52]. A more precise expression would require a full resolution of Navier-
Stokes equations [119].
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B
Hydrodynamic interactions

The key of low-Reynolds number locomotion lies in the possibility for particles to
interact by induced flows and drag forces. On the one hand, a particle moving rel-
ative to a fluid induces a flow around itself. On the other hand, when immersed
in a flow, particles are submitted to forces dragging them into flow. The con-
sequence are hydrodynamic interactions mediated by the fluid surrounding the
particles. The drag force involved here is easy to describe since it is found in most
elementary textbooks. For a particle in a flow u⃗(r⃗), the drag force is expressed
by

F⃗d = 6πaηu⃗(r⃗), (B.1)

which is the Stokes drag. The flow induced by a moving particle is more complex
to describe given the mathematical structure of the Stokes equation.

B.1 Mathematical background

The demonstration relative to the flow induced by moving objects is inspired by
[110], and uses solutions of harmonic and biharmonic equations. In the following
development we will need to solve

∆2ψ = δ(r⃗). (B.2)

This is a biharmonic equation where ∆ is the Laplacian operator and δ the Dirac
delta. This equation can be easily solved in Fourier space. For ψ̃ = F(ψ), one
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has
ψ̃ =

1

|⃗k|4
. (B.3)

Therefore, the solution in real space is

ψ =
1

4π2

∫ π

0

∫ ∞

0

ei cos θ|r⃗||⃗k|

|⃗k|2
d|⃗k|dθ, (B.4)

which gives

ψ = −|r⃗|
8π

→ δ(r⃗) = − 1

8π
∆2|r⃗|. (B.5)

Am immediate consequence of this equation are the following relations, origi-
nating from classical electromagnetism when studying the electric potential and
electric field generated by a point-charge

δ(r⃗) =
1

4π
∇⃗
(

r⃗

|r⃗|3

)
, (B.6)

= − 1

4π
∆

(
1

|r⃗|

)
. (B.7)

Furthermore, solutions of the equation ∆ψ = 0 have interesting properties. As
stated in [94],

Theorem 2 If ψ is harmonic (i.e. ∆ψ = 0) and continuously differentiable in a closed
regular region R, and vanishes at all points of the boundary of R, it vanishes at all
points of R*.

Theorem 3 A function, harmonics and continuously differentiable in a closed regular
region R, is uniquely determined by its values on the boundary of R*.

With those tools, let us study the flow generated by a single point-force and a
single point-torque.

B.2 Point-force and point-torque descriptions

Let us assume a point particle located at the origin and submitted to a force f⃗ δ(r⃗),
where δ(r⃗) is the Dirac delta and f⃗ is a constant vector. The equation describing

*This theorem holds for an infinite regular region R (see [94], chap.8, pg.218).
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the flow is given by the continuity equation and the Stokes equation

∇⃗.u⃗ = 0, (B.8)

∇⃗p = η∆u⃗+ f⃗ δ(r⃗). (B.9)

The Stokes equation being linear, the solution of the fields p and u⃗ are expected
to be linearly proportional to the point force f⃗ ,

p = h⃗.f⃗ , (B.10)

u⃗ = Ĝ.f⃗ , (B.11)

where the field h⃗ (resp. Ĝ) is a vector field (resp. a second-order tensor field).
Taking the divergence of (B.9) and using the continuity equation (B.8), one gets

∆
(
h⃗.f⃗
)
= f⃗ .∇⃗δ(r⃗). (B.12)

This equation can be written as(
f⃗ .∆h⃗− f⃗

4π
∇⃗
(
∇⃗. r⃗

|r⃗|3

))
= 0. (B.13)

Using vector calculus identities and knowing that r⃗/|r⃗|3 is an irrotationnal vector
field, one has

f⃗ .∆

(
h⃗− 1

4π

r⃗

|r⃗|3

)
= 0. (B.14)

Finally, assuming that the pressure field cancels at infinity and using Kellogg theo-
rems gives the h⃗-vector field

h⃗ =
1

4π

r⃗

|r⃗|3
→ p =

f⃗ .r⃗

4π|r⃗|3
. (B.15)

This scalar field is the same as the one obtained in classical electromagnetism for
the electric potential created by a electric dipole, f⃗ being the “dipole moment”
in this analogy. Knowing the pressure field, one can access the velocity field. The
equation reads

∇⃗

(
f⃗ .r⃗

4π|r⃗|3

)
= η∆

(
Ĝ.f⃗

)
+ f⃗ δ(r⃗). (B.16)
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The force f⃗ being constant, one has(
∇⃗ ⊗ r⃗

4π|r⃗|3

)
f⃗ = η

(
∆Ĝ

)
.f⃗ + δ(r⃗)Îf⃗ . (B.17)

where ⊗ is for the dyadic product and Î is the unit tensor. Using Eqs.(B.6) and
(B.7) gives (

η∆Ĝ+
1

4π

(
∇⃗ ⊗ ∇⃗ − Î∆

)( 1

|r⃗|

))
.f⃗ = 0. (B.18)

We would like to use the same strategy used for the computation of the pressure
field and place the Laplacian operator before the whole equation. To do so, one
could use the equation

∆|r⃗| = 2

|r⃗|
, (B.19)

which leads to

∆

(
ηĜ+

1

8π

(
∇⃗ ⊗ ∇⃗ − Î∆

)
|r⃗|
)
.f⃗ = 0. (B.20)

Assuming that the velocity field vanishes at infinity and using Kellogg theorems,
one gets

Ĝ =
1

8πη|r⃗|

(
Î+

r⃗ ⊗ r⃗

|r⃗|2

)
→ u⃗ =

1

8πη|r⃗|

(
f⃗ +

r⃗(r⃗.f⃗)

|r⃗|2

)
. (B.21)

The tensor Ĝ is referred to as the Oseen tensor and the singularities in Eqs.(B.15)
and (B.21) correspond to the Stokeslet. Those two equations describe the fluid
dynamics under the influence of a single external point source. The velocity field
generated by a Stokeslet is illustrated in Fig.B.1.

In this manuscript, another useful case is the one involving a single point torque.
Such a case is observed for f⃗ = ∇⃗ × (γ⃗δ(r⃗)) [29]. Indeed, this assertion can be
proved by studying the torque exerted on a spherical surface S centred on the
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singularity. One has

τ⃗ =

∮
S
r⃗ ×

(
∇⃗p.n⃗− η∆u⃗.n⃗

)
dr2, (B.22)

=

∫
V
r⃗ × f⃗dr3. (B.23)

This last integral can be written in terms of the divergence of δ(r⃗) thanks to vector
calculus identities,

τ⃗ =

∫
V
(r⃗.γ⃗) ∇⃗δ(r⃗)−

(
r⃗.∇⃗δ(r⃗)

)
γ⃗dr3, (B.24)

=

∫
V
−∇⃗ (r⃗.γ⃗) δ(r⃗) + 3δ(r⃗)γ⃗dr3, (B.25)

where the properties relative to the derivative of the Dirac delta have been used
to obtain the last equality. Integrating over the whole enclosed volume gives

τ⃗ = 2γ⃗, (B.26)

which indeed corresponds to a point torque at the singularity. Considering the
point torque, the flow equations are given by

∇⃗.u⃗ = 0, (B.27)

∇⃗p = η∆u⃗+ ∇⃗ × (γ⃗δ(r⃗)) . (B.28)

Taking the divergence of the Eq.(B.28) and using the continuity equation (B.27)
leads to

∆p = 0, (B.29)

which, using the properties relative to harmonic functions and assuming that the
pressure field vanishes at infinity, gives p = 0. As a consequence, Stokes equation
reduces to

η∆u⃗+ ∇⃗ × (γ⃗δ(r⃗)) = 0. (B.30)

This equation being linear and given its mathematical structure, the velocity field
is expected to be given by

u⃗ = g⃗ × γ⃗, (B.31)
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which leads to (
η∆g⃗ + ∇⃗δ

)
× γ⃗ = 0. (B.32)

Finally, using Eq.(B.6) and that the field r⃗/|r⃗|3 is irrotationnal, one obtains

∆

(
ηg⃗ +

1

4π

r⃗

|r⃗|3

)
× γ⃗ = 0. (B.33)

Again, assuming a vanishing velocity field at infinity, one gets

g⃗ = − r⃗

4πη|r⃗|3
→ u⃗ =

τ⃗ × r⃗

8πη|r⃗|3
. (B.34)

The singularity described by this corresponds to the Rotlet, i.e. the velocity and
pressure fields generated by a point-torque at the origin. The velocity field gen-
erated by a Rotlet is illustrated in Fig.B.1.

Therefore, neighbouring particles are dragged by this flow and moves along it.
The velocity v⃗i of a given particle labelled i is linearly related to the forces f⃗j and
torques τ⃗j applied to all other particles labelled j . Mathematically,

v⃗i = µ̂ij .
(
f⃗j , τ⃗j

)T
, (B.35)

where T denotes the transposed matrix. Here, µ̂ij is the mobility matrix linking
the dynamics of particle i to the dynamics of all particles j . The components of
this matrix are summarized in the following table, under the “velocity field”-entry.
In the case of finite size particle, the mobility matrix gets more complex since the
rotational velocity of each particle has to be taken into account.

Singularity Velocity field Pressure field

Stokeslet u⃗ =
1

8πη|r⃗|

(
f⃗ +

r⃗(r⃗.f⃗)

|r⃗|2

)
p =

f⃗ .r⃗

4π|r⃗|3

Rotlet u⃗ =
τ⃗ × r⃗

8πη|r⃗|3
p = 0
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Figure B.1: Stokeslet and Rotlet illustrated. (Left) Velocity field generated by a single point-force
at the origin (orange arrow). (Right) Velocity field generated by a single point-torque at the origin
(orange point). Note that the field intensity is not related to the density of arrow into the flow.
The Stokeslet decreases as 1/|r⃗| and the Rotlet as 1/|r⃗|2 .

B.3 Finite-size particles

When considering finite-size particles, the flow generated by moving particles
can also exert torques. Indeed, the amplitude of the velocity field is seen to
decrease with the distance to the source. As a consequence, the viscous drag
on the surface of a neighbouring particle is not symmetric, being more intense
on the hemisphere facing the flow source and being less intense on the opposite
hemisphere. As a consequence, torques arise and neighbouring particles can
experience translational and rotational motion. Mathematically, this leads to the
following equation

(v⃗i, ω⃗i) = µ̂ij .
(
f⃗j , τ⃗j

)T
. (B.36)

Formally, the mobility matrix is built as follows

µ̂ij =

(
µ̂TT
ij µ̂TR

ij

µ̂RT
ij µ̂RR

ij

)
, (B.37)

where the submatrice superscripted TT couples the translational motion of two
particles (i.e. alike the Stokeslet), TR couples the translation to the torque (i.e.
alike the Rotlet), RT couples the rotation to the force and RR couples the
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rotational motion of two particles. The expression of each submatrice needs to
consider the finite size of each particle since the expression of the Stokeslet and
Rotlet in the previous section does not hold any more. To circumvent this issue,
a solution is to express the induced flows in a series of powers of 1/|r⃗|. This
approach is named the Rotne-Prager approximation or the Method of reflexion. A
full mathematical description can be found in [114]. For a particle labelled j with
a radius aj submitted to a total force and torque (f⃗j , τ⃗j), at a distance r⃗ij of the
center of mass of a particle i, the inter-mobility submatrices are

µ̂TT
ij =

1

8πη|r⃗ij |

(
Î+

r⃗ij ⊗ r⃗ij
|r⃗ij |2

)
+

(
a2i + a2j

)
24πη|r⃗ij |3

(
Î− 3

r⃗ij ⊗ r⃗ij
|r⃗ij |2

)
+O

(
1

|r⃗ij |4

)
, (B.38)

µ̂TR
ij =

ϵ̂.r⃗ij
8πη|r⃗ij |3

+O
(

1

|r⃗ij |5

)
, (B.39)

µ̂RT
ij = − ϵ̂.r⃗ij

8πη|r⃗ij |3
+O

(
1

|r⃗ij |5

)
, (B.40)

µ̂RR
ij = − 1

16πη|r⃗ij |3

(
Î− 3

r⃗ij ⊗ r⃗ij
|r⃗ij |2

)
+O

(
1

|r⃗ij |6

)
, (B.41)

where r⃗ij = r⃗i − r⃗j . The corrections correspond to three-particles interactions.
The factor ϵ̂.r⃗ij is the dot-product with the Levi-Civita third-order tensor which
gives a cross product once multiplied with another vector. For the self-mobility
submatrices, one has

µ̂TT
ii =

1

6πηai
+O

(
1

|r⃗ij |4

)
, (B.42)

µ̂TR
ii = 0 +O

(
1

|r⃗ij |7

)
, (B.43)

µ̂RT
ii = 0 +O

(
1

|r⃗ij |7

)
, (B.44)

µ̂RR
ii =

1

8πηa3i
+O

(
1

|r⃗ij |6

)
, (B.45)

where the corrections are due to pair interactions with neighbouring particles.
Note that, in the case of only two particles interacting via hydrodynamic inter-
actions, the corrections O(1/|r⃗|n) in the submatrices listed above are of higher
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order.
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C
Determining the hydrodynamic centre

In order to find the hydrodynamic centre of rotation, let us begin by describing
parametrically the triangle. The position of each vertex relative to the center of
the reference frame is

p⃗1 = d cos
(π
6
− α

)
e⃗y, (C.1)

p⃗2 = −d cos
(π
3
+ α

)
e⃗x, (C.2)

p⃗3 = d cos
(π
3
+ α

)
e⃗x. (C.3)

The case α = 0 gives the equilateral triangle. This parametrisation gives immedi-
ately the length of each side of the triangle. The two equal sides of the triangle
have a length d. The side parallel to the x-axis has a length

d′ = 2d sin
(π
6
− α

)
. (C.4)

This equation allows to link the angular deformation α to the side length variation
Adef = d− d′. Assuming small values of α, one has

d−Adef

2d
= sin

(π
6
− α

)
,

= sin
(π
6

)
− α cos

(π
6

)
+O(α3). (C.5)
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This relation gives
Adef =

√
3dα+O(α3). (C.6)

Let us now imagine that the particles rotate counter-clockwise, all in the same
direction, and let us assume that they all have the same diameter. All particles
are therefore submitted to hydrodynamic forces which write

F⃗p1 = −12πηa4

d2
|ω⃗| cos

(π
6
− α

)
e⃗x,

F⃗p2 =
6πηa4

d2
cos
(π
6
− α

)
|ω⃗|e⃗x

−
(
6πηa4

d′2
+

6πηa4

d2
sin
(π
6
− α

))
|ω⃗|e⃗y,

F⃗p3 =
6πηa4

d2
cos
(π
6
− α

)
|ω⃗|e⃗x

+

(
6πηa4

d′2
+

6πηa4

d2
sin
(π
6
− α

))
|ω⃗|e⃗y. (C.7)

Those three forces lead to a global rotation around a unique point which, given
F⃗p1 , is located along the y-axis. Given the similarities between F⃗p2 and F⃗p3 , only
one of the two is required to obtain the hydrodynamic centre. The hydrodynamic
centre is located at the intersection between the y-axis and the line perpendicular
to F⃗p2 . The parametric equation of this line is given by

y(x) =
4 cos

(
π
6 − α

)
sin2

(
π
6 − α

)
1 + 4 sin3

(
π
6 − α

) (
x+ d sin

(π
6
− α

))
, (C.8)

which is purely geometric and does not depend on physical ingredient such as the
speed, viscosity, etc. Therefore, the hydrodynamic centre of rotation is located
at

p⃗hcr =
4d cos

(
π
6 − α

)
sin3

(
π
6 − α

)
1 + 4 sin3

(
π
6 − α

) e⃗y. (C.9)

Knowing that the center of mass is located at

p⃗cm =
1

3
d cos

(π
6
− α

)
e⃗y, (C.10)
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the distance between the hydrodynamic centre and the center of mass is

p⃗cm − p⃗hcr = dαe⃗y +O(α2)

=
Adef√

3
e⃗y +O(A2

def ) (C.11)
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