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Abstract: Glycaemic control has shown beneficial outcomes for critically ill patients, but has been proven 

hard to achieve safely, increasing risk of hypoglycaemia. Patient metabolic variability is one of the main 

factor influencing glycaemic control safety and efficacy. STAR is a model-based glycaemic controller 

using a unique patient-specific risk-based dosing approach. STAR uses a 2D stochastic model, built from 

population data using kernel density methods, to determine potential forward future evolution in patient-

specific insulin sensitivity (SIn+1), based on its current value (SIn). 

This study uses virtual trial to compare the current 2D stochastic model used in STAR, with a new 3D 

stochastic model. The new 3D model also uses prior insulin sensitivity value (SIn-1) to determine 

distribution of likely future SIn+1. A total of 587 virtual patient glycaemic control episodes longer than 24 

hours from three different studies are used here. Safety (% blood glucose (BG) measurements < 4.0 and < 

2.2 mmol/L), performance (% time in the target 4.4-8.0 mmol/L band), insulin administration and nutrition 

delivery (% goal feed) are compared. 

Results show similar performance (90% BG in 4.4-8.0 mmol/L), and similar safety, with slightly higher % 

BG < 4.0 mmol/L (0.9 vs. 1.4%) and % BG < 2.2 mmol/L (0.02 vs. 0.03%) for the 3D model, was achieved 

for similar workload. The slightly lower median BG level (6.3 vs. 6.0 mmol/L) for the 3D stochastic model 

is explained by the higher median insulin rate administered (2.5 vs. 3.0 U/hr). More importantly, simulation 

results showed higher nutrition delivery using the 3D stochastic model (92 vs. 99 % goal feed). 

The new 3D stochastic model achieved similar safety and performance than the 2D stochastic model in 

these virtual simulations, while increasing the total calorific intake. This higher nutritional intake is 

potentially associated with improved outcome in intensive care units. The 3D stochastic model thus better 

characterises patient-specific metabolic variability, allowing more optimal insulin and nutritional dosing. 

Therefore, a pilot clinical trial using the new 3D stochastic model could be realised to assess and compared 

clinical outcomes using the new stochastic model. 
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1. INTRODUCTION 

Hyperglycaemia, hypoglycaemia and highly variable blood 

glucose (BG) concentrations are associated with higher 

mortality, morbidity and length of stay in intensive care units 

(ICU) (Bagshaw et al., 2009; Capes et al., 2000; Egi et al., 

2006; Egi et al., 2010; Krinsley, 2008). Hyperglycaemia is a 

common complication for critically ill patients, suggesting 

glycaemic control (GC) to lower BG levels (McCowen et al., 

2001). GC using insulin therapy has shown positive outcomes, 

but has been proven difficult to achieve safely and effectively, 

significantly increasing risk of hypoglycaemia (Brunkhorst et 

al., 2008; Chase et al., 2010a; Finfer et al., 2009; Finfer et al., 

2012; Krinsley, 2004, 2005; Preiser et al., 2009; Reed et al., 

2007; Van den Berghe et al., 2001; Van den Berghe et al., 

2003). 

Safe and effective GC is required for all patient, and is a 

function of protocol design, not patient metabolic state 

(Uyttendaele et al., 2017). Patients metabolic variability is one 

of the most important factors making GC hard to achieve 

safely. Fixed table-based GC protocols thus often fail to 

provide safe control, completely lacking patient variability. 

Model-based GC protocols are thus used to assess intra- and 

inter- patient variability and offer patient-specific insulin 

therapy, directly managing risk (Chase et al., 2011). 

STAR is a model-based GC framework, which has shown 

promising results across different ICU settings (Evans et al., 

2012; Fisk et al., 2012; Stewart et al., 2016). STAR uses a 

unique patient-specific risk-based approach to titrate insulin 

and nutrition safely. Patient-specific insulin sensitivity (SI) is 

calculated using a clinically validated physiological model 

(Lin et al., 2011), and distribution of likely future SI variability 

is determined using a stochastic model (Lin et al., 2008). This 
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distribution of likely future SI allows to calculate potential 

future BG outcomes for a given intervention. STAR thus 

determines which intervention best overlaps a clinically 

chosen BG target band. 

Virtual trials (Chase et al., 2010b), using virtual patients, are 

used in this study to assess the impact of a new 3D stochastic 

model implemented in STAR. Such trials allow safety and 

performance assessment of GC outcomes for protocols tested 

on virtual cohorts, prior to clinical implementation. The 2D 

stochastic model uses current identified patient-specific SI 

value to compute distribution of likely future SI changes. 

Compared to its predecessor, the new 3D stochastic model is 

constructed using both previous and current SI values to 

forecast future SI variability. It thus uses the prior variability 

in SI to enhance prediction. BG outcomes are compared with 

the 2D stochastic model, to determine whether this new 3D 

model significantly improves safety and performance of 

STAR, by better characterizing inter-patient variability. 

2. METHODS 

2.1 STAR protocol and model-based insulin sensitivity 

The physiological model describing the glucose-insulin 

pharmacokinetics is schematically represented in Figure 1, and 

is defined (Lin, et al., 2011): 

�̇� =  −𝑝𝐺 . 𝐺(𝑡) − 𝑆𝐼. 𝐺(𝑡)
𝑄(𝑡)
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+
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Where G(t) is blood glucose (mmol/L), I(t) is plasma insulin 

(mU/L), Q(t) is interstitial insulin (mU/L), P(t) is glucose from 

dextrose intake (mmol/min), and SI is insulin sensitivity 

(L/mU/min). Main clearance rates and parameters are defined 

in (Lin, et al., 2011; Pretty et al., 2014). 

The time-varying SI parameter describes the patient-specific 

metabolic response to insulin. SI is determined hourly from 

clinical data using integral-based fitting methods (Docherty et 

al., 2012; Hann et al., 2005), accounting for intra-patient 

variability. 

 

Figure 1 – Schematic representation of the glucose-insulin 

physiological model defined in Equations (1) – (3). 

2.2 2D vs. 3D stochastic model 

STAR uses a stochastic model, built on population data using 

kernel density estimations, to predict likely 1-3 hourly future 

changes in SI (Lin, et al., 2008). Based on the predicted 

distribution of future SI, the distribution of likely 

corresponding predicted future BG concentrations can be 

determined for a given intervention (Figure 2). STAR seeks 

the best intervention ensuring the 5th percentile of predicted 

BG ≥ 4.4 mmol/L, while maximizing the overlapping with the 

clinically specified target band (4.4-8.0 mmol/L). This unique 

risk-based dosing approach, significantly decreases risk of 

hypoglycaemia, while improving GC performance. STAR is 

the standard of care of two different ICUs, in Christchurch 

Hospital, New Zealand, and Gyula, Hungary.

 

Figure 2 – STAR uses stochastic models to forecast change in SI based on current SI value, and determines BG outcomes for 

given insulin and nutrition intervention. 
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One important feature of STAR is its ability to modulates both 

insulin and nutrition inputs. Enteral nutrition can be lowered if 

insulin only intervention is not sufficient decrease BG levels, 

but STAR will always try to reach back 100% goal feed (GF) 

to maximise carbohydrates intake. Insulin is administered as 

intravenous boluses, with an equivalent maximum of 6U/hr, 

and authorizing up to 3U/hr in continuous infusion for 

consistent resistant patients. Enteral nutrition administration 

can be modulated between 30-100% of the total calorific GF if 

needed. As patient weight is not always known, 100% GF is 

estimated based on body frame size, age, and sex of the patient. 

More details can be found elsewhere (Stewart et al., 2018). 

The 2D stochastic model uses only current SI (SIn) as input to 

determine the distribution of likely future SI (SIn+1). The new 

3D stochastic model uses both previous (SIn-1) and current SIn 

values to determine the distribution of future SIn+1 

(Uyttendaele et al., 2018a). These stochastic models are made 

using local data density weighted Gaussian kernel estimation 

(Lin, et al., 2008). The resulting 5th-95th percentile prediction 

ranges are shown in Figure 3, where the 2D stochastic model 

is constant across all SIn-1, while the 3D model is variable 

across both SIn and SIn-1, yielding narrower and wider 

prediction ranges.  

 

Figure 3 – Comparison between 2D (green) and 3D (colour) 

stochastic model surfaces of the 5th (bottom) and 95th (top) 

percentile predictions of future SIn+1. The 2D model is constant 

across SIn-1, where the 3D model is different for every (SIn-1, 

SIn) pair, both narrower and wider across the range. 

Previous studies have shown the 3D model better captures SI 

variability, with tighter prediction bands for over 70% of the 

time, and showed stable patients tend to remain stable where 

variable patients are more likely to remain variable and are 

more variable than the 2D model represents (Uyttendaele, et 

al., 2018a; Uyttendaele et al., 2018b). This outcome suggests 

more aggressive dosing can be used for these more stable time 

periods, improving BG outcomes without compromising 

safety. 

2.3 Virtual trials and virtual patients 

Virtual trials are used to simulate GC protocols on virtual 

cohort, allowing to assess and compare BG outcomes for these 

protocols (Chase et al., 2018; Chase, et al., 2010b). Virtual 

patients are created from real patient clinical data, and are 

characterised by their SI profile over time. SI is considered 

treatment independent and hourly constant. Two different 

protocols can thus be simulated on a same virtual patient, 

resulting in different BG outcomes. Virtual trial simulations 

are a powerful tool allowing to avoid any undesired behaviour 

prior to clinical implementation. Virtual trials have been 

previously validated and shown generalisable across different 

ICUs practices (Dickson et al., 2017). 

A total of 587 virtual patient episodes longer than 24 hours are 

used in this study, totalling 65260 hours of GC. These virtual 

patient episodes were created using clinical data from 3 

different studies in 2 different countries (STAR protocol, 

Christchurch, New Zealand (Evans, et al., 2012); SPRINT 

protocol, Christchurch, New Zealand (Chase et al., 2008); 

STAR protocol, Gyula, Hungary (Benyo et al., 2012)). Patient 

demographic details are in (Stewart, et al., 2016). 

2.4 Analyses 

New 2D and 3D stochastic models are created using SI from 

411 (70%) random patient episodes out of the total 587. Virtual 

trial of STAR using the 2D and 3D stochastic models are 

simulated on the other 176 (30%) patient episodes, allowing 

fair GC outcome comparison. This overall process is realised 

three times, where patient episodes are each time randomly 

chosen for the training (70%) and testing (30%) sets, resulting 

thus in 528 simulated GC episodes. Thus, one virtual patient 

episode is possibly simulated three times if not used to build 

the stochastic models, but results will be different time to time 

according to the specific 2D and 3D stochastic models built. 

Safety and performance from GC simulation results are thus 

compared between both stochastic models. In this analysis, BG 

data is resampled hourly to allow fair comparison across 

different measurement intervals. Safety is evaluated by the 

%BG ≤ 4.4 mmol/L, %BG ≤ 4.0 mmol/L (mild 

hypoglycaemia) and %BG ≤ 2.2 mmol/L (severe 

hypoglycaemia). Performance is assessed by the percentage 

time in band (%BG with 4.4-8.0 mmol/L), and the median 

[IQR] per-patient BG. Insulin and nutrition %GF rates are also 

compared. Finally, workload is assessed by numbers of BG 

measurements per day, where a higher value would indicate 

more work for the change in stochastic models. 
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Figure 4 – Simulation results comparison using the 2D (blue) and 3D (red) stochastic models for the same patient. Top panel 

shows the evolution of simulated BG, crosses represent BG measurements. Middle panel show this patient-specific SI profile. 

Bottom panel shows insulin boluses and nutrition rates over time. 

3. RESULTS 

Clinical and simulation results are summarised in Table 1 for 

each protocol. An example of the GC outcome results for each 

protocol is shown for one patient in Figure 4. Resampled BG, 

insulin rate, and percentage goal feed rate cumulative 

distribution functions (CDFs) are shown in Figure 5. 

Regarding performances, simulations results in Table 1 show 

both models achieved similar 90% time in the 4.4-8.0 mmol/L 

band for similar workload (11.6 vs. 11.7 measurements per 

day). The median [IQR] BG level achieved is slightly lower 

for the 3D stochastic model (6.3 [5.7, 6.9] vs. 6.0 [5.5, 6.7] 

mmol/L), reflected in Figure 5 (top). Additionally, both 

median [IQR] insulin and nutrition rates are higher for the 3D 

stochastic model (3.0 [1.5, 5.0] vs. 2.5 [1.5, 4.0] U/hr, and 92 

[70, 100] vs. 99 [66 100] %), also reflected in Figure 5 (middle 

and bottom). 

Concerning safety, the 3D stochastic model achieved lower % 

BG > 8.0 mmol/L (8 vs 7%), but higher % BG < 4.4 mmol/L 

(2 vs. 3%). More specifically, 0.5% higher BG < 4.0 mmol/L 

(mild hypoglycaemia) is observed for the 3D stochastic model, 

while very low % BG < 2.2 mmol/L (severe hypoglycaemia) 

for both models (0.02 vs. 0.03%) occurred. However, 12 

patients experienced severe hypoglycaemia with the 3D 

stochastic model, compared to 9 patients with the 2D 

stochastic model. 

These overall result trends can be seen in Figure 4, showing 

simulation results for one patient. BG (top) is similar, but 

slightly lower for the 3D stochastic model simulation (red). 

Insulin bolus sizes are often ~0.5 U/hr higher (bottom), as well 

as nutrition rates for the 3D stochastic model. The protocol 

simulations are based on identical SI profiles (middle), 

characterising this patient-specific metabolic evolution over 

time, thus really reflecting GC outcomes behaviour difference 

of these two protocols on the same underlying patient. 

 

Table 1 – Simulation results summary for safety and 

performance comparison. BG stats are calculated from 

hourly resampled BG as measurement intervals can differ 

treatment to treatment. Data is presented as median [IQR] 

where appropriate. 

 

4. DISCUSSION 

Overall, these simulations show both protocols using the 2D 

or 3D stochastic model achieved safe and effective GC, with 

very low % BG < 4.4 mmol/L and high 90% time in the 4.4-

8.0 mmol/L target band. The main difference between the two 

approach remains in the insulin and nutrition rates 

administered. As expected, the higher insulin rate 

administered allowed higher per-patient median nutritional 

deliver rates as a function of goal feed rate, improving a 

delivery rate that is near the best in the world (Stewart, et al., 

2018). Therefore, the similar safety and performance, achieved 

with similar workload, were realised with overall greater 

carbohydrates delivery. 
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# Patients 528 528 

Total hours 60246 60267 

Mean measurements per day 11.6 11.7 

BG level (mmol/L) 6.3 [5.7, 6.9] 6.0 [5.5, 6.7] 

Insulin rate (U/hr) 2.5 [1.5, 4.0] 3.0 [1.5, 5.0] 

Nutrition rate (%GF) 92 [70 100] 99 [66 100] 

% BG in 4.4-8.0 mmol/L 90 90 

% BG in 8.0-10.0 mmol/L 6 5 

% BG > 10.0 mmol/L 2 2 

% BG < 4.4 mmol/L 2 3 

% BG < 4.0 mmol/L 0.9 1.4 

% BG < 2.2 mmol/L 0.02 0.03 

# patients (%) < 2.2 mmol/L 9 (1.7) 12 (2.3) 
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Figure 5 – Cohort resampled BG, insulin rate, and %GF CDFs 

comparison between simulations. 

A recent study showed STAR capacity to deliver nutrition 

rates better than 158 ICUs in 20 different countries (Stewart, 

et al., 2018), which may be associated with improved clinical 

outcomes in ICU (Heyland et al., 2011). In this study, the new 

3D stochastic model provided even better carbohydrate 

delivery compared to the previous 2D stochastic model. 

As explained, previous analysis on the new 3D stochastic 

model has shown the 3D stochastic model has consistently 

tighter prediction bands more than 70% of the time, 

particularly when SI is stable. These virtual trials confirm the 

accuracy on the forward prediction of SI variability of the new 

3D stochastic model, allowing more aggressive dosing, while 

increasing calories intake and ensuring both safety and 

performance. The 3D stochastic model thus improves the 

patient-specific GC approach in STAR. 

Based on these results, a pilot clinical trial can be realised to 

assess and compare safety, performance, nutrition delivery and 

workload of STAR using this new 3D stochastic model. 

5. CONCLUSIONS 

This study compared virtual trial results of STAR GC protocol 

using a 2D stochastic model, using only current SI to predict 

future SI, and a new 3D stochastic model using both current 

and previous SI to predict future SI changes. Simulations 

results showed similar safety and performance, while the 3D 

stochastic model version uses more aggressive insulin dosing. 

The main difference relies in the greater delivered % GF 

calorific content, for similar clinical workload. 

The 3D stochastic model implementation within the STAR 

framework can thus potentially lead to beneficial outcome in 

critically ill patients, as increased nutrition rate delivery is 

associated with improved clinical outcomes. A pilot clinical 

trial could thus assess and confirm these results. 
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