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Role of hidden color states in 2q-2q systems
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We study a system of two quarks and two antiquarks of equal masses in the framework of a nonrela-

tivistic potential model with color confinement and hyperfine spin-spin interaction. We propose a simple

variational solution and conclude that the hyperfine interaction is needed to bind the system, in agree-

ment with previous studies. Our results explicitly show the important role played by hidden color states

in lowering the variational energy.

PACS number(s): 12.39.Pn, 12.39.Jh

I. IN+aCODUimrON

Multiquark systems formed of two quarks and two an-
tiquarks have already been extensively studied in the
framework of the bag [1-3],potential [4—6], and other
models [7,8]. On the one hand, it is interesting to extend
the available relativistic or nonrelativistic models beyond
the hadron spectroscopy for which they proved success-
ful. On the other hand, 2q-2q systems are important for
the study of hadronic molecules. Candidates for scalar
meson molecules are the fo(975) and ao(980) resonances
[1,5,9] and for vector mesons molecules the G(1590) and
8(1720) resonances [10,11]. These resonances have
quantum numbers which are not consistent with a qq sys-
tem. For a recent review, see, for example, Ref. [12].
The interpretation of these resonances as hadronic mole-
cules raises the question of whether or not the 2q-2q sys-
tems can form loosely bound states. This question has
been extensively examined in the literature. In particu-
lar, in Refs. [5], [6], and [13] the role of unequal masses
has also been discussed.

One diSculty is that the solution of the 2q-2q
Schrodinger equation including orbital, spin, and color
degrees of freedom is not trivial. Several variational ap-
proaches have been proposed [4,6]. Our study is also
based on a variational approach and is closely related to
the work of Ref. [4]. Here we show that with an ap-
propriate variational wave function with a few parame-
ters one can obtain an attractive pocket in the energy sur-
face if the spin-spin interaction is included. We also dis-
cuss the explicit role of the hidden color states. Our cal-
culations have been carried out analytically to a large ex-
tent, and we present the basic analytic results as a guide
for more elaborate treatments. The calculations here
refer to the sector T =0, S =0 only, but they can be easi-
ly extended to other sectors.

has the well-known form [4]

p2
H=g m;+

2mi

with
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tj 3/27r
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where o is a parameter. The confinement potential (2)
has a harmonic form for simplicity. In order to allow
comparison with Ref. [4], we choose the same parameters
as there. Our calculations are restricted to a single
choice of parameters found in Table I of Ref. [4]. These
are

m =m„=mq =330 MeV,

co0=200 MeV,

0 352M V

cx =2.7

can=2 fm

(5)

where r, = ~r,
—r

~
and m;, r;, p, , S;, and A,;/2 are the

mass, position, momentum, spin, and color operators of
the ith particle. The coordinate space part of the spin-
spin interaction has the regularized form

II. HAMII. TONIAN

In the present work, we choose the simplest Hamiltoni-
an to describe the 2q-2q system. It is nonrelativistic and

The parameter co0 is related to the harmonic force con-
stant k, as usual, i.e., coo = (k /m)', which leads to

k=339 MeVfm
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the expectation value of the two-body Hamiltonian is
minimized with respect to a to give

m =172.7 MeV at a =2 fm

m =770 MeV at a=1.1 fm

which imply

(r'&'"=0.30 fm

(r &' =0.56 fm .
P

III. VVAVE FUNCTION

(9)

For describing the 2q-2q system, one can introduce
three alternative coordinate systems as shown in Fig. I.
They can be used at various stages in order to simplify
calculations. Suppose that particles 1 and 2 are quarks
and 3 and 4 are antiquarks. The three possibilities are1, 1p= —(ri r3) p (r2 r4)

2
'

2

x= —,'(r, +r3 —r2 —r4),
(10)

We deal with u and d quarks only. The parameters (5)
were fitted in Ref. [4] to the qq problem. With a wave
function of type

g 3/2 2
2

Ijko 3/4 exP —
r~j

2

(12}p=a, (12)p'=a', (34)p=a', (34)p'=a,

(12}x=—y, (34}x=y, (23)x=k, , (14}x=—A, ,

(12Q,=A, , (34)A, =A., (23)y=y, (14)y=y .
(16)

The most general orbital wave function with L =0 is a
function of six scalar quantities. They can be chosen in
many ways. A choice appropriate for the asymptotic
meson-meson channel with particles 1 and 3 in the Srst
meson and 2 and 4 in the second would be

R (x)=R(p,p', p p', x2,p x,p' x) . (17a)

The corresponding wave function in the exchange chan-
nel is

R (y)=R(a, a', a.a',y, a y, a' y) . (17b)

We have R (y) =(12)R (x)=(34)R (x). In the asymptotic
region when the two mesons are well separated, the wave
function R (x) would be a function only of p2, p'2, and x 2

and would not depend on the angles. Weinstein and
Isgur choose orbital wave functions depending on x, y,
and X . This is a restricted choice, and in terms of direct
channel coordinates, it corresponds to taking R (x) to be
a function ofp +p', p-p', and x . Later in the paper, we

put the same restriction on the choice of the orbital wave
functions R (x) and R (y).

Including spin and color degrees of freedom and using
the notation of Ref. [4], one can define four channel wave
functions with total spin S =0 as fo11ows:1, 1a = —(r, —r4), a' = (r2 —r3),

2 &2

y =
—,'(r, + r4 —r2 —r3),1, 1

cr = (r, —r2), cr'= (r3 —r4),
&2 &2

A, =—', (r, +r, —r, —r4) .
(12)

'Ijpp = —[Rp(x)11131,4& IP13P24 &

2

+Rp(y) I
1 123 & I P14P23 & ],

&vv
q'yy = [Ry(x)1113124& I V13 V24 &o'2

+R y(y) I114123 & I V14 V23 &1,

(18)

(19)
Note that (10}and (11) correspond to meson-meson chan-
nels, and we shall call them direct and exchange chan-
nels. With the above notation, one can also write

&c,c,
24&I 13P24&

p = —(&+y), p'= (~—y),1 = 1

2
'

2

a= (A, +x), a'= (A, —x),1 1

2
'

2

(13)

(14)

+Rc,(y}1814823& I 14P23 &1

&c,c,
[Rc,(x)I813 24&I V13 24&

(20)

o = —(x+y},1

2

1o'= (x—y) . (15) +RC((y)I 814823 & I V14 V23 & ] (21)

These relations will be used later. Note also that permu-
tations of particles i and j lead to

They are symmetric under permutations (12} and (34).
This is because the antisymmetry of the total wave func-
tion can be established by multiplying each of them with
an appropriate flavor function. As we are considering
only u and d quarks, the appropriate flavor function
would be

—'( ud —du )(ud —dIT ), (22)

FIG. 1. Three possible ways to de6ne relative coordinates for
a 2q-2q system. Solid and open circles represent quarks and an-

tiquarks, respectively.

which has isospin T =0.
The notation for the color wave functions I1,3124&,

I1,4123&, I8,3824&, and I814823& and spin wave functions

I P'13P24 & p IP14P23 & y I V13 V24 & y and I V14 V23 & corresponds
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to those in Ref. [4], and the definitions are collected in
Appendix A. Each of the channel wave functions
(18}—(21}has a direct and an exchange part. The wave
function 0 pp corresponds to the pseudoscalar-
meson —pseudoscalar-meson (PP) channel, while
corresponds to the vector-meson —vector-meson ( VV)
channel. The third and fourth wave functions represent
closed (hidden color} channels. They are formed by cou-
pling two color octet qq pairs to a single 2q-2q state.
When the spin of the q and q in each pair couples to zero,
the channel is denoted by COCO, and when it couples to
one, the notation is C&C, . In this paper we study the
influence of the hidden color states.

Using the results from Appendix A, one can see that
the wave functions (18)—(21) are not orthogonal to each
other. This raises the question as to whether or not they
are linearly independent. It can be answered by rewriting
the wave functions in terms of the four-dimensional or-
thogonal color spin basis

(b1=i312334&X+ A=i 12 3.&X-
(23)

43 i 612634 &X+ & 44 i 612634 &X—

The question is discussed in Appendix B where using (23)
we show that the functions (20) and (21) are linearly
dependent on (18) and (19) if the orbital wave functions
are expressed in terms of a complete set of functions. In
that case the hidden color wave functions are redundant.
On the other hand, the set (18)-(21) is not normally
linearly dependent if the orbital functions are linear corn-
binations of a finite set of functions with a restricted
form. In that case the hidden color channels can intro-
duce important new components into the wave function
and lower the variational energy (cf. Sec. V).

IV. MATRIX ELEMENTS

R, (x)=g a;(b)R(x, b),
b

(24)

where b is a set of parameters and a, (b) are some
coef6cients to be found variationally. Then it will be
enough to express the orbital matrix elements in terms of
matrix elements of the basis functions R (x,b).

withi, j=PP, VV, COCO, or C&C&. The integrals appear-
ing in B; referring to the orbital wave functions are

0 (b, b')=(R(x, b)iR(x, b')&, (26)

0'(b b')=~R(x b)IR(y b') & (27)

where d and e stand for the direct and exchange integrals.
Table I exhibits the matrix elements of B,J. as linear com-
binations of 0 and O'. The coeScients of the linear
combinations come from the integration in the color-spin
space. In Appendix C we give the analytic expressions of
(26}and (27) for the particular case

R(x b)=e 'te 't' e (28)

This simple choice incorporates a convenient form for the
internal wave functions of the qq pairs in the asymptotic
channels.

B. Kinetic energy matrix elements

The kinetic energy operators can be written in terms of
one of the coordinate systems (10)-(12). We have, for
example,

A. Overlap matrix elements

Because we work in a nonorthogonal basis, we need the
overlap matrix elements of the wave functions (18)-(21):

(25)

This section contains expressions for the overlaps of
the wave functions (18)-(21)and for the matrix elements
of the kinetic energy and of the confining and spin-spin
interaction potentials of the Hamiltonian (1)-(3). The
spin and color parts of the wave functions are integrated
out, and we give expressions for the matrix elements in
terms of integrals containing the orbital parts of
(18)—(21). In general, each of the orbital wave functions
R, (x) (i =P, V, Co, C, ) can be expanded in a suitable
basis:

T= — (b, +5 .+b,„}=— (6„+by+63),

(29)

K (b, b')=(R (x,b}iTiR(x,b') &,

K'(b, b')=(R(x, b)iTiR(x, b') & .

(30)

(31)

where the mass tn is taken from Eq. (5). The matrix ele-
ments (%';

i Ti+j & of (29) can be expressed in terms of a
direct and an exchange integral

TABLE I. Overlap matrix (g;(b)if, (b') }of Eq. (25), where Od and 0' are given in Eqs. (26) and (27).

PP

VV

C0Cp

C1 C1

ptpl

N N ~ (0 +60')

Vt Vt

3
NIINv v0

NvvNv v (0"—60')

C0Cp

v'2
NppN, , 0'

0 0

0 0

Nc c N, , (0"—60')
p p C0Cp

C1C1

—(3)' N N, , O'
1 1

v'2
NvvN, , 0'

1 1

v'3
Nc c N, , O'

0 P C1C1

NG c N, , (0 +60')
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TABLE II. Matrix of the kinetic energy operator (29). E"and K' are defined by Eqs. (30) and (31).

PP

VV

CoCo

C1C1

PIPl

NppNp p (K + 6K )

VI Vl

v'3
NppNv v K

NyyNy y (K —
6 K )

C0C0

&2
NppN, , K'

0 0

—( —, }' N N, , K'
0 0

Nc c N. .., (K'——,'K )
0 0 Coco

C1C1

( —, ) NppN, , K
1 1

v'2
Nvv

1 1

v'3
Nc c0 0 C1C1

Nc c Nc'c'(Kd+ 61K')
1 1 C1C1

The resulting matrix elements are shown in Table II.
They can also be obtained from Table I by making the re-
placement 0~K because the integrals in the color space
are the same. The particular form which these integrals
take for the choice (28) are also given in Appendix C.

C. Confinement potential

Integration in the color-spin space allows the matrix
elements of the confining potential (2} to be expressed in
terms of the following direct or exchange integrals:

Vi(b, b') =
—,
' (R (x,b) ~r t3+r&4 ~R (x,b'}),

V2(b, b') = —
—,'(R (x,b)~r i2+r&4 —r i3 rz~ r—« —r—

23 ~R(y, b') ),
V3(b, b ) =—,(R (x,b)~2(ri2+r34) —r t3 r24+—7(r i4+r23)~R(x, b )),
V4(b, b') = ——'(R (x, b) ~5(r i2+r34) —

—,'(r, 3+r24+ r i4+r23 ) ~R(y, b') ),
V, (b, b')= ,'(R (x b—)lrt2+r324+—', (r t3+r~4+r i4+r23)l R(y, b')) .

(32)

(33)

(34)

(35)

(36)

(38)

In the above expressions, one can use the equalities

("12~d, e ~ "34 ~d, e (37)

13~d, ~ 24~d,

14 ~d, ( 23 ~d, (39)

where (0 )d = (R (x, b) ~O~R(x, b') ) and (0 ),
=(R(x,b)~0~)R(y, b')) stand for direct and exchange
matrix elements. The relation (37) expresses the fact that
the quark pair 12 and the antiquark pair 34 are identical
in orbital space. The relations (38) and (39) hold for iden-
tical pairs of quarks and imply identical behavior of any

qq in the direct or exchange channels.
The origin of the linear combinations (32)—(36) ap-

pearing in the confinement potential matrix elements is
explained in Appendix C where the direct and exchange
channels are treated in two different coordinate systems.
The analytic form of (32)—(36) for the choice (28) can be
also found in Appendix C. The matrix elements of the
con6nement potential expressed as linear combinations of
V& Vg ~ ~ ~ V5 are shown in Table III. To each matrix
element, the constant —,'eo times the corresponding over-

lap matrix element should be added to include the contri-
bution of the first term in Eq. (2).

TABLE III. Matrix elements of the confining potential (2). The quantities V; (i =1,2, ... , 5) are defined in Eqs. (32}—(36). The con-
stant 3 eo times the overlap matrix should be added to this matrix.

PP

VV

Coco

P'P'

4k
NppNp p ( 3 V1 + V2 )

9

V' V'

4~~—NppNy y kV2

4k
vvNv v (3V1 Vz)

Coco

k&Z
NppN, , V5

0 0
kv'6

V—NvvNc c 40 0
k

c c N, , (2V3+3V4)
0 0 Co 0

C', C',

k&6
V—NppN, , „V

1 1

k~2
NvvN

1 1
k'~3

NccN ~ ~ V4
0 0 C1C1 4

, —(2V —3V )
k

C1C1 Cl Cl 12 3 4
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=(R (x,b)If2&IR(x, b') &,

I2=(R(x, b }fI& zlR(y, b') &

= (R (x,»If,.lR(y, b') &,

I,=(R(x,b)lf, ~lR(y, b') &

= (R (x,b}Ifz3 IR(y, b') &,

I4=(R (x, b)lf,3IR(y, b') &

=(R (x,b)l f24IR(y, b') & .

(41)

(42)

(43)

(44)

The various equalities in (40}—(44) result from the sym-
metry properties of R (x, b) used in Sec. IVC and also
from the particular form (4) of f; . The analytic expres-
sions of the integrals (40)-(44) with R (x,b) given by (28)
are reproduced in Appendix C. The matrix elements of
the spin-spin interaction (3) written as linear combina-
tions of Io, I&, I2, I3, and I4 are given in Table IV. Each
of the matrix elements from this table should be multi-
plied by the constant

8~a,
C

3m
(45)

The solution of the variational problem related to the
Hamiltonian (1) is discussed in the next section.

V. RESULTS

Here we search for a variational solution of the Hamil-
tonian (1) with wave functions of the type (24). The
coefficients are obtained by diagonalizing the Hamiltoni-
an in a chosen basis (Ritz-Rayleigh variational principle}.
This means that we solve the eigenvalue matrix equation

(H & C„=E„BC„, (46)

where (H & is the Hamiltonian matrix, B the overlap ma-
trix as described in the previous section, and C„a column
matrix formed with the coefficients of a variational solu-
tion. We need only the lowest solution Eo from which we
subtract 2m where m is given by (8).

We are interested in the following problems: (1) the

D. HyperSne interaction

The hyperfine interaction (3) contains the spin-spin
term of the well-known Breit-Fermi interaction. Hadron
spectroscopy studies indicate that the tensor term is gen-
erally much weaker than the spin-spin term, and for the
present purpose it can safely be neglected. The spin-spin
interaction we use here has a regularized form factor f,j
given by (4) and (5). After integration in the color-spin
space, the matrix elements of (3) reduce to linear com-
binations of integrals containing f; . These are

I,=&R(x,b)lf»IR(x, b') &

=(R (x,b)If3~IR(x, b') &

=&R(x,b)l f„lR(x,b') &

=(R (x,b)l f23IR (x,b') &,

I, =(R(x,b}lf,3IR(x,b'}&

O

c0

0
V

8

O

4P

8

8

I

05

bQ
OJ

~ If

4P

O

~ 'i+i

0
~ &
0
0$

CP

~ 1+&I

4P

0

V
8
4l

Vp

C
CO

+
+

e4
+

+ o
O

L~pg P

I

+

I

I

cu

.o W +o.o

~o

I

+
+

I

0

+
"v
+
+

I

I

+ +
O

+
I o

cV

V

o

+

+

I

s, O
V

~ O
V

V
™

o
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importance of the spin-spin interaction, (2) the explicit
role of the hidden color states Co and C„and (3) the
choice of good but simple variational functions 4, .

The importance of the spin-spin interaction is shown in
Fig. 2 where the energy Eo —2m is plotted as a function
of the parameter b of Eq. (28). The matrix (H ) is 4X4;
i.e., it contains PP, VV CpCp and C&C, channels. The
parameter 1/b plays the role of a deformation parameter.
At small b the two qq pairs are far apart and the lowest
eigenstate of the 2q-2q system approaches 2m . At large
b the two quark pairs get close together and the interac-
tion becomes repulsive. In fact, at large b all quarks get
close together. In the limit of zero separations r; =0,
V,"" reduces to the term —eo/4g A, A, . This term can-
cels identically in Eo —2m„. Hence the repulsion at
short separations is entirely due to the kinetic term. In
the case where the spin-spin term is suppressed,
Ep 2m increases steadily from zero to infinity as a
function of b. %hen the spin-spin is included, the energy
surface gets an attractive pocket which shows that the
spin-spin interaction is crucial in obtaining a bound 2q-2q
system with the Hamiltonian (1). Such a result is entirely
consistent with the findings of Ref. [4].

The minimum in the attractive pocket is at b =1.1

fm ' or 1/b=-0. 9 fm. This is greater than twice the
pseudoscalar qq rms radius as given in Eq. (9), suggesting
a molecular-type structure for the 2q-2q system.

With respect to problems (2) and (3), we are close to
Kamimura's approach [14] and also to his technique
based on the Gaussian basis variational method. That
technique proved very successful in treating few-body nu-
clei [15]. The principle is to use simple orbital wave func-
tions (Gaussians) and to include as many channels as pos-
sible. In our case we can take into account four distinct
channels PP, VV COCo and C&C& as explained in the
previous section.

As we deal with a nonorthogonal basis in the eigenval-
ue problem (46), it is not convenient to use the expansion
coefBcients in order to test the hidden color content of

TABLE V. Minimum in the interaction energy of a 2q-2q
system showing the effect of adding new channels as explained
in the text.

Channels
b O' E;„

{fm ')(fm ') (MeV)

PP, VV
PP VV CpCp Cl Cl
PP, VV, C,C„C,C„P'P'
PP VV CpCp C& C& P P
PP, VV, P'P', V'V'

PP VV CpCp C] Ci P'P'
PP VV CpCp Ci Cl P P

1.2
1.1
1.1
1.1
1.1

V V' CpCp 1.1
V V CpCp CiC& 1.1

V' V'

—28.9
—51.9

0.4 —60.9
2.2 —86.2
2.2 —84.6
2.2 —100
2.2 —102

the variational function. Instead, we plot in Fig. 3 the
energy Eo 2m as a function of b for the case where the
hidden color channels have been neglected (PP and VV

only) to be compared with the case where they are includ-
ed. One can see that the hidden color channels are
efBcient only beyond b &0.4 fm '. Thus they couple
strongly to the physical channels only at shorter separa-
tion distance d (2.5 fm between qq pairs. The minimum

energy is lowered from —28.9 to —51.9 MeV at separa-
tions of the order of -0.9 fm. This is consistent with the
nature of the hidden color states: They correspond to
closed channels. A similar behavior has been encoun-
tered in the nucleon-nucleon (NN) problem [16].

The next step is to take a succession of Gaussians with

b, PbzA Ab„, which leads to a 4n-dimensional basis.
The coeScients of the variational solution are obtained
by solving (46). Here we consider an eight-dimensional
basis at most. Our results are shown in Table V. All cal-
culations are made with a =2 fm ', which minimizes the
pseudoscalar meson mass, as explained above Eq. (8).

In Table V the first row is for a wave function with PP
and VV channels only and just one orbital function of
type (28), i.e., RI(x,b)=R&(x, b). At fixed a =2 fm

the energy minimizes at b = 1.2 fm '. The next row with
PP VV CoCo and C, C& channels and

100
RI, (x b)=Ri,(x b)=Rc (x b)=Rc (x b) (47)

50

0
E

CV
I

50

-100

a=2frn"

)
0

E
I

C)
LLj

FIG. 2. Interaction energy of a 2q-2q system calculated with
the trial orbital wave function (28) in the four-channel basis
(18)-(21). The parameter a =2 fm ' is kept fixed, and the in-

teraction energy is plotted against the relative position parame-
ter b (fm ')

~ The upper curve is calculated without the
hyperfine interaction (3), while the lower curve is with the full
Harniltonian {1).

PP, VV, CoCO, C) C1

FIG. 3. Interaction energy of a 2q-2q system as a function of
b (frn ) with the trial orbital wave function (28) in the two-
channel basis (18) and (19) and the four-channel basis (18)-(22).
As in Fig. 2, we take a =2 fm
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has a minimum at b =1.1 fm ' and the pocket becomes
much more attractive than in the previous case. The oth-
er entries in the table show the effect of adding new chan-
nels with a different parameter b'. In that case the chan-
nels are denoted by P', V', Co, and C', . Comparison of
the fifth and last rows shows again that the hidden color
channels bring a substantial amount of attraction.

The stability of the results at adding a new parameter
b' has been tested by varying b at b'=2. 2 fm ' fixed.
We found that the binding energy is very stable around
b =1.1 fm

Our basis is different from the one used by Weinstein
and Isgur [4] mainly in that the octet (hidden color) chan-
nels are included explicitly. As explained in Appendix B,
if a complete set of orbital wave functions had been used
in %pp and 4~, then the octet channels would have been
linearly dependent on the singlet channels and would
therefore have been redundant. But with simple orbital
wave functions as above the octet states introduce impor-
tant new components to the wave function and lower the
variational energy. This is consistent with Kamimura's
findings.

In an eight-dimensional basis (Table V), we get a bind-
ing of 102 MeV for the 2q-2q system as compared to 81
MeV of Ref. [4]. However, a precise comparison is
difBcult because in the present work the mass of the pseu-
doscalar qq pair is 173 MeV, while in Ref. [4] it is 137
MeV. This could be because Weinstein and Isgur use a
more elaborate trial wave function for the qq system as
compared to the one used here [Eq. (7)]. At this stage
comparison with the experiment is meaningless.

VI. CONCLUSIONS

As mentioned in the Introduction, two major questions
were at the origin of this work.

One was related to the role played by the spin-spin in-
teraction in obtaining the binding of a 2q-2q system of
equal masses. Based on a simple variational solution of
type (28), we obtained a positive energy surface at any
separation distance, i.e., no binding (Fig. 2). The addition
of a hyperSne interaction led to binding. The (negative)
minimum in the energy surface appeared at a separation
distance I /O -0.9 fm, larger than twice the pseudoscalar
meson radius, which suggests a molecular-type structure
of the bound 2q-2q system.

The other was related to the role played by the hidden
color (octet-octet) states in the variational solution. As
demonstrated in Appendix B, these states are not needed
if the direct and exchange orbital wave functions are ex-
pressed in terms of a complete set. In practice, with a
variationa1 solution, this is not the case and one has to
make the best choice for the variational wave function.
Our proposal of explicitly including the hidden color
channels has the same motivation as the variational ap-
proach proposed by Kamimura [14] for a few-body sys-
tem, who showed that the explicit inclusion of all possible
channels can be more efBcient in.obtaining a convergence
in the variational energy than by using more elaborate or-
bital wave functions with fewer channels. Kamimura's
technique has been very successful for muonic molecules
[14] as well as for H or He. In the particular case [15]

of H and He, this also led to a precise calculation of the
wave function over a wide range of separation between
the clusters of the relevant physical channels.
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APPENDIX A

One can construct a color singlet 2q-2q system in three
ways (see Fig. 1). The corresponding orthonormal bases
are

~ 312334 & ~612634 &

I113124&

1114123&, 1814823&

(Al)

(A2)

(A3)

Here particles 1 and 2 are quarks and 3 and 4 are anti-
quarks. The 3 and 3 color states are antisymmetric, and
the 6 and 6 are symmetric under the transpositions (12)
and (32). The bases (A2) and (A3) correspond to the
direct and exchange channels. As each of the wave func-
tions (18)-(21)contains one vector of (A2) and another of
(A3), it is useful for evaluating matrix elements to express
the color states (A2) and (A3) in terms of (Al). The rela-
tions are

and

~ 113124& ( 3 } ~312334&+( 3 } ~612634 &

1813824&= —(-', )'"13,2334&+(Y)'"1612634&

~114123&= —( 3) ' i312334&+( 3)'"~612634&

1814823& (3 } 1312334&+(Y} 16»634&

(A4)

(AS)

(A6)

(A7)

The situation is analogous in spin space. The three
S =0 orthonormal basis sets are

I+~

~+13~24 & ~ ~ ~13 ~24 &

I~14~23 & I 14

(A8)

(A9}

—
T ll T

—l T T l),
=

—,'( T 4 T 4+ l TLT —
T l L T

—
L T T l),

(A11)

(A12)

where T and $ are the spin states with s= —,
' and s, =—,',

s, = —
—,', respectively. The particle order 1,2,3,4 is under-

In the notation of Ref. [4], the basis vectors (A8} are
defined by

y =IS»S34&»d g+=I&12&34&.

It is useful to write them explicitly as

—(2T T l l+2ll T T
—TLT l —l TLT

1

&12



4672 D. M. BRINK AND FL. STANCU 49

stood everywhere. One can check the normalization and
orthogonality, and see that the symmetry properties with
respect to the transpositions (12) and (32) are

P]4P23= —(13)X—= —(24)X—=+
2 X+ —

2X—.

(A23)
(12)X+=(34)X+=X+

(12}X-=(34)X—= —X—.

(A13)

(A14)
APPENDIX B

The purpose of this appendix is to discuss the possible
linear dependence of the functions (18)—(21). To do this
we introduce a short notation for the color singlet states,

1 2 1 3
X+ 3 4 ~ X 2 4

(A15)
~]—1113 24&IP]3 24&& 92 I 14 23&l 14 23&

In fact, y+ and y form the Young-Yamanuchi basis of
the two-dimensional irreducible representation [2 2] of
S4. The corresponding Young tableaux are

The asymptotic channel spin functions (A9) or (A10) are
obtained by first introducing the two-body zero-spin state

)3 1113124& I V]3 V24 && l4 1114123& I V]4 V23 &

(8I)

Xoo= —(tl —Lt)
1

and a corresponding notation for the color octet states:

(]—1813824&IP]3P24&& 02 1814823&IP]4P23&

and the one-spin states

X]1

g3 1813824& I V]3 V24 && 04 1814823 & I V]4 V23 &

Then we know from the results of Appendix A that

(82)

+10 (tl+ L t),
2

ri;=+A,Jp~ , g;=Q.B(qpj,
J J

(83)

P]3P24 =Xoo(1,3 }Xoo(2,4)

=—,'( t the —l t t l —tie t+ l J t t),
P]4P23 Xoo(1,4)Xoo(2, 3)

=
—,'( 1' t l l —J t 5 t —t l t l+ l l t t ),

V]3 V24=&& 1m 1 —rn 100 &X] (1,3)X] (2,4)

(A16)

(A17)

1—(2tltl+2ltlt —t1'll —lt tl

(A18)

V]4V23 = g( 1m 1 —rn 100&X] (1,4)X] (2, 3)
m

1

v'12
—(2tllt+2l t tl —t th) —1 tl t

X],-1=&&

from which one can build the four-particle S =0 states

where the P; are defined in Eq. (25) and A and B are 4 X 4
matrices. Thus in matrix form one has (=BA '2) pro-
vided the inverse of A exists (and it does). This means,
for example, that

1813824 & IP]3P24 &

13 2 & IP]3 24 &+b I 1]4123& IP]4P23 &

+c
I

1 ]3124 & I V]3 V24 & +d
I

1 ]4123 & I V]4 V23 &

and

1814823&1 14 23&

=b
I 1]3124&IP]3P24 &+a I 1]4123& IP]4P23 &

+d
I 1]3124& I V]3 V24 & +c I 1]4123& I V]4 V23 &

where a, b, c,d are numbers which can be calculated.
One obtains a = —1/23/2, b =3/43/2, c =0, and
d = —33/3/4&2.

Now we discuss an octet wave function 4& c as in Eq.
0 0

(20) of Sec. III. Using (84) and (85), we get

(A19)

One can notice that V» V24 and P»P24 result from the
action of the transposition (14) or (23) on x+ and x, re-
spectively,

+c,c,=+pp++vv

where

NIpRI, (x)=Nc, c,[aRc,(x)+bRc, (y)]

(86)

(87)

V]3 V24 —(23)X+=( 14}X+= ——X++
2 2

(A20)
and

NvvR v(x)=Nc, c [cRc,(x)+dRc, (y}] . (88)

1
V]4V23 =(13)X+=(24)X+= X+

3
X—

v'3
P 3P24=(23)X =(14)X = X++—X2 2

and that

(A21)

(A22}

For interpreting (86)-(88) consider wave functions of
the form (18}and (19) and express R~(x) and R v(x) in

terms of a basis set of 2n orbital wave functions R (x,b)
as in Eq. (24). Suppose the basis set has the property that
the exchange orbital wave function R (y, b) is a member
of the set for every R(x,b). Then the octet wave func-
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tions are not needed. Any octet wave function with or-
bital parts given in the same basis can be written as a
linear combination of color singlet parts by using Eqs.
(B6)—(BS).

An alternative would be to take a basis set R(x, b) of n
orbital functions where the exchange functions R (y, b)
are independent of the direct wave functions and keep
both the color singlet and color octet states. As in the
first case, the total basis set has dimension 4n, the varia-
tional space is the same, and the results of a variational
calculation will be identical.

APPENDIX C

The integration in the color space can be performed in
one of the three orthonormal bases (Al) —(A3) introduced
in Appendix A depending on the choice of the internal
coordinates. For the direct matrix elements, it is ap-
propriate to use the basis ~1»134},~S»834} together with
the coordinates p, p', and x given by (10). For the ex-
change matrix elements, we chose to use the basis
13)3334) 16]$634 }together with the relative coordinates x,
y, and A, appearing in (10}, (11), and (12). In the spin
space, there are also three orthonormal bases (AS)-(A10)
available as discussed in Appendix A. The choice of basis
is entirely analogous to that of the color basis.

Here we give the analytic form of various matrix ele-
ments appearing in the overlap and the Hamiltonian ma-
trix for

K'(b, b') = ( R (x,b)
~
T~R (y, b') )

M 7r g +3g (b +b' )+5b b'
2m 23/2 g[(g2+b2}(g2+bi2)]5/2 (C6)

V, =(R(x,b)ip +p' iR(x, b'))

= 3~'" 1

24 gs(b3+b'3)3/3 ' (C7)

Vz=(R (x,b)l~'IR (y, b') &

= 3~'" 1

27/2 5[(g2+b 2)( 2+b i2) )3/2
(CS)

V3=(R(x,b)i9x + ,'(p +p' )+—', p p'iR(x, b—')}

3. Confinement potential

The direct matrix elements V& and V3 are best evalu-
ated in the coordinate system (p,p', x) and the exchange
matrix elements V2, V4, and V5 in the mixed coordinate
system (x,y, A, ). The corresponding operators and the
analytical expressions for the wave functions (Cl) and
(C2) are

and

2( 2+ 2) b2 2 2(g2+ 2) b2 2

x x +2(+2++i2) b2y2 2(g2+Z2) ~2y2

(Cl)

(C2)

+, (C9)
24 g6(b2+bi2)3/2 b2+bi2 2g2

V4= (R(x,b)i —x —y +—', A, IR (y, b') )

0 (b, b')=(R(x, b)iR(x, b'))
~43/~

23g6(b2+b 2)3/2

0'(b, b'}=(R(x,b)~R(y, b'))
7r43/7r

g 3[2(g2+b 2)( b 2+b i2) ]3/2

(C3)

(C4)

1. Overlap matrix

The matrix elements of Table I contain 0" and 0'.
For (Cl) and (C2) these become

3~'" 1

25/2 g 3[( 2+b 2)( 2+ b i2) ]3/2

1 1 1

g2+b2 g2+b~2 9g2

V5 = (R (x,b) ~x +y + —", A, ~R (y, b') )

9/2 1

25/2 g3[(g2+b2)(g2+bi2)]3/2

1 1 7
g2+'b2 g2+b~2 9g2

(C10}

(Cl 1)

2. Kinetic energy matrix

The matrix elements of Table II take the particular
form 4. Hyperfine interaction

K (b, b') = (R (x,b)i TiR (x,b') )
3/2 7r9/2 g2(b2+be2)+b2bt2

4 g6(b2+. b 2)5/2 (C5)

The matrix elements of Table IV are linear combina-
tions of five distinct integrals Io, I„I2, I3, and I4 con-
taining the radial part (4) of the spin-spin interaction.
These are
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I,= & R(x, b)lf »IR(x, b') &

=
& R (x, b) If,.lR (x, b ) &

= (R (» b)lf )g IR (x,b') &
=«(x, b) I f23 IR (x,b') &

g 3

g 3[2g 2(b2+b'2)+ (2g 2+ b2+b'2)t72]3/2
3

I& = (R (x,b) If&3 IR (x,b') &
= (R (x,b) I f24IR (x,b') &

= 03

g 3[(g2+ 2)(b 2+ b ~2) ]3/2

I2=(R(x, b}lf,2IR (y, b') & =(R(x,b)l f34IR(y, b') &

g 3

23/2 g3[( 2+b2)(g2+b 2)+(2g2+b2+b~2)~2]3/2

I3 = (R (x, b) If )q IR (y, b') &
=

& R (x, b) If» IR (y, b') &

(C12}

(C13)

(C14)

g\ 3
=%3

[2g 2(g 2+b 2)(g 2+b'2)+(g 2+b'2)(3g 2+b 2)g 2]3/2

I,=(R (x b)lf~3IR(y, b') & =(R(x,b)lf24IR(y, b') &

0'3
=7r3

[2g 2(g 2+b 2)(g 2+b t2)+ (g 2+b 2)(3g 2+ bi2) t2r]3/2

Note that for b =b' one has

I3 =I4

and for a =b =b' one has

IO=I) =I2=I3 =I4 .

(C15)

(C16)

(C17)

(C18)

One should comment that at b =a or b'=a the matrix resulting from the variational principle is singular and such
points should be avoided.
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