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*Abstract

We consider the many-particle Hamiltonian of Lipkin, Meshkov
and Glick in the context of deformed polynomial algebras. The re-
ducibility of the original model is proved according to the representa-
tions of these polynomial algebras. The LMG spectrum is recovered
in such a way as well as supplementary eigenvalues associated to de-

formed LMG models.
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1 Introduction

Quantum mechanical equations whose solutions can be found analytically are
rare. Only some interactions like the oscillator or the Coulomb ones enter
this class of equations which are then called exactly solvable. Meanwhile one
can weaken the condition of exact solvability by asking for the knowledge
of a finite number of solutions only. This leads to what is referred to [1]
as quasi-exact solvability (Q.1£.S.). Quasi-exactly solvable models have been
developed in the non-relativistic context essentially. They are characterized
by the fact that, up to a change of variables as well as a transformation at
the level of the wavelunctions, their Hamiltonians can be expressed as at
most a quadratic function of the generators of a Lie algebra, namely si(2, R)
in the one-dimensional case. These generators stabilize a finite-dimensional
space and so do the Hamiltonians which can be easily diagonalized within
this space.

One of these (physical) quasi-exactly solvable models is the Lipkin-Meshkov-
Glick one [2] developed for treating many particle systems. Precisely, Lipkin,
Meshkov and Glick (LMG) constructed a two N-fold degenerate level model
where NN is the number of fermions in the system. The two levels are sep-
arated by an energy e. The simplified version of the LMG model whom we
will be concerned with contains only terms which mix conligurations. The
corresponding Hamiltonian reads

Hime = €jo + %(Ji +52) (1)
where 6 is the interaction strength while the sl(2, R) generators jo, j+ are
realized as
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In the definitions (2)-(4), the fermion operators ﬁ;ﬂl, [, create and annihilate
holes in the lower level while of | a,, create and annihilate particles in the
upper level. These operators are such that

{Clﬁm, CVL} = {ﬁmaﬁl} = 5mn> (G)

lam, Bn] = [ama)ﬁl] = [Bm, 0] = [afjmﬁi] = 0. (7)
The Casimir operator of the sl(2, R) algebra
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evidently commuting with the Hamiltonian (1), the later when realized in
terms of matrices breaks up into submatrices each associated with a different
value of j and of order 2j + 1. Each state in a j multiplet has a different
number of excited particle-hole pairs. The interaction in (1) mixes the states
within the same j multiplet but cannot mix states having different eigenvalues
of Cj. It can only excite or de-excite two particle-hole pairs or in other words
it can only change the eigenvalue of jo by two units. From the definition (2),
it follows that the eigenvalues of jy are given by half the difference between
the number of particles in the upper level and the number of particles in the
lower level. Then the maximum eigenvalue of jy and of j is % The largest
matrix to be diagonalized in (1) is thus of dimension N + 1 (=27 + 1).

The main purpose of this paper is to revisit the LMG Hamiltonian given
in (1) through the polynomial deformation point of view. In this context, we
show that the largest matrix associated to a given N can be split into two
submatrices of dimensions %—1—1 and L;L for NV even and two submatrices, both
of dimensions 222 for N odd. This is due to the presence of an additional
(with respect to (8)) invariant i.e. the Casimir operator of the deformed
algebra. Moreover the polynomial deformation techuique leads to new repre-
sentations corresponding to new eigenvalues appropriate to a deformed LMG
model.

2 The polynomial algebra point of view
We propose (3] to consider the [ollowing [Tamiltonian

H = e(2Jy +6(Jy + J-)) (9)



instead of (1). In (9) the operators Jy, Jy satisfy the following polynomial
algebra (compare with (5))

[Jg, I2] = £, (10)
16
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where j is an eigenvalue of C;=(8). Such a choice is justified by the fact that
a particular realization of the algebra (10)-(11) is
1 1
Jo==jo, Jx = —ij2
0 QJU P YET g Nji’
the Hamiltonian (9) then coinciding with the LMG one in (1). However other
realizations with respect to (12) will be available in general, leading in such

(12)

a way to new eigenvalues.
Indeed the Casimir operator of the polynomial algebra (10)-(11) is
4 8 2j2+2j -5, 25%°4+2j—1
and two types of finite-dimensional representations arise. The first ones are
defined according to

Jo (13)

Jo| M >=(M+¢c)| J,M >,

Jo | J, M >= f(M)|J,M
J_[J,M>:g(M)|JM—1> (14)
with M = —J,—J +1,...J—1,J, J =0

: %, Liws gid
(M —=1)9(M) = (J M+ 1)(J+ M)
(2% +25—1- 4J2 —4J — 4M? +4M + 8(1 — 2M)c — 24¢%). (15)
The real number ¢ can take three distinet values [4] given by
c=0 (16)

and

c:ﬂ:\/ij(j—l—l)—%—J(J—l-l). (17)



The second representations are characterized by the following equations
Ml’
Jo | I M o= (7) | #, M 2,
Jo | 'S M' >= f'(M") | J',M'+2 >,
J_ | M >=¢' (M) | J M -2 >, (18)
where J' =0,1,2,... and

f(M'=2)g"(M') = (J'=M"+2)(J' M) (25* 425 —1=J"*=2]" = M"* 1 2M")

(19)
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(20)
ifM=-J+1,-J+3,..,J —3,J — 1. In the cases where J' = %, %,
J" must be equal to j (M’ to m) and

flim—=2)g'(m) = : 5

= ﬂv—(j‘ +m)(j+m—1)Gj—m+1)J—m+2). (21)

In the following we will drop these second representations due to the fact
that they are reducible. Indeed evaluating the eigenvalues of the Casimir
operator C;=(13) both within the representations (14) and (18), we can
easily be convinced that

n n—1 _
(J, = ?L)(lg) = (J = 5,6 = O)(M) (&) (J = 9 €= 0)04) (22)
and
. 1 n 1 n 1 .
(J'=g=n+ 5)(18) =(J= €= Z)(MJ ®(J = 7167 ‘“Z)(M) (23)

for any integer n. Moreover the original LMG model defined in (1) or equiv-
alently in (9) with the realization (12) being clearly connected to the repre-
sentations (18) with J' = 7 (J' being an integer or a hall integer), we can
conclude that this LMG model is in fact a reducible one. More precisely,
following Eq. (22) (resp. (23)), a LMG matrix of dimension 2n + 1 (resp.
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2n+2) can be split into a direct sum of two submatrices of dimensions 72+ 1
(resp. m + 1) and n (resp. n + 1) il we concentrate on the Hamiltonian (9)
coming from the polynomial algebra point of view. We thus obtain the results
we have mentioned in the Introduction with N = 2n (resp. N = 2n + 1),
such results being significant for a large number of particles. We are going to
illustrate these results on specific examples but before doing so, let us notice
that due to the irreducibility of the representations (14), we can conclude
that searching the eigenvalues of the Hamiltonian I/=(9) is equivalent to the
diagonalization of the matrix < H > given by

9] +2 §f(J—1) 0 0 0

59(J) 20 —2+2¢ 6f(J—2) O 0

0 5g(J—1) 2J—4+2 6f(J—3) 0

0 0 §g(J —2) 2J—6+2¢ 0

. . . . —2J 4242 6&f(—j)
0 0 0 0 L bg(=J+1)  —2J+2

(24)

3 Examples

3.1 The N = 2-case

We first limit ourselves to this simplest case in order to illustrate easily our
statements. The complete LMG matrix is of dimension 4, corresponding to
the four possibilities of two particles for two levels (the two particles can be
on the lower level, or on the upper one, or one particle can be on the lower
level while the other one can be on the upper one or vice-versa). Following
the original LMG Hamiltonian (1), this dimension 4 decomposes into 3 and
1 while the Hamiltonian (9) together with the representations (14) is such
that 4 splits into 24141 (corresponding to J = % and J = 0 twice). The
eigenvalues £ (with € = 1) can be obtained through the diagonalization of
the three matrices (24) of respective dimensions 2, 1 and 1. The results are
summarized in the following table




7] B ]
00 0
1|0 0

5 | £/ 1+ 362

3.2 The N = &-case

For N = 8, there are 2% = 256 states. The largest original LMG matrix
corresponds to j = % = 4, the other ones being associated to j = 3 (7
times), j = 2 (20 times), 7 = 1 (28 times) and j = 0 (14 times). Following the
decompositions (22)-(23) and the Hamiltonian (9), the polynomial algebra
point of view leads to another decomposition: J = 2 (1 time), J = % (8
times), J = 1 (27 times), J = § (48 times) and J = 0 (42 times). The
corresponding eigenvalues come from the diagonalization of the matrices (24)
and are given in unit € in the following table
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4 Supplementary eigenvalues

The tables in the previous Section take account of the LMG eigenvalues only
but by using the representations of the polynomial algebra subtending such
a cuasi-exact model. However this polynomial algebra is richer than the
sl(2, R) algebra usually used inside the LMG context. Its representations
have three labels (J, ¢, ) instead of oue (j) for si(2, 12). Thus the number



of representations is larger. This is particularly clear from the second table
corresponding to N = 8. Indeed when 7 = 2 we can sce that the LMG
context is recovered when J = % and J = 1 while the case ./ = 0 is missing
and must correspond to another model. The same situation holds for 7 = 3,
g =0, S = % and g =4, J =0, J = %, J = 1. These new possibilities
(excluded by the Hamiltonian (1) but not by the ones given in (9)) lead to
supplementary eigenvalues as summarized in the following table

g b I
210 0
3ol - o0
1| /14262
4|0 0
3| /14262
1]0,4/4+ 2142

Limiting for example ourselves to the maximal value of 7, i.e. j = 4 we can
see that these supplementary eigenvalues are surprisingly close to some of
the original LMG ones. Indeed when 6 = 1, we have

glJ E |
410 0
3 +1.256
1 0,+2.437
3| +1.228,+3.467
2 | 0,42.402,4+4.232

The same kind of results hold for any number of particles. In order to fix the
ideas, for an even number N = 2n of particles, the largest matrix corresponds

to 7 = n, the values J = ’—‘;—1, 5 give rise to the LMG eigenvalues while the
cases J = 0, %, 1,...,5 — 1 lead to the supplementary ones, close (and bigger

than) the LMG ones. Moreover the closeness is better for § smaller,

A natural question then arises: to what kind of model do correspond
these supplementary eigenvalues? In order to answer this question, let us
once again concentrate on the case of N = 8 particles and, this time, on
the representations (18). We have five different values in what concerns J’
(=0,1,2,3,4). Realizing the matrix associated to J,, for example, according
to (18)-(20) leads to

Iy = = M(J)s (25)



where M (J') is a diagonal matrix of dimension 2J'+ 1 being differently fixed
with the different values of J'. It is interesting to note that this diagonal

matrix reduces to the identity one for J' = J/ == %{ = 4 only, in agreement
with (12). The Hamiltonian (9) is thus

- be N2, .2 ' T

H =ejo+ —(M(J)j7 + 52 M(J")) (26)

2N
with J' =0,2,4, ..., % and M(%) = /. Moreover in general the operator (25)
and its adjoint can also be written as

1 1

Ie = g M(I)GE = 5500 (27)
Jo= M) = (i) (28)
2N 2N
with

o, Jt) = £k, (29)

J'—1
[fhagl] =% wegf™* (30)

k=0

where ¢, are coeflicients being fixed according to N and J'. The rela-
tions (28)-(29) are those of a polynomial deformation of si(2, R) except
when J' = 1 and J' = % where it is equivalent to si(2, R) (J' = 0 lead-
ing to trivial results). We can then conclude by saying that our model
(9) or equivalently (26) is made of a usual LMG model (corresponding to
J'= %) and % deformed (due to M(J') # I) LMG models (corresponding
toJ'=0,1,..., %i — 1) giving rise to these supplementary eigenvalues we have
mentioned.

5 Summary

We have presented a calculation of the whole spectrum of the Lipkin-Meshkov-
Glick Hamiltonian considered in the context of a deformed polynomial alge-
bra. For any given number N of particles the spectrum first divides into j
multiplets of the sl(2, R) algebra. The eigenvalues associated with the largest
J are non degenerate except [or I2 = 0. We have shown that the Hamiltonian



matrix of each j further splits into two submatrices corresponding to two
distinct irreducible representations of the deformed polynomial algebra. In
order to illustrate the method we have derived explicil analylic expressions
for the eigenvalues of the LMG Hamiltonian for N = 2 and 8. Our method
can evidently be extended to any N.

Furthermore we have shown that the deformed polynomial algebra re-
lated to the LMG model implies a larger spectrum than that of the model
itself. Some of the new eigenvalues present characteristics similar to those
of the LMG model and actually correspond to a superposition of specific de-
formed LMG models where, once again, deformed polynomial algebras play
a prominent role,
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