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Pion decay amplitudes of nonstrange baryon resonances are calculated assuming a pseudoscalar
single-quark-emission-type model for the decay process. The resonances as well as the nucleon

ground state are described by configuration mixings obtained previously in a semirelativistic QCD-
inspired quark model. The decay widths are compared to the available experimental data and to
other theoretical results.

I. INTRODUCTION

In a previous work' we have analyzed the photodecsy
amplitudes of nonstrange baryon resonances of spins up to
—', for positive and —', for negative parity. The resonances
were obtained2 as excited states of N or 6 baryons
described by a semirelativistic three-quark model. The
comparison between the calculated and experimental heli-
city amplitudes indicated a general good agreement for
the sign and the order of magnitude. The photoemission
process was described by a standard parameter-free in-
teraction.

A further test of the configuration mixings predicted in
Ref. 2 for the resonance wave functions would be the
study of the strong-decay processes. The present work is
therefore devoted to the calculation of pion decay ampli-
tudes of the same resonances which have been considered
in Ref. 1 and for which available data exist. '

The first incentive of this work was to check the gen-
eral assumption made in Ref. 1 for the phase of the am-
plitude A~i.qadi ~ corresponding to the decay of a non-
strange resonance into a pion and a nucleon. There we
have supposed that for each resonance this phase is the
same as that obtained by Koniuk and Isgur in a
harmonic-oscillator basis. As our theoretical values for
the photodecay amplitudes reproduced the sign of the ex-
perirnental amplitudes in most cases, the above assump-
tion seemed to be reasonable. At the present stage it is
useful to check its consistency with the particular wave
functions resulting from the model of Ref. 2. In that
model the unperturbed Hamiltonian has a relativistic ki-
netic energy part and an adiabatic potential-energy part
derived from a flux-tube potential model. The potential
energy can be expressed as a sum of two-body potentials
of the form Coulomb + linear confinement and a three-
body potential proportional to the tension in the flux tube.
The residual interaction is the hyperfine interaction
modified to include a finite size for the quark.

In the present study besides the configuration mixings
obtained from the diagonalization of the hyperfine in-
teraction the other important ingredient is the pion-quark
coupling. Here we consider a pseudoscalar emission
model including a recoil-type term. This will allow us to
make a detailed and consistent comparison with the work

of Koniuk and Isgur where such a model is used in an
extensive analysis of strong decays of baryons. In con-
trast with their work where four parameters have been ad-
justed we keep free the two parameters appearing in the
meson-emission transition operator. Being intended as a
test of the baryon structure we use the full configuratio
mixings predicted in Ref. 2 both for the resonances and
the nucleon ground state. In this respect our analysis is
different from that of Ref. 4 where only unmixed configu-
rations have been used for the nonstrange sector.

In Sec. II a brief review of the quark model is given.
The pion emission model is described in Sec. III and re-
sults for the decay widths are presented in Sec. IV. The
last section is devoted to a discussion.

II. THE QUARK MODEL OF BARYONS

The semirelativistic quark model used in this work has
been extensively presented in Ref. 2 and summarized in
Ref. 1. Here we describe its main features. Details of the
wave functions are given in Appendix A.

The present analysis deals with nonstrange particles
only and is essentially intended to test the validity of the
wave functions associated with the positive- and
negative-parity spectrum of baryons. The baryon is
viewed as a three-quark system described by a semirela-
tivistic Hamiltonian. For the ground state of the unper-
turbed part of the Hamiltonian we have used the varia-
tional wave function of Carlson, Kogut, and Pandhari-
pande which consists of a product of two- and three-body
correlation factors related to the specific potential energy
derived from a flux-tube model. This energy is the sum
of three pair quark-quark potentials and a three-body
term proportional to the string tension in the flux tube.
The excited states are spanned by a set built orthogonally
on the lowest state and containing up to one unit of radial
excitation and two units of angular momentum.

The perturbation is represented by the hyperfine in-
teraction containing contact and tensor parts and modi-
fied to include the finite size A of the quark of mass m.
This interaction is diagonalized in a truncated space
spanned by the 56(0+,2+), 56'(0+), 70(0+,1,2+), and
20(1+) SU(6) multiplets. The functions +i~ of Appendix
A are used as space parts of these SU(6)-symmetric unper-
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turbed basis states.
The hadronic states to be tested here have been obtained

with two different choices for the qkkark mass and size:
namely, set I: m=360 MeV, A=0. 13 fm; and set II:
m =324 MeV, A=0.09 fm. Both have been used in Ref.
1 as well, for the analysis of photodecay amplitudes.

III. THE MESON-EMISSION MODEL

As for the photodecay process the strong decay of a res-
onance is assumed to take place through a single-quark
transition. Because of the symmetry of the wave function
of three identical quarks the transition operator 4 s can
be written as 3 times the contribution of the third quark.
We use a pseudoscalar-emission model including a recoil
term. ' Then A s can be set in the form

P s 3e '——"' (xk n' '+yp'" rr' ')X' ' (3.1)

where k is the momentum of the emitted pion, r' ' the po-
sition, p'3' the momentum, —,'n( ' the spin, and XM' the
SU(3)-flavor coupling operator of the third quark. For
neutral-pion emission the latter is given by

(3.2)

in terms of the Gell-Mann matrix }(,3. In Eq. (3.1) x and y
are free parameters.

The form (3.1) is akin to the interaction used by Mitra

l

k~= (k]—k2},
1

1
ki —— (ki+ k2 —2k3),

6

we have

(3.4)

( ki, k2, k3
~
R ) S=(k]+k2+k3)fx(kp, kL),

(3.5}
( ki, k2, k3

~

¹'"'}=5(k+kN )1()]v[k~,ki +(—', )'/ k],
where k)]) is the recoil momentum of the third quark after
the emission of a pion with momentum k. Then the ma-
trix element of A s becomes

and Ross which includes a recoil term (y&0) on the
basis of the Galilean invariance of the pion-quark in-
teraction and to the quark-pair-creation model in the
pointlike hmit. 9

This relation is most easily seen in the momentum
space. I.et us call $3( the resonance and pN the nucleon
ground-state wave functions and let us write the transition
matrix element for the decay process R~X+n. in the
orm

( N
i
P's

i
8 )

=3(¹'"'
~

(xcr(" k+ycr(3'p'")X' '
~

R } . (3.3)

In terms of the Jacobi momentum coordinates

(N ]» ~(R&=3x(kt+t„) J d'k, d'k~d'k, (((k, +k, +t }dN(klutz+( —', (' 't] &r™ t+ ~™t'" X])'dz(k~tk(.

(3.6)

(3.8)

The relations (3.7) and (3.8}could be used as constraints, leaving the model with only one free parameter x.
Our calculations have been performed in the configuration space where it is convenient to take k along the z axis and

split A & into a sum of four distinct operators. This amounts to writing

(N ~P s ~R }=J d pd Ag(p k)(deaf S() '+A S'+'+4 S' '+& S0')XM'$]t(p, k), (3.9)

This is proportional to the form taken by Mitra and Ross for the transition matrix elements if

E.
(3.7)

X Pl~

where E =(m +k )', m and m~ being the Pion and quark mass, resPectively. The second argument of 1(]v is Pro-
portional to k3 ——', k and one can write 8.6) as an integral over k~ and k3.

On the other hand the pointlike limit of the quark-pair creation model is recovered if we take

where SO,S+ ——S„+iS&are the spin operators and

Wo= 6xke'"~'"""~

dg(0 i 3/6 &i(2/3)(/2))(k
(}A,» M)(

g 0
&
~gyei(2/3)]/2]k 2(+ . .

M» (}A

dz)0 i.23/6 ei(2/3)]/2]k )k

8

(3.10}

The advantage of this decomposition is that after per-
forming the calculations in the flavor and spin space the
matrix element (3.9) reduces to a linear combination of
matrix elements of d3()', 3P, C, and & from which ds)'

and A are proportional to W and A used already in
Ref. 1. Also the matrix elements of K are related to
those of d(])) through the relation

& Wi,M I

&'
I Wi. M&-

)L+M+L'+M'(g
~

dl)0
~

g'
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Then in Eq. (3.9) only & is an entirely new operator, the
others can be formally related to the photoemission study.
As in Ref. 1 the matrix elements of W, A, V, and &
can be reduced to three-dimensional integrals (see Appen-
dix B of Ref. 1) over the variables p, A, and x =p.A, /pA, .

IV. THE DECAY %WIDTHS

To have a decay width consistent with the semirelativis-
tic quark model me use a relativistic two-body phase
space. ' Then in the rest frame of the resonance the de-

cay width takes the form

1 1&f l~s li& I' kEN

~~+1 mg Iu13P~R ) (4.1)

where J, I, and I3 are the total angular momentum,
the isospin and its projection for a=%,rr or 8, mz is the
resonance mass, Ez is the recoil energy of the nucleon in

its ground state, and k (MeV) is the momentum of the
emitted pion given by

k=
2m@

[(ma mN —m» ) —4m' m—» )'~ . (4.2)

For convenience we take m =m+ ——134.963 MeV. The
last factor in Eq. (4.1) is the inverse square of the coupling
coefficient in the isospin space. The mixing angles for

~
i ) and

~ f) are given in Appendix A for set II and those
for set I can be found in Ref. 2.

By performing the usual operations in the spin and fla-
vor space the helicity amplitudes &f ~A z ~i) are ex-

pressed as linear combinations of matrix elements of Wo,
3f0, and & (see Appendix B).

In Table I we display our numerical results for I ~ cal-
culated according to Eq. (4.1) for the 18 resonances whose
photodecay has been studied in Ref. 1. All but two are
four- and three-star resonances. The fraction averaged
square root of the "best guess" experimental width togeth-
er with the corresponding ex rimental range extracted
from the Particle Data Group are reproduced in the last
column of Table I. As in Ref. 1 we have obtained results
with two different sets of wave functions associated with
set I and set II of parameters m and A entering the hyper-
fine interaction. In order to see the influence of the con-
figuration mixings we have calculated I z~ in two ver-
sions for each set. In the first, called "no mix, " we have
neglected the configuration mixings both in

~

i ) and
~
f)

and approximated
~

i ) by the main component given in
column 2 of Table I and

~ f ) by
~

N(56, 0+)—,
' ). In the

second, "all mix, " we have considered the full configura-
tion mixings obtained from the diagonalization of the hy-
perfine splitting and kept the components with I. =0+ in

~ f ) only, the others having a negligible amplitude. For
each set the values of x and y of Eq. (3.1) are obtained
through a Xi fit including all considered resonances in the
"all mix" version. These values are

x =2.0750 fm, y = —1.0186 fm for set I,
x = 1.0704 fm, y = —0.68001 fm for set II .

One can note that x and y have opposite signs analogous
to the constraints (3.7) or (3.8). For both thus fixed values

TABLE I. Square root of the nonstrange-baryon decay widths, I ~~', in MeV' . Column 3 (5) and 4 (6): results obtained with

set I (II) without and with configuration mixings. %'ithout mixing the resonance is described by the main component given in column

2. Last column reproduces data extracted from Ref. 3.

Resonance

PIl (1440)

Di3 (1520)

S) I (1535)

Si) (1650)

D)g (1675)

FI5 (1680)

DI3 (1700)

PI I (1710)

PI3 (1720)

r» (1990)

P33 (1232)

P33 (1600)

S3I (1620)

D33 (1700)

F35 (1905)

P3l (1910)

P33 (1920)

F37 (1950)

Main component

W(56', 0+)
q

N(70 1 )—
E(70, 1 ) q

%(70, 1 ) ~

4@(70,1-)—,
'

~X(56,2+)
~

X(70, 1 ) ~

N(70, 0+)
~

X(56,2+)
~

4X(70,2+)—', +

'a(56, 0+)—',
45(56', 0+ )—,

~5(70, 1 ) ~

~5(70, 1 ) ~

'Z(70 2+)—'+
5(70,0+)

~

'Z(56, 2+)—,
'+

'a(56, 2+)—,'

No mix

0.3
8.4

20.3

5.0

2.3

10.0

3.4

4.0

All mix

0.1

14.9
12.7

S.2

3.4

10.8

10.5
14.0

2.7
6.1

0.7

No mix

1.2
5.0

14.3

6.0
3.1

3.9

1.5

4.2

2.0
0.4
3.4

Set II
All mix

1.0
5.0

8.9

3.4
3.6
2.3
6.0
8.6

0.5
10.9

3.7

64
4.1

3.6

Expt.

9+4.8

8.3+

8.3+g j

9 5+'

8 7—o.9

3 2+0.6

5 4—1.9

10.7+0.2

6.5+ 1.0

9 8+2.6
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of x and y we find that the configuration mixings play an
important role for many resonances. The most outstand-
ing cases are Fiz(1990)„PIl(1920),PII(1600), PII(1910),
Pii(1710), and PII(1720) where I"& changes from 1 up
to 4 orders of magnitude by including configuration mix-
ings. The two resonances having the (20, 1+) basis vector
as main component acquire a nonzero width due to the
SU(6)-symmetry breaking in the resonance state but they
are not seen experimentally. The SU{6)-symmetry-
breaking effect has also bIen found important in the study
of photodecays. "

The results from sets I and II are somewhat different.
If by analogy to Ref. 11 we take as a serious disagreement
cfiteflon

(4.4)

where I'""' is located within the experimental range, we
find the following resonances satisfying (4.4): PII(1440),
Pli(1710), F35(1905), and P»(1920) obtained from set I
and P»(1440), D»(1675), F»(1680), F&z(1905), and

F17(1950) obtained from set II. In this sense the fit with

set I looks slightly better than that with set II. For both
sets the I N

I~I value of the Roper resonance is much
smaller than the experimental one. Such a result is not
surprising because we had already evidence from the
study of the spectrum that this resonance comes out
theoretically too high in energy.

The source of difference between the decay widths ob-
tained with sets I and 11 can be found either in the phase-
space factor proportional to kEN/ma or in the matrix
element (f ~A +~i) or in both. The Pll(1232) is the
only resonance for which the phase-space factor varies
significantly, i.e., by about 40%, when passing from one
set to the other. This resonance has the highest weight in
the X2 fit and as a consequence the change in the phase
factor induces a corresponding change in the matrix ele-
ment (f ~4 s ~i), resulting in the optimum values (4.3)
of x and y. Since for all the other resonances the phase-
space factor varies by a few percent only, the differences
produced in the decay widths of sets I an II are essentially
due to the optimum choice (4.3). These differences are
sometimes much more pronounced for "all mix" results
than for "no mix, " as it is in the case of P«(1440) or
PII(1920) resonances.

We have also performed a least-squares fit with the
choices (3.7) and (3.8) for the parameters x and y. It
turned out that the discrepancies between theory and ex-
periment are larger than for the fit {4.3). The XI for set I
(set II) is equal to 1296 (712), 664 (183), and 80 (99) for
the optimum parameter values corresponding to Eqs.
(3.7), (3.8), and (4.3), respectively. In particular, even the
width of the Pz&{1232) resonance is not well reproduced
except when prescription (3.8) is applied to the spectrum
given by set II.
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APPENDIX A

1. Configuration-space wave functions QI~

Here we provide the functions QL, o which are used to
construct the space part of the resonance states we consid-
er in this paper. The index p defines the symmetry char-
acter of the wave functions with respect to permutations
(p=p, A„S, or A). The functions with M+0 can be ob-
tained from those having M =0 in the usual way. The
considered functions are

Woo=&ooF

P(~——Moo[1 —a(p +A, )]F,
&=&~p ~
Coo=&5o z {p'—~')F

~

(A1)

(A3)

(A4)

in our basis and in the harmonic-oscillator basis of
Koniuk and Isgur. In the present context this is the
phase of the amplitude (f ~

P g ~

i ) defined above. It was
gratifying to fmd out that this assumption was entirely
correct both for sets I and 11 and therefore the signs of the
photodecay hehcity amplitudes predicted in Ref. 1 remain
unmodified.

The presently used model of the baryon structure, based
on linear confinement, is closer to the @CD ideas than
that based on a harmonic-oscillator unperturbed Hamil-
tonian. Both the unperturbed Hamiltonian (representing
the color-electric interaction) and the hyperfine splitting
(the color-magnetic interaction) are inspired from the
quark-gluon dynamics. 5 Moreover our strong-decay arn-
plitudes involve only two parameters as compared to four
parameters in Ref. 4. There the additional parameters ap-
pear to mock up the imperfections of the meson-emission
model and the absence of configuration mixings because
the nonstrange resonances have been treated as pure SU(6)
states. Here we have shown the importance of the config-
uration mixings. With fewer parameters to be fitted we
could not have expected a better agreement with the ex-
periment than that found in Ref. 4 but a greater predic-
tive power.

This work also supports the conclusion of Ref. 2 that a
better description of the Roper resonance is needed.

Here as a first step we have considered a simple model
for the strong-decay process. In this respect it would be
interesting to investigate the role of the pair-creation
model9 in the strong decay of baryons. This model has
been successfully apphed to meson decay'I and it has the
merit of taking explicitly into account the quark-
antiquark structure of the emitted particle.

V. DISCUSSION

As mentioned in the introduction the first motivation
of this stlldy was to ellcck thc assuIIlptlon IIladc IIl Rcf. 1

about the phase of the helicity amplitude AiizziN . For
all resonances we supposed an identity between the phase

Wio=&~iopoF

fio =&~io~

Plo +1 (p —0~+ p+~ )F&-
W2o=&zol3(po'+4') —(p'+ ~')Ã

(A5)

(A6)

(A8)
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go N)o(3p(PL@—p A, )F,
Woo= i &~zo[3(po' —4') —(p' —~')P' (A10)

In the above equations F is the product of two- and
three-body correlation factors introduced in Ref. 5, p and
A, are the Jacobi coordinates

fine interaction when the quark mass rn and the finite-size

parameter A were chosen equal to 324 MeV and 0.09 fm,
respectively. The corresponding information for set I
( m =360 MeV, A=0. 13 fm) has been given in Ref. 2.

APPENDIX 8

1
(ri —ri),

2

1

6
(ri+ri —2ri),

(Al 1)

(A12)

In this appendix, we provide the explicit expressions for
the ainplitudes (f ~A s ~i ). The initial state

~

i) runs
over the 30 basis states considered in Ref. 2 while the fi-
nal state

~ f ) runs over the first three components of the
nucleon ground. state. We shall use the notations

while p+ and A, ~ are given by

P+=PX+—&Py s

A, + ——A,„+iA,y .

(A13}

(A14}

The normalization constants %go are obtained numerical-

1$.

2. Spectrum and mixing angles for set II

In Tables II and III, we give the spectruin and the mix-

ing angles we have obtained by diagonalizing the hyper-

&(56)=( N(56, 0+)-,' ~A s ~i ),
~ (56') = ('X(56',0+ )-,

' '
~
~, ~; &,

~(70)=('N(70, 0+)—,
'

~
m,

~

i ) .

(82)

(B3)

For each initial state
~

i ), the expression of A (56 ) can be
obtained from that of A(56) by replacing (goo~ by(+~; hence, in the following we only give A(56} and
A(70). To be definite, we consider the decay of reso-
nances of charge + 1 into a proton and a neutral pion.

TASI.E II. Nonstrange baryons of positive parity. Results obtained by diagonalizing the hyperfine interaction with m =324 MeV
and A=0.09 fm.

State
Mass
(MeV) Mixing angles

'W(70„2+)—,

h(56, 2+)
2

2' (56,2+)
2

~N(70, 2+)
2

4N(70, 2+)—,

1980

1952

1754

1970

2033

0.833
—0.544
—0.096

{1)

(1)
—0.553
—0.821
—0. 145

1.7y10-4
—0.174
0.985

'a(56, 2+)-,'
'a(70 2+)-'+

1962

1985

0.408 0.913
0.913 —0.408

'X{70,0+)—,
'

%(56,2+)
2

N(70, 2+)
2

'X(70,2+)—,
'

%(20, 1+)
2

1752

1914

1979

1985

2046

0.098
—0.760
0.614

—0.082
—0, 173

—0.824
—0.298
—0.309
—0.359
—0.084

0.558
—0.296
—0.556
—0.530
—0.108

—0.013
0.469
0.332
—0.491
—0.655

—1.8X10-'
0. 164
0.329

—0.585

0.723

'S(56,0+)—,

5{56',0+ )—
6{56,2+)

2

'6(70, 2+)—,

0.977
0.126
0. 169

—0.025

—0. 185

0.902
0.388

—0.031

—0.088
—0.319
0.643

—0.691

0.058
0.261

—0.638

N(56, 0+) 2

'+{56',0+)—,
'

'X(70,0+)—,
'

'X{70,2+)—,
'

X(20, 1+)
2

941

1607

1795

1930
2042

0.969
0. 155

0. 172

0.080
—0.030

0.174
—0.980
—0.095

—9.7~ 10-'
4.7x 10

—0.172 —0.034
—0. 124

0.934
0.014

—0.290

0.274 0.825
—0.083 —0.484

1.6X10-'
—1.7X10-'

0.066
—0.488
—0.870

'5{70,0+)—,

'5{56,2+)—,

0.908 0.419
—0.419 0.908
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"%{70,1 ) q

'N(70, 1-)—,

X(70, 1 )—

1653

1496

1714

Mixing angles

0.997 0.079
—0.079 0.997

TABLE III. Same as Table II, for nonstrange baryons of
negative parity.

A(70)= &g (
M +~

«' ~~'+~'~

+ „&@' I
'I @' & - „&05 I

'
l @5,& .

(811)

(5) i i &=
i

N(70, 2+)
'X(701-)—'

N(70, 1 ) ~

N(70, 1 ) q

1475

1627

0.923 -0.384

0.384 0.923

(812)

(1)
i
i&= i'N(70, 2+)-,''&:

~(56)= &+~ ~o+uoi@,"o&

+
315 &fool &'I @el&

&w ~~'+~'~& &

&@oo I
&'I @&i &

(2}
~

~&= ['~(56,2+)-,"&:

+ '„',"&~s~i ~oi~s»&,

&41&'l 0' & .

(3}
~

i&= ~'N(562+)-'

~(56)=, &&~i ~'+&'( g~o&

+ & @e) I

'
I Pzi &

~(70)=, &@' f~'+~'/+go&

+
45

& Coo I
&'

I +~i & .

(4}
i
i&= f'N(70, 2+)-',

~(56)= &@' (~'+~'/g&o&

+
45

&Wool&'l0»&

(84)

(85)

(86)

(88)

(810}

+,",,' &Wa I

~o+~o
I ~so&

(813)

A(56)=—

(815)

(816}

A (70)=—

(817)
(8)

~
i & =

~

'N (70,0+ )—'+ &:

a(56)=, &@'
i
W'+&'~ @" &,

~ (70)= ——,', & @'
i
~'+u'

~

y' &

—
6 &Wool ~'+~'Igloo&

(9)
i

& &=
i N(56, 2+)—',

(819}

(6)
(
i&= ~'b, (56,2+)—',

&1' i& +N i@&

&C I I Hl& (814

+ „, &e'~&'~@&.

(7) ]i&= ]'a(70,2+}-,''&:

& Woo I
~'+~'

I @so&

+ &Woo I
&'I @z|&

90 &Coo I

~'+~'
I fzo&

—
30 &Woo I

~'+~'I Wzo&

—
45 &Pood ~'I ~a~&-
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The above expressions as well as their reduction to
three-dimensional integrals have bern obtained by means
of the REDUca symbolic-manipulation program. ' They
are very general and can be particularized to, for example,
a harmonic-oscillator basis by defining E and %go accord-
lnglp.
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