
Analyse des Structures I (GCIV 0607-2)

Interrogation 1 - Analyse plastique, 8 octobre 2018

V. Denoël, M. Geuzaine

- lisez attentivement les 3 questions et répondez uniquement à ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’un bloc de feuilles vierges et de bics ou stylos

Question 1 (10 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et détaillez votre
raisonnement.

1. Combien de zones plastiques faut-il pour former un mécanisme de ruine complet ?
2. Combien y a-t-il de sections critiques ? Où se trouvent-elles ?
3. Combien existe-t-il de mécanismes différents ? Pour chacun de ces mécanismes, que vaut
le multiplicateur plastique ?
4. Quelle est la plus petite valeur de Np telle que la ruine se produit sans que le tirant ne
plastifie ? Exprimez votre réponse en fonction de Mp

L
.

Question 2 (10 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et détaillez votre
raisonnement.

1. Combien de zones plastiques faut-il pour former un mécanisme de ruine complet ?
2. Combien y a-t-il de sections critiques ? Où se trouvent-elles ?
3. Combien existe-t-il de mécanismes différents ? Pour chacun de ces mécanismes, que vaut
le multiplicateur plastique ?
4. Quel est le mécanisme de ruine et le multiplicateur de ruine associé ?
5. Tracez le diagramme des moments et le diagramme des efforts tranchants à la ruine.

Question 1 Question 2
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Question 3 (20 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et répondez au
questionnaire à choix multiples (juste +2, faux −1, je ne sais pas 0). Cochez une seule
réponse par ligne.

1. Quel est le degré d’hyperstaticité de cette structure ?

◦ 0 ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ Autre ◦ Je ne sais pas

2. Que vaut le multiplicateur de ruine de cette structure ?

◦ 4Mp

FL
◦6Mp

FL
◦ 8Mp

FL
◦ 12Mp

FL
◦ 24Mp

FL
◦ Autre ◦ Je ne sais pas

3. Que valent les moments en B, D, E, F et G à la ruine (en valeur absolue) ?

0 3Mp

4
Mp

5Mp

4
4Mp Autre Je ne sais pas

B ◦ ◦ ◦ ◦ ◦ ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦
E ◦ ◦ ◦ ◦ ◦ ◦ ◦
F ◦ ◦ ◦ ◦ ◦ ◦ ◦
G ◦ ◦ ◦ ◦ ◦ ◦ ◦

4. Que valent les efforts tranchants en A, D et G à la ruine (en valeur absolue) ?

0 Mp

L
2Mp

L
4Mp

L
5Mp

L
Autre Je ne sais pas

A ◦ ◦ ◦ ◦ ◦ ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦
G ◦ ◦ ◦ ◦ ◦ ◦ ◦

A

B C

D

E

F G
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Solutions

Question 1

1. h+ 1 = 2
2. s = 4
3. C2

4 = 6 mécanismes voir Figures ci-dessous.
Mécanisme 1 : Ti = 4Mpθ ; Te = 0 ; λ =∞
Mécanisme 2(b) : Ti = 3Mpθ ; Te = λpθL2

4
; λ = 12Mp

pL2

Mécanisme 3 : Ti = 2Mpθ +NpθL ; Te = λpθL2 ; λ = NpL+2Mp

pL2

Mécanisme 4(b) : Ti = 4Mpθ +NpθL ; Te = 3
2
λpθL2 ; λ = 8Mp+2NpL

3pL2

4. 14Mp

L
< Np

Mécanisme 1 Mécanisme 3

Mécanisme 2 Mécanisme 2b

Mécanisme 4 Mécanisme 4b
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La figure ci-dessous représente les multiplicateurs de ruine des mécanismes 2, 3 et 4,
en fonction de la résistance plastique (relative) de la barre. On voit que le mécanisme à la
ruine est le mécanisme 3 si NpL/Mp ≤ 2, ensuite le mécanisme 4 si 2 ≤ NpL/Mp ≤ 14 et
finalement le mécanisme 2 au-delà. D’où la condition sur la résistance plastique nécessaire
de la barre pour qu’elle ne périsse pas dans le mécanisme à la ruine.

2

2

4

10 14

12

Question 2

1. h+ 1 = 1
2. s = 2
3. C1

2 = 2 mécanismes, voir Figures ci-dessous
Mécanisme 1 : Ti = 4Mpθ ; Te = λFθL ; λ = 4Mp

FL

Mécanisme 2 : Ti = 2Mpθ ; Te = λFθL
2

; λ = 4Mp

FL

Mécanisme 1 Mécanisme 2

4. Les deux mécanismes apparaissent en même temps pour λ = 4Mp

FL
.

5. Voir Figures ci-dessous.

Moments

-

E�orts tranchants -
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Question 3

1. h = 3 car il y a 7 réactions et 4 équations (3 équations d’équilibre + 1 équation de
moment nul à la rotule)
2. λmin = 6Mp

FL

Mécanismes 1a et 1b : Ti = 6Mpθ ; Te = λFθL ; λ = 6Mp

FL

Mécanismes 2a, 2b et 2c : Ti = 6Mpθ ; Te = λFθL
4

; λ = 24Mp

FL

Mécanisme 1a Mécanisme 1b

Mécanisme 2a Mécanisme 2b Mécanisme 2c

3. MB =Mp ; MD = 4Mp ; ME = 0 ; MF = 0 ; MG = 2Mp(autre)
4. TA = 2Mp

L
; TD = 4Mp

L
; TG = 4Mp

L

Moments

-

E�orts tranchants
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Analyse des Structures I (GCIV 0607-2)

Interrogation 2 - Méthode des forces, 5 octobre 2018

V. Denoël, M. Geuzaine

- lisez attentivement les 2 questions et répondez uniquement à ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables de Mohr et de quoi écrire

Question 1 (12 points)

Un pont à béquilles est soumis à une charge répartie sur sa première moitié et à une charge
concentrée au milieu de sa deuxième moitié. Son schéma statique est représenté ci-dessous.
Analysez cette structure par la méthode des forces.

1. Quel est son degré d’hyperstaticité ? Dessinez une structure isostatique de référence.

2. Calculez les coefficients Fij et fip associés à cette structure isostatique. Les déformations
dues aux efforts tranchants sont supposées négligeables dans toute la structure tandis que
les déformations dues aux efforts normaux sont supposées négligeables dans la poutre
supérieure uniquement.

3. Donnez l’expression Mmi-travée(κ) du moment de flexion à mi-travée en fonction du
rapport des raideurs axiale et flexionnelle, exprimé par le paramètre adimensionnel κ =
EA
L
/EI
L3 . Esquissez cette expression de Mmi-travée(κ) à l’aide d’un graphique et commentez

son allure générale.

4. Quelle est l’efficacité des béquilles sur le moment de flexion à mi-travée, c’est-à-dire le
moment de flexion minimal que l’on peut atteindre divisé par le moment de flexion sans
les béquilles ?

5. Dans les deux cas limites où κ→∞ et κ→ 0, dessinez les diagrammes des moments et
indiquez-y les valeurs principales.

2
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Question 2 (18 points)

Analysez la structure représentée ci-dessous avec la méthode des forces et répondez au
questionnaire à choix multiples (juste +2, faux −1, ne sais pas 0). Cochez une seule ré-
ponse par ligne. Les déformations dues aux efforts tranchants et aux efforts normaux sont
supposées négligeables dans toute la structure.

Que valent les moments en C, D, E, F, G, H, I, J et K ? Leur signe est positif lorsque la
fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.

−pL2

8
0 pL2

8
(2−
√
2)pL2

4

√
2pL2

4
pL2

2
Autre Ne sais pas

C ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
E ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
F ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
G ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
I ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
J ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
K ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

A B

D
E

F I
H

J

G

C K
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Solutions

Question 1

Solution 1

La structure est une fois hyperstatique. On peut la rendre isostatique en introduisant une
rotule à mi-longueur du tablier. Cette solution est d’autant plus idéale que l’on demande de
tracer l’évolution du moment à mi-travée en fonction de κ. Les diagrammes des moments
et efforts axiaux sous l’effet de la sollicitation extérieure et du couple de moments unitaires
conjugués à la rotation relative des lèvres de la coupure sont donnés ci-dessous.

1

3

7 1 7

Les coefficients de flexibilité peuvent dès lors être établis, compte tenu des hypothèses de
déformabilité :

F11 =
2

EI

(
1

3
.1.1.L+ 1.1.L

)
+

2

EA

(√
2

L

)2

L
√
2 =

8L

3EI
+

4
√
2

EAL

f1P =
1

EI

1

4

(
−pL2

2

)
.1.L+

1

EI

1

3

(
−pL2

2

)
.1.L− 2

EA
.2
√
2pL

√
2

L
L
√
2 = − 7pL3

24EI
− 8
√
2pL

EA

L’équation de compatibilité est
F11X1 + f1P = 0

où X1 représente le moment à mi-travée dans le tablier. La solution de cette équation est

X1 =
7κ+ 192

√
2

2κ+ 3
√
2

pL2

32

Dans les deux cas limites, on trouve :
— X1 = 2pL2 (κ→ 0, poutre sur deux appuis) ;
— X1 =

7
64
pL2 (κ→ +∞, appuis à rouleau sur le tablier, inclinés à 45°)
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Solution 2

Une autre possibilité est de rendre la structure isostatique en réalisant une coupure
dans une des béquilles. Les diagrammes des moments et des efforts axiaux obtenus dans
la structure soumise aux sollicitations extérieures et au couple d’efforts normaux unitaires
associés au déplacement relatif des lèvres de la coupure sont donnés ci-dessous.

Les coefficients de flexibilité sont alors établis comme suit, en prenant en compte les hypo-
thèses de déformabilité :

F11 = 2.
L

EI
.
1

3
.

√
2L

2
.

√
2L

2
+

2L

EI
.

√
2L

2
.

√
2L

2
+ 2.

√
2L

EA
.1.1 =

4L3

3EI
+

2
√
2L

EA

f1P = − L

EI
.
1

6
.

√
2

2
L.

(
3

2
pL2 +

7

4
pL2

)
− L

EI
.
1

6
.

√
2

2
L.

(
3

2
pL2 +

15

2
pL2 + 2pL2

)
− L

EI
.

√
2

2
L.2pL2 − L

EI
.
1

3
.

√
2

2
L.2pL2 = −121

√
2pL4

48EI

Ensuite, l’équation de compatibilité est résolue. Dans cette équation, X1 représente main-
tenant l’effort normal dans la béquille de droite.

X1 =
121
√
2κ

4κ+ 6
√
2

pL

16

Dans les deux cas limites, on obtient :
— X1 = 0 (κ→ 0, les béquilles se déforment et ne reprennent pas d’effort)
— X1 =

121
√
2

64
pL (κ→∞, les béquilles sont assimilables à des appuis)

Pour finir, le moment à mi-travée est calculé en combinant le moment dans la structure
isostatique de référence sous l’effet des sollicitations extérieures et celui de l’inconnue hy-
perstatique,

Mmi-travée = 2pL2 −X1

√
2

2
L =

7κ+ 192
√
2

2κ+ 3
√
2

pL2

32

Ce résultat est naturellement identique au résultat de la solution 1 et rappelle que la
structure peut être rendue isostatique de façon totalement arbitraire.
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Solution 1 et 2

L’expression du moment à mi-travée est représentée à la figure ci-dessous. On voit que
l’effet des béquilles est de réduire le moment de flexion à mi-travée. Au mieux, l’efficacité
des béquilles permet d’atteindre un coefficient de réduction de

ϕ =
7/64

2
= 5.5%,

c’est-à-dire une réduction de moment de flexion (que l’on aurait sans la béquille) par un
facteur 18.3.

1 7

1 7

1

3

7

1 7

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

1 7 1

3

7

Question 2

Pour obtenir une structure isostatique de référence, on libère l’effort normal et l’effort
tranchant dans la poutre horizontale. Dans ce cas, X1 est l’effort normal dans cette poutre
au niveau de la rotule et X2 est l’effort tranchant au même endroit. Les diagrammes des
moments sous l’effet des sollicitations extérieures et sous l’effet des forces unitaires sont
donnés à la figure ci-dessous.
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Avec ces notations et les conventions de signes choisies, on trouve

F11 = 2
1

EI

1

3

L

2

√
2

(
L

2

)2

=

√
2L3

12EI

F22 = k11 + 2
1

EI

1

3

L

2

(
L

2

)2

=

(
1 +
√
2
)
L3

12EI

F12 = 0

f1P =
1

EI

(
1

2
+

1

3

)
L

2

√
2
pL2

2

(
−L
2

)
=
−5
√
2pL4

48EI

f2P =
1

EI

(
1

2
− 1

6

)
L

2

√
2
pL2

2

L

2
=
pL4
√
2

24EI
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Les équations de compatibilité s’écrivent donc sous la forme

L3

12EI

( √
2 0

0 1 +
√
2

)(
X1

X2

)
+

pL4

48EI

(
−5
√
2

2
√
2

)
=

(
0
0

)
Les inconnues hyperstatiques sont donc(

X1

X2

)
=

( 5
4√
2−2
2

)
pL.

On obtient le diagramme des moments dans la structure étudiée sous les charges extérieures
en combinant les diagrammes élémentaires. Le résultat obtenu est donné à la figure ci-dessus
et les valeurs des moments demandées sont indiquées dans le tableau suivant.

−pL2

8
0 pL2

8
(2−
√
2)pL2

4

√
2pL2

4
pL2

2
Autre Ne sais pas

C ◦ ◦ ◦ ◦ ◦ ◦  ◦
D ◦ ◦ ◦ ◦ ◦  ◦ ◦
E ◦ ◦ ◦ ◦  ◦ ◦ ◦
F ◦ ◦ ◦  ◦ ◦ ◦ ◦
G  ◦ ◦ ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦  ◦ ◦ ◦ ◦
I ◦  ◦ ◦ ◦ ◦ ◦ ◦
J ◦ ◦ ◦ ◦ ◦ ◦  ◦
K ◦  ◦ ◦ ◦ ◦ ◦ ◦
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Analyse des Structures I (GCIV 0607-2)

Interrogation 3 - Méthode des déplacements et méthode des rotations, 26 novembre 2018

V. Denoël, M. Geuzaine

- lisez attentivement les 2 questions et répondez uniquement à ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables et de quoi écrire

Question 1 (15 points)

Sur un chantier de construction, on désire soulever une poutre à l’aide d’une grue pour
l’installer sur ses appuis définitifs. La poutre est attachée au crochet de la grue par trois
élingues supposées infiniment raides, installées symétriquement et réglées de façon à ce que
les extrémités inférieures des élingues soient dans un plan horizontal. Les points A et C
représentent respectivement les sections droites de la poutre où sont fixées l’élingue centrale
et l’élingue de droite. Le point B est à mi-longueur entre les points A et C. En écartant
fortement les élingues, les moments de flexion en A et B sont importants ; à l’inverse, en les
rapprochant, le porte-à-faux au-delà du point C provoque un moment de flexion important
en C.

Question : Comment positionner les élingues de façon à minimiser les contraintes de flexion ?

A C
B

Bonus (+ 0,5 / question sur la note finale ramenée sur 20) :
- Dessinez et annotez le diagramme des moments dans la poutre en configuration optimale.
- Calculez l’effort axial dans l’élingue centrale en configuration optimale.
NB : On peut supposer que la poutre est de section droite constante, doublement symétrique et de
raideur axiale infinie. On peut négliger les contraintes de cisaillement.

Proposition de méthode de solution :
1. Modélisez ce problème et définissez ses paramètres
2. En fonction des paramètres du problème, déterminez l’expression des moments dans la poutre
aux points A, B et C.
3. Représentez l’évolution de |MA| , |MB| et |MC | en fonction de la position du point C.
4. Déterminez la position optimale du point C, qui minimise max(|MA| , |MB| , |MC |).

1



Question 2 (20 points)

Analysez la structure représentée ci-dessous avec la méthode des déplacements ou la méthode
des rotations et répondez au questionnaire à choix multiples (juste +2, faux −1, ne sais
pas 0). La raideur axiale EA de tous les éléments de cette structure est supposée infinie.
EI1 = EI3 = 104 kNm2 et EI2 = 2.104 kNm2.

Que valent les moments en A, B, C, D, E, F et G (en kNm) ? Leur signe est positif lorsque
la fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.

[−50;−40[ [−15;−5] [0; 5[ [5; 15[ [35; 45[ Autre Ne sais pas
A ◦ ◦ ◦ ◦ ◦ ◦ ◦
B ◦ ◦ ◦ ◦ ◦ ◦ ◦
C ◦ ◦ ◦ ◦ ◦ ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦
E ◦ ◦ ◦ ◦ ◦ ◦ ◦
F ◦ ◦ ◦ ◦ ◦ ◦ ◦
G ◦ ◦ ◦ ◦ ◦ ◦ ◦

Que valent les efforts tranchants en B et C, en valeur absolue (en kN) ?

[15; 20[ [20; 25[ [25; 30[ [30; 35[ [35; 40[ Autre Ne sais pas
B ◦ ◦ ◦ ◦ ◦ ◦ ◦
C ◦ ◦ ◦ ◦ ◦ ◦ ◦

Que vaut l’effort normal dans la poutre 2 (en kN) ? Il est positif si la poutre est tendue.

[−20;−10[ [−10; 0[ 0 ]0; 10] ]10; 20] Autre Ne sais pas
N2 ◦ ◦ ◦ ◦ ◦ ◦ ◦

7 m

4 m

30 kN

20 kN

5 
kN

/m

5 
kN

/m

A B

C D

E

F

G

31

2

3 m
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Solution

Question 1

Étant donné que la poutre et les élingues forment deux triangles rectangles et que la raideur
axiale de tous ces éléments est infinie, les déplacements relatifs entre le point A, le point C et
le crochet de la grue sont nuls. De plus, la poutre est soumise uniquement à son poids propre
qui est un chargement symétrique et vertical. Le point A et le point C ne se déplaceront donc
ni horizontalement, ni verticalement. Dès lors, le système étudié est équivalent à une poutre
sur trois appuis simples. Pour finir, par symétrie, la rotation θ du point A est nulle. Pour
simplifier le problème, on remplace aussi les porte-à-faux et leur chargement par un moment
et une charge concentrée.

21

21

1-a.

≡

1-b.

Si on ne prend pas la symétrie en compte directement, on calcule θ comme suit, sur base de
la Figure 1-a. :

Barre 1 : 3
EI

L
θ +

M

2
− pL2

8
=Mb1d Barre 2 : 3

EI

L
θ − M

2
+
pL2

8
=Mb2g

Assemblage :

Mb1d +Mb2g = 0⇔ 6
EI

L
θ = 0⇔ θ = 0
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Moments aux points A, B et C selon la convention RdM :

La fibre de référence est placée sous la poutre. Cela signifie que le signe des moments est
positif lorsque la fibre inférieure de la poutre est tendue. Par exemple, si α→ 0, on s’attend
à obtenir un moment négatif au point A et c’est bien le cas selon son expression. De même, le
moment en C est quant à lui toujours négatif (moment d’encastrement d’une poutre encastrée
libre soumise à une charge répartie dirigée vers le bas, pas besoin de la méthode des rotations
pour le déterminer).

MA =Mb1d =
M

2
− pL2

8
=
pL2

8
(2α2 − 1)

MC =M = −p(αL)
2

2

MB =
MA +MC

2
+
pL2

8
= −pL

2

16
(2α2 − 1) = −MA

2

On trace ensuite l’évolution des moments en valeurs absolues par rapport à la position du
point C, exprimée par le paramètre α.

0.20.2 0.40.4 0.60.6 0.80.8 11

0.20.2

0.40.4

0.60.6

00

MMAA

MMCC

MMBB

|    |
|    |
|    |

Les moments en valeurs absolues |MA| et|MB| possèdent un minimum pour α =
√
2/2mais il

ne s’agit pas de l’optimum recherché puisqu’on désire minimiser les contraintes de flexion au
point C également. Pour ce faire, on cherche le minimum de la courbe noire qui représente la
fonction f(α) = max (|MA| , |MB| , |MC |). Il se trouve à l’intersection de la courbe rouge et de
la courbe verte. Lorsque le point C est disposé de manière optimale, on a donc |MA| = |MC |.
Dans ce cas,

α =
√
1/6 = 0, 4082 ; MA = −0, 083 pL2 ; MB = 0, 042 pL2 ; MC = −0, 083 pL2 ; NEC = pL
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Question 2

La structure étudiée possède deux noeuds mobiles et donc au maximum 6 degrés de liberté.
Les déplacements verticaux de ces deux noeuds sont nuls puisque les colonnes de la structure
sont infiniment raides axialement. Cela réduit le nombre de degrés de liberté à 4. Ensuite, le
déplacement horizontal du premier noeud équivaut à celui du deuxième étant donné que la
raideur axiale de la poutre est infinie. On se retrouve finalement avec 3 degrés de liberté :
le déplacement horizontal de la poutre u, la rotation du premier noeud θ1 et la rotation du
second noeud θ2.

Matrice de raideur globale (1 couleur par poutre, voir diagrammes M et T ci-dessous) :

Kb = 104.


12
43

+ 12
43

6
42

6
42

6
42

4
4
+ 8

7
4
7

6
42

4
7

4
4
+ 8

7


Vecteurs de sollicitations :

kp1 =

 −
5.4
2

−5.42

12

0

 kp2 =

 0
30.7
8

−30.7
8

 kp3 =

 −
5.4
2

0

−5.42

12



kp = kp1 + kp2 + kp3

Vecteur des charges nodales appliquées et vecteur des déplacements :

f =

 20
0
0


 u
θ1
θ2

 = K−1(f − kp) =

 14.10−3 m
−3, 4.10−3 rad
26.10−6 rad


Efforts relatifs aux degrés de liberté, aux extrémités des barres :(

MA

MB

)
= 2.104.

(
4
7

2
7

2
7

4
7

)(
θ1
θ2

)
+

(
30.7
8

−30.7
8

)
=

(
−12, 4
−45, 8

)
kNm, MD

(
Tb1h
Mb1h

)
= 104.

(
12
43

6
42

6
42

4
4

)(
u
θ1

)
+

(
−5.4

2

−5.42

12

)
=

(
3, 74
12, 4

)
kN, vers la droite
kNm, MD et RdM

(
Tb3h
Mb3h

)
= 104.

(
12
43

6
42

6
42

4
4

)(
u
θ2

)
+

(
−5.4

2

−5.42

12

)
=

(
16, 3
45, 8

)
kN, vers la droite
kNm, MD et RdM

(
MA

MB

)
=

(
12, 4
−45, 8

)
kNm, RdM ; N2 = −Tb3h = Tb1h − 20 = −16, 3 kN
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Efforts ailleurs dans la structure :

MC =Mb1h − 4Tb1h − 5.4.2 = −42, 6 kNm, RdM

MD =Mb3h − 4Tb3h − 5.4.2 = −59, 3 kNm, RdM

ME =
MA,RdM +MB,RdM

2
+

30.7

4
= 35, 8 kNm, RdM

MF =
Mb3h +MD,RdM

2
+

5.42

8
= 3, 25 kNm, RdM

MG =
(
3

4
Mb1h +

1

4
MC,RdM

)
+

3.5.42

32
= 6, 15 kNm, RdM

TB =
ME −MB

7/2
= −23, 3 kN

TC = Tb1h + 5.4 = 23, 7 kN

Moments Efforts tranchants
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Analyse des Structures I (GCIV 0607-2)

Interrogation 4

Méthode de Cross, lignes d’influence et méthode des forces, 17 décembre 2018

V. Denoël, M. Geuzaine

- lisez attentivement les 3 questions et répondez uniquement à ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables et de quoi écrire

Question 1 (12 points)

Pour chacune des poutres représentées ci-dessous, tracez les lignes d’influence demandées.
Pour la poutre n°1 : Pour la poutre n°2 :
- LI de la réaction verticale en A - LI de la flèche verticale en C
- LI de la flèche verticale en D - LI de l’effort tranchant à droite de D
- LI du moment d’encastrement en E - LI de la réaction verticale en B
- LI de la rotation en C - LI du moment en C
- LI de la rotation en A - LI du moment en D
- LI de l’effort tranchant à gauche de B - LI de la rotation en A

Question 2 (20 points)

Analysez la structure représentée ci-dessous (p = 20 kN/m) avec la méthode de Cross et
détaillez votre raisonnement. Tous les éléments de cette structure sont de longueur L = 10
m et EI = 104 kNm².

1) Calculez les moments aux extrémités de tous les éléments par la méthode de Cross.
2) Dessinez et annotez le diagramme des moments dans la structure.
3) Dessinez et annotez le diagramme des efforts tranchants dans la structure.
Bonus : Esquissez la configuration déformée de la structure, en accord avec les résultats des
calculs précédents.

A B C D E
1)

2)

Question 1 Question 2

1



Question 3 (20 points)

Analysez la structure représentée ci-dessous avec la méthode des forces et répondez au ques-
tionnaire à choix multiples (juste +2, faux −1, ne sais pas 0). Cochez une seule réponse par
ligne. Les déformations dues aux efforts tranchants et aux efforts normaux sont supposées
négligeables dans toute la structure.

p = 10 kN/m ; L = 4 m ; EI = 104 kNm²

Que valent les moments en C, D, E, F, G, H, I, J, K et M? Leur signe est positif lorsque la
fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.

−80 [−60;−55] [−25;−20] 0 [20; 25] 39, 2 [55; 60] 80 Ne sais pas
C ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
E ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
F ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
G ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
I ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
J ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
K ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
M ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

A B

D
E

F I
H

J

G

C K

M

Rappel : dans la méthode des forces, lorsqu’on réalise une coupure dans un élément de
structure, on doit faire apparaître deux forces ou moments auto-équilibrés ! (de même
direction et de même amplitude, mais de sens contraire)
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Solutions : Question 1
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Question 2

3
1 2

3

0,267
1 -445

-67
-1

0,267

4 -445
-67
-1

0,267

1666
-445
252

-67
5
-1

2 -333
-50
-1

0,2

5 504
0,267

8 504
0,267

7
0,267
-1666 -34

6 378
0,2

9 -222
0,5

10 252
5

0,5

A B

C

-222
504

9

9

9

-34

7

M1 = −51, 3 kNm ; M2 = 38, 5 kNm ; M3 = −141 kNm ; M4 = 51, 3 kNm ; M9 = −25, 6 kNm
MA = 25, 6 kNm ; MB = 0 kNm ; MC = 109 kNm ; T1 = 7, 7 kN ; T2 = 3, 85 kN ; T3 = 100 kN

T4 = 7, 7 kN ; T9 = 7, 7 kN

M T

Question 3

La structure est 2 fois hyperstatique intérieurement et isostatique extérieurement. Elle est
rendue isostatique intérieurement en réalisant deux coupures dans le triangle qui forme un

7



contour fermé. Une première possibilité est, par exemple, de libérer un couple d’efforts verti-
caux et un couple d’efforts horizontaux autoéquilibrés au niveau de la rotule. Une deuxième
possibilité est de libérer des couples de moments en F et en J en plaçant une rotule à ces
deux endroits. Ces deux manières de rendre la structure isostatique semblent être les plus
évidentes mais il en existe encore plein d’autres. Intéressons nous à la première d’entre elles.

Sous l’action des forces extérieures, les moments dans les poutres inclinées et dans la co-
lonne de droite sont nuls étant donné qu’aucune charge perpendiculaire ne s’applique sur ces
éléments ou à leur extrémité libre. Il n’y a qu’une seule réaction horizontale, à l’appui de
gauche, pour contrer la charge horizontale pL. Dès lors, RH = pL est orientée vers la gauche.
Ensuite, par équilibre en rotation autour de l’appui de gauche, RV d = pL est orientée vers le
haut. Puis, par équilibre vertical, RV g = 0. En dessinant le schéma rendu libre (SRL) de la
structure, la colonne de gauche est soumise :
1) À une charge répartie dirigée vers la droite, associée à un diagramme de moment parabo-
lique négatif (fibre de référence comprimée, MA = 0, pente nulle en A, MD = −pL2/2)
2) À une charge concentrée dirigée vers la gauche en A, associée à un diagramme de moment
linéaire positif (fibre de référence tendue, MA = 0, pente non nulle en A, MD = pL2/2)
Globalement, les moments dans la colonne de gauche sont donc positifs. Etant donné que
RV g est nul, le moment reste constant entre les points F et M puis il diminue à partir de M
(cassure de pente liée à la charge concentrée pL) jusqu’à atteindre 0 en haut de la colonne
de droite.

Sous l’action des couples d’efforts unitaires auto-équilibrés, toutes les réactions d’appui sont
nulles par équilibre et, par conséquent, le moment dans les colonnes est nul. Le diagramme
de moments dans la partie triangulaire de la structure est alors obtenu de proche en proche
à partir des extrémités des poutres inclinées où les efforts unitaires s’appliquent. Ces efforts
sont décomposés en deux : une partie orientée selon une direction parallèle et l’autre selon
une direction perpendiculaire aux poutres inclinées (angle de 45◦, effort perpendiculaire de
±
√
2/2). Seule cette deuxième partie de l’effort intervient pour déterminer le diagramme des

moments qui évolue donc linéairement de G à E (pareil de G à H). Ensuite, l’équilibre des
moments aux noeud DEF montre que le moment en F équivaut au moment en E (pareil en
HIJ, MJ =MH). Pour finir, le diagramme des moments entre F et J est formé en reliant les
moments en F et J par une droite, une fois que les signes des moments ou les courbures des
poutres ont été correctement établis (signe positif si la fibre de référence est tendue).

Il est impératif pour l’examen que vous soyez capables de calculer très rapidement les dia-
grammes de moments dans les structures isostatiques.
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111 1

- - --

Tous les éléments de cette structure sont caractérisés par le même EI. Dès lors, ce paramètre
n’aura aucune influence sur la répartition des efforts dans la structure et il est donc omis
volontairement dans les équations suivantes.

Coefficients de flexibilité :

F11 = 2

(
1

3

L

2

L

2

L
√
2

2
+

1

3

L

2

L

2

L

2

)
=
L3

12

(
1 +
√
2
)

F22 =
2

3

L

2

L

2

L
√
2

2
+
L

2

L

2
L =

L3

12

(
3 +
√
2
)

F12 = F21 = 0 (compensation parfaite, immédiat)

F1p =
1

6

pL2

2

L

2

L

2
− 1

2

pL2

2

L

2

L

2
=
−pL4

24

F2p =
pL2

2

L

2

L

2
+

1

2

pL2

2

L

2

L

2
=

3pL4

16

Inconnues hyperstatiques :

X1 =
−Fp1

F11

=
pL

2

1

1 +
√
2
=
pL

2
α1 avec α1 = 0, 4142

X2 =
−Fp2

F22

=
pL

2

−9
2(3 +

√
2)

=
pL

2
α2 avec α2 = −1, 0194

Moments internes :
Pour commencer, il est possible de calculer les moments suivants sans avoir recours à la
méthode des forces.
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MA = 0 ; MB = 0 ; MG = 0 ; MI = 0 ; MK = 0

MC =
3pL2

8
= 60 kNm ; MD =

pL2

2
= 80 kNm

Ensuite, une fois que les inconnues hyperstatiques ont été déterminées, les moments restants
sont calculés comme suit :

M =Mp +X1M1 +X2M2

ME = 0 +
pL2

4
α1 −

pL2

4
α2 = 57, 35 kNm

MF =
pL2

2
− pL2

4
α1 +

pL2

4
α2 = 22, 65 kNm

MH = 0− pL2

4
α1 −

pL2

4
α2 = 24, 21 kNm

MJ = 0 +
pL2

4
α1 +

pL2

4
α2 = −24, 21 kNm

MM =
pL2

2
+ 0 +

pL2

4
α2 = 39, 22 kNm

−80 [−60;−55] [−25;−20] 0 [20; 25] 39, 2 [55; 60] 80 Ne sais pas
C ◦ ◦ ◦ ◦ ◦ ◦  ◦ ◦
D ◦ ◦ ◦ ◦ ◦ ◦ ◦  ◦
E ◦ ◦ ◦ ◦ ◦ ◦  ◦ ◦
F ◦ ◦ ◦ ◦  ◦ ◦ ◦ ◦
G ◦ ◦ ◦  ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦ ◦  ◦ ◦ ◦ ◦
I ◦ ◦ ◦  ◦ ◦ ◦ ◦ ◦
J ◦ ◦  ◦ ◦ ◦ ◦ ◦ ◦
K ◦ ◦ ◦  ◦ ◦ ◦ ◦ ◦
M ◦ ◦ ◦ ◦ ◦  ◦ ◦ ◦

Le digramme des moments que l’on obtient ainsi dans la structure est finalement esquissé à
la Figure ci-dessous.
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Solution alternative.
Une autre possibilité pour rendre la structure isostatique consiste à introduire des rotules
aux extrémités de la poutre, comme indiqué ci-dessous. En introduisant une rotule, on doit
extérioriser une paire de moments unitaires. Ces moments agissent de chaque côté de la
rotule, comme illustré dans le zoom.
Dans cette structure isostatique de référence, les diagrammes des moments sont obtenus
facilement, notamment dans les cas de charges M1 et M2 sous l’effet des deux couples de
moments unitaires, puisque les réactions extérieures sont alors nulles.
Les coefficients de flexibilité valent

F11 = F22 =
1

3

L

EI
+

1

3

L

EI

√
2

2
=

L

6EI

(
2 +
√
2
)

F12 =
L

6EI

F1P =
1

4EI

pL2

4
· L− 1

3EI

pL2

2
L

√
2

2
=

pL3

48EI

(
3− 4

√
2
)

F2P =
1

4EI

pL2

4
· L− =

3pL3

48EI

de sorte que les équations de compatibilité s’écrivent

L

6EI

(
2 +
√
2 1

1 2 +
√
2

)(
X1

X2

)
+

pL3

48EI

(
3− 4

√
2

3

)
= 0

et donc, finalement (
X1

X2

)
=

(
0.1416pL2

−0.1513pL2

)
=

(
22.65
−24.21

)
kN

Ces résultats sont naturellement les mêmes que ceux obtenus avec l’autre structure isostatique
de référence.
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Zoom
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