Analyse des Structures I (Gc1v 0607-2)
Interrogation 1 - Analyse plastique, 8 octobre 2018
V. Denoél, M. Geuzaine

- lisez attentivement les 8 questions et répondez uniquement & ce qui est demandé
- indiquez vos mom et prénom sur chaque feuille
- munissez-vous uniquement d’un bloc de feuilles vierges et de bics ou stylos

Question 1 (10 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et détaillez votre
raisonnement.

1. Combien de zones plastiques faut-il pour former un mécanisme de ruine complet ?

2. Combien y a-t-il de sections critiques 7 Ou se trouvent-elles ?

3. Combien existe-t-il de mécanismes différents ? Pour chacun de ces mécanismes, que vaut

le multiplicateur plastique ?

4. Quelle est la plus petite valeur de IV, telle que la ruine se produit sans que le tirant ne
. ) ) . M,

plastifie 7 Exprimez votre réponse en fonction de 2.

Question 2 (10 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et détaillez votre
raisonnement.

1. Combien de zones plastiques faut-il pour former un mécanisme de ruine complet ?

2. Combien y a-t-il de sections critiques? Ou se trouvent-elles ?

3. Combien existe-t-il de mécanismes différents ? Pour chacun de ces mécanismes, que vaut
le multiplicateur plastique ?

4. Quel est le mécanisme de ruine et le multiplicateur de ruine associé?

5. Tracez le diagramme des moments et le diagramme des efforts tranchants a la ruine.
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Question 3 (20 points)

Analysez la structure représentée ci-dessous avec la méthode cinématique et répondez au
questionnaire a choix multiples (juste +2, faux —1, je ne sais pas 0). Cochez une seule
réponse par ligne.

1. Quel est le degré d’hyperstaticité de cette structure ?
o0 o1l o2 o3 04 o Autre 0 Je ne sais pas

2. Que vaut le multiplicateur de ruine de cette structure?

4M, 6M, 8 M, 12M, 24 M,
FL OFL °FL © FL © FL

3. Que valent les moments en B, D, E, F et G a la ruine (en valeur absolue) ?

o O Autre 0 Je ne sais pas

3M, 5M, .

0 = M, - 4M, Autre Je ne sais pas
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4. Que valent les efforts tranchants en A, D et G a la ruine (en valeur absolue) 7
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Solutions

Question 1

1L.h+1=2

2.5=14

3. C} = 6 mécanismes voir Figures ci-dessous.
Mécanisme 1 : T; = 4M,0; T, = 0; A = o0
Mécanisme 2(b) : T; = 3M,0; T, = ’\”GL A=

pL?

Mécanisme 3 : T; = 2M,0 + N,0L; T, = Ap0L2 A= NPL;QMP
Mécanisme 4(b) : T; = 4M,0 + N,0L; T, = %)\pelﬂ, \ — BMp+2N,L
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La figure ci-dessous représente les multiplicateurs de ruine des mécanismes 2, 3 et 4,
en fonction de la résistance plastique (relative) de la barre. On voit que le mécanisme a la
ruine est le mécanisme 3 si N,L/M, < 2, ensuite le mécanisme 4 si 2 < N,L/M, < 14 et
finalement le mécanisme 2 au-dela. Dot la condition sur la résistance plastique nécessaire
de la barre pour qu’elle ne périsse pas dans le mécanisme & la ruine.
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Question 2
1.h+1=1
2.5=2
3. CJ = 2 mécanismes, voir Figures ci-dessous
Mécanisme 1 : T; = 4M,0; T, = \FOL; X\ = 4£4Lp

. AN
Mécanisme 2 : T; = 2M,0; T, = 0L \ = 222

Mécanisme 1 Mécanisme 2

. . . 4M,
4. Les deux mécanismes apparaissent en méme temps pour A = .

5. Voir Figures ci-dessous.
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Question 3
1. h = 3 car il y a 7 réactions et 4 équations (3 équations d’équilibre + 1 équation de

moment nul a la rotule)
_ 6My

2. )\mzn - FL
Mécanismes la et 1b : T; = 6M,0; T, = A\FOL; \ =

Mécanismes 2a, 2b et 2c : T; = 6M,0; T, = %; A=
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Analyse des Structures I (Gc1v 0607-2)
Interrogation 2 - Méthode des forces, 5 octobre 2018
V. Denoél, M. Geuzaine

- lisez attentivement les 2 questions et répondez uniquement & ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables de Mohr et de quoi écrire

Question 1 (12 points)

Un pont a béquilles est soumis a une charge répartie sur sa premiére moitié et a une charge
concentrée au milieu de sa deuxiéme moitié. Son schéma statique est représenté ci-dessous.
Analysez cette structure par la méthode des forces.

1. Quel est son degré d’hyperstaticité ? Dessinez une structure isostatique de référence.

2. Calculez les coefficients Fj; et f;), associés a cette structure isostatique. Les déformations
dues aux efforts tranchants sont supposées négligeables dans toute la structure tandis que
les déformations dues aux efforts normaux sont supposées négligeables dans la poutre
supérieure uniquement.

3. Donnez l'expression M travee(k) du moment de flexion & mi-travée en fonction du
rapport des raideurs axiale et flexionnelle, exprimé par le paramétre adimensionnel k =
ETA / % Esquissez cette expression de M iravee() & aide d’'un graphique et commentez
son allure générale.

4. Quelle est 'efficacité des béquilles sur le moment de flexion a mi-travée, c’est-a-dire le
moment de flexion minimal que 'on peut atteindre divisé par le moment de flexion sans
les béquilles ?

5. Dans les deux cas limites ot kK — 00 et kK — 0, dessinez les diagrammes des moments et
indiquez-y les valeurs principales.
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Question 2 (18 points)

Analysez la structure représentée ci-dessous avec la méthode des forces et répondez au
questionnaire & choix multiples (juste +2, faux —1, ne sais pas 0). Cochez une seule ré-
ponse par ligne. Les déformations dues aux efforts tranchants et aux efforts normaux sont
supposées négligeables dans toute la structure.

Que valent les moments en C, D, E, F, G, H, I, J et K? Leur signe est positif lorsque la
fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.
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Solutions

Question 1
Solution 1

La structure est une fois hyperstatique. On peut la rendre isostatique en introduisant une
rotule & mi-longueur du tablier. Cette solution est d’autant plus idéale que ’'on demande de
tracer 1’évolution du moment a mi-travée en fonction de k. Les diagrammes des moments
et efforts axiaux sous l'effet de la sollicitation extérieure et du couple de moments unitaires
conjugués a la rotation relative des lévres de la coupure sont donnés ci-dessous.
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Les coefficients de flexibilité peuvent dés lors étre établis, compte tenu des hypothéses de
déformabilité :

Fi=— 2 (1.1.1.L+1.1.L)+i<£> L\/_—:jé[ 42

BT \3 EA EAL
11 /—pL? 11 /—pL? V2 TpL?  8V2pL
- 1L+ —- 1L - —2VBLoL -
fir = E[4< 2 ) +E13( 2 vap VI=oEr T EA

L’équation de compatibilité est
FnuXi+ fir=0

ou X représente le moment a mi-travée dans le tablier. La solution de cette équation est

Tk +192v2pL?
2k +3v2 32

Dans les deux cas limites, on trouve :
— X, =2pL? (k — 0, poutre sur deux appuis);
— X, = 6141:)L2 (k — o0, appuis a rouleau sur le tablier, inclinés a 45°)



Solution 2

Une autre possibilité est de rendre la structure isostatique en réalisant une coupure
dans une des béquilles. Les diagrammes des moments et des efforts axiaux obtenus dans
la structure soumise aux sollicitations extérieures et au couple d’efforts normaux unitaires
associés au déplacement relatif des lévres de la coupure sont donnés ci-dessous.
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Les coefficients de flexibilité sont alors établis comme suit, en prenant en compte les hypo-
théses de déformabilité :

L 1 2L V2L 2L\/_L\/_L \/_L 413 @

Fy, = 92— - Y=z Voo . 11 =—
t EI3 2 2 TEI 2 2 2FA 3EI T EA
L1 \/‘ 7 L 1 \/' 15
= = o XEn(2pLr 4 SpL? A 2pL? L2 4+ 2pL2
Jip FI6 2 (2p TP ) EI6 2 (2 TPl )
L 2 L1 121v/2p LA
——.£L.2pL2———£L L2 = L
EI 2 EI'3 2 ASE1

Ensuite, I’équation de compatibilité est résolue. Dans cette équation, X représente main-
tenant l'effort normal dans la béquille de droite.
_121V2k pL
b 4k + 6v2 16
Dans les deux cas limites, on obtient :
— X7 =0 (k — 0, les béquilles se déforment et ne reprennent pas d’effort)
— X1 = 121‘[pL (k — 00, les béquilles sont assimilables & des appuis)

Pour finir, le moment & mi-travée est calculé en combinant le moment dans la structure
isostatique de référence sous l'effet des sollicitations extérieures et celui de 'inconnue hy-

perstatique,
2 Tk + 1922 pL?
M nitravee = 2pL2 — X1£L = K+ \/_p
2 2k +3v2 32
Ce résultat est naturellement identique au résultat de la solution 1 et rappelle que la

structure peut étre rendue isostatique de facon totalement arbitraire.




Solution 1 et 2

L’expression du moment & mi-travée est représentée a la figure ci-dessous. On voit que
Peffet des béquilles est de réduire le moment de flexion a mi-travée. Au mieux, 'efficacité
des béquilles permet d’atteindre un coefficient de réduction de

7/64

c’est-a~dire une réduction de moment de flexion (que l'on aurait sans la béquille) par un
facteur 18.3.
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Question 2

Pour obtenir une structure isostatique de référence, on libére 'effort normal et 'effort
tranchant dans la poutre horizontale. Dans ce cas, X; est 'effort normal dans cette poutre
au niveau de la rotule et X, est l'effort tranchant au méme endroit. Les diagrammes des
moments sous l'effet des sollicitations extérieures et sous l'effet des forces unitaires sont
donnés a la figure ci-dessous.



Avec ces notations et les conventions de signes choisies, on trouve
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Les équations de compatibilité s’écrivent donc sous la forme

(0 i) () +aer () = (o)

Les inconnues hyperstatiques sont donc

X 5
(30)= (s )

On obtient le diagramme des moments dans la structure étudiée sous les charges extérieures
en combinant les diagrammes élémentaires. Le résultat obtenu est donné a la figure ci-dessus
et les valeurs des moments demandées sont indiquées dans le tableau suivant.
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Analyse des Structures I (cc1v 0607-2)
Interrogation 3 - Méthode des déplacements et méthode des rotations, 26 novembre 2018
V. Denoél, M. Geuzaine

- lisez attentivement les 2 questions et répondez uniquement a ce qui est demandé
- indiquez vos nom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables et de quoi écrire

Question 1 (15 points)

Sur un chantier de construction, on désire soulever une poutre a l’'aide d’une grue pour
I'installer sur ses appuis définitifs. La poutre est attachée au crochet de la grue par trois
élingues supposées infiniment raides, installées symétriquement et réglées de fagon a ce que
les extrémités inférieures des élingues soient dans un plan horizontal. Les points A et C
représentent respectivement les sections droites de la poutre ot sont fixées I’élingue centrale
et I’élingue de droite. Le point B est a mi-longueur entre les points A et C. En écartant
fortement les élingues, les moments de flexion en A et B sont importants; a I'inverse, en les
rapprochant, le porte-a-faux au-deld du point C provoque un moment de flexion important
en C.

QUESTION : Comment positionner les élingues de fagcon & minimiser les contraintes de flexion ?

B

Q
A C

BonNus (+ 0,5 / question sur la note finale ramenée sur 20) :
- Dessinez et annotez le diagramme des moments dans la poutre en configuration optimale.
- Calculez V'effort axial dans 1’élingue centrale en configuration optimale.

NB : On peut supposer que la poutre est de section droite constante, doublement symétrique et de
raideur axiale infinie. On peut négliger les contraintes de cisaillement.

Proposition de méthode de solution :

1. Modélisez ce probléme et définissez ses paramétres

2. En fonction des parameétres du probléme, déterminez ’expression des moments dans la poutre
aux points A, B et C.

3. Représentez 1'évolution de |My|, |Mp|et |Mc| en fonction de la position du point C.

4. Déterminez la position optimale du point C, qui minimise max(|Ma|, |Mp|,|Mc|).



Question 2 (20 points)

Analysez la structure représentée ci-dessous avec la méthode des déplacements ou la méthode
des rotations et répondez au questionnaire a choix multiples (juste 42, faux —1, ne sais

pas 0). La raideur axiale EA de tous les éléments de cette structure est supposée infinie.
EI, = EI; = 10* kNm? et EI, = 2.10* kNm?.

Que valent les moments en A, B, C, D, E, F et G (en kNm) ? Leur signe est positif lorsque
la fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.

[—50; —40[ [—15;—5] [0; 5] [5;15] [35;45] Autre  Ne sais pas
A o o o o o) o o
B o) o) o o) o o) o)
C o) o) e} o) o o) o)
D e} e} o o} o e} e}
E e} e} o e} o e} e}
F o o) o o) o o) o
G o) o) o) o) e} o) o)

Que valent les efforts tranchants en B et C, en valeur absolue (en kN)?

[15;20] [20; 25] 25; 30] [30; 35] [35; 40] Autre  Ne sais pas
B o) o) e) o ) o) o
C o o o} o o) o o

Que vaut 'effort normal dans la poutre 2 (en kN) 7 Il est positif si la poutre est tendue.

[—20; —10[ [—10;0] 0 10; 10] ]10; 20] Autre  Ne sais pas
N, o o o o o o o
30 kN
A B
20 kN — 11___@_) ___________ e + T
> G T N
ElL | [ I, =
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Solution

Question 1

Etant donné que la poutre et les élingues forment deux triangles rectangles et que la raideur
axiale de tous ces éléments est infinie, les déplacements relatifs entre le point A, le point C et
le crochet de la grue sont nuls. De plus, la poutre est soumise uniquement a son poids propre
qui est un chargement symétrique et vertical. Le point A et le point C ne se déplaceront donc
ni horizontalement, ni verticalement. Dés lors, le systéme étudié est équivalent & une poutre
sur trois appuis simples. Pour finir, par symétrie, la rotation # du point A est nulle. Pour
simplifier le probléme, on remplace aussi les porte-a-faux et leur chargement par un moment
et une charge concentrée.

Si on ne prend pas la symétrie en compte directement, on calcule # comme suit, sur base de
la Figure 1-a. :

EI M pL? EI M pl?
Barrel:gfe‘f‘?—?:Mbld BarreQ:?)Te—?—f‘?:Mbgg

12N lprE pl2 111
8 ] N
\LF

—

~ M M ~_
MG HER ST

Assemblage :

[1]]

EI
Mb1d+Mng:0<:>6T‘9:0<:>9:0

3



Moments aux points A, B et C selon la convention RAM :

La fibre de référence est placée sous la poutre. Cela signifie que le signe des moments est
positif lorsque la fibre inférieure de la poutre est tendue. Par exemple, si o — 0, on s’attend
a obtenir un moment négatif au point A et c’est bien le cas selon son expression. De méme, le
moment en C est quant a lui toujours négatif (moment d’encastrement d’une poutre encastrée
libre soumise a une charge répartie dirigée vers le bas, pas besoin de la méthode des rotations
pour le déterminer).

M  pL* pL*,_ ,
A bld 5 3 3 (2 )
2
My — M — _PeL)
2
My + M, L? L? M
Mp= =5+ 5 = -Hp (-1 = -2

On trace ensuite I’évolution des moments en valeurs absolues par rapport a la position du
point C, exprimée par le paramétre o.

[M]
pL?
0.6
0.4
0.2
M|
Mg
0 0.2 0.4 0.6 0.8 1 v

Les moments en valeurs absolues | M| et|Mp| possédent un minimum pour o = v2/2mais il
ne s’agit pas de 'optimum recherché puisqu’on désire minimiser les contraintes de flexion au
point C également. Pour ce faire, on cherche le minimum de la courbe noire qui représente la
fonction f(«) = max (|Mal|, |Mpg|,|Mc|). 1l se trouve a U'intersection de la courbe rouge et de
la courbe verte. Lorsque le point C est disposé de maniére optimale, on a donc |Ma| = |M¢/|.
Dans ce cas,

a=14/1/6=0,4082; M, = —0,083 pL*; Mp = 0,042 pL* ; Mc = —0,083 pL? ; Ngc = pL



Question 2

La structure étudiée posséde deux noeuds mobiles et donc au maximum 6 degrés de liberté.
Les déplacements verticaux de ces deux noeuds sont nuls puisque les colonnes de la structure
sont infiniment raides axialement. Cela réduit le nombre de degrés de liberté a 4. Ensuite, le
déplacement horizontal du premier noeud équivaut a celui du deuxiéme étant donné que la
raideur axiale de la poutre est infinie. On se retrouve finalement avec 3 degrés de liberté :
le déplacement horizontal de la poutre u, la rotation du premier noeud 6; et la rotation du
second noeud 0,.

Matrice de raideur globale (1 couleur par poutre, voir diagrammes M et T ci-dessous) :

K, = 10" +8 4
6 47 4
e 7 1tz
Vecteurs de sollicitations :
5.4 5.4
o ot “r
0 _Sor 542
8 1
kp=FEkp +kp2+ kps
Vecteur des charges nodales appliquées et vecteur des déplacements :
20 U 14.1073 m
f=1 0 0, | =K '(f—ky)=| —3,4107% rad
0 65 26.107% rad

Efforts relatifs aux degrés de liberté, aux extrémités des barres :
0, 0T\ [ -12,4
V(0 ()= (72t) o

(3,74 kN, vers la droite
-\ 12,4 | kNm, MD et RdM
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Efforts ailleurs dans la structure :

MC = Mblh - 4Tb1h —542= —42, 6 kNm, RdM

MD = Mbgh — 4T53h —54.2 = —59, 3 kNm, RdM

_ M4 rave + M. ram . 30.7

M
E 2 4

= 35,8 kNm, RdM

M, M 42
_ Mz +2 D.RAM. 58 = 3,25 kNm, RdM

Mp

3 1 3.5.42
Mg = (ZMblh + ZMC,RdM> +

= 6,15 kNm, RdM

Te =Ty +5.4=23,7kN

Moments Efforts tranchants




Analyse des Structures I (GC1v 0607-2)
Interrogation 4
Méthode de Cross, lignes d’influence et méthode des forces, 17 décembre 2018
V. Denoél, M. Geuzaine
- lisez attentivement les 3 questions et répondez uniquement & ce qui est demandé

- indiquez vos mom et prénom sur chaque feuille
- munissez-vous uniquement d’une calculatrice, des tables et de quoi écrire

Question 1 (12 points)

Pour chacune des poutres représentées ci-dessous, tracez les lignes d’influence demandées.

Pour la poutre n°1 : Pour la poutre n°2 :

- LI de la réaction verticale en A - LI de la fléche verticale en C

- LI de la fléche verticale en D - LI de Deffort tranchant a droite de D
- LI du moment d’encastrement en E - LI de la réaction verticale en B

- LI de la rotation en C - LI du moment en C

- LI de la rotation en A - LI du moment en D

- LI de l'effort tranchant a gauche de B - LI de la rotation en A

Question 2 (20 points)

Analysez la structure représentée ci-dessous (p = 20 kN/m) avec la méthode de Cross et
détaillez votre raisonnement. Tous les éléments de cette structure sont de longueur L = 10
m et FI = 10* kNm?2.

1) Calculez les moments aux extrémités de tous les éléments par la méthode de Cross.

2) Dessinez et annotez le diagramme des moments dans la structure.

3) Dessinez et annotez le diagramme des efforts tranchants dans la structure.

BoNUS : Esquissez la configuration déformée de la structure, en accord avec les résultats des
calculs précédents.

Question 1 Question 2
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Question 3 (20 points)

Analysez la structure représentée ci-dessous avec la méthode des forces et répondez au ques-
tionnaire & choix multiples (juste 42, faux —1, ne sais pas 0). Cochez une seule réponse par
ligne. Les déformations dues aux efforts tranchants et aux efforts normaux sont supposées
négligeables dans toute la structure.

p=10kN/m; L=4m; EI =10* kNm?

Que valent les moments en C, D, E, F, G, H, I, J, K et M ? Leur signe est positif lorsque la
fibre de référence, représentée en pointillés sur la figure ci-dessous, est tendue.
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Rappel : dans la méthode des forces, lorsqu’on réalise une coupure dans un élément de
structure, on doit faire apparaitre deux forces ou moments auto-équilibrés! (de méme
direction et de méme amplitude, mais de sens contraire)
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Solutions : Question 1

i/m\g/E

=

%W’:

[1]]

= o
% WE
= o
= . —
RS- =







Question 2

M; = —51,3 kNm; My = 38,5 kNm ; M3 = —141 kNm; M, = 51,3 kNm; My = —25,6 kNm
My =256 kNm; Mg =0kNm; Mc =109 kNm; T}, =7,7kN; T, = 3,85 kN ; T3 = 100 kN
Ty=7,TkN; Ty =7,7kN

™

Question 3

La structure est 2 fois hyperstatique intérieurement et isostatique extérieurement. Elle est
rendue isostatique intérieurement en réalisant deux coupures dans le triangle qui forme un



contour fermé. Une premiére possibilité est, par exemple, de libérer un couple d’efforts verti-
caux et un couple d’efforts horizontaux autoéquilibrés au niveau de la rotule. Une deuxiéme
possibilité est de libérer des couples de moments en F et en J en plagant une rotule a ces
deux endroits. Ces deux maniéres de rendre la structure isostatique semblent étre les plus
évidentes mais il en existe encore plein d’autres. Intéressons nous a la premiére d’entre elles.

Sous l'action des forces extérieures, les moments dans les poutres inclinées et dans la co-
lonne de droite sont nuls étant donné qu’aucune charge perpendiculaire ne s’applique sur ces
éléments ou a leur extrémité libre. Il n'y a qu’une seule réaction horizontale, a ’appui de
gauche, pour contrer la charge horizontale pL. Dés lors, Ry = pL est orientée vers la gauche.
Ensuite, par équilibre en rotation autour de 'appui de gauche, Ry, = pL est orientée vers le
haut. Puis, par équilibre vertical, Ry, = 0. En dessinant le schéma rendu libre (SRL) de la
structure, la colonne de gauche est soumise :

1) A une charge répartie dirigée vers la droite, associée & un diagramme de moment parabo-
lique négatif (fibre de référence comprimée, My = 0, pente nulle en A, Mp = —pL?/2)

2) A une charge concentrée dirigée vers la gauche en A, associée & un diagramme de moment
linéaire positif (fibre de référence tendue, M4 = 0, pente non nulle en A, Mp = pL?/2)
Globalement, les moments dans la colonne de gauche sont donc positifs. Etant donné que
Ry 4 est nul, le moment reste constant entre les points I et M puis il diminue a partir de M
(cassure de pente liée a la charge concentrée pL) jusqu’a atteindre 0 en haut de la colonne
de droite.

Sous l'action des couples d’efforts unitaires auto-équilibrés, toutes les réactions d’appui sont
nulles par équilibre et, par conséquent, le moment dans les colonnes est nul. Le diagramme
de moments dans la partie triangulaire de la structure est alors obtenu de proche en proche
a partir des extrémités des poutres inclinées ot les efforts unitaires s’appliquent. Ces efforts
sont décomposés en deux : une partie orientée selon une direction paralléle et I'autre selon
une direction perpendiculaire aux poutres inclinées (angle de 45°, effort perpendiculaire de
+1/2/2). Seule cette deuxiéme partie de I'effort intervient pour déterminer le diagramme des
moments qui évolue donc linéairement de G a E (pareil de G a H). Ensuite, ’équilibre des
moments aux noeud DEF montre que le moment en F équivaut au moment en E (pareil en
HIJ, M; = My). Pour finir, le diagramme des moments entre F et J est formé en reliant les
moments en F et J par une droite, une fois que les signes des moments ou les courbures des
poutres ont été correctement établis (signe positif si la fibre de référence est tendue).

Il est impératif pour I'examen que vous soyez capables de calculer trés rapidement les dia-
grammes de moments dans les structures isostatiques.
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Tous les éléments de cette structure sont caractérisés par le méme EI. Dés lors, ce paramétre
n’aura aucune influence sur la répartition des efforts dans la structure et il est donc omis

volontairement dans les équations suivantes.

Coefficients de flexibilité :

1LLIN2 1LLL L3
F=2-222¥2, 222 :-(1 2)
1 (322 2 +3222) 12 +V2

OLLINV2 LL L3
— bl 2)
27399 9 22 12 (3+‘f

Fis = F3; = 0 (compensation parfaite, immédiat)

Fp=-"—c-—-—/7—=-=-=
6 2 22 22 22 24
pLl?LL 1pL*LL 3pL*
FQP = — _—_ =
2 22 22 22 16
Inconnues hyperstatiques :
— L 1 P
X, = - _ P — P2, avec a; = 0,4142
! Fy 2 142 2! !
_ L _
Xo = 2 _ D ) = p—ag avec ag = —1,0194

Fy 72(i3+\/§) 2

Moments internes :

Pour commencer, il est possible de calculer les moments suivants sans avoir recours a la

méthode des forces.



MAZO; MBZO;MG:O;MIZO;MK:O

Mc

_ 3pL?
8

L
:6OkNm;MD:pT:8OkNm

2

Ensuite, une fois que les inconnues hyperstatiques ont été déterminées, les moments restants

sont calculés comme suit

M = M, + Xi My + XoM,

L2 L2
Mg =0+ pTal . pTag — 57,35 kNm
L2 L? L?
MF = pT — pTOél + pTOzQ = 22,65 kNm
L? L?
My =0— pTal - pTaz — 924,21 kNm
L2 2
MJ :O—FPTOQ—FPTOQ = —24,21 kNm
L? L?
My = %+0+[’Ta2 — 39,22 kNm
—80 [—60; —55] [—25; —20] 0 [20;25] 39,2  [55;60]
C o o o o o o o
D o) o) o) o) o o) o
E o o o o o o [ ]
F o) o) o) o) o o o)
G o o o [ ] o o o
H e} e} e} e} o e} o)
1 o) o) o) o o) o) o)
J o o () o o o} e}
K o) o) o) ® o) o) o
M o) o) o) o o o o
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Le digramme des moments que ’'on obtient ainsi dans la structure est finalement esquissé a

la Figure ci-dessous.
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Solution alternative.

Une autre possibilité pour rendre la structure isostatique consiste a introduire des rotules
aux extrémités de la poutre, comme indiqué ci-dessous. En introduisant une rotule, on doit
extérioriser une paire de moments unitaires. Ces moments agissent de chaque coté de la
rotule, comme illustré dans le zoom.

Dans cette structure isostatique de référence, les diagrammes des moments sont obtenus
facilement, notamment dans les cas de charges M; et M, sous l'effet des deux couples de
moments unitaires, puisque les réactions extérieures sont alors nulles.

Les coefficients de flexibilité valent

1L 1L V2 L
Fy = Fyy = —— ———:—<2 2)
W= 279 pr "3EI 2 6EI +V2

L
Fiy = ——
27 6ET
1 pL? 1 pL? 2 pL3

_ et 1 pL7 V2 (3-4v2)
YT URT 4 3EI 2 2 48EI] V2

1 pL? I _3pL3
PTURT 4 T ASET

de sorte que les équations de compatibilité s’écrivent

L 2+42 1 X, pL3 [ 3— 42
— + =0
6ET 1 2++2 X, ASE] 3

et donc, finalement

X1\ 0.1416pL> B 22.65 KN

X, )\ —0.1513pL% ] — \ —24.21
Ces résultats sont naturellement les mémes que ceux obtenus avec ’autre structure isostatique
de référence.
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