
Received: 3 April 2016 | Revised: 18 June 2016 | Accepted: 4 July 2016

DOI 10.1002/ajp.22585

RESEARCH ARTICLE

Bonobo nest site selection and the importance of predictor
scales in primate ecology

Adeline Serckx1,2,3,4* | Marie-Claude Huynen1 | Roseline C. Beudels-Jamar2 |

Marie Vimond1 | Jan Bogaert5 | Hjalmar S. Kühl4,6

1 Primatology Research Group, Behavioral

Biology Unit, University of Liege, Liege, Belgium

2Conservation Biology Unit, Royal Belgian

Institute of Natural Sciences, Brussels, Belgium

3Ecole Régionale Post-Universitaire

d’Aménagement et de Gestion Intégrés des

Forêts et Territoires Tropicaux, Kinshasa,

Democratic Republic of the Congo

4Department of Primatology, Max Planck

Institute for Evolutionary Anthropology, Leipzig,

Germany

5Biodiversity and Landscape Architecture Unit,

Gembloux AgroBio-Tech, University of Liege,

Gembloux, Belgium

6German Center for Integrative Biodiversity

Research (iDiv), Leipzig, Germany

*Correspondence

Adeline Serckx, Primatology Research Group,

Behavioral Biology Unit, University of Liege,

Liege, Belgium.

Email: adelineserckx@gmail.com

Funding Information

This research was supported by National Fund

for Scientific Research, Royal Belgian Institute of

Natural Sciences and Ecole Régionale Post-

universitaire d’Aménagement et de Gestion

Intégrés des Forêts et Territoires Tropicaux.

The role of spatial scale in ecological pattern formation such as the geographical distribution of

species has been a major theme in research for decades. Much progress has been made on

identifying spatial scales of habitat influence on species distribution. Generally, the effect of a

predictor variable on a response is evaluated over multiple, discrete spatial scales to identify an

optimal scale of influence.However, the idea to identify oneoptimal scale of predictor influence

is misleading. Species-environment relationships across scales are usually sigmoid increasing or

decreasing rather than humped-shaped, because environmental conditions are generally highly

autocorrelated. Here, we use nest count data on bonobos (Pan paniscus) to build distribution

models which simultaneously evaluate the influence of several predictors at multiple spatial

scales. More specifically, we used forest structure, availability of fruit trees and terrestrial

herbaceous vegetation (THV) to reflect environmental constraints on bonobo ranging, feeding

and nesting behaviour, respectively. A large number of models fitted the data equally well and

revealed sigmoidal shapes for bonobo-environment relationships across scales. The influenceof

forest structure increased with distance and became particularly important, when including a

neighbourhood of at least 750m around observation points; for fruit availability and THV,

predictor influence decreased with increasing distance and was mainly influential below 600

and 300m, respectively. There was almost no difference in model fit, when weighing predictor

values within the extraction neighbourhood by distance compared to simply taking the

arithmetic mean of predictor values. The spatial scale models provide information on bonobo

nesting preferences and are useful for the understanding of bonobo ecology and conservation,

such as in the context ofmitigating the impact of logging. The proposed approach is flexible and

easily applicable to a wide range of species, response and predictor variables and over diverse

spatial scales and ecological settings.
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1 | INTRODUCTION

The role of spatial scale has been amajor research theme in ecology for

decades due to the significant contribution it has made to our

understanding of biological patterns and processes (Levin, 1992;

Marceau, 1999; Wheatley & Johnson, 2009; Wiens, 1989). The

current context of local to global landscape modification and habitat

fragmentationmakes this topic evenmore relevant (Riitters,Wickham,

Neill, Jones, & Smith, 2000). The dependence of species–environment

relationships on spatial scales provides crucial insights into underlying

processes, such as ranging and establishment of territories (Forester,

Kyung Im, & Rathouz, 2009; Johnson, Boyce,Mulders, & Gunn, 2004a;

Rhodes, McAlpine, Lunney, & Possingham, 2005), foraging (Henry

et al., 2012; Johnson et al., 2004b), feeding (Boyce, 2006; Mayor,

Schaefer, Schneider, Mahoney, & Mayor, 2007), sleeping and resting

(Fischer & Lindenmayer, 2006; Meyer & Thuiller, 2006). It is also

necessary for understanding the consequences of habitat change

(Fischer & Lindenmayer, 2006) and for suggesting valuable areas and
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management practices for conservation (Johnson, Seip, & Boyce,

2004c; Nams, Mowat, Panian, 2006; Seo, Thorne, Hannah, & Thuiller,

2009; Vaughan & Ormerod, 2003).

In recent years,much conceptual andmethodological progress has

been made on how to identify appropriate spatial scales in species–

environment relationships (Mayor, Schneider, Schaefer, & Mahoney,

2009; Urban, 2004; Wheatley, 2010). The structure of typical

ecological information, including field (Anderson et al., 2005; Mayor

et al., 2007; Rhodes, Mcalpine, Zuur, Smith, & Ieno, 2009) and

remotely-sensed data (Marceau & Hay, 1999; Woodcock & Strahler,

1987) gives researchers the opportunity to work at discrete scales,

including different grains (‘size of individual units of observation’) and

extents (‘the overall area encompassed by a study’) (Wiens, 1989).

Various studies have used this information to study foraging behaviour

in response to the spatial distribution and variation of food resources,

the use of home ranges, the selection of sleeping and resting sites or

the geographical distribution of populations. In elks, for example,

predator avoidance defines their occurrence at larger spatial scales

than habitat suitability (Anderson et al., 2005; Fortin, Beyer, Boyce, &

Smith, 2005). In Cross River gorillas, human impact explains their

patchy distribution within areas of suitable habitat, whereas food

availability is only important at smaller spatial scales (Imong, Robbins,

Mundry, Bergl, & Kühl, 2014a,b; Sawyer & Brashares, 2013).

The exact scale over which environmental factors influence the

distribution and behaviour of a species is, however, usually unknown.

This often leads to an arbitrary choice of grain and extent being made

when evaluating species–environment relationships [for a review see

Wheatley and Johnson (2009)]. In order to overcome this problem,

some authors have suggested to incorporate information on animal

movement (Forester et al., 2009), such as home range behaviour

(Rhodes et al., 2005) or niche partitioning between sympatric species

(Pita, Mira, & Beja, 2011) to approximate suitable scales. Whereas this

is certainly a very useful approach for a number of species, required

radio-telemetry data or other highly detailed information on how

animals use their environment are not easily available for other

species. This limits the applicability of such techniques for evaluating

species–environment relationships.

Another proposed solution is to gather scale information from the

existing literature. The influence of spatial scales, however, is not

static, but varies according to the environmental and demographic

context. Home range sizes have been shown to differ even within a

population (Mule deer: Kie, Bowyer, Nicholson, Boroski, & Loft, 2002;

Nicholson, Bowyer, Kie, Journal, & May, 1997; Moose: van Beest,

Rivrud, Loe, Milner, & Mysterud, 2011), core areas can vary over time

(Grey-cheeked mangabey: Janmaat, Olupot, Chancellor, Arlet, &

Waser, 2009) and foraging behaviour can vary spatio-temporally

(e.g. primates: Bowyer and Kie 2006; Boyer et al., 2006).

To overcome these limitations, several authors have suggested

studying scale-dependent species–environment relationships by

investigating a range of spatial scales instead of assuming one fixed

and discrete scale only (Johnson et al., 2004b; Mayor et al., 2009;

Nams et al., 2006; Wheatley, 2010). However, the evaluation of a

suitable range of spatial scales for identifying those which best explain

observed patterns requires a careful selection procedure to not violate

fundamental statistical principles. Indeed, testing multiple predictors

across a large number of spatial scales increases the probability of

finding erroneously significant results. This is equivalent to a step-wise

model selection procedure in which several variables are added and

removed according to their significance to finally determine a best

model. This procedure leads to greatly inflated Type I error rates (i.e.

the probability of erroneously rejecting a true null hypothesis,

(Forstmeier & Schielzeth, 2011; Mundry & Nunn, 2009; Whittingham,

Stephens, Bradbury, & Freckleton, 2006).

In addition, studies have shown that selecting one ‘optimal’ scale

for environment variables is generally not appropriate when

investigating species–environment relationships. This is because

environmental factor can influence animal distribution and behaviour

across a range of scales. It may also occur because environmental

factors are frequently autocorrelated. As a consequence, manymodels

will fit equally well in the range of the asymptotic part of the sigmoid

species–environments relationships (Aue, Ekschmitt, Hotes, &

Wolters, 2012; Henry et al., 2012). This suggests to identify suitable

spatial scale ranges with either minimum or maximum predictor

influence rather than searching for an optimal scale. Aue et al. (2012)

showed that including realistic distance weighting functions in a

regression can solve this problem. It will naturally lead to a decrease in

the influence of environmental predictors with distance and will

produce sigmoid correlation curves that show saturation beyond a

certain distance. These curves indicate suitable spatial scale ranges

withminimum ormaximum predictor influence. Such approach implies

to deal with potentially large number of similarly well-fitting models,

which requires a careful consideration of multiple testing issues and

the development of appropriate techniques to draw inference.

Studies investigating spatial scale ranges of environmental

predictors have remained scarce for primates. However, some studies

have already shown the potential of evaluating spatial scales to gain

insights into primate ecology, such as the impact of landscape spatial

configuration on diet and behaviour of spider monkeys (Ordóñez-

Gómez, Arroyo-Rodríguez, Nicasio-Arzeta, & Cristóbal-Azkarate,

2015) or on distribution and abundance of howler monkeys

(Anzures-Dadda & Manson, 2007), the effect of habitat suitability

on chimpanzee distribution (Torres et al., 2010), the influence of

vegetation type, topography, tree characteristics and fruit availability

on chimpanzee home range use for feeding and resulting nest

distribution (Furuichi & Hashimoto, 2004), human impact on gorilla

distribution (Imong et al., 2014a; Sawyer & Brashares, 2013) or gibbon

habitat preference in fragmented landscapes (Gray, Phan, & Long,

2010).

In this study, we examine how environmental factors influence

bonobo nest site selection by investigating the spatial scale ranges of

potential predictors. We hypothesise that environmental factors

reflecting feeding behaviour (THV and fruit tree density, respectively)

influence nest site selection at smaller spatial scales and ‘forest

structure’, a factor characterising bonobo habitat, on the larger scale.

We build distribution models to simultaneously evaluate the influence

of several environmental predictors at multiple scales using survey

data from a population living in western Democratic Republic of

Congo. We show what investigating spatial scale ranges of

SERCKX ET AL. | 1327



environmental predictors can teach us about bonobo behaviour when

direct observations are not possible. Finally, we discuss a possible way

to define minimum and maximum spatial scales of predictor influence.

2 | METHODS

2.1 | Study site

The study site is located in the southern section of the Lake Tumba

landscape (north of the Bateke Plateaux) in western Democratic

Republic of Congo, close to the WWF research station of Malebo

(16.41–16.56°E, 2.45–2.66°S, Figure 1). This region can be charac-

terised as a forest-savannah mosaic (Serckx et al., 2015). The altitude

ranges from 300 to 700m (Inogwabini, Bewa, Longwango, Abokome,

& Vuvu, 2008), and the mean daily temperature fluctuates around

25°C (Vancutsem et al., 2006). Annual rainfall oscillates around

1500–1600mm and is interrupted by two dry seasons in February and

July–August (Inogwabini et al., 2008). Forests mostly represent terra

firma soil conditions and encompass various habitat types, i.e. re-

colonisingUapaca sp., old secondary, mixedmature, old growthmono-

dominant, riverine gallery and Marantaceae forests (Inogwabini et al.,

2008). The study site encompassed 170 km2, made up of 102 km2 of

forest patches of various shapes and sizes connected to one another

by a number of corridors. Surrounding savannahs were mainly

herbaceous and partially used for cattle ranching. Human activities

and settlements were concentrated in the west side of the study area.

Six villages and 12 farms were directly adjacent to the forest and

agriculture was located inside the forest. Two bonobo communities

inhabit the forests, and have since 2007 been the subject of

habituation and conservation programmes byWWF-DRC (Inogwabini

et al., 2008).

2.2 | Data collection

From May to July 2011 and from Mid-March to -July 2012, we

collected data on bonobo density, human activities and habitat types in

the forests of the study site using standard line transect methodology

FIGURE 1 Map of the study site. A. Location of the Lake Tumba landscape in the Democratic Republic of Congo. B. Location of the study
site within the Lake Tumba landscape. C. Map of the study site. Horizontal solid lines depict the line transects travelled in 2011 and 2012,
whereas the horizontal dashed lines indicate transects travelled only in 2012. Numbers next to villages correspond to the village names in
Table 3A of Appendix 3. Number 19 represents the WWF-base
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(Buckland et al., 2001; Kuehl, Maisels, Ancrenaz, &Williamson, 2008).

We sampled 114 transects running from west to east, spaced 500m

apart and of variable lengths, with a total length of 179.1 km (Figure 1).

We systematically recorded information about the location of

bonobo nests and their perpendicular distances from the line transects

using a tape measure. We recorded all types of human hunting signs,

i.e. cartridges, snares (whether made of wood, nylon thread or cable)

and net-hunting signs. We recorded forest habitat-types according to

the dominant understory-type and canopy tree-species. In order to

categorise the dominant types of forest understory, we noted within

25m-segments one or two of the following categories (based on the

classification in Reinartz, Inogwabini, Ngamankosi, & Wema, 2006):

open, liana, woody, Marantaceae or other terrestrial herbaceous

vegetation (THV) (specifying the species of Marantaceae and THV,

Appendix 1). For the canopy tree species we measured all trees with a

DBH larger than 50 cm within a 10m strip on both sides of the

transects and recorded their scientific names (Appendix 2). Those large

trees usually included themajority of fruiting treeswhich are found in a

typical tropical forest in the Congo Basin (Bourland et al., 2012;

Doucet, 2003; Madron & Daumerie, 2004; Menga, Bayol, Nasi, &

Fayolle, 2012), andwere further used to estimate an index of fruit tree-

availability (see Section 2.3.3).

In order to complete our data set on human forest use, we

travelled along roads and major forest paths, geo-referencing them

and collecting socio-economic data in each of the villages and farms

surrounding the study site. Between May and June 2012 we

conducted a population census (Appendix 3). We interviewed 119

men on their hunting activities and practices (women do not hunt in

the area); a total of 60 of thesemen answered that they regularly enter

the forests for hunting. We asked these men about the frequency and

location of their hunting activity in the forest, which they indicated on

a map using the local names for each location in the forest (later called

‘forest region’). This information was used to derive a variable on

‘hunting pressure’ (see Section 2.3.3).

2.3 | Analytical methods

2.3.1 | General concept

The principal idea of our study is to combine standard species

distribution models based on generalised linear modelling (Araújo &

Guisan, 2006; Guisan & Edwards, 2002; Guisan & Zimmermann, 2000;

Hedley & Buckland, 2004; Murai et al., 2013; Wich et al., 2012) with a

weighting function to account for the decreasing influence of

environmental conditions with increasing distance from points of

observation (Aue et al., 2012; Henry et al., 2012) (Figure 2). Based on

the estimated model parameters, information can be then be derived

about the range of the relevant spatial scale for each predictor. In the

case of descending correlation curves this is a maximum and in the

case of ascending correlation curves it is a minimum or distance from

the point of observation, beyond or below which a predictor is much

less influential. As hypothesised for our study, we would expect that

predictors representing food availability would show decreasing

correlation curves with increasing distance away from the points of

observations and a maximum distance beyond which predictor

influence is minimal. In contrast, habitat structure would be influential

only beyond a minimum distance and would show an ascending

correlation curve with increasing distance from the points of

observation.

2.3.2 | Response variable

Bonobos, like all great apes, are elusive and observing them directly in

their tropical forests habitat is usually nearly impossible. Because of

this, researchers usually rely on counts of their sleeping nests to

estimating their abundance (Kuehl et al., 2008; Plumptre, 2000).

Bonobos build arboreal sleeping nests every night and, due to the long

amount of time it takes them to decay, these nests accumulate within

their home ranges as is the case for other great apes (Kouakou, Boesch,

& Kuehl, 2011). For this reason, we used ‘bonobo nest counts’ as our

response variable, summing all nests observed in 2012 on 500m-long

transect segments (N = 411).We chose this segment length for several

reasons. On the one hand, we needed segments to be long enough to

avoid a highly skewed distribution of the response (i.e. a high

proportion of segments with no observations and only a few segments

with a large number of nests observed). On the other hand, the

segment lengths needed to be small enough to allow us to evaluate

local scale effects on bonobo nest distribution. Due to design

constraints, segments located at the ends of transectswere sometimes

shorter than 500m.

2.3.3 | Predictor variables

We chose seven predictor variables to characterise the ecological and

anthropogenic environment of the bonobo study population (Table 1).

We first defined the predictor ‘patch structure’ to characterise forest

structure at the study site, a forest-savannah mosaic. Bonobos are

mainly a forest dwelling species, which is likely to be reflected in their

ranging behaviour within this forest-savannah mosaic. We, therefore,

expected this predictor to have an influence at larger scales. Bonobo

mean daily foraging travel distance has been estimated as 2.6 km in

dense forests (Furuichi et al., 2008). We first created a map of forests

and savannahs in the study site, based on a non-supervised

classification of a satellite image (Landsat7–2007–satellite imagery)

with 50m resolution (Appendix 4). From this map, we calculated the

‘patch structure’ by using a sliding window of 3 by 3 pixels and by

summing, for the central pixel, the number of paired adjacent pixels

classified as forest in each window (Riitters et al., 2000). We finally

divided the number of paired adjacent pixels by the maximum number

of paired adjacent pixels, i.e. 12.

In order to quantify food availability within the forests, we defined

two predictors representing the availability of (i) fruit trees and (ii)

preferred terrestrial herbaceous vegetation (THV). Bonobos generally

select food ‘hot-spots’ for sleeping (Serckx et al., 2014). We, therefore,

expected both predictors to be relevant at small-scale ranges. Themean

diameter of bonobo nesting sites in this study site is about 100m

(Serckx, unpublished data). For the index ‘preferredTHV’, we calculated

the proportion of THV species highly preferred as a food source by the

bonobos (Malenky & Stiles, 1991; Reinartz et al., 2006; Serckx, 2014):
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two Marantaceae species, Haumania liebrechtsiana and Marantochloa

leucantha, and Zingiberaceae species from the genus Aframomum on

25m-segments along transects.We then interpolated values across the

study site with a resolution of 25m by using the IDR function in ArcGIS

9.3 (with a power of 2 and a variable search radius). Next, we calculated

an index of ‘fleshy fruit availability’. Fruit species considered for this

index were derived by selecting tree species (i) eaten by bonobos at

different study sites (Beaune et al., 2013; Kano & Mulavwa, 1992;

Serckx, 2014) or (ii) producingfleshy fruits (Djoufack et al., 2007;Tailfer,

1989; Wilks & Issembe, 2000). In order to estimate the canopy volume

of trees, we used their basal area in square meters per hectare (Strier

1989, cited in Basabose, 2002) and calculated an index for 25m-

segments along the transects by summing the basal area of all selected

species on the segment. We then interpolated a map using the same

method as we did for ‘preferred THV’.

Next, as bonobos and other primates are known to show a high

degree of site fidelity and often re-use nesting sites (Janmaat et al.,

2009; Lehmann & Boesch, 2003; Murray, Gilby, Mane, & Pusey, 2008;

Stewart, Piel, & McGrew, 2011), we incorporated the number of nests

observed in the transect segment in 2011 as a ‘nesting site fidelity’

predictor. We expect this predictor to be an important one at small

spatial scales, potentially accounting for nesting site characteristics

and preferences not represented by other variables. As not all of the

transects were sampled in 2011, we excluded the 127 transect

segments for which this predictor was not available. We did not apply

the distance weighting function for this predictor as the data did not

cover the entire study site and an interpolation map would not be

meaningful.

Finally, in order to control for human pressure, we used three

variables representing different types of human influence. First, we

summed the ‘hunting signs’ observed on each transect segment. We

expected this predictor to influence bonobo density at small spatial

scales of less than 10m (Reinartz et al., 2006), as bonobos could easily

avoid them. Second, we derived ‘hunting pressure’ from our

questionnaire data by estimating a daily mean number of adults

with the potential to enter a specific forest area (Appendix 4). The

FIGURE 2 Principles of scale range species distribution models. Concepts of single and scale range spatial models differ with regard to
predictor extraction, model-building and inference. The evaluation of a single spatial scale model with mean predictor values provides
information on the spatial scale defined by expert opinion. In contrast, a set of spatial scale range models for predictors will provide a
systematic assessment of predictor-response relationships across scales. The Akaike weight of each spatial scale is calculated in order to
assess their relative importance and to identify the minimal or maximal spatial scale which we need to account for in order to represent the
influence of the predictor on the response, if it exists (light grey boxes for models that contain distance weighting functions, light grey line for
models with an arithmetic mean), and to draw inferences about these suitable spatial scale ranges. Because we simultaneously tested multiple
scales using multiple predictors, the shaded polygons indicate the variation of model fit at each scale of a predictor, when we accounted for
all tested spatial scales of the other predictors. For the scale range models with the weighted distance functions, the spatial pattern is
representative for a predictor acting at a small spatial scale (an effect with a maximal requirement) and at a large scale (an effect with a
minimal requirement)
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overall value for this predictor was estimated using the mean value of

different forest regions covering areas of several square kilometres

(mean region area = 2.5 km2; range = 0.1–10 km2) and represented the

use of forests by humans during the day. We assumed that this

predictor would indicate human avoidance of certain forest regions at

intermediate spatial scales (1–3 km) (Wich et al., 2012). Third, we used

the ‘village influence’ predictor, a composite measure consisting of the

influence of the population size of each village and the closest forest

path or road, weighted by the distance to the transect segment

(Appendix 4). As village size is known to influence ape density even at a

large distance (Murai et al., 2013; Imong et al., 2014a,b), we used all of

the villages of the study site (up to 15 km distant) to estimate the value

for each segment.

2.3.4 | Model building

In order to build an appropriate model of bonobo distribution, we

needed to consider several issues. First, in order to account for the

skewed distribution of the number of bonobo nests on the transect

segments, we used Generalized Linear Models (GLMs) with a

negative binomial error function (Mc Cullagh & Nelder, 1989).

Second, we wanted to convert our response, ‘nest counts’, into

actual density of bonobos. We therefore included an offset term into

our model. This term transforms nest counts into nest density by

accounting for the variable length of the transect segments and for

the effective strip width, which was estimated to be 19m for this

survey (see Buckland et al., 2001; Hedley & Buckland, 2004; Serckx

et al., 2014). Then, in order to convert nest density into bonobo

density, we assumed a nest construction rate of 1.37 per day

(Mohneke & Fruth, 2008), a proportion of nest-builders of 0.75

(because infants sleep in their mother's nest (Fruth, 1995), and a site

specific mean nest decay time of 183 days (Serckx et al., 2014).

Third, and counter-intuitively, we expected ‘preferred THV’ and

‘fleshy fruit availability’ to have a negative influence on bonobo

density when these two predictors are present together in the

forest. Locations with high proportions of ‘preferred THV’ and high

values of ‘fleshy fruit availability’ are Marantaceae forests. This

habitat type is often characterised by high food availability. It

contains mainly trees with DBHs above 50 cm but also has a low

density of suitable nesting trees, because bonobos prefer trees with

relatively small DBHs (Fruth, 1995) (for our study site, the mean

DBH in this forest type was 22 cm (Serckx, unpublished data).

Mature or secondary forests, on the other hand, are characterised as

being composed of trees with variable DBHs and of some regions

with a high density of ‘preferred THV’. These regions have lower

‘fleshy fruit availability’ but are expected to have a high density of

suitable nesting trees. Thus, we added an interaction between the

two predictors. Last, we needed to account for spatial autocorrela-

tion. We used the average of the residuals of all other transect

segments derived from the full model, weighted by distance as an

additional predictor. The weight function had the shape of a

Gaussian distribution with a mean of zero (maximal weight at

distance zero) and a standard deviation was chosen such that

the likelihood of the full model with the derived variable

(‘autocorrelation term’) included was maximized (Fürtbauer, Mundry,

Heistermann, Schülke, & Ostner, 2011). The general model

formulation was

E nið Þ ¼ exp ln offsetð Þ þ β0 þ Σ
k
βkZik þ βacaci þ err:term

� �

where E(ni) is the expected number of nests on segment i; β0, βk, βac are

the parameters to be estimated for the intercept, for each predictor

variable and for the autocorrelation term, respectively; Zik are the

vectors of values for the k predictors on segment i, aci is the

autocorrelation term for segment i, and err.term is the negative

binomial error function. In this study, the linear predictor became

hunting signsþhunting pressureþvillage influenceþ patch structure

þnesting site fidelityþ preferred THVþ fleshy fruit availability

þinteraction preferred THV� fleshy fruit availabilityð Þ

2.3.5 | Predictor scales and final set of models

We evaluated the variation in importance of differing spatial scales for

the three environmental predictors: ‘patch structure’, ‘fleshy fruit

availability’ and ‘preferred THV’. All other predictors (i.e. hunting signs,

hunting pressure, village influence, nesting site fidelity) were extracted

only for a single scale. For each of the three predictors, we defined a set

of spatial scales to be included, with an emphasis on a large spatial scale

for ‘patch structure’ (buffer radiuses around transect segments of 60,

210, 600, 750, 900, 1200, 1050, 1500, 1800, 2100, 1950, 2400 and

2700m) and on a small spatial scale for ‘preferred THV’ (30, 60, 120,

210, 300, 360, 600, 1500 and 2400m) and ‘fleshy fruit availability’ (30,

60, 120, 210, 300, 360, 450, 600, 1500 and 2400m). The thresholds of

60 and 2700m were based on the minimum resolution of data (50m)

and bonobo home range size, respectively. We extracted predictor

values for each buffer using (i) the arithmetic mean of values in the

extracted buffer and using (ii) the weighted mean based on a Gaussian

distance weighting function of all values in the buffer. As Aue et al.

(2012) demonstrated, aGaussianweighting function is themost realistic

function to represent the decreasing influence of environmental

context with increasing distance from observation points. Instead of

testing multiple Gaussian weighting functions by varying the standard

deviation as in Aue et al. (2012), we fixed the standard deviation to a

third of the buffer radius for reason of computational efficiency. In this

case, 99.73% of the predictor values within the buffer are considered

(Sokal & Rohlf, 1996). In Aue et al. (2012), only one buffer covering the

entire habitat was used and the standard deviation of the Gaussian

weighting function was modified. In contrast, we have chosen to use

multiple buffers but to fix the standard deviation. However, in principle,

both approaches should give very similar results. In essence, this

technique facilitates comparisons with the models where extraction is

realisedwith the arithmeticmeanof values. Second it is computationally

efficient.
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In summary, we fitted x models (the sum of all possible

combinations of all buffer radii defined for THV, fleshy fruit availability

and forest structure). Each model with a respective set of buffer radii

contained the full set of predictors given above (line 306–308). We

fitted each of the x models using the glm function in R (Venables &

Ripley, 2002) and then extracted results, including parameter

estimates, likelihood, AIC for subsequent assessment and model

comparison.

Prior to the analysis, we checked distributions of all predictors and

transformed them when necessary to achieve more symmetrical

distributions; ‘preferred THV’ and ‘fleshy fruit availability’ were

square-root transformed, ‘hunting signs’, ‘hunting pressure’, ‘village

influence’ and ‘nesting site fidelity’ were log-transformed and ‘patch

structure’ was square-root transformed. We z-transformed all pre-

dictors to a mean of zero and a standard deviation of one to get

comparableestimates andamoreeasily interpretablemodel (Schielzeth,

2010). In order to check model assumption, we first fitted a single-scale

model with environmental predictors extracted over neighbourhoods

around transect based on expert opinion (see Table 1, buffer radiuses of

100m for ‘fleshy fruit availability’ and ‘preferred THV’, and of 2600m

for ‘patch structure’). We visually examined correlations between

predictors and calculated Spearman correlations for the set of

predictors extracted over neighbourhoods around transect based on

expert opinion. These were never higher than 0.52 (Appendix 5). To

avoid problems due to collinearity or influential cases, we checked

Variance Inflation Factors, dfbetas and leverage (Field, 2005; Quinn &

Keough, 2002), which did not reveal any problems (Appendix 5). We

presumed that the model assumptions were still fulfilled as the

environmental predictor values extracted at all discrete scales were

highly correlated with those of the single-scale model (Appendix 5).

2.3.6 | Model inference

We drew inferences from the entire set of models comprising the

three environmental predictors. For this, we calculated the weighted

mean of each parameter estimate by weighting the parameter

estimate of each model with the respective Akaike weight of the

model. We further calculated the weighted standard error for each

parameter estimate in the same way. We visually investigated change

in predictor significance across the set of models.

All analyses were conducted using R (R Core Team, 2013); we

used the ‘glm.nb’ function from the packageMASS (Venables & Ripley,

2002) to fit the models, the package ‘gtools’ (Warnes, Bolker, &

Lumley, 2013) to derive the autocorrelation term, and the package ‘car’

(Fox & Weisberg, 2011) for model diagnostics.

2.4 | Research ethics

This non-invasive research was part of a PhD project which was

conducted using only indirect signs of bonobo presence (nests) under

the WWF-DRC research permit (RM441976, granted by the Minister

of Foreign Affairs and International Cooperation of Democratic

Republic of Congo). Research complies with the Animal Care and Ethic

Committee of the Biology Department of the Unikin (University of

Kinshasa), American Society of Primatologists Principles for Ethical

Treatment of Nonhuman Primates and RDC Wildlife Authority

regulations.

3 | RESULTS

‘Patch structure’ clearly influenced bonobo nest density when

containing a neighbourhood of at least 750m and up to 2700m

(hereby referred as its ‘suitable scale range’). It became especially

important between 1200 and 2700m (upper plateau in the

predictor–response curve, Figure 3). In contrast, both predictors

of food availability, ‘preferred THV’ and ‘fleshy fruit availability’ had

a larger influence on bonobo nest density at smaller spatial scales.

Their influence decreased when larger neighbourhoods were

included and they were particularly relevant when considering

distances up to 300 and 600m, respectively (Figure 3). The general

pattern for the three predictors remained largely the same when

using the arithmetic or distance weighted mean of predictors

(Table 2, Figure 3). The largest difference occurred for the predictor

‘forest structure’. Models containing the distance weighted mean of

this predictor showed a smoother trend in the model likelihoods

with increasing size of predictor extraction neighbourhoods

compared to the set of models containing sets of predictors based

on arithmetic means. The models also revealed that bonobos

preferred to nest on previously used nesting locations, indicated by

the importance of the variable ‘nesting site fidelity’ across all models.

All three human impact predictors showed no influence and

remained non-significant (Table 2).

The parameter estimates derived for models based on the

arithmetic mean of predictors did not differ much from the

estimated parameters for model based on the distance weighted

mean of predictors (Table 2). Predictor significance remained stable

with the exception of a few models (Appendix 6), in which p-values

of ‘patch structure’ and ‘fleshy fruit availability’ were between 0.05

and 0.11.

4 | DISCUSSION

Our study revealed the spatially dependent relationships between

bonobo nesting site preference and different environmental context.

Bonobos prefer nesting sites which are surrounded by at least 750m

of forest, however, larger forested neighbourhoods are even better.

Within this habitat bonobo nest are found in patches of high fruit

availability and preferred THV, which decrease in importance beyond

600 and 300m respectively. The identified spatial scale ranges

correspond well to observed scales of bonobo ranging, feeding and

nesting behaviour. Previously identified environmental predictors of

bonobo nest distribution were fruit availability (Mulavwa et al., 2010)

and THV (Reinartz et al., 2006). However, relevant scale ranges of

those predictors were not identified. This is where our study can make

a contribution. While environmental predictors are already known to

be important for explaining nest distribution of bonobos (Mulavwa
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et al., 2010; Reinartz et al., 2006) or other great apes (Furuichi &

Hashimoto, 2004; Imong et al., 2014b; Sawyer & Brashares, 2013;

Torres et al., 2010), identifying their scale ranges may help to manage

forest for conservation purposes. Understanding forest minimal

requirements for nesting is especially important in forest-savannah

mosaics and in the context of forest degradation by humans. Scale

information is also very valuable in the context of forest management

in logging concessions: minimum and maximum scale ranges of

FIGURE 3 Spatial scale patterns for environmental predictors. The maximized model likelihood for spatial scale ranges of the three predictors
is represented by the bold solid curve (the upper curve of the dashed polygon) for (1) distance-weighted mean predictors and (2) the arithmetic
mean of predictors. The dashed polygons shows the model likelihoods of all the models evaluated. The large variation in model fit is due to the
inclusion of less suitable spatial scales. The light grey boxes represent the suitable spatial scale ranges of each predictor. The three points (circle,
square, triangle) indicate the model likelihoods of the single-scale model at the scale we predefined for each predictor based on expert opinion

TABLE 2 Results of scale range spatial models

Models with distance weighting
function of predictors

Models with arithmetic
mean of predictors

Variables Estimates Estimates

Intercept −5.01 ± 0.002* −5.02 ± 0.004*

Test predictors Patch structure 0.97 ± 0.005** 0.95 ± 0.008**

Influential Scale range 750–2700m 360–2700m

Fleshy fruit availability 0.64 ± 0.005* 0.66 ± 0.007*

Influential Scale range 30–600m 30–450m

Preferred THV 0.87 ± 0.003** 0.89 ± 0.004**

Influential Scale range 30–300m 30–210m

Interaction Fruit and THV −0.88 ± 0.003** −0.89 ± 0.005**

Control predictors Hunting signs −0.01 ± 0.002 −0.01 ± 0.003

Hunting pressure 0.03 ± 0.003 0.06 ± 0.003

Village influence 0.37 ± 0.001 0.39 ± 0.002

Nesting site fidelity 0.51 ± 0.001* 0.51 ± 0.003*

Autocorrelation term 0.50 ± 0.002* 0.48 ± 0.008*

Nb of parametersa 14 11

AIC 566–575.1 558.5–571.7

aThe number of parameters accounts for the intercept, the seven predictors, the interaction between ‘fleshy fruit availability’ and ‘preferred THV’, the
autocorrelation term, the theta parameter of the negative binomial error function, and, when applied, the distanceweighted function for predictor extraction.
Parameter estimates for scale range models are Akaike weighted estimates of all single models in the 95% confidence set; *indicate if the predictor was
significant through all scale range models (**highlights predictors which were only significant within their influential spatial scale ranges).
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preferred nesting site attributes will help to reduce the impact of

logging on great apes.

4.1 | Interpreting spatial scale information

When interpreting results on spatial scales in species-distribution

models, it is commonly not realistic to select a single model

representing a particular scale. Due to spatial autocorrelation of

environmental context a large number of models representing the

asymptotic part of sigmoid predictor scale-response relationships can

fit the data similarly well. This is because there are minimum or

maximum requirements for specific ecological or environmental

conditions, such as area size of suitable habitat, size of feeding and

roosting spots and quantity of food resources. For example, bonobos

as a mainly forest dwelling species require a minimum area of forest to

serve as their home range. Within this habitat matrix the spatial (and

temporal) variation in food resource availability is driving bonobo

ranging and nesting.

As a consequence, the commonly practised selection of a ‘best

model’ for interpreting relationships between response and predictor

variables is not sufficient when evaluating a set of models based on

different predictor scales. Rather such modelling approach requires an

extended interpretation ofmodel results. In particular, it needs a careful

evaluation of the gradient of predictor influence with increasing or

decreasingdistance away frompoints of observation. Toour knowledge

there are currently no standard quantitative approaches available and a

more qualitative assessment may be applied.

We dealt with this issue by drawing inferences from the full set of

models and not just from a selected single-scale model alone. Such a

set of models has proven to be quite useful in analysing consistency in

model results (Burnham & Anderson, 2002). In our study, models

including the suitable spatial scale ranges of the three environmental

predictors showed very little variation in predictor influence (Figure 4).

In contrast, models outside of those suitable ranges, presented much

larger variation in predictor estimates (Appendix 7). In the case of

‘patch structure’ and ‘preferred THV’, the predictors were no longer

significant. In contrast, the influence of ‘fleshy fruit availability’

remained significant independent of spatial scale. This suggests the

possibility that the predictor ‘fleshy fruit availability’, as we have built

it, may represent differential impacts of alternative ecological

conditions, i.e. fruit availability on the small scale and forest

characteristics such as forest structure on the larger scale.

4.2 | Conclusion and application

The suggested approach holds much promise for fitting even very

complex ecological models, with awide range of potential applications,

such as in basic ecological and behavioural research, or in applied

disciplines like conservation or landscape management.

The search for suitable scale ranges of predictor influence is an

essential tool with the potential for application in a number of fields. It

promises to be useful in fields such as global landscape modification, in

the context ofbetter understanding the impact ofhabitat fragmentation

on animal survival (Santos-Filho, Peres a., Silva, & Sanaiotti, 2012) and

FIGURE 4 Variation in parameter influence. Parameter estimates are presented according to the cumulative Akaike weight of the models
(X-axis) within the suitable spatial scale ranges of the three environmental predictors. Dark grey points represent significant parameters with
p-values <0.05. Light grey points represent non-significant ones. The horizontal lines indicate the global mean weighted estimates of the
parameters. Predictor significance remained stable across the entire range of spatial scales with the exception of a few models where ‘patch
structure’ and ‘fleshy fruit availability’ showed p-values between 0.05 and 0.11

SERCKX ET AL. | 1335



distribution (Imong et al., 2014a; Torres et al., 2010), habitat quality

within patches (Thornton, Branch, & Sunquist, 2010) and between

patches (Gray et al., 2010; Watling, Nowakowski, Donnelly, & Orrock,

2011) and the effect of patch sizes and isolation (Anzures-Dadda &

Manson, 2007; Prugh, Hodges, Sinclair, & Brashares, 2008). For

example, the spatial pattern of patch structure in our study revealed

that bonobos living in forest-savannah mosaics tend to avoid forest

patches smaller than 4.5 km2 (a circular area of about 1.2 km). This

finding couldbe investigated further by accounting separately for forest

patch shape and size as well as possible negative edge effects (Arroyo-

Rodríguez & Dias, 2010, Hickey et al., 2013; Nams, 2012). Information

of this kind should be particularly useful in conservation-related

landscape management (Nams et al., 2006), and to assess the impact of

logging on faunal biodiversity (e.g. the effects of the opening of logging

roads) (Clark, Poulsen, Malonga, & Elkan, 2009; Laurance et al., 2008;

Laurance, Goosem, & Laurance, 2009; Nasi, Billand, & van Vliet, 2012).

The proposed approach is not limited to the spatial scale, but can

also be applied in the temporal domain. The use of weighting functions

is particularly useful for studying animal relationships over extensive

periods, e.g. to better understand behaviours favouring dyadic

affiliations such as grooming reciprocity in primates
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APPENDICES

Appendix 1: List of Marantaceae and THV Observed at the Study

Site.

Appendix 2: Detailed Description of Measures Taken on Tree

Species During Field Data Collection

In order to identify the dominant tree species in the canopy, we

measured all trees with a DBH larger than 50 cmwithin a 10m strip on

both sides of the transects. We were unable to measure the DBH of

trees covered in lianas, so we later assigned them the median DBH

value found for other trees in the survey (67 cm). For treeswith several

stems at the height ofDBHmeasurement, we summed their stemDBH

measures. Finally, we decided to include in the analysis as well trees

with a DBH between approximately 45 and 50 cm. Those trees were

all noted during the survey but not measured. For analysis we assigned

them a DBH of 47.5 cm, as this involved a maximum error of only

0.0002m2/ha in the basal area calculation.

Appendix 3: Overview of the Population Census and Socio-

Economic Survey in Villages Surrounding the Study Sites in 2012

We developed a questionnaire based on the “Poverty and Environ-

ment Network (PEN) Prototype Questionnaire” (PEN Prototype

Questionnaire, 2008). We randomly chose a minimum of 30% of

adults in all local villages and farms (Kideghesho, Røskaft, & Kalten-

born, 2006; Nyariki, 2009; Shibia, 2000), leading to a total of 119 men

and 82 women interviewed.

Appendix 4: Complementary Descriptions of Our Preparation of

the Predictor Variables

Forest-savannah classification map

We realised a non-supervised classification (Red and IR) on a subset

of the Landsat7 (2007) satellite imagery (Landsat ID:

L71181062_06220070102; used clip: 16.38–16.62°E, 2.42–2.67°S)

with the software ENVI 5.0.2. We defined a pixel resolution of 50m

and used a k-means algorithm with 15 classes and 30 iterations. We

then aggregated classes as forest versus savannah according to our

knowledge from the transects. Finally, we smoothed the results using

the smoothed sieve (2–8 neighbours) and clump (3 × 3 pixels)

methods.

‘Human pressure’ index calculation

We derived ‘human pressure’ from our questionnaire data by

calculating the daily number of adults who could potentially enter

the region of the forest in which the 25m-transect segment was

located. For each village, we calculated the proportion of

interviewed men who said that they sometimes entered the forest

region (‘prop_quest_hunters’ in the formula). In order to obtain this

index, we first estimated the probability of a man entering a

particular forest region (i.e. daily hunting frequency divided by the

number of forest regions in which each person hunts) and then

divided it by the number of interviewed men performing the activity.

We estimated the proportion of men going to a forest region for

each village and finally derived the overall index of human pressure

for all villages:

Human_pressure ¼ Σvillage prop_quest_hunters*nb_men_villageð Þ
forest_region_area

where nb_men_village is the number of men in a village and

forest_region_area was the area of the forest region in square

kilometres (used to account for differences in the sizes of the forest

regions and to obtain values comparable between forest regions).

We finally calculated the mean value of the ‘hunting pressure’ for

the transect segment.

‘Village influence’ calculation

In order to estimate the ‘village influence’, we first realised two maps

in which each pixel (at 25 m of resolution) consisted of the Euclidean

TABLE 1A List of Marantaceae and THV observed at the study site

Scientific name Consumption
Part
eaten

Marantaceae

Haumania liebrechtsiana Y Fr, St, L

Marantochloa congensis N

Marantochloa mannii Y St

Marantochloa leucantha Y Fr, St

Marantochloa purpurea N

Megaphrynium macrostachyum Y Fr, St

Megaphrynium trichogynum Y St, Fr

Hypselodelphus violacea Y Fr

Sarcophrynium brachystachyum/
schweinfurthianum

Y Fr

Y St

Sarcophrynium prionogonium Y Fr

Thaumatococcus daniellii Y Fr, St

Zingiberaceae

Aframomum sp. Y Fr, St

‘Consumption’ column indicates whether the species is consumed by
bonobos at the study site [Y, Yes; N, No; see Serckx et al. (2015)]. Part eaten
corresponds to fruits (Fr), stems (St) or leave (L).
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distance either to the closest forest paths or to the closest road. We

extracted for each transect segment the mean value of each

parameter in a rectangle with a side of 19 m (corresponding to the

effective strip width, Buckland et al. 2001) and used, for each

transect segment, the parameter for which the value was smaller.

Finally, we summed, at the middle point of each transect segment,

the population size of each village divided by the distance to the

village and by the exponential distance to the nearest forest path/

road. We used the exponential distance to the nearest point of

forest access, as we considered that human pressure would likely be

highest on the path/road but will decrease quickly as one moves

away from them.

Appendix 5: Examination of the Models’ Assumptions

Single-scale model

In order to check model assumption, we realised a single-scale model

with environmental predictors extracted over neighbourhoods around

transect based on expert opinion (see Table 1 in the paper, buffer

radiuses of 100m for ‘fleshy fruit availability’ and ‘preferred THV’, and

of 2600m for ‘patch structure’).

Collinearity was not an issue since Spearman correlation

coefficients were never higher than 0.52 (Table 5A), and Variance

Inflation Factors were below 1.58 for all variables (Table 5B; Field,

TABLE 3A Socio-economic data

Population census Interviewees

Nb Nb men Nb women Nb children Total Total Men Women Hunters (M)

1 Nkoo 168 169 202 540 911 50 35 15 16

2 Mpelu 43 50 58 153 261 50 30 20 19

3 Lebomo 37 37 34 141 212 26 14 12 7

4 Nkala 34 36 49 110 195 39 21 18 7

5 Malebo 10 9 11 38 58 6 3 3 1

6 Mavula 10 10 12 25 47 6 3 3 3

7 Bosatore 7 5 7 22 34 2 1 1 1

8 Mokoabuo 6 5 8 17 30 4 2 2 1

9 Clinic of Nkoo 4 4 4 19 27 2 1 1 0

10 Lensiana 4 4 3 18 25 0 0 0 0

11 Biomengele 3 3 3 13 19 3 2 1 2

12 Ngandjele 3 3 6 7 16 2 1 1 0

13 Motsuemontore 2 2 4 9 15 2 1 1 1

14 Ezano 3 2 2 8 12 1 1 0 1

15 Mayi Monene 2 2 3 5 10 2 1 1 0

16 MMT 4 4 4 2 10 2 1 1 0

17 Moza 1 1 1 6 8 2 1 1 0

18 Bosieli 1 1 1 5 7 2 1 1 1

TOTAL 342 347 412 1138 1897 201 119 82 60

Under the ‘Population census’ heading, we present the results of the village population census realized in 2012. Beneath the ‘Interviewees’ heading are
indicated first the sampling effort for the collection of socio-economic data (total per village and per gender) and the number of men who answered that
they regularly enter the forests for hunting. The numbers in the first column indicate the locations of villages on the map of the study site (Figure 1 in the
paper).

TABLE 5A Spearman correlations of the single-scale model

Nesting site
fidelity

Hunting
signs

Hunting
pressure

Village
influence

Patch
structure

Preferred
THV

Fleshy fruit
avail.

Nesting site fidelity 0.069 0.0082 0.1143 0.1047 0.3768 0.3414

Hunting signs 0.045 −0.0778 −0.002 0.0962 0.1025

Hunting pressure 0.3366 0.3207 0.044 0.0475

Village influence 0.5105 0.0492 0.1302

Patch structure 0.1424 0.404

Preferred THV 0.5206
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2005; Quinn & Keough, 2002). As our data showed some potentially

influential cases, we reran the model on a subset of our data (N = 261

of the 284 transect segments). We checked model estimates and

compared them with the estimates of the full model (Table 5C. As we

found very little variation, we report results for the model based on

the full dataset. We then checked dfbeta (Field, 2005) to see if some

particularly transect segments might have heavily influenced the

estimates. Values for the ‘hunting pressure’ and ‘hunting signs’

predictors indicated some problems (Table 5D). For each predictor,

we checked the transect segments which induced changes of more

than 10% in any part of the estimate (N = 95 for ‘hunting signs’, N = 43

for ‘hunting pressure’). For ‘hunting signs’, almost all segments with

hunting signs present (34 out of 40 segments) showed dfbeta issues.

We decided to run the model without this predictor to check if it

influenced the estimates of the other predictors. As the estimates

were similar (Table 5C), we kept the ‘hunting sign’ predictor. For

‘hunting pressure’, we ran a model with a subset of data excluding

segments with dfbeta issues. Again, the estimates were similar in

comparison with the first model (Table 5C). We thus decided to base

our inference on the entire dataset.

Scale range models

In order to check if the model assumptions were fulfilled for the spatial

scale range models, we looked at Pearson correlations between

predictor values of the single-scale model and their corresponding

values extracted on each discrete buffer for the scale range models

(Table 5E). As Pearson correlations were mainly higher than 0.70 (with

some values decreasing to 0.42 outside the suitable spatial scale

range), we assumed that the goodness of fit of the scale range models

would be equivalent to the single-scale model.

TABLE 5B Variance inflation factors (VIF) of the single-scale model

Predictors VIF

Patch structure 1.37

Fleshy fruit availability 1.58

Preferred THV 1.49

Hunting signs 1.02

Hunting pressure 1.23

Village influence 1.31

Nesting site fidelity 1.14

TABLE 5C Comparison between the estimates of the single-scale model and estimates of different reduced models made in order to investigate
potential model assumptions issues

Estimates (single
scale model)a

Estimates (subset after
leverage)b

Estimates (w/o
hunting signs)c

Estimates (subset after
dfbeta issues)d

(Intercept) −1.956*** −2.191*** −1.952*** −2.608***

Patch structure 1.073*** 1.086** 1.056*** 0.996***

Fleshy fruit availability 0.454 0.524 0.462 0.586

Preferred THV 0.915** 1.058** 0.916** 1.164**

Interaction fleshy fruit availability and
preferred THV

−0.914*** −0.776* −0.916** −0.681**

Hunting signs 0.037 0.257 – 0.288

Hunting pressure 0.03 0.167 0.035 −0.247

Village influence 0.306 0.506 0.3 0.206

Nesting site fidelity 0.570** 0.442 0.570** 0.698***

Autocorrelation term 0.273 0.395 0.269 0.611***

***Indicates predictors with a p < 0.0001, **a p < 0.001, * a p < 0.05.
aEstimates for the single-scale model.
bEstimates for the model using a subset of the data after having removed transect segments that were associated with larger leverage values.
cEstimates for themodel without the predictor ‘hunting signs’ (as almost all transect segments with presence of hunting signs revealed potential issues based
on dfbetas values).
dEstimates for the model using a subset of data after removing transect segments for which dfbetas values revealed issues for the predictor ‘hunting
pressure’.

TABLE 5D Dfbeta (absolute maximum value) of predictor estimates

Estimates
Dfbeta (maximum
absolute value)

(Intercept) −1.956*** 0.0459

Patch structure 1.075*** 0.0533

Fleshy fruit availability 0.454 0.0774

Preferred THV 0.914** 0.0509

Interaction of fleshy fruit
availability and preferred
THV

−0.914*** 0.0623

Hunting signs 0.038 0.0644a

Hunting pressure 0.029 0.0606a

Village influence 0.306 0.0491

Nesting site fidelity 0.570** 0.0507

Autocorrelation term 0.274 0.0311

***Indicates predictors with a p < 0.0001, **a p < 0.001, *a p < 0.05.
aThese two values might present some potential issues.
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Appendix 6: Spatial Scale Range Models with Non-Distance

Weighted

TABLE 5E Pearson correlations between predictor variables of the single-scale model and those extracted for each discrete buffer in the spatial
scale range models

Extraction of the weighted mean value Extraction of the arithmetic mean value

Buffer radius (m) Patch structure Fleshy fruit availability Preferred THV Patch structure Fleshy fruit availability Preferred THV

30 – 0.98 0.97 – 0.98 0.98

60 0.42 0.98 0.98 0.46 0.99 0.99

120 – 0.99 0.99 – 1 1

210 0.53 1 1 0.6 0.99 0.92

300 – 1 0.99 0.64 0.95 0.64

360 – 0.99 0.98 – 0.92 0.88

450 – 0.98 – 0.7 0.88 –

600 0.67 0.95 0.92 0.74 0.83 0.74

750 0.71 – – – – –

900 0.74 – – – – –

1050 0.77 – – 0.87 – –

1200 0.79 – – – – –

1500 0.84 0.81 0.7 0.94 0.7 0.52

1800 0.88 – – – – –

1950 0.9 – – 0.98 – –

2100 0.91 – – – – –

2400 0.94 0.74 0.59 1 0.65 0.46

2700 0.95 – – 1 – –

FIGURE 6.1 Variation in in the influence of parameters: scale range models with non-distance weighted predictor-value extraction
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Appendix 7: Variation in Parameter Influence within All

Implemented Models

FIGURE 7.1 Variation in parameter influence within all implemented models. Parameter estimates are presented according to the cumulative
Akaike weight of the models (X-axis) within the suitable spatial scale ranges of the three environmental predictors. The colour of the points
indicates the significance of the parameters (black points represent significant parameters, p < 0.05; grey points represent non-significant
ones). The horizontal lines indicate the global mean estimates of the parameters
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