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Abstract: Glycaemic control in intensive care unit has been associated with improved outcomes. Metabolic 

variability is one of the main factors making glycaemic control hard to achieve safely. STAR (Stochastic 

Targeted) is a model-based glycaemic control protocol using a stochastic model to predict likely 

distributions of future insulin sensitivity based on current patient-specific insulin sensitivity, enabling 

unique risk-based dosing. This study aims to improve insulin sensitivity forecasting by presenting a new 

3D stochastic model, using current and previous insulin sensitivity levels. The predictive power and the 

percentage difference in the 5th-95th percentile prediction width are compared between the two models. 

Results show the new model accurately predicts insulin sensitivity variability, while having a median 

21.7% reduction of the prediction range for more than 73% of the data, which will safely enable tighter 

control. The new model also shows trends in insulin sensitivity variability. For previous stable or low 

insulin sensitivity changes, future insulin sensitivity tends to remain more stable (tighter prediction ranges), 

whereas for higher previous variation of insulin sensitivity, higher potential future variation of insulin 

sensitivity is more likely (wider prediction ranges). These results offer the opportunity to better assess and 

predict future evolution of insulin sensitivity, enabling more optimal risk-based dosing approach, 

potentially resulting in tighter and safer glycaemic control using the STAR framework. 
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1. INTRODUCTION 

Critically ill patients often experience hyperglycaemia (Capes 

et al., 2000; Finney et al., 2003; McCowen et al., 2001), 

associated with worse outcomes (Capes, et al., 2000; Krinsley, 

2003). Glycaemic control (GC) to lower blood glucose (BG) 

concentration, has shown beneficial outcomes (Chase et al., 

2008; Krinsley, 2004; Van den Berghe et al., 2006; Van den 

Berghe et al., 2001). But, it has also shown increased 

hypoglycaemia and BG variability (Brunkhorst et al., 2008; 

Finfer et al., 2009; Finfer et al., 2012; Griesdale et al., 2009; 

Preiser et al., 2009), both associated with mortality (Ali et al., 

2008; Bagshaw et al., 2009; Egi et al., 2006; Egi et al., 2010). 

Achieving safe, effective control for nearly all patients is 

essential, and is a function of protocol design (Uyttendaele et 

al., 2017). However, fixed clinical protocols have not 

delivered the functionality, safety or efficacy necessary 

(Griesdale, et al., 2009), primarily due to their inability to 

accurately capture patient state. Therefore, model-based GC 

design is needed to capture inter- and intra- patient variability, 

and offer patient-specific solutions, while directly managing 

risk (Chase et al., 2011). 

STAR (Stochastic TARgeted) is a clinically validated model-

based GC framework, capable of titrating insulin and nutrition 

(Evans et al., 2012; Fisk et al., 2012). STAR has shown 

promising clinical results across different countries and ICUs 

(Stewart et al., 2016). It uses a physiological model (Lin et al., 

2011) to assess model-based patient-specific insulin sensitivity 

(SI) and predicts future metabolic variability using a stochastic 

model built on population data (Lin et al., 2006). Given the 

distribution of the predicted future SI values, insulin and 

nutrition doses can be determined to maximise the overlapping 

of the resulting predicted BG outcomes with a clinically 

chosen target band (Lin et al., 2008). This approach enables 

risk-based dosing, directly managing and minimizing 

hypoglycaemic risk (Fisk, et al., 2012), as well as optimizing 

nutrition delivery (Stewart et al., 2018). 

This study aims to improve SI forward prediction by 

improving the stochastic model. STAR’s stochastic model 

only considers current SI (SIn) to predict future SI (SIn+1) 

distributions. This analysis investigates the impact of prior 

changes in SI on the distribution of forward prediction of SI 

values, adding prior stability or instability to the model.  

2. METHODS 

2.1 Model-based insulin sensitivity. 

The physiological model describes the glucose-insulin 

pharmacokinetics, and is defined (Lin, et al., 2011): 

 

�̇� =  −𝑝𝐺 . 𝐺(𝑡) − 𝑆𝐼. 𝐺(𝑡)
𝑄(𝑡)

1 + 𝛼𝐺 . 𝑄(𝑡)
 

+
𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺
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𝐼̇ =  −𝑛𝐾 . 𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 +  𝛼𝐼 . 𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) 

+ 
𝑢𝑒𝑥(𝑡)

𝑉𝐼
+ (1 − 𝑥𝐿)

𝑢𝑒𝑛(𝐺)

𝑉𝐼
  

 

 

(2) 

�̇� =  𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
  (3) 

 

Where G(t) is blood glucose (mmol/L), I(t) is plasma insulin 

(mU/L), Q(t) is interstitial insulin (mU/L), P(t) is glucose from 

dextrose intake (mmol/min), and SI is insulin sensitivity 

(L/mU/min). Other clearance rates and parameters are defined 

elsewhere (Lin, et al., 2011; Pretty et al., 2014). 

SI is a patient-specific and time-varying parameter describing 

patient-specific response to insulin and glucose. Integral-based 

fitting methods are used to determined SI hourly from clinical 

data (Docherty et al., 2012; Hann et al., 2005). 

2.2 Stochastic model and insulin sensitivity prediction. 

STAR uses current identified SI (SIn) and a population-based 

stochastic model to predict future potential changes in SI 

(SIn+1). It is derived from clinical data using 2D Gaussian 

kernel density methods (Lin, et al., 2006) and shown in Figure 

1. Given SIn, the distribution of future SIn+1 is determined, 

from which the 95th percentile is used to calculate a 

combination of insulin and nutrition interventions, so the 

corresponding predicted 5th percentile BG outcome is above 

BG = 4.4 mmol/L. This approach specifically sets a 5% risk of 

BG < 4.4 mmol/L, which significantly limits hypoglycaemia, 

ensuring safety, and enabling unique risk-based dosing (Fisk, 

et al., 2012). SI ranges are predicted 1-3 hours in future. 

2.3 Patient cohorts. 

Clinical data from 606 patients, totalling 819 episodes and 

68629 hours, from 3 clinical trials in 2 ICUs are considered. 

Demographics are summarized in Table 1. The 587 episodes 

over 24 hours were used for model construction and validation, 

representing 65260 hours of control in total. 

2.4 Conditional probability and tri-variate kernel estimation.  

The current stochastic model is two-dimensional, as it 

considers one input (SIn) to produce one output (SIn+1). This 

study aims to generalise the two-dimensional kernel density 

method previously developed, into a three-dimensional model 

with two inputs (SIn-1, SIn) and one output (SIn+1). Future 

prediction of SI variability is thus now characterised by the 

evolution of SI over the last period of control rather than only 

current data. 

Table 1 – Patient demographics for the 3 study cohorts. 

Results are given in median [IQR] where relevant. 

 

SPRINT 

Christchurch 

(Chase, et al., 

2008) 

STAR 

Christchurch 

(Evans et al., 

2011) 

STAR  

Gyula 

(Benyo et al., 

2012) 

# episodes 442 330 47 

# patients 292 267 47 

# hours 39838 22523 6268 

% male 62.7 65.5 61.7 

Age (years) 63 [48, 73] 65 [55, 72] 66 [58, 71] 

APACHE II 19.0 [15.0:24.5] 21.0 [16.0:25.0] 32.0 [28.0:36.0] 

LOS - ICU 

(days) 
6.2 [2.7,13.0] 5.7 [2.5,13.4] 14.0 [8.0,20.5] 

Based on the same assumptions presented in (Lin, et al., 2006), 

but considering SI evolution as a Markov Chain of order 2, the 

probability distribution of likely future SIn+1 only depends on 

current SIn and previous SIn-1 values, where the random 

variable SIn is the state of the process at time n.  The 3D 

conditional probability density function of SIn+1 given past 

states can thus be written: 

𝑃(𝑆𝐼𝑛+1|𝑆𝐼𝑛 , 𝑆𝐼𝑛−1, … , 𝑆𝐼0) = 𝑃(𝑆𝐼𝑛+1|𝑆𝐼𝑛 , 𝑆𝐼𝑛−1) =  
𝑃(𝑆𝐼𝑛+1, 𝑆𝐼𝑛 , 𝑆𝐼𝑛−1)

𝑃(𝑆𝐼𝑛 , 𝑆𝐼𝑛−1)
, 

where the right-hand side equation is derived from the 

conditional probability chain rule definition. 

The tri- and bi- variate product kernel density estimated joint 

probabilities 𝑃(𝑆𝐼𝑛+1 = 𝑧, 𝑆𝐼𝑛 = 𝑦, 𝑆𝐼𝑛−1 = 𝑥) =

1

𝑁
∑

𝐾ℎ𝑥𝑖
(𝑢𝑥𝑖

)

𝑝𝑥𝑖

𝐾ℎ𝑦𝑖
(𝑢𝑦𝑖

)

𝑝𝑦𝑖

𝐾ℎ𝑧𝑖
(𝑢𝑧𝑖

)

𝑝𝑧𝑖

𝑁
𝑖=1  and 𝑃(𝑆𝐼𝑛 = 𝑦, 𝑆𝐼𝑛−1 = 𝑥) =

1

𝑁
∑

𝐾ℎ𝑥𝑖
(𝑢𝑥𝑖

)

𝑝𝑥𝑖

𝐾ℎ𝑦𝑖
(𝑢𝑦𝑖

)

𝑝𝑦𝑖

𝑁
𝑖=1  are constructed using N available data 

triplets (SIn-1=xi, SIn=yi, SIn+1=zi) identified from the original 

clinical data. 𝐾ℎ(𝑢) denotes the gaussian kernel density 

function 
1

√2𝜋ℎ
𝑒−

1

2
(

𝑢

ℎ
)

2

 centred in u, where the scale factor h 

depends on local data density (Lin, et al., 2008). An example 

of the resulting bi-variate and tri-variate kernel density 

estimation for 8 data triplets is presented in Figure 2.

 

Figure 1 – STAR uses stochastic models to forecast change in SI based on current SI value, and determines BG outcomes for 

given insulin and nutrition intervention. 
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Figure 2 – Bi-variate (top) and tri-variate (bottom) gaussian 

kernel density estimation for 8 data triplets. Two specific 

density layers shown for tri-variate case. 

Therefore, for any given state (SIn, SIn-1) exists a conditional 

probability function of likely future SIn+1: P(SIn+1|SIn, SIn-1), 

where ∫ 𝑃(𝑆𝐼𝑛+1|𝑆𝐼𝑛 , 𝑆𝐼𝑛−1)𝑑𝑆𝐼𝑛+1 = 1 is satisfied. This 

probability function can be used to determine the 5th-95th 

percentile of the distribution of future changes in SI and used 

by the controller to select the best intervention. The new 

generated 3D model predicts thus future variation of SI based 

on previous change in SI and can be constructed for 1-3 hourly 

prediction using data triplets (SIn-1, SIn, SIn+1), (SIn-1, SIn, 

SIn+2), and (SIn-1, SIn, SIn+3). 

2.5 Model comparison analysis. 

Cross-validation is used to assess and compare the 

performance of the 2D and 3D stochastic models. Out of the 

65260 total hours of control, 64086 data triplets are created. 

Both models are constructed on a training set including 

random 44860 (70%) of total data triplets and tested on the 

other 19226 (30%). This is repeated 10 times. 

The 5th-95th percentile prediction width of the 2D model and 

the 3D model are compared. Tighter 5th-95th percentile 

prediction range of SIn+1 suggests lower forecasted variability, 

and thus potentially allows a more aggressive dosing approach, 

where wider bands suggest higher metabolic variation, and 

thus more moderate dosing. In addition, the predictive power 

of both models is compared by computing the percentage 

prediction of future SI within the interquartile prediction range 

and within the 5th-95th percentile prediction range. A predictive 

power of 50% and 90% respectively are expected, which 

would emphasize how accurately the models are on forward 

prediction and representation of future SI variability. 

3. RESULTS 

3.1 2D vs. 3D stochastic model prediction range comparison. 

If the 2D stochastic model can be easily represented, it is more 

difficult for the 3D model, as for each pair (SIn-1, SIn) 

corresponds a specific probability density function for SIn+1. 

Figure 3 shows the 5th-95th percentile (90% likelihood) CI 

prediction range of SIn+1 as a function of SIn. In this graph, the 

2D model is completely shown, as it will be identical for any 

values of SIn-1. However, the 3D model prediction range 

depends on specific SIn-1 values. Therefore, the 3D model 90% 

likelihood predictions are shown for two specific values of  

SIn-1. As shown, the prediction behaviours are different 

between the 2D and the 3D model. Interestingly, the 3D model 

prediction range is tighter when SIn-1≈SIn, thus when SI is 

stable. However, for larger changes in SI occur, the 3D model 

prediction range is generally wider. 

Compared to the 2D model, the 3D 5th-95th percentile 

prediction range is affected by sudden shifts in the prediction 

range. This is a direct impact of low data density in those 

regions, probably reflecting unusual SI dynamics or 

measurement and fitting errors. For example, the blue line in 

Figure 3 representing the 5th-95th percentile range of the 3D 

model when SIn-1=2.5e-4 is affected by those outliers when 

SIn>8e-4. Indeed, above this value, this result suggests an 

unlikely increase in SI of more than 200%, explaining the low 

data density in this specific region. 

The 5th and 95th percentile of the prediction range of each 

model are compared in Figure 4. The 2D model, constant in 

the SIn-1 direction, is represented in green. The 3D model is 

shown in colour and is different for every pair (SIn-1, SIn). If 

the green surface is visible (higher) on the 95th percentile 

surface and invisible (lower) on the 5th percentile surface, it 

suggests the 2D model has wider prediction bands than the 3D 

model, and thus the 3D model will have tighter prediction 

bands. The opposite is also true. 

From Figure 4, two regions are clearly identified confirming 

the previous observation. When SI is stable (SIn-1 ≈ SIn), along 

the bisector line, the 3D model prediction ranges are tighter. In 

contrast, when SI is more variable, the 3D model prediction 

range are (generally) wider. Sudden bumps are also visible, 

showing once again the influence of low data density regions. 

3.2 Forward predictive power comparison. 

The predictive power of both models was tested on 30% of the 

data, or 19000+ triplets. Table 2 shows 1-3 hourly 2D and 3D 

stochastic model results. Prediction within the 25th – 75th 

percentile range are close to the expected value of 50%. The 

5th – 95th percentile range results are also similar for both 

models, and close to the expected 90%. These results show 

both models accurately predict future SI variability. 
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Figure 3 – Resulting 5th-95th percentile prediction range of 

SIn+1 over SIn. The 2D model is black and is identical for all 

SIn-1. Red and blue show the 3D model for two specific SIn-1. 

 

 

 

Figure 4 – Comparison between the 2D (green) and 3D 

(colour) models of the 5th (bottom) and 95th (top) percentiles 

prediction of future SIn+1. The 2D model is constant across the 

SIn-1 axis, whereas the 3D model is different for every pair of 

(SIn-1, SIn). 

However, if both models have similar capability to predict 

patient SI variability, the new 3D model prediction width is 

shown to be tighter more than 73% of the time. A reduction of 

the 5th-95th percentile prediction width of 21.7%, 14.9%, and 

12.8% compared to the 2D model, for the 1-3 hourly models 

respectively, is observed. Therefore, the 3D models achieved 

similar prediction quality, while having much tighter bands. 

Hence, predictions are made with more precision on future SI 

variability, and the 2D model presents over-conservative 

predictive behaviour 73% of the time. In turn, this suggests 

STAR could use more aggressive dosing for these 73% of 

hours, for expected improved glycaemic outcomes without 

compromising safety. Finally, the model could not predict 

future SI for 1.3% of the testing set data triplets as their inputs 

(SIn-1, SIn) were outside of the model definition. 

Table 2 – Comparison results of the forward predictive 

power and reduction in the prediction range for both 

model. Results are given in median [IQR]. 

  1-hourly 2-hourly 3-hourly 

2
D

 m
o

d
el

 
% prediction 

within 25th-

75th range 

53.8 [53.6, 

54.2] 

51.9 [51.6, 

52.1] 

51.3 [50.7, 

51.6] 

% prediction 

within 5th-

95th range 

90.9 [90.8, 

91.0] 

90.3 [90.0, 

90.4] 

90.2 [89.9, 

90.3] 

3
D

 m
o

d
el

 

% prediction 

within 25th-

75th range 

53.7 [53.5, 

53.9] 

51.0 [50.8, 

51.4] 

50.3 [49.9, 

50.4] 

% prediction 

within 5th-

95th range 

90.8 [90.6, 

90.8] 

89.8 [89.6, 

90.0] 

89.5 [89.3 

89.6] 

3
D

 v
s.

 2
D

 

% reduction 

in 5th-95th 

range width 

21.7 [20.6, 

20.9] 

14.9 [14.8, 

15.0] 

12.8 [12.6, 

19.9] 

3
D

 v
s.

 2
D

 

% prediction 

tighter 

76.4 [75.9 

76.5] 

74.7 [74.5, 

74.8] 

73.4 [73.3, 

73.6] 

2
D

 &
 3

D
 

% prediction 

outside 

model range 

1.3 [1.2, 

1.3] 

1.3 [1.3, 

1.4] 

1.3 [1.2, 

1.4] 

4. DISCUSSION 

A new 3D stochastic model is created to better capture future 

SI variability evolution using not only current SIn, but also the 

previous SIn-1 value. Both models use the same data and are 

based on the same principles. Their performance is tested on 

the same independent test sets.  

However, this method may result in skewed probability 

estimation when low data density is present. In these cases, 

probably reflecting outliers or uncommon SI dynamics, results 

in bumps and very local prediction estimation, as shown by the 

blue lines in Figure 3, and can significantly influence 

prediction of SI variability. There is thus a question of model 

definition and resolution to address. More analysis is needed 
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to balance and assess the impact of removing these outliers to 

insure safety and improve prediction, without losing 

information on SI dynamics. An example of the resulting 

model 5th-95th percentile prediction using lower resolution is 

shown in Figure 5, resulting in smoother surfaces. 

The comparison between models has two outcomes. First, the 

new 3D model accurately predicts SI variability based on its 

prior evolution. Second, this prediction is realised with more 

precision, as the 3D model has tighter prediction bands for 

more than 73% of the data, and increased patient-specificity. 

Together with the observation of the resulting 5th-95th 

percentile prediction range in Figure 4, these results suggest 

more stable SI for previously stable SI, but higher variation in 

SI for previously more variable SI.  

Figure 6 shows the median [IQR] 3D over 2D ratio in the 5th-

95th percentile prediction width of SIn+1 for given previous 

hour-to-hour percentage change in SI (%ΔSI), overlapped with 

the histogram of the data. It is clear that when (%ΔSI) is in a 

±20% range, the median [IQR] prediction range is tighter for 

the 3D model, which holds for a ~73+% of the total data. This 

3D model allows STAR to more aggressively dose insulin 

when a patient is stable, less aggressively for more variable 

patients, which could safely increase GC performance. 

 

Figure 5 – Updated 5th (bottom) and 95th (top) percentiles 

prediction for 2D and 3D model constructed without triplets 

with low data density. 

 

Figure 6 – 3D/2D ratio in 5th-95th percentile prediction width 

of future SI, for different previous hour-to-hour percentage 

change in SI.  

The reduction in the 5th-95th percentile prediction range 

decreases from 1 hourly to 3 hourly future prediction. This 

reduction is expected as it reflects how SI is more likely to vary 

during a 3 hours timeframe compared to 1 hour. Thus, 

prediction on future variability are more precise for 1 hourly 

prediction rather to 2 and 3 hourly prediction. This also reflects 

the capability of STAR to adapt treatment dynamically, with 

potential higher insulin dosing for 1 hourly treatment interval 

compared to 3 hourly treatment intervals. 

Future work will evaluate the impact of this new 3D model on 

GC outcomes. Virtual trials will be designed implementing 

this new stochastic model within the STAR framework. 

5. CONCLUSIONS 

This study presents a new kernel density based 3D stochastic 

model using prior SI evolution to predict future SI variability. 

New model prediction ranges are 20.5% tighter for more than 

73% of the hours/data and give new insight into trends in SI 

variability compared to the prior 2D model. Further, stable 

patients are seen to remain stable where more variable patients 

are more likely to be more variable, enabling better safety. 

This trend is observed across all prediction horizons. Better 

predictions of future patient-specific metabolic variability can 

significantly improve safety and performance of STAR. 
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