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Complex heavy ion optical potential and the proximity concept
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We show that within the proximity frame and for low bombarding energies, one can construct a complex
universal function giving access to both the real and imaginary volume contributions to the heavy ion opti-
cal potential.

NUCLEAR REACTIONS Complex heavy ion optical potential, proximity approxi-
mation.

H'= Xr;+ —, X u'(r, k„, p, r"')
i&j

(2)

In Ref. 7 4'(D) was identified with a totally antisym-
metrized two-center harmonic oscillator wave function, '
and a computation was performed with no further approxi-
mation for the ' 0+' 0 system.

In this Brief Report we want to discuss the simplifications
brought about by the application of the proximity concept in
the computation of V,„,. In the proximity frame, the real
part of V,p, can be written as"

Re V,~, (D) =2m 4 (s); s =D —R~ —R2
A)R2

1 2
(3)

where R; is the central radius of nucleus i and &0"(s) is a
universal (i.e. , ion independent) function defined by

4"(s) = JJ e(s')ds' (4)

with e(s') denoting the interaction energy per unit surface
of two semi-infinite slabs separated by the distance s'.

In order to study the heavy ion optical potential, it is con-
venient' to consider that locally a heavy ion collision can
be pictured as that of two nuclear matter systems. Such a
model yields the volume contribution (see Ref. 8 for a full
discussion) to both the real and imaginary parts of the opti-
cal potential. Indeed, in the momentum space, the Fermi
sea of the system will be composed of two spheres separated
by the relative momentum per nucleon K,. Such a de-
formed shape allows for energy conserving collisions and
hence for the appearance of the absorptive part in the opti-
cal potential ~ The ambiguities in the exact shape of the
two-sphere Fermi sea can be minimized' by the fact that the
radii of the spheres can be determined from the local values
of the matter and intrinsic kinetic energy densities p and
7 ', which are thus looked at as the relevant physical quan-
tities in the heavy ion collision. In Ref. 5 one has shown
how a complex effective force u„'(r, K„p, r~ ') could be ex-
tracted from the model in order to take into account finite
range effects which would otherwise be missed in a purely
local application of the model. The optical potential at
separation distance D could then be computed by means of
the formula

V.„,(D) = (~(D) IH I ~(D) ) —(~(-) IH'I ~(-)),
with the effective Hamiltonian H' given by

Corrections for finite curvature' and energy dependence'
have also been discussed.

Since Eq. (1) yields both the real and imaginary parts
V p$ it is interesting to investigate whether relations analo-
gous to (3) and (4) remain valid for ImV, ~,. The present
work should therefore be considered as a practical investiga-
tion of the applicability of the proximity concept to the ima-
ginary part of the optical potential. The imaginary contribu-
tion to V„, we consider here results from two-body col-
lisions allowed by the Pauli principle. Hence we view the
present extension of the proximity concept as complementa-
ry to that studied by Randrup and Swiatecki' for one-body
friction.

The calculation of the complex interaction energy per unit
area

e'(s) = e"(s') +ie'(s')

is based on the energy functional of Refs. 15 and 16. As a
prerequisite we have to define the matter distribution of a
semi-infinite slab. Following Ref. 17, we assume a distribu-
tion of the Fermi type which, by taking the z axis perpendic-
ular to the slab surface, reads

po

I+e &
z) =

where po=0. 17 fm ' is the saturation density of nuclear
matter. The diffuseness a is obtained by minimizing the
surface energy of the slab:

Es=4mro A ~
I (H —Hop)dz; ro= 3

4mpo
(6)

In this equation Ho is the energy density of nuclear matter
at saturation and H is the energy density at point z. These
quantities have been computed by using the real part of the
energy density with the K, =0 Skyrme parameter set derived
in Ref. 16 from Reid soft core G-matrix elements. By using
the Thomas-Fermi approximation for the kinetic energy
density, one obtains that a =0.52 fm or equivalently"
b =0.943 fm minimizes the integral (6) to Es =26.29Hz ~

MeV. This gives a surface energy coefficient y = 1.668
MeVfm

By using again the complex Skyrme energy densities
H'(K„z) obtained in Refs. 15 and 16 we can now define
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e'(s') for two interacting slabs through the usual relation

e'(s') = t [H'(K„,z, 1+2) —H'(K„,z, I)

0

—H'(K„z, 2) ] dz (7)

K„'p t(z) p2(z)r"'(z) = rrF[p(z) l +
p(z)

(9)

where p;(z) is the matter density at point z in slab i
(i =1,2) and r»[p(z)] is the Thomas-Fermi approxima-
tion to the kinetic energy density corresponding to density
p. The approximation (9) has been found'9 to be valid at
small K,. The real and imaginary parts of the corresponding
universal function (7) are displayed in Figs. 1 and 2, respec-
tively. In Fig. 1 we also show the corresponding universal
function @ of Ref. 11 to be compared with our result for e~
at K, =O. All functions are given in units of 2y and are
plotted against s in units of b. Although our values of y
and b are different from those of Ref. 11, $ and e" at
K, =0 are quite close to each other. This suggests similari-
ties between the basic effective interactions used in each
case. Our result for e~ reaches a minimum at s =0 because
of the Fermi type profile, while in Ref. 11 the density pro-
file obtained from Thomas-Fermi calculations gives a
minimum at s &0. As far as the energy dependence is con-
cerned we notice only a small difference between the curve
at K, =0 and those at K, &0. This can be explained in the
following way. The approximation (9) for the intrinsic
kinetic energy v~ ' makes the total kinetic energy density
r = r~~~+ j2/p independent of K, if the current density j is

where the extra argument 1+2, 1 and 2 refer to the com-
bined system and to the individual slabs 1 and 2, respective-
ly. We note that H'(1) and H'(2) are, in fact„real quanti-
ties. " In order to calculate H'(K„,z, 1+2) we have used
the frozen density approximation""

p(z) = pi(z) + p2(z)

and the following approximation for the intrinsic kinetic en-
ergy density:

)8 -0.2
K

ru -0.4

FIG. 2. The imaginary part eI of the universal function e'of Eq.
(7) as a function of the separation distance s (in units of b) for
K, =0.5 fm [curve (1)] and K, =1.0 fm [curve (2)].

treated in the approximation j= (K,/2) (p& —p2) as shown
in Ref. 19. Hence, at K, & 0, the energy dependence
should entirely come from the potential part H„, of ReH'.

H»t =
8 top +

&&
t3p +

&&
(3t& +5t2) pr

3 (2)

+
64 (9ti —St2)( V p)2 (10)
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It occurs, however, that the energy dependence contained'
in the Skyrme parameters t; (i =0—2) is counteracted to a
large extent by the energy dependence of v'' as given by
Eq. (9). Such a compensation effect is consistent with the
results of Ref. 7 (see Fig. 3).
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FIG. 1. The real part e~ of the universal function e' of Eq. (7)
(in units of 2y) as a function of the separation distance s (in units
of b) for two interacting slabs. The full curves (0), (1), and (2)
represent our result at K, =0.0, 0.5, and 1.0 fm, respectively, and
the dashed curve comes from Ref. 11.
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FIG. 3. The real part T+ Vof the optical potential for 0+ 0
as a function of D at three different relative momenta. Full curve:
present result; dashed curve: Ref. 7. We also indicate the potential
part V only in each case.
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In its complex form the potential part of the energy func-
tional H' is"'

Hp„= [1 + i g( p, r"') ]Hp„

where ((p, r~2~) is a scaling factor defined in Ref. 15 which
depends on the local values of p and v . The imaginary
proximity function e' calculated from Eqs. (7) and (11) and
plotted in Fig. 2 shows a very pronounced energy depen-
dence. According to the above discussion for e~ the energy
dependence of e' comes essentially from ( which depends
on energy through 7

The universal functions of Figs. 1 and 2 have been used
to calculate the complex proximity potential for ' 0+' 0
and the result is shown in Figs. 3 and 4. This pair has been
chosen in order to compare the proximity potential with
what we call the "exact" results of Ref. 7, also indicated in
Figs. 3 and 4. In Eq. (3) we took R; =2.7 fm, which is the
value of the rms radius obtained with a harmonic oscillator
shell model for ' 0 with a size parameter equal to 1.8 fm as
used in Ref. 7.

In Fig. 3, Re V„, corresponds to the curves called T+ V,

i.e., contain the contribution from both the kinetic and po-
tential parts of ReH'. In order to see to what extent the ap-
proximation for v. is responsible for the disagreement with
the calculations of Ref. 7, we have also separately drawn the
potential part contribution called V. For all values of K, at
large separation distances there is a good agreement
between the present results and those of Ref. 7. Less good
is the agreement for T + V, and this is essentially due to the
approximation for r implied by Eq. (9).

In Fig. 4 the comparison is made for ImV„, . It can be
seen that in the physically relevant tail region, the proximity
approach leads to fairly good results at low bombarding en-
ergies (E„&0.5 fm '). The discrepancies for small separa-
tion distances or for higher energies (E,=1 fm ') are to be
ascribed to the deficiencies in approximations (8) and (9).
In particular, the frozen density approximation (8) does not
take antisymmetrization effects into account while, as dis-
cussed in Ref. 19, approximation (9) overestimates
This enhances the corresponding deformation of the local
Fermi sea and hence leads to too strong an absorption.

The present results show, however, that the proximity re-
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FIG. 4. Im Vo~, for ' 0+ 60 as a function of D at K, =0.5 fm
(curve 1) and K„=1.0 fm ' (curve 2). Full curves: present
results; dashed curves: Ref. 7.

lation (3), together with our universal functions 4~ and 41,
provides a reliable first approximation to the tail region of
the low energy heavy ion optical potential. This suggests
that the proximity approach can be used as an alternative to
more elaborate calculations, not only for the real part but
also for the volume contribution to the imaginary part.
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