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Photodecay amplitudes in a flux-tube potential model for baryons
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%'e calculate the photodecay amplitudes of X and 6 resonances within a Aux-tube quark model

for baryons using a nonrelativistic quark-photon interaction. %e find that the configuration mix-

ings previously obtained by diagonalizing the hyperfine interaction give a good qualitative fit to the

experimental data. A comparison with other potential models is also given.

I. INTRODUCTION

An important test for the hadron structure is provided
by the electromagnetic interactions of baryons. The
present status of predictions of the yN decay couplings
arising from various quark models' is summarized by
the Particle Data Group.

The purpose of the present work is to calculate the pho-
tonic couplings by using the semirelativistic quark model
described in Ref. 6 and the quark-photon interaction of
Ref. 7. In Ref. 6 the baryon wave functions were obtained
by the diagonalization of the hyperfine Hamiltonian in a
space spaimed by the 56, 70, and 20 SU(6} multiplets.
The unperturbed wave functions used in the diagonaliza-
tion were derived variationally by Carlson, Kogut, and
Pandharipande in the frame of a fiux-tube quark model
which yields a linearly confining potential with two- and
three-body terms. The unperturbed Hamiltonian
(representing the color-electric interaction) and the hyper-
fine splitting (originating from the color-magnetic interac-
tion) are based on the same quark-gluon dynamics and ac-
cordingly give to the model a higher degree of consistency
than that of a harmonic-oscillator model. ' ' One im-
portant aspect is that the unperturbed spectrum is deter-
mined up to a single additive constant.

The outcome of our calculations are the helicity ampli-
tudes /I i /2 /I 3/2 Both the ground state of the nucleon
and the resonances are described by the mixture of config-
urations obtained in the diagonalization procedure. %e
present results for two different sets of values of the
quark mass m and the size parameter A of the quark used
in deriving the hadron spectra. There is no free parameter
in the photon-quark interaction.

In Sec. II we briefiy describe the quark model of Ref. 6.
In Sec. III the derivation of the decay amplitudes is
presented. In Sec. IV our numerical results for these am-
plitudes are shown and compared with the experimental
data. Section V is devoted to a discussion and a compar-
ison with other models. Details concerning the wave
functions and the analytic derivation of the decay ampli-
tudes are given in the appendixes.

rI. THE MODEI.

teraction in a truncated space spanned by the 56(0+,2+},
56'(0+), 70(0+,1,2+), and 20(1+) SU(6) multiplets.
Each unperturbed wave function has a space part of the
form

1( „(riz rii, r11}=Fix& 1If (rij )tn(riz, ri1, r11}
f (J

(2.1)

where r;~ are the interquark distances and f and Fizz are
the two- and three-body parts of the ground-state wave
function (n =0). The polynomials y„with n&0 intro-
duce radial or orbital excitations. The wave functions P„
are given explicitly in Appendix A in terms of the Jacobi
relative coordinates

1p= (ri —r1),v'2

1
(ri+r2 —2r&) .

&6

(2.2)

The functions f and Fi23 have the form

lnf(r)= —W(r)(Air+Azr )—[1—W(r)]hi 5r' (2.3)

1+exp( —r0/a )
W(r) =

1+exp[(r —ro)/a]
(2.4)

(2.5)

TABLE I. Values of parameters of the hyperfine interactions
used in the calculations. m is the mass and A is the size of the
quark.

A
(fm}

The hadronic states under discussion have been ob-
tained in Ref. 6 by the diagonalization of the hyperfine in-

360
324

0.13
0.09
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TABLE II. Photod~~y hehcity amphtudes. For each resonance the first and second lines are the results obtained with the param-
eter sets I and II, respectively. The third line reproduces the experimental data from the Particle Data Group (Ref. 5). Masses are in
MeV and amplitudes in 10 GeV ' . A factor i has been omitted from the amplitudes of the negative-parity resonances. The
theoretical hehcity amplitudes are calculated as explained in Appendix C.

Resonance

P11{1440)

Main component

2W(56', O+)-,'+

1607

1400—1480

—30
—31

+ 19

+ 19

+ 37+19

D13(1520) N(70, 1 ) 2 1579

1496

1510—1530

+ 213

+ 202

+ 167210

+57
+45
—22+10

—211

—201
—144214

—88
—65+13

S11(1535) N(70 1 )— 1568

1475

1520—1560

+ 210

+ 203

+ 73+14

—188

—182
—76232

S11(1650) N(70, 1 ) 2

1627

1620—1680

+68
+77
+ 48+16

—41

—48
—17%37

D15(1675) X(70, 1 ) 2 1690

1653

1660—1690
+7
+ 19J12

+3
+5
+ 19+12

—35

—39
—69' 19

—27
—47+23

F15(1680) 2E(56,2+)—,

1754

1670—1690

+96

+ 94

+ 127%12

+23

+ 22
—17+10

—28

—30
—30%14

+2
+ 31+13

D13(1700) 4~(70, 1-)-', 1726

1714

1670—1730

+17
+21
0+19

+2
+1
—22+13

—58

P11{1710) 2N(70, 0+)
2 1868

1795

1680-1740
—48

+ 5+16
+35
—5+23

P13{1720)

F1P(1990)

2X(56,2+)-,'

N(70, 2+)
2

1859

1752

1690—1800

1980

1950—2050

+47
+45
—35+24

—5

+ 31+55

—118

+ 52+39

—12
—43+94

—10

—8
—122+55

+45
+ 47
—2+26

—49+45

P33{1232) 'a(56, 0+)—,
'

1285

1230—1234

—159

—181
—258+11

—101
—141+5

P33(1600) 6{56',0+)
2

1904

1500—1900

—38
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TABLE II. (Continued).

Resonance

$3) (1620)

Main component

L(70, 1

1631

1600—1650

+ 154

+ 141

19+16

D33(1700) 4(70, 1 ) 2 1657

1631

1630—1740

+ 212

+ 201

+ 77+28

+ 149

+ 149

+ 116+17

F35{1905) '6(70,2+)-,' 1997

1962

1890—1920

+28
+41
—47%19

+33
+36
+ 27X13

P3) (1910) h(70, 0+)
2 1934

1910
1850—1950

+26
+35
—12+30

P33(1920) 4a(56, 2+)-,' ' 1986

1964

1860—2160

—39

+ 23k'7 + 40+'1

F37(1950) h, (56,2+)
2

1952

1910—1960

—21
—90+13 —73' 14

where r;4 is the distance between the quark i and a point
r4 where the flux tubes originating from quarks meet at
120'. For the particular cases where an angle between
flux tubes is larger than 120', the point r4 coincides with
one of the quarks. The parameters A, i, A,2, A, , 5, ro, a, and

P have been determined variationally in Ref. 8. They take
the values

In the present study we have considered two different
sets of values for the mass m and the size A of the quark.
They are given in Table I. Set I was used in Refs. 6 and
14. Set II was found to give a better overall hadron spec-
trum and in particular a better nucleon mass. The corre-
sponding resonance masses can be read in Table II. The
mixing angles associated with set I can be found in Ref. 6.

A, i ——0.198 fm

A,2
——0.637 fm

Ai g
——1.4 fm

ro ——0.12 fm,

a =0.12 fm,

P=0.25 GeV

(2.6)

and V o is the string-tension constant

Mcr= 1 GeV fm

The term containing A,i has been overlooked in Eq. (2.2)
of Ref. 6 but calculations were in fact performed as indi-
cated here with the above parameter values.

The hyperfine interaction is the sum of a s in-spin term
and a tensor term' and it has been modified to include a
finite-sized quark.

III. THE DECAY AMPLITUDES

In order to avoid any confusion we specify below our
definitions and conventions.

The quark-photon interaction 4 used in these calcula-
tions is the satne as that used in Refs. 3 and 7. Because of
the symmetry of the wave function of three identical
quarks, the operator A can be written as three times the
contribution of the third quark. If the charge, momen-
tum, and spin operators of the third quark are denoted bype

(3)
(p").~+gs").H), (3.1)

where g is the gyromagnetic factor of the quark, H is the
magnetic field, and A the corresponding vector potential.
For the emission of a right-handed polarized photon with
momentum k, the potential A reads
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A(r'")= e t —Ik.r(3'e a~e (3.2)

with

e= — (l, i,0) .
1

2
(3.3)

Taking k along the quantization axis, A can be brought
to the following convenient form:

(3.4)

where
for set I,

—0.110
i

N(70, 0+)—,
'

) (3.12)

The main motivation of this study was to investigate
the role of the configuration mixings produced by the
model described in Ref. 6. Both the initial and final state

~ f ) are a niixture of SU(6) basis states with specific an-
gular momentum and parity. For the nucleon ground
state we consider two versions of configuration mixings
due to parameter sets I and II of Table I. These are

%=0.988
~

'N(56, 0+)—,
'+ &+0.106

~

'N(56', 0+)—,'+)

S{3)=S(3)—lS(3)
Z

&=6@,3/eke

(3.5)

(3.6)
—0.172

~
N(70, 0+)-,' ), (3.13)

%=0.969
~

'N(56, 0+)—,'+)+0.174
~

'E(56', 0+)—,
' )

3P = — Yn ike '+ (P"' i'"')—6

g
Z y (3.7)

where p, is the quark magnetic moment. We have taken

g=1,
p=0. 13 GeV

(3.8)

(3.9)

and

(WL.~ I lfcsr &= —323/6&~~kl g
'

2/3t a,(3)

(3.11)

It is easy to show that expressions (3.10) and (3.11) reduce
to three-dimensional integrals. One example is given in
Appendix B. The specific matrix elements we need to cal-
culate are those entering the definitions of the helicity am-
plitudes A i/3 and A3/2 By definition the amplitude A i/3
is the inatrix element (f ~

A
~
i ) where the resonance is in

a state of angular momentum projection J,' = —,
' and the

nucleon has J,= ——,
' in its ground state. The amplitude

33~2 corresponds to a matrix element with J,' = —, and

Jg ———,', respectively.

For photoemission one needs to calculate matrix elements

(f (4 ~i) where ~i) is the resonance and
~ f) is thenu-

cleon ground state plus a photon. After performing the
straightforward calculations in the fiavor and spin space,
the problem reduces to the calculation of the matrix ele-
ments of W and 9F in the coordinate space. For this pur-
pose we rewrite M and 4' in terms of the Jacobi relative
coordinates (2.2). If the spatial wave functions (2.1) are
written as P~qsr (APPendix A), where the index iu sPecifies
the symmetry with respect to permutations (p, A, , S, and
A) of the three-quark wave function, we have to evaluate
six-dimensional integrals of the following kind:

&i'iM l~li'iw &=6v+~k J ~'p~'&~i'tv)'

+&
iv 2/3il4'3~ygs'

(3.10)

for set II. There are also other components but their am-
plitudes are smaller than 0.04 and have been neglected.
The configuration mixings associated with the resonances
obtained with set I are taken from Table I of Ref. 6. The
matrix elements (f ~A [i) for

~
f)=

~
N(56, 0+)—,

' )
and

~
i ) equal to all SU(6) configurations entering the

present calculations expressed as linear combinations of
matrix elements of W and 9P are given in Appendix C.

2 2

k= mg

2mR
(4.1)

where m~ and m~ are the calculated nucleon and reso-
nance masses, respectively. They are given in column 3 of
Table II for the resonances available from the Particle
Data Group. In this table each resonance is represented
by three lines: the first and the second reproduce our nu-
merical results corresponding to sets I and II, respectively,
and the third line represents experimental data. The
columns four to seven give the helicity amplitudes in the
sequence A$/3 Ai/3 A3/3 and A»3. As mentioned, set
II gives a better overall description of the N and 5 spectra
than set I but for the decay amplitudes it does not always
make a substantial change. This happens in cases where
although m~ and m~ are changed, the photon momen-
tum (4.1) varies only little. A change of sign takes place
when set I is replaced by set II only in the case of the
A i/3 amphtude for the P33(1920) resonance.

For both sets the comparison with experimental data
shows that the sign of the decay amplitudes is well repro-
duced in most cases. The few exceptions can be read in
Table II. The results for the magnitude of the amplitudes
are quite satisfactory. In particular, the absolute value of
A i/3 for Ei3(1680) turns out to be small (backward "miss-
ing" resonance) without imposing any constraint, as in
Refs. 3 and 7, where the harmonic-oscillator parameter
was fitted to cancel the amplitude A f/3 of this resonance.
As already established in Ref. 3, configuration mixings
play an important role. For instance, the nonzero values

IV. RESULTS

The photon momentum k is evaluated in the resonance
center-of-mass frame where the partial-wave analysis is
performed. It reads
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of A i&2 and A/~2 of the Fiq and Di5 resonances arise en-

tirely from the
~

N(70, 0+)—,
' ) component of the nu-

cleon ground state, as it can easily be understood with the
help of Appendix C. The results of Table II contain both
the resonance and ground-state mixings. %e have made a
detailed analysis of each of these contributions separately.
We found that the resonance mixing alone produces a sign
change in the following cases: A$&q and Ai'~z of F3/,
A»2 of S»(1650}and A i&2 of Fi3 for both sets, A~i'~q of
P»(1440} and Af&z of F33(1920}for set II. By the addi-
tion of the ground-state mixing to the resonance mixing,
some amplitudes vary by a large factor. For instance, the
A~i&2 amplitude of the Roper resonance changes from —2
to —30 (10 3 GeV '~2) for the set I case.

V. DISCUSSION

We think it useful to discuss the merits and failures of
the present calculations in comparison with the results of
other quark models in order to understand the kinds of
improvements which can be done.

Comparison will be made with the work of Barbour and
Ponting2 and that of Koniuk and Isgur3 because they are
the most closely related to our study. An essential com-
mon feature with Ref. 2 is the linear confinement. An
important difference is our inclusion of the (70,0+) and
(70,2+) configuration in the baryon wave functions. The
similarities between Ref. 3 and our work consist in con-
sidering entirely the same SU(6) subspace and neglecting
the spin-orbit coupling. The main difference resides in
the choice of the unperturbed Hamiltonian.

Because of the chosen SU(6) subspace we have common
selection rules and common effects with Ref. 3, in partic-
ular, the role of the

~
N(70, 0+)—,

' ) configuration in the
ground state and the importance of resonance mixing in
changing the sign of some amplitudes.

Despite the differences in the nonelectromagnetic part
of the Hamiltonian (type of confinement, quark-size ef-
fects), it turns out that the present helicity amplitudes are
qualitatively comparable to those of Ref. 3.

There is an astonishing result in our calculations. Al-
though the Roper resonance is too high by about 150
MeU with respect to the nucleon ground state, its decay
amplitudes are quite weD reproduced. Also the negative-
parity spectrum seems to be a success but some of the cor-
responding decay amplitudes are too large.

In conclusion it seems to us that the decay amplitudes
are satisfactorily well reproduced by the present calcula-
tions where there is no free parameter for a chosen calcu-
lated spectrum. The model used in deriving the spectrum
is based on QCD-inspired ideas and therefore has a cer-
tain degree of consistency due to the common origin of
the spin-independent (linear confinement) and spin-
dependent (hyperfine interaction) parts of the effective
Hamiltonian.
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APPENDIX A

one has, in terms of the Jacobi coordinates p and 1(, [see
Eqs. (2.2)],

4oo=&
Coo=&oo[i —«p'+~') ]F ~

$00 ——N~oo —,
'

(p —A, )F,

P 10 +lopO

P 10 +10M ~

itio=Ãio(p A, + p+~ —)F,

$20——%20[3(po +Q ) —(p +A, )]F,
4 20=&fo(3po4 —p'~)F

it'so= 2 &50[3(po' —4') —(p' —~')]F .

(A2)

(A4)

(A5)

(A6)

(A7)

(A9)

(Al 1)

In the above equations, we have used the notations

(A12}

and NL 0 to designate the normalization factors given in
Ref. 6.

APPENDIX B

As an example of the reduction of the M and 3F ma-
trix elements to three-dimensional integrals, we consider
here the & $00 j

W
~ g qo) matrix element. In this case, Eq.

(3.10) becomes

& Coo I
~

I 420& =6@v'~k

X J d pd A,goocos(v'2/3k+)$20,

(B1)

or by using expressions (A2) and (A9),

X J 1'pd'A, [3(po —Ao') —(p2 —A.')]

X cos(&2/3kAO)F2 . (B

In this appendix we provide the explicit expressions of
the wave functions P~L~ considered in the text. Only the
wave functions for M =0 will be given here; the others
can be obtained from those given below by using standard
methods.

By writing

(Al)

Useful discussions with N. Isgur, J. Paton, and R.
Cashmore are gratefully acknowledged.

Since E depends only on p, A, , and p.k„one can expand E
in terms of the Legendre polynomials:
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F2= g fL (p, A, }PL,(x), (83} ZL+ l +~,
fr (p, A, ) = f F (p, l, ,x)PL(x)dx . (85)

and

By introducing the expansion (83) in Eq. (82) and by
using the addition theorem for the spherical harmonics,
the integrations over p and A, can be performed in a
straightforward manner. One is then left with the p, A, ,
and x integration variables. Explicitly, one obtains

&Qpp ~

W
~ $2p& =3@&m/kNppN)p ~6[S2(4, 1)—Sp(2, 3)]+9/k[C2(4, 0)—Cii(2, 2)]+ [Sp(2, 1)—S2(4, —1)]

(86)

where we use the notations

S~(nml 1n 6, f=p dp f "k sin(V'2/3k')dk

X I' I'L, x x, 87

CL (n, m) =16m f p"dp f A,icos(v'2/3k', )dA,

X FI'I x x. 88

All other matrix elements can be treated in the same
manner. The labor involved has been hghtened by per-
forming most of the algebraic calculations with the
REDUCE symbolic-manipulation program. '

APPENDIX C

Here we explicitly provide the expressions of the matrix
elements &f ~

A
~
i & with

~

i & running over the 30 basis
states considered in Ref. 6 and

~ f&=
~

N(56, 0+)—,

corresponding to the main component of the nucleon
ground state (3.12) or (3.13). We shall use the notation

&i'/2 ——&proton, neutron; J,= ——,
'

~P
~

resonance;

(Cl)

A)/z ——&proton, neutron; J,= —,
'

~A
~

resonance;

(C2)

We list only the amplitudes A i~/2 3/2 which do not vanish
trivially due to total angular momentum conservation.
For b, resonances, we provide only the A i/2 and A$/2 am-
plitudes since one has

(C3)

(C4)

1.
~

i&= ~'N{70,2+}—,"&

gn

A 3' =0 .

2.
(

i & =
~

h{S6,2+)—'

&fool ~ I @2o&

3. j i&= ~2N(S6, 2+)
2

&ii('oo I
~

I 4zo&

4.
)

i & =
~

2N (70,2+ )T~

(C9)

(C10)

(Cl 1)

(C12)

(C13)

(C14)

(C15)

{C16}

(C17)

AJ/2 0

(C6) ( i & =
( N{70,2+)T~

A$/p ——0, A]y2=0 &

/{in= — &i}'op
I
~

I @2o&
n &21o s

630

(C19)
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A(g2 ——0,
s &15 s

105

6.
I
i & =

I
~b,(56,2+ }—,

9 210

~'3n =
105

&|t oo I
~

I leo& .
2v'105 s s

7.
I

i & =
I
~h(70, 2+}—',

(C21)

(C22}

(C23)

(C24)

A$~~ =

gn
~3/2 =—

A~/2=0 ~

A/g2
——0,

&Coo I
&

I @z &

11.
I
i & =

I

4N (70,2+) z

(C37)

(C38)

(C39)

(C40)

(C41)

(C42)

A f/p 0

A ~/2=

S.
I

i & =
I

N(70, 0+) z

(C25}

(C26)

(C27)

A p)/2 ——0,
A )/2 ——0,
~in=0
A3/2=0 .

12.
I
i &= I2N(20, 1+) z

I
i &= I'i)(56, 0+)-,

(C43)

(C45)

(C46)

nA3/2=

Afg2
——0,

18
&fool~lfoo&.

(C29)

(C30)

9 &Poo I
~

I Coo&,

9 &fool ~
I @oo& (C48)

I
i&= I'N(56, 2+}—', +& 14.

I
i &= I'h(56', 0+)-', '&

~ 1/2
wP (C49}

gn 0

(C31)

(C32)

(C33)

(C34}
A }/2=p

9 &@~ I
~

I @m& .

». Ii&= I'+56, 2+}23+&

45
&&'

I
~

I 4m&

(C50}

(C51)

10. Ii&= I'N(7o, 2+)—', '&

16.
I

i &= I'a(70, 2+}-', +&

(C52)

(C35)

(C53}

(C36)
(C54)
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17.
I

i & =
I
'N {56,0+ ) 2

(C55)

&eml~le»&+, &Vml& Iy»&,
s ~ ~6 s

(C72)

~in= —-'&too
I
~

I too& .

is. Ii&= I'N(56', 0+}—,''&

~5(~= — &Wool I 0»&,s
6

(C73)

~in= i &Coo I
~ lit oo&

i9. Ii&= I2N(70, 0+)I''&

~in=
6 &Pool~ lfoo&

s

20.
I

i &=
I
4N(70, 2+)T'

(C58)

(C59)

(C60)

26.
I

i &= I'N(vo, i-)-,'

27.
I
i &= I'h(70, 1 )—',

(C75)

(C76}

(C77)

(C78)

A ]/2 —0

90 &Pool~l@zo&

(C61}

(C62)
(C80)

A~)/2 ——0,
A ~/2 =0 ~

21.
I

i & =
I
~N(20, 1+) z

(C63)

(C64)

28.
I

i &= I~N(70, 1 )2

22.
I

i & =
I

h(70, 0+) z

~~igz=
18

&Sool~lfoo&.s

23.
I
i&= I'~(56,2+}I'&

(C65)

{C81)

~in=
54

&&ool~ Idio&+ 9 &Wml& lfii& «82)s ~ ~& s

29.
I

i &= I4N(70, 1 )-,'

A~/p=0 ~

24. I i &= I~N(70, 1 )T~

(C66)

(C67)

A]/2=0 ~

s
S4

30.
I
i&=

I
~EL(70, 1 ) z

(C83)

(C84)

Afg2 ——0,
n

A3/2 = (C70)

25. I
i&= I'N(70, 1 )T~

~'in=
9

&kool~lfio& —
18

&Wool 1@ii&
s i ~& s

(C71)

The amplitudes corresponding to
I f &

=
I

N(56', 0+)—,
'

& can be obtained from the amplitudes
(C5) to (C85) by replacing &goo I by &goo I. Those corre-
sponding to If &= I'N(VO 0+)Ti'& are not given expli-
cit1y here but are available on request.

%'e note that our expressions do not depend on the
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model which is used to obtain the spatial wave functions
In particular, they also apply to the hartnonic-

oscillator model used, for instance, in Refs. l, 3, and 7.
Before comparing a calculated helicity amphtude to the

experimental one, we have to multiply it by the sign of the
helicity amplitude A &/2e~ for the decay into N+m. This

is because the photoproduction experiment and analysis
determine the quantity' A t/p 3/psgn (A, /fez). In Table
II we have assumed that sgn(A, /2 z) can be obtained
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