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Density matrix approach to the complex heavy ion optical potential:
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We further analyze the validity of the density matrix expansion applied to the complex heavy ion
optical potential by separately treating the direct and exchange contributions. %'e show that the
discrepancies found previously when comparing the density matrix expansion optical potential with
the exact one are mainly to be ascribed to the direct contribution. For the exchange part the density
matrix expansion is nearly exact in the tail region and remains very good down to zero separation
distance. The Campi-Bouyssy prescription for accelerating the density matrix expansion conver-
gence is also examined.

I. INTRODUCTION

The microscopic nuclear matter approach' to the
complex heavy ion optical potential which has been fully
developed in Refs. 5—7 involves the following main steps:

(1) One starts from a realistic nucleon-nucleon interac-
tion and solves the Bethe-Goldstone equation for the
momentum configurations of two-sphere Fermi seas as-
sumed to provide a local description of the heavy ion col-
lisions.

(2) This yields a non-Hermitian G matrix that one uses
to construct a local effective nucleon-nucleon interaction
v'(i,j ) which is complex and depends on the collision ener-

gy as well as on the local matter and kinetic energy densi-
ties.

(3) The complex heavy ion optical potential for finite
heavy ions at a separation distance D between nuclear
centers is then obtained by means of the standard
formula

V.„(D)= &H'(D) ) —&H'( )),

the inside region where nuclei overlap strongly, while for
the physically important tail region it led to small but yet
sizable differences with respect to the results of Ref. 6.

Later work' ' on static properties of nuclei has shown
that the DME should only be used in the calculation of
exchange contributions. The aim of this work was to in-
vestigate the validity of these considerations in the context
of the heavy ion optical potential, and in particular to find
out whether the above-mentioned discrepancies are to be
ascribed to the failure of the DME for the direct part of
V», only. Moreover, the separation of V», into its direct
and exchange contributions also provides a new testing
case (see Refs. 18—20 for other applications) for the
Campi-Bouyssy prescription ' to accelerate the conver-
gence of the exchange DME.

In Sec. II, we briefly recall the main features of the
complex DME developed in I with due regard to the
direct and exchange contributions to V,~,. We also point
out the simplifications brought in by the Campi-Bouyssy
prescription. Our results are presented and discussed in
Sec. III.

which involves the ground state expectation values of the
effective Hamiltonian

H'= gt;+ —,
' g v'(i, j) . (1.2)

In the following the heavy ion optical potential corre-
sponding to this program and calculated in Ref. 6 for
' 0+' 0 will be used as a benchmark for testing various
approximation schemes.

In Ref. 14 (hereafter referred to as I), we have exploited
the similarity of &H') to a complex binding energy in or-
der to extend the Negele-Vautherin density matrix expan-
sion' ' (DME) to the complex domain. More precisely
we have relied upon the approach developed in Ref. 15,
where the DME was used both for the direct and ex-
change parts of the ground state expectation value. It was
then found that the DME closely reproduced the ima-
ginary part of the ' 0+' 0 optical potential obtained in
Ref. 6 at all separation distances. However, for the real
part of V»„ it turned out that the DME was unreliable in

II. THE DIRECT AND EXCHANGE COMPLEX DME

X[—,V p(R) —v' '(R)+ —', k p(R)],

(2.1)

where p(R) is the matter density at point R and psI (ks) is
defined by

3p„(ks) = J, (ks) .
sk

(2.2)

Equation (2.1), moreover, involves v' '(R), which is the in-

The DME approach to the complex heavy ion optical
potential is based on the following truncated Fourier-
Bessel expansion for the density matrix:

p R+—,R——=psl (ks)p(R)+ j3(ks)2' 2 2sk 3
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trinsic kinetic energy density at point R and momentum
k. We refer to Eqs. (3.15) and (5.3)—(5.6) in I for the ex-
plicit definition of w' '. Here we just want to point out
that ~' ' has to replace the kinetic energy density w which
appears in the original expansion of Negele and Vautherin
in order to preserve Galilean invariance. The momen-
tum k is in principle a free parameter. In I, it was chosen
as"

1/3

p(R) (2.3)

4 ~„(R)=A ~,(R)+A ~,(R), (2.5)

Another choice proposed in Refs. 21 and 22 will be con-
sidered below.

When using uncritically an expansion similar to (2.1)
for the product

r

p R+ —p R——
2 2

(2.4)

involved in the direct contribution to (H ), one can expli-

citly write the potential part A ~,(R) of the energy densi-
ty as

V = » f d'spsL, (kFs), [3u (s)+3u (s)
kps

—9u To(s) —u (s)] .
(2.19)

[r' '(R) —4V p(R)]
3p(R)

Equation (2.7) then simplifies to

A~p„(CB)=A (CB),

(2.20)

(2.21)

The coefficients 2, 8, C, and D are complex and depend
upon the relative momentum per nucleon EC„and the local
values of and ~' '. As discussed in I, the dependence on
E„and r' ' of the real parts of these coefficients is negligi-
ble, but the full dependence of the effective force u ap-
pears for the imaginary part of A, 8, C, and D.

Relying on the results of Refs. 16 and 17, Campi and
Bouyssy concentrated on the study of the exchange part of
the energy density A only. They pointed out that one
might hope to accelerate the convergence of the DME by
choosing the free parameter k in order to make the second
term in Eq. (2.1) vanish. This can be done by taking

1/2

the direct and exchange part of A zot being given by

=A +B ~"'+C (Vp)'+D V'p

~;.,=~x+a~r"'+ C'( Vp)'+DEV'p,

(2.6)

(2.7)

with

A (CB)=V~M(CB)
2

f d s psL (kodes)[3u (s)+3v (s)

~NM ~

D D

2/3

gE yENM++5 2
8/3 yE

(2.8)

(2.9)

—9v (s)—u (s)] .

(2.22)

8 =0,

C =0,
DD & yD

D =—pV= ——8E & E & E

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

III. RESULTS AND DISCUSSION

Below we give results for the optical potential based on
the prescriptions (2.3) and (2.20) for the local momentum
k.

A. k =k~ [Equation (2.3)]

where by particularizing to a system with equal numbers
of neutrons and protons, one has the following expressions
for the spin and isospin dependent complex effective force
defined in Ref. 5:

2

Vz~ —— f d s[3u (s)+3v (s)+9v (s)+u (s)],
(2.16)

V/M = p f d3s psL (kps)[3u (s)+3v (s)

ImÃ=x(Ii+I2x+I3x ),
I„=p (I„i+I„zp+I„3p+I„N ); ii =1,2, 3,
Re@=p (Ri+R2p+R3p +R4p'),

(3.1)

(3.2)

(3.3)

The coefficients A, . . . , D which appear in Eqs. (2.6)
and (2.7) have been computed for a series of two-sphere
Fermi seas along the lines described in I, and the corre-
sponding results have been fitted by using the following
formulas (K denotes any of the coefficients AD, . . . , D~):

—9u (s) —u (s)],

V =~ f d s
3 [3u (s)+3u (s)

J3 (kps)

k~s
+9u (s) +u (s)],

(2.17)
with

(2.18)

{2) (2)
min

(2) (2)
+max +min

(3 4)
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FIG. 3. Same as Fig. 1 but for the direct contribution to the
imaginary part of the ' 0+ ' 0 optical potential.
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and

+=2, 1, 0, and1 (3.5)

for A, B, C, and D, respectively.
In Eq. (3.4), r' „and r','„are the minimum and max-

imum values allowed for r' ' when the matter density p is
fixed. At each integration point in Eq. (1.1), the local

--r
X

-0

FIG. 1. Direct contribution to the real part of the ' 0+' 0
optical potential. The full curves correspond to the DME with
k =kF [Eq. (2.3)]. The dashed curves correspond to the results
of Ref. 6. The notations (1), {2), and (3) correspond to X„=O,
0.5, and 1 fm '/nucleon, respectively. The contribution due to
the kinetic energy part of K' [Eq. (1.2)] is not included.

values of p and r' ' are computed from the two center har-
monic oscillator shell models described in I.

The direct and exchange contributions to the real poten-
tial part of V,~, correspond to the full curves in Figs. 1

and 2, respectively. The dashed curves correspond to the
results of Ref. 6. Notice that the above-mentioned
discrepancies in the tail region of the total (i.e., direct plus
exchange) ReV,~, are to be entirely ascribed to the direct
part of ReV,~, . Indeed, for the exchange part of ReV,~„,
the DME yields results which coincide with the exchange
part of the exact ReV pt in the tail and remain very good
down to zero separation distance. For the imaginary part
of V,~„ the DME yields good results both for the direct
(Fig. 3) and the exchange (Fig. 4) contributions. As em-
phasized in I, the kinetic energy density effects rule the
imaginary part of the optical potential, and the alteration
of the saturation properties of nuclear matter which are
responsible for the discrepancies in the real part of V,~,
play no role for ImV, ~, . Let us also remark that the
DME introduces errors of opposite signs for the direct
and exchange parts of both Re V,~, and Im V,~, .

For future reference, we give in Table I the exchange
I„k and R„ fit coefficients for three values of the relative
momentum per nucleon E,.
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FIG. 2. Exchange contribution to the real part of the
' 0+' 0 optical potential. The full curves are the DME results
with k =kF [Eq. (2.3)], and the dashed ones those of Ref. 6.
The crosses represent the DME calculations with k =ken [Eq.
(2.20)]. The notations (1), (2), and (3) correspond to E„=O, 0.5,
and 1 fm '/nucleon, respectively. The ordinate scales have been
shifted for clarity.
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FIG. 4. Same as Fig. 2 but for the exchange contribution to
the imaginary part of the ' 0+ ' 0 optical potential.
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TABLE I. The real R~ and imaginary I„J fit parameters [Eqs. (3.1)—(3.3)] for the exchange DME
coefficients AE and BE [Eqs. (2.9), {2.11), and (2.15)]. Note that C~ [Eq. (2.13)] vanishes identically,
that D =—48 [Eq. (2.15)], and that Ri does not depend upon K„.

E,=0.5

E,=1.0

RJ
I)~
I2J.

I31
Iij.

I2J
I31

—342.91
—1.0333

0.15702
0.40130

—13.282
20.461

—16.832

806.42
—4.0460
12.456

—13.947
123.86

—227.52
206.67

J=3
—2470.8

51.665
—80.714

75.155
—409.02

858.97
—833.28

j—4

3162.4
—93.184
127.67

—111.82
462.74

—1074.5
1092.0

K, =0.5

E,=1.0

RJ
I)i

I2J.

I3J
I)~
I2J
I3J

178.24
0.89300

—0.30740
—0.12053

9.1548
—14.065

11.292

—1058.2
—1.6991
—4.2111

6.5022
—91.622
163.45

—141.52

3359.3
—13.110

34.202
—36.914
319.86

—634.96
578.26

—3969.4
32.117

—57.614
56.152

—376.59
808.30

—763.18

B. k =kcs [Equation (2.20)]

Since we will now concentrate on the exchange part of
V,~„we only need calculate the coefficient A (CB) of Eq.
(2.21) for a series of Fermi seas and a series of kcB values.
The dependence of A (CB) on p and ~' ' has also been fit-
ted according to formulas (3.1)—(3.3). We did not use a
polynomial fit for the koan dependence of A (CB), which
we display in Fig. 5 for K„=0.5 fm ' nucleon, p=0. 17
nucleon/fm, and v' '=0.19109 fm (A' /2m =1). In-
stead we have interpolated between the values of A (CB)
computed at the mesh points kcB ——0(0.1)2 by means of a
four-point Lagrange formula. The above kcB range is
large enough to include the local values of kcB which
arise in the calculation of the ' 0+' 0 optical potential.
This can be seen, for instance, from Fig. 6, where we
display the local values of kcB along the axis joining the
centers of the two colliding ' 0 ions. For symmetry

reasons we have represented the positive part of the z axis
only.

Notice that contrary to kz [Eq. (2.3)], kcB does not van-
ish with the density. This is due ' to our use of harmonic
oscillator single particle wave functions. It also appears
that the dependence of kcB on K„varies with the separa-
tion distance D between nuclei, leading to a more pro-
nounced dependence for stronger overlaps, as expected
from the Pauli principle.

Our results for the exchange part of V,~, correspond to
the crosses in Figs. 2 and 4. It turns out that the Campi-
Bouyssy prescription yields corrections which do go in the
right direction, but they remain too small to completely
cancel the discrepancies remaining between the exchange
part of V,z, computed with the DME and that computed
in Ref. 6 with a finite range interaction.

As mentioned above, the Campi-Bouyssy approxima-
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FIG. 5. Real and imaginary parts of the A (CB) coefficient
[Eq. (2.21)] as a function of kcB for Ã„=0.5 fm '/nucleon,

p =0.17 nucleon/fm, and for an intermediate value of
i'2'=0. 19109 fm '

(vari /2m = 1). For the above-mentioned E,
and p, one has ~' „=0.18858 and ~','„=0.19179.

FIG. 6. The Campi-Bouyssy local momentum kc& along the
positive z axis joining the centers of the colliding ' 0 ions. The
origin z=0 is located at mid-distance of the centers of the ' 0
ions. The labels a and b correspond to the separation distances
3=2 and 8 fm, respectively. The full, dashed, and dotted
curves are results for E, =O, 0.5, and 1 fm '/nucleon, respec-
tively.
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tion was devised to accelerate the convergence of the ex-
change part of the DME whatever treatment —exact or
approximate —is applied to the direct part. This means
that if DME is used both for the direct and the exchange
terms, it is not necessary to take the same value of k in
both terms. Nevertheless, for the sake of completeness,
we have also calculated the direct term with k =kcB in
the DME approximation. We found that the direct part
of ImV, ~, remains practically insensitive to the choice of
k. As far as the direct real part is concerned, it turned out
that the Campi-Bouyssy local momentum increases the
disagreement between the DME results and those of Ref.
6 by various amounts, depending on D and EC„. In the tail
region, however, the results remain close to those obtained
with k =kz.

To summarize, the present work supports the validity
of the DME limited to the exchange part of the optical
potential. In the physically relevant tail region, the ex-
change DME can be considered as an extremely good ap-
proximation. As far as the direct contribution is con-
cerned, the DME remains safe for the imaginary part of
V,~„while it is unreliable, even in the tail region, for
ReV,~, . Hence in the present context, there seems to be
no need for improving the exchange part of V,„, in the tail
region. On the other hand, at shorter separation distances,
the Campi-Bouyssy prescription slightly improves the
DME calculations.

We thank Dr. X. Campi for useful correspondence.
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