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Role of the pion size and flux-tube extension in a baryon-decay model
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A single-flux-tube-breaking mechanism is generalized to three flux tubes and applied to the study
of pion decay of nonstrange resonances. The results given by a finite-extension flux tube are com-
pared to those obtained previously from the naive quark-pair-creation model supported by the
breaking of an infinite-extension flux tube. The role of the pion wave function and its size are also

discussed.

The strong-coupling Hamiltonian lattice formulation
of QCD has inspired flux-tube models!*? which have suc-
cessfully been applied to hadron spectroscopy of
baryons®~> and mesons.»® These are usually semirela-
tivistic constituent-quark models, and the interaction be-
tween quarks is described by two- and three-body poten-
tials proportional to the string tension of the flux tube.

The strong-coupling limit also provides a theoretical
foundation of the meson decay through the breaking of a
flux tube.® In the limit where the flux-tube wave-function
rms radius becomes infinite® one can recover the so-called
naive quark-pair-creation (QPC) model.”® An alternative
theoretical foundation of the QPC model has also been
obtained using a strong coupling and hopping-parameter
expansion.” In Ref. 9 the expression for the decay width
of unstable mesons covers a more general kinematics
than that of Ref. 8.

I. BREAKING OF A FINITE-EXTENSION FLUX TUBE

A purpose of this paper is to extend the flux-tube-
breaking mechanism to the study of baryon decays. The
baryon wave function is more complicated than that of
the meson and it can be described by two distinct flux-
tube configurations.! As shown in Fig. 1 one contains
three flux tubes emerging from the three quarks and
meeting at 120° at a common point r,. The other appears
for interior angles larger than 120° and contains only two
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FIG. 1. Geometry of the decay mechanism by flux-tube
breaking at the point rs.

flux tubes because the third one collapsed to the common
point. Considering an arbitrary point rs where the pair
creation can occur within the volume occupied by the
baryon, we define a total flux-tube-breaking amplitude
v(r;,1,,T3,1,,T5) as the sum

3
V(ELTy, I, T605)= 3 Vi (1.1)
i=1

where y; is the elementary single flux-tube-breaking am-
plitude introduced in Ref. 6 for the meson decay. Al-
though both ends of the flux tubes are not source points
as in the meson case we still assume for y; the simple
form proposed in Ref. 6:
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where 7, is an adjustable parameter, o!/?=1 GeV/fm is
the string-tension constant, and d; is the shortest distance
from rs to the flux tube i. Whenever the perpendicular
from rs falls outside the length of the tube we take d; as
the distance to the nearest end, i.e., we assume a cigar-
shaped pair creation region as in Ref. 6. For
configurations where one tube collapses, for reasons of
continuity we maintain its contribution through the dis-
tance from rs to the collapse point. An example is illus-
trated in Fig. 1(b). In the case of Fig. 1(a) the common
point r, is uniquely defined by r; (i =1,2,3) through the
requirement of a minimum confining energy. It is useful
to use the Jacobi coordinates

pz(rr—rz)/Zl/Z )

A=(r;+r,—2r;)/6'%, (1.3)

R=(r;+r1,+1;)/3'2,

instead of r;. Then y becomes a function of the variables
P> A, and rs.

For the process R — N +M where R, N, and M are the
resonance, the nucleon ground state, and the outgoing
meson, respectively, we define the decay transition ampli-
tude as in Ref. 8:
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(NM|TIRY=3{m—m|00){bydp|drd 1, (R;N,M) ,

(1.4)

where the ¢’s are the flavor-spin wave functions of R, N, M, and of the quark-antiquark pair created from the vacuum
in a P state and I, is a generalization of the overlap integral of Ref. 10:
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I, (R;NM)=— |—
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S(ky +ky) [dpdAdxdrsyg(p,A+(£)2x)

Xy(p,A)expliky [(3)?A+x]}

X € (kp +iV )Py 2x)y (p, A, 15)

where €,, is the spherical unit vector:
— 1 .
€i1:+ﬁ(l,1,0), €,=(0,0,1) . (1.6)

In Eq. (1.5) ky, and ky are the momenta of the outgoing
meson and nucleon, respectively, and the y’s are the spa-
tial parts of the corresponding wave functions, with x the
relative internal coordinate of the outgoing pion. The
particular case Yy =const reduces I,, to a nine-
dimensional integral which recovers the naive QPC mod-
el of Ref. 8, where I,, was expressed in momentum coor-
dinates instead of spatial coordinates as above. The
simplification introduced by the QPC model can, there-
fore, be interpreted as relying on the assumption that the
amplitude for the breaking of the tube (string) is equal at
all points and independent of the transverse direction
from the tube.®

An important characteristic!! of the QPC model is the
nonlocal character of the pion emission operator which is
transparent from Eq. (1.5) where A is shifted to
A+(§)1/2x in g, i.e., proportional to the extension of
the pion.

II. THE ROLE OF THE PION WAVE FUNCTION

The radial extent and wave function of the pion is an
important issue.!? In Ref. 13 it has been shown that the
decay widths of mesons are quite sensitive to the size of
the emitted pion. In Ref. 14 the study of the pion
branching ratio in the NN annihilation processes favors
pion wave functions with rms radii smaller than for other
s- and p-wave mesons.

In Ref. 10 a finite-size pion with an rms radius of 0.29
fm has been used in the calculations of the decay widths
of baryons. The results were globally better than those
obtained from a pointlike pion. However some striking
discrepancies with respect to experiment remained. The
comparison between the finite size and the pointlike re-
sults hinted at a pion of a smaller size.

In keeping with the conclusions of Ref. 10 we explore
here the effect of using the pion wave function of Ref. 3
which produces a radius of 0.16 fm. In principle this
would describe the pion better because it includes the
one-gluon-exchange contribution through short-range
correlations. In this respect it is more consistent with the
baryon states* !> as they also include one-gluon exchange.

In addition to one-gluon exchange the three-quark and
the quark-antiquark systems are described by the same

(1.5)

QCD-inspired Hamiltonian." This contains a relativistic
kinetic-energy term and an adiabatic potential obtained
by minimizing the energy in the gauge fields for fixed
quark positions. The baryon states are obtained through
the diagonalization of a hyperfine interaction containing
spin-spin and tensor parts and their description is exten-
sively given in Refs. 4 and 15. In that interaction the
quark mass m and size A have been treated as parame-
ters. In the following we shall use baryon states obtained
with the so-called “set II” where m =324 MeV and
A=0.09 fm (see details in Ref. 15).

The incorporation of the hyperfine interaction into the
pion wave function is performed in Ref. 3 through a vari-
ational procedure. The values of the hyperfine interac-
tion parameters used there are slightly different than
those used for the baryon, i.e., m =360 MeV and
A=0.13 fm. The strong coupling constant a, and string
tension Vo are the same in both cases:

4 a,

~5-=0.5, o'?= -t
3 %e , O 1 GeVfm

The radial part of the pion wave function is given by?

1

2.1

¢,(r):f‘(r)[1+u"(r)crq-crq] s (2.2)

where the central part f(r) is parametrized as in Ref. 1:

fUr)=r %2Zexp{—0.3965W (r)
—2.1[1=WwW(]r’}, 2.3)
W(r)= 1+exp(—0.15/0.05)

1+exp[(r —0.15)/0.05] )

The spin-spin correlation part u ?(r) is defined in Ref. 3
by

e—ualr—r’l
u"(r)=/3,,f—|r_r,| V. (rd3r, (2.4)
with
B,=—7GeV 'fm % u,=10fm"!, (2.5)
and
a
Vsl ):i_"_l__ 1 e —(r/2A7 2.6)

To reduce the volume of numerical computation of the
multiple integral (1.5), we parametrized u? by the analyt-
ic expression
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A x2 fit to the numerical values of (2.4) gave
y1=0.115 fm~!, y,=10.5 fm™ 2,
¥15=7.0 fm 372 (2.8)
ro=0.72 fm, a=0.11 fm .

FIG. 2. The numerical solution of the integral (2.4) and its fit
by the analytic expression (2.7).

u?(r)=u’(0) exp{

u?(0)=

—0.332,

—(y r Y rHW(r)

_7’1.5’1'5[1—

wi(rl},

(2.7

The numerical evaluation of (2.4) and expression (2.7) are
drawn in Fig. 2 as a function of r.

III. DISCUSSION

To analyze the role of the pion size and of the exten-
sion of the flux tube we display in Table I the square root
of decay widths calculated in three different ways.
Column 1 lists the investigated resonances for which ex-
perimental data are available. The main component of
each resonance wave function is given in column 2. In
column 3 we reproduce the results of Ref. 10. These have
been obtained with y =const and ¥,=f“(r) of Eq. (2.3),
i.e., without a gluon-exchange contribution in the pion
wave function. In column 4 we maintain ¥ =const but
use the pion wave function (2.2) with u? from Egs. (2.7)
and (2.8). Results of column 5 correspond to ¢ defined in
Egs. (1.1) and (1.2) and the correlated pion wave function
(2.2). In each case I''/? carries the sign of the corre-
sponding transition amplitude defined according to the

1+exp(—ry/a)

- 1+exp[(r —ry)/a] ~

phase conventions of Ref. 16. The last two columns give
the square root of the experimental decay width and the

TABLE 1. Square root of the decay widths Y2 in MeV'/2, Column 2: main component (Ref. 15). Column 3: the QPC model
with a pion of rms radius 0.29 fm. Column 4: the QPC model with a pion of rms radius 0.16 fm. Column 5: a finite-extension flux-
tube-breaking mechanism and a pion of rms radius 0.16 fm. Columns 6 and 7: data and status of resonances (Ref. 17). Each calculat-

ed I''/2 carries the sign of the associated transition amplitude. The negative-parity states have pure imaginary amplitudes.

¥ =const ¥ =const v Egs. (1.1) and (1.2)

Resonance Main component Vv,=f. ¥, Eq. 2.2) ¥, Eq. (2.2) Expt. Status
P,,(1440) IN(56',0") 1" +20.8 +12.1 +16.2 10.9%43 * %k % %
D ,5(1520) 2N(70,17)3 " +8.4 +7.1 +17.5 8.3793 K koK ok
S,,(1535) 2N(70,17)1° +6.3 +9.2 +9.3 8.0733 * % %k
S11(1650) *N(70,17)1° +2.3 +7.2 +7.7 9.5%1% * ok % %
D 5(1675) *N(70,17)3° +5.6 +5.1 +5.4 7.6+92 ook ok
F5(1680) IN(56,2%)3 % +9.7 +7.5 +8.5 8.7%9% e Kk
D ;(1700) *N(70,17)3 —4.1 —3.6 —3.9 3.2719 * % %
P,(1710) 2N(70,0)1 +1.8 —3.7 —-3.1 4.0t} * % %
P,3(1720) IN(56,2%)3% -7.1 —11.0 —11.7 5.4%17 * k&
F5(1990) *N(70,27)1* —1.8 —1.1 —1.2 4.2*19 * %

F5(2000) “N(70,2%)3 7 —2.0 —1.8 -1.7 1.9797 *

P33(1232) “A(56,0")3F +10.7 +10.7 +10.7 10.75%2 ok ok
P,;(1600) *A(56',07)3 —-0.2 —7.4 —4.1 7.0%%% * %

S5,(1620) 2A(70,17)47 —0.6 —2.8 —-2.9 6.5719 * kK %
D,;(1700) 2A(70,17)3 —4.38 —4.3 —4.5 6.1%1¢ * % % %
F35(1905) 2A(70,27)3 7 +3.1 +2.1 +2.3 5.5722 % % sk ok
P;,(1910) 2A(70,01)L +0.7 +5.4 +6.0 6.67%3 %k % %
P3,(1920) *A(56,21)3 " +2.0 +2.4 +0.5 6.671! ok K
F+,(1950) *A(56,27)1F —8.7 —6.6 —72 9.872¢ * ok ko
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present experimental status!’ of the resonances.

By comparing columns 3 and 4 one can see that the
smaller sized pion described by Eq. (2.2) acts as predicted
in Ref. 10. For the resonances P,,(1440), S,;(1650),
P4;(1600), S3,(1620), and P;;(1910) the new pion wave
function brings the theoretical values of I''/? much closer
to experimental data, lowering the y? from 105 to 56.
The calculated sign of the amplitudes associated with the
P,,(1440), S,,(1650), and S;;(1620) resonances also
correctly reproduces the sign of the helicity amplitude of
the radiative decay according to the discussion of Ref. 18.
For the P;;(1600) and P, (1910) one cannot make a
definite statement about the sign because of experimental
uncertainty on the amplitudes 4%, or 47,. The width
of the P33(1920) resonance does not change much but it
goes in the right direction. For the other resonances the
agreement is well maintained except for the P;;(1720)
resonance where the situation worsens.

At this point it would be useful to be remmded that the
pion size is related to the nonlocality of the pion emission
operator (1.5) and is important for the decay process.'!
Such a size should also be consistent with the experimen-
tal charge radius'®

(r2)4?=(0.66+0.01) fm (3.1)

It has been shown that the pion radius as seen by the
photon is determined almost completely by the inter-
mediate p meson,” in agreement with the vector-
dominance model.?! This indicates that the radius of the
pion, resulting from the quark confinement as above,
must be much smaller than (3.1). Reference 12 gives an
upper limit of 0.4 fm. Within that picture, the values
considered in these calculations, i.e., 0.16 fm and 0.29 fm
are both consistent with experiment. .

Columns 4 and 5 indicate that a finite- and an infinite-

extension flux tube give results close to each other. A
similar conclusion has been drawn in the case of meson
decay.® It means that in the integral (1.5) the nonlocality
introduced by the naive QPC model plays the dominant
role.

The only significant effect of a finite-extension flux tube
is felt on the resonances P;,(1440) and P;;(1600). This
can be explained by the fact that they are both mainly ra-
dial excitations and have therefore a larger extension.
This change goes in the wrong direction in both cases and
it affects the y?> which raises from 56 to 81. However
most of the raise in y?> comes from the P;;(1920) reso-
nance, which should be regarded with care. The value of
that width is subject to large statistical error in the
Monte Carlo method. Generally, for I' <1 MeV there is
a large ( > 50% ) numerical error.

With the exception of the P;(1710) the signs of the
strong decay amplitudes remain unchanged when passing
from column 3 to 4 or 5. The signs obtained in columns 4
and 5 are the same as those obtained in a harmonic-
oscillator basis.!® For a detailed discussion, see Ref. 18.

In conclusion, it seems that an infinite-extension flux
tube, i.e., Yy =const is a very good approximation in the
treatment of the decay widths. Also the present results
indicate that the pion wave function of Ref. 3 which con-
tains the one-gluon-exchange effect gives an appropriate
description to strong decay of baryons.
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