Prediction of ischaemic stroke in non-valvular atrial fibrillation if advanced echocardiography plays the game

Patrizio Lancellotti1,2* and Maurizio Galderisi3

1University of Li`ge Hospital, Department of Cardiology and Cardiovascular Surgery, Heart Valve Clinic, and GIGA Cardiovascular Sciences, Centre Hospitalier de Li`ge du Sart Tilman, Li`ge, Belgium; 2Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy; and 3Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy

Online publish-ahead-of-print 9 February 2018

This editorial refers to ‘Left atrial function to identify patients with atrial fibrillation at high risk of stroke: new insights from a large registry’7, by M.L. Leung et al., on page 1416.

Atrial fibrillation (AF) presents a five-fold increase of the risk for ischaemic stroke and 20–30% of ischaemic strokes appear to be directly associated with AF.1 Currently, the need for anticoagulation for non-valvular AF is assessed on the basis of clinical parameters using the CHA2DS2-VASc score.2 Conventional echocardiographic parameters such as left atrial (LA) dilatation, LA appendage thrombus > sludge > smoke, and reduced LA appendage velocities (<20 cm/s) can further risk stratify AF patients who would most benefit from anticoagulation.3 However, most of these parameters require transthoracic echocardiography and do not evaluate the full risk spectrum related to LA functional impairment in AF. Moreover, whether they remain predictive of stroke after adjustment for comorbid factors (e.g. age, hypertension, diabetes, and previous stroke), which are the most critical upstream concomitant conditions promoting atrial remodelling, has not been well examined. Beyond the usual methods, including transmitral flow and changes in LA area and volume, novel techniques such as tissue Doppler imaging (TDI) and strain imaging provide more accurate estimation of LA function. LA strain is correlated with LA fibrosis in patients with AF, is significantly reduced in those with prior stroke, and predicts subsequent stroke.4 In their study, Leung et al. further extended this observation in a large registry cohort of 1361 patients with first diagnosis of AF.5 At baseline echocardiography, LA volumes, LA reservoir strain, P-wave to A’ duration (PA)-TDI (tissue Doppler imaging), and left ventricular (LV) global longitudinal strain were evaluated in patients with and without stroke. During follow-up (mean: 7.9 years), 100 patients (7%) developed an ischaemic stroke. In their study, Leung et al. further extended this observation in a large registry cohort of 1361 patients with first diagnosis of AF.5 At baseline echocardiography, LA volumes, LA reservoir strain, P-wave to A’ duration (PA)-TDI (tissue Doppler imaging), and left ventricular (LV) global longitudinal strain were evaluated in patients with and without stroke. During follow-up (mean: 7.9 years), 100 patients (7%) developed an ischaemic stroke, representing an annualized stroke rate of 0.9% (1.2% in patients who had a CHA2DS2-VASc score of <1). LA reservoir strain was reduced while PA-TDI was lengthened in the stroke compared with non-stroke group, and emerged as independently associated with risk of stroke in a model including CHA2DS2-VASc score, age, and anticoagulant use.

Notably, these two parameters fitting with the prediction of ischaemic stroke have a deep physiopathological meaning, as they are both an expression of LA function. PA-TDI represents LA electromechanical delay and can be obtained by calculating the time duration difference between the onset of the echocardiogram-derived P-wave and the peak of the A’ wave on TDI.6 PA-TDI reflects the total LA activation time, and is likely a surrogate measurement of myocardial fibrosis and LA remodelling.6 PA-TDI has already been identified as an independent predictor of new-onset,7 post-operative,8 and recurrent AF after electrical cardioversion.9 Moreover, in a large population of 279 patients free of AF recurrence after successful catheter ablation, it was shown that the longer the LA electromechanical delay, the higher the risk of stroke.10 LA reservoir strain, i.e. the collection of flow from pulmonary veins during LV systole, can be quantified by two-dimensional speckle-tracking echocardiography as the peak positive longitudinal strain during LV systole. LA reservoir strain gives additional insights beyond traditional measures of LA remodelling corresponding to LA enlargement, and its alteration is associated with a number of cardiac diseases including AF.11 In recent studies, LA reservoir strain has shown to provide incremental value for thromboembolic risk stratification over CHA2DS2-VASc score,12 and has demonstrated a prognostic significance in various clinical settings.13 Interestingly, in the study of Leung et al.,5 neither LA volume nor LA conduit strain—expression of LA flow passage to the left ventricle during early diastole—and LV dimensions, LV ejection fraction, and global longitudinal strain predicted the risk of stroke. Of note, the relationship between LV systolic dysfunction and ischaemic stroke in AF is so evident that a reduced ejection fraction (<40%) as
a surrogate of heart failure is already included in CHA₂DS₂-VASc risk score.²

By identifying additional echocardiographic high-risk features, Leung et al. have elegantly refined the stroke risk assessment in patients with AF.³ The authors showed that adding advanced echocardiographic parameters, LA reservoir strain, and PA-TDI to the CHA₂DS₂-VASc risk stratification score improved the risk stratification of AF patients, and this may be useful to guide decisions regarding anticoagulation for patients upon first diagnosis of AF. It is known that AF patients with stroke risk factors have more severe ultrastructural abnormalities, which implies more serious LA remodelling and dysfunction with more stroke risk factors.⁴ Thus, higher CHA₂DS₂-VASc is intuitively associated with more significant enlargement LA, loss of atrial contraction, and reduced strain. Although, all this was confirmed in the study of Leung et al., the prediction of ischaemic stroke was observed independently of the CHA₂DS₂-VASc score.⁵

Both categories of patients at low and high risk of stroke were stratified in terms of stroke risk using LA reservoir strain and PA-TDI. In practice, although the CHA₂DS₂-VASc score provides a good indication of stroke risk based on common clinical risk factors, there remains the occurrence of stroke in patients with CHA₂DS₂-VASc score ≤1 (a rate of ≤2.8% per year) in whom the European Society of Cardiology Guidelines do not routinely recommend antithrombotic therapy.⁶ In this group of patients, it is therefore desirable to provide personalized treatment according to tailored risk stratification, even if it is not well codified. The upcoming European Association of Cardiovascular Imaging AF Registry has been designed to provide additional insights into the relationships between LA structure and function with the development of ischaemic stroke and individual patient bleeding risk profiles.⁷,⁸

While the above-mentioned strengths must be emphasized, the only weakness of the study of Leung et al.⁵ corresponds to the use of advanced echocardiography itself as possible means of supporting CHA₂DS₂-VASc risk score in non-valvular AF patients. In particular, PA-TDI is a parameter that presupposes the use of colour TDI, which is angle-dependent and needs a high frame rate of recording. Therefore, its application in routine clinical practice has gradually been reduced. LA strain is a much more solid parameter, since it is obtainable on simple 2D images by speckle tracking echocardiography, which has high feasibility and good reproducibility.³,⁹ However, this technique is affected by a limited availability and the need for vendor-specific software on dedicated workstations for post hoc analyses, which cannot be obtained directly on the echocardiogram machine.

Because of its recognized value, echocardiography has become established in guidelines for the management of AF.⁶ In fact, echocardiography has a unique and important role in the assessment of cardiac structure and function, and risk stratification in AF patients.⁷ Altogether, the findings of Leung et al.⁵ state the important concept that the assessment of LA function adds valuable information to conventional clinical risk scores and improves the prediction of neurologic outcomes in patients with non-valvular AF. This novel approach has fundamental clinical implications and opens up new perspectives for the use of echocardiography as a support to the CHA₂DS₂-VASc risk score in AF patients with low–intermediate stroke risk. This could drive clinicians to make more accurate choices regarding oral anticoagulant therapy [oral anticoagulant (OAC)] in these delicate categories. The introduction of OAC may in fact be promoted in men with CHA₂DS₂-VASc = 1 and women with CHA₂DS₂-VASc = 2, when a functional LA impairment, detectable by the echocardiography, is well evident (Take home figure). Beyond LA enlargement, LA dysfunction can make AF patients more prone to the development of LA internal cavity thrombi and subsequent ischaemic stroke. Further prospective data are needed to confirm the incremental prognostic value of LA function assessment in patients considered at low–intermediate risk.

Conflict of interest: none declared.

References


Take home figure A futuristic echo-based algorithm for anticoagulant therapy management of patients with non-valvular atrial fibrillation. OAC, oral anticoagulant therapy; LA, left atrial.


