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Motivation

wind vortex

Etudes des effets du vent sur les grues a tour

Voisin, 2003.

Small oscillations Large oscillations Autorotations
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Motivation

# Movie
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The first-passage time
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The first-passage time
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The first-passage time
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Mitigation of the torsional flutter phenomenon
of a bridge deck section during a lifting phase,
Andrianne T. and de Ville de Goyet V., 2016.

Exhaust plume

Air handling
: u

inits

CFD simulation of micro-scale pollutant dispersion
in the built environment, Blocken et al. (2013)
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The Mathieu oscillator

B(t) + 26(t) + (1 + u(t) (t) = w(t)

Parametric Forced
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The Mathieu oscillator
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The Mathieu oscillator
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The Mathieu oscillator

Monte Carlo Analytical Numerical
simulations approach approach
versatile good understanding versatile

large validity

time efficient

time consuming

complex

hard to analyze

not always possible

hard to analyze

needs to be repeated

needs to be repeated

A

A
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@ Introduction
@ Analytical determination of the first-passage time
©® Numerical determination of the first-passage time
O Applications

@ Conclusion, limitations and perspectives
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Governing equations
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Governing equations

() + 262 + (1 + u(t)) (t)

Stochastic averaging white noise of intensity 1
. 4
H=m(H)+o(H)n(t)

drift m(H) = 45, + % —2¢H
and
diffusion o*(H) =115, + HS,

— the energy H evolves slowly
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Governing equations

Generalized Pontryagin equation

_Mk—l with MO =1

My = E{tf}
M; = piy mean first-passage time
My = o} + pi7 mean square first-passage time
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Average first-passage time of the undamped Mathieu

oscillator

(1) + 260 (1) + (1+u(t) x(t) = w(t)

Analytical Numerical

average average variance complete
FPT FPT of the FPT | distribution

undamped damped undamped damped

linear linear linear nonlinear
white noise || white noise | white noise | evolutionary

excitations excitations excitations excitation
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Average first-passage time of the undamped Mathieu

oscillator

Pontryagin equation with k=1 M =€ {t;} =y

H Sw\ 0, HE H 0?

2 ) 0Hy 0H?

Asymptotic expansion

o i In HcSu + 2Sw
b= Su H()Su + 2Sw
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Average first-passage time of the undamped Mathieu
oscillator

Pontryagin equation with k=1 M =€ {t;} =y

Hy Sw 8uf H02 Hy 82uf
25,4+ 2 (s, + 2258 =-1
(2 u+2)8H0+ g et OHZ

Asymptotic expansion

*iln H.Su 428y

o= Su H()Su +2Sw
4

Su =In(1+ AHT

by = HE +1

: * _ HyS * _ AHS,
with Hy = 5% and AH* = 552+,

16/63



Average first-passage time of the undamped Mathieu

oscillator

AH*
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Average first-passage time of the undamped Mathieu
oscillator - Regimes

Z(t) + (L +u(t)) z(t) = w(t)
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Average first-passage time of the undamped Mathieu
oscillator - Regimes
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Average first-passage time of the undamped Mathieu

oscillator - Regimes

10

AH*
AHS,
250

101

20/63



Average first-passage time of the undamped Mathieu
oscillator - limit cases

Su
Ky

+ S, =0 No parametric

(1) + (1+ 04)) (t) = w(t)
pp=EAH = ZAH

AH*
AHS,
25
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Average first-passage time of the

oscillator - limit cases

Su
Ky

10
___’-’/1' 7

AH*

undamped Mathieu

+ S, =0 No parametric

(1) + (1+ 04)) (t) = w(t)
pp=EAH = ZAH

* Sy =0 No forced
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Average first-passage time of the undamped Mathieu
oscillator
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Average first-passage time of the undamped Mathieu
oscillator

AH*

1072 101 10° 10
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Average first-passage time of the damped Mathieu

oscillator

F(t) +26x(t) + (14 u(?)) z(t) = w(t)

Analytical Numerical
average average variance complete
FPT FPT of the FPT | distribution
undamped damped undamped damped
linear linear linear nonlinear
white noise || white noise | white noise | evolutionary
excitations excitations excitations excitation
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Average first-passage time of the damped Mathieu
oscillator

Pontryagin equation with k=1 M =& {} =ps

Sw ouf 0 Hop 82,uf
Su 7—2 H Su+ —Sw =-1
( + ¢ )BH +( 2 oH?

Asymptotic expansion

u St = fer(Hy, A" 86/5.)

Analytical expression is established.
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Average first-passage time of the damped Mathieu
oscillator

AH*
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Average first-passage time of the damped Mathieu
oscillator - Regimes

Incubation regime

iy scales linearly
with AH*
for given Hp

102 NN\
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Average first-passage time of the damped Mathieu
oscillator - Regimes

Additive regime

g is a function
of AH* only

102 NN\
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Average first-passage time of the damped Mathieu
oscillator - Regimes
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Multiplicative regime

Parallel straight lines

. 8¢
Slope decreases with &

102 N
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Average first-passage time of the damped Mathieu

oscillator

102 [ — %5
Effect of damping

by increases
Slope changes in M

Little effect elsewhere

102

Different toplogy
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Variance of the first-passage time of the undamped
Mathieu oscillator

(1 +u(t)) z(t) = w(t)

B(t) + 2€a(t) +

Analytical Numerical
average average variance complete
FPT FPT of the FPT | distribution
undamped damped undamped damped
linear linear linear nonlinear
white noise || white noise | white noise | evolutionary
excitations || excitations | excitations excitation
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Variance of the first-passage time of the undamped
Mathieu oscillator

Pontryagin equation with k=2 My =¢ {tj%’}

Ho Su\ OMy [ HZ Hy , \ 02M;
220G, 42w Su+ 228 =M =—
( 5 + ) oH, + ( u + 5 Pw 8H§ 1 Hnf

Asymptotic expansion

2

S * *
M2372 fCt(HO ,AH )

Analytical expression is established.
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Variance of the first-passage time of the undamped
Mathieu oscillator

cvp = 0og/py
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Variance of the first-passage time of the undamped
Mathieu oscillator

¢ Quasi straight lines
¢ Additive regime
e Large cvy = spread pdf

e Small cvy = sharp pdf

102 10
Hy
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Variance of the first-passage time of the undamped
Mathieu oscillator
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Many engineering applications
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©® Numerical determination of the first-passage time
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A numerical approach for the distribution of the
first-passage time of more complex systems

Z(t) + 26a(t) +a(t) +ez(z,2) = w(t)

S(w;t)

Analytical Numerical

average average variance complete
FPT FPT of the FPT | distribution

undamped damped undamped damped

linear linear linear nonlinear
white noise || white noise | white noise | evolutionary

excitations || excitations | excitations excitation
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Governing equations

(L) 4 26(t) +a(t) +ez(z, ) = w(t)

A
. . . 1 N _—
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Governing equations

Z(t) +26x(t) + z(t) + ez(z, &) = w(t)

Equivalent linearization

#(8) + B (H)(t) + w2 (H)a(t) = wl(?)
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Governing equations

Stochastic averaging
= m(H, 1) + o(H, tyn(t)
Backward-Kolmogorov equation

9*pP
OH?

aP
ot

oP 1
= m(HQ, t)ailfo + 50'2(}]0, t)
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Galerkin scheme

P(t; Ho) = Pun(t; Ho) + Pruin(t; Ho)

Projection of the linear solution in the eigen basis of the confluent
hypergeometric functions M(—X\;, 1, H)

oo

Piin(t; Ho) = Z Ti(t)®:(Ho)

i=1
Time coefficients T;(t) given by a set of differential equations

In practice limited to a finite number of terms N
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Governing equations

By extension

Pnlin(t; HO) = i Cl(t)(I)T(HO)

i=1

Time coefficients ¢;(t) given by a set of N coupled differential
equations.
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Example of the Duffing oscillator under seismic excitation

E(t) + 282 (t) +a(t) + ex®(t) = w(t)

1A L4 — Galerkin
1.2 | —o— I\A[C
1

, P(-
50— s
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0 0 250 5& 0

time (-)
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Example of the Duffing oscillator under seismic excitation

E(t) 4+ 262(t) +x(t) + ex®(t) = w(t)
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Particular case of the undamped oscillator

New basis of eigenfunctions

BesselJ(0, /4X, H) = %ir%/\/i(—)\i7 1,H)
—

» Computationally more simple
> Implemented in standard softwares

» Hypergeometric basis is anyway an approximation in the nonlinear
case
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Alternative formulation of the energy

Z(t) + 28x(t) +a(t)+ez(z, K = w(t)

&(t)+Be (H)a(t)+wi (H)z(t) = w(t) u(z) = / (y +ez(y))dy
0
22 i? @2
A=t 5t H=u@)+3
amplitude-based formulation Potential energy envelope formulation

e No statistical linearization

e Restricted to time modulated excitations and nonlinearities in term of
stiffness (Duffing)
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Alternative formulation of the energy
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O Applications
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Some applications

Ezperimental control for initiating and maintaining
rotation of parametric pendulum, Vaziri et al., 2014

Exhaust plume

Airhandiing
: units

\
B 999

CFD of micro-scale pollutant
in the built environment, Blocken ct al.(2013)

Mitigation of the torsional flutter phenomenon of bridge deck section du-

ring a lifting phase, Andrianne T. and de Ville de Goyet V., 2016.
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The tower crane problem

19+ OG =M, = %pairCMhBQHv'rele
4

r

19’+(C+M*U

1+ 23)) 0+ M1 +2%)9 = M*

w
U U
I

0" + 260" + (1 +@)0 = —w

threaded shaft , all bearings

jib i h
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Algorithmic establishment of the first-passage map from
experimental data
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Algorithmic establishment of the first-passage map from
experimental data
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Algorithmic establishment of the first-passage map from
experimental data
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The tower crane problem
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The tower crane problem
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The pre-stressed steel strip
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@ Conclusion, limitations and perspectives
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Conclusion

How much time ?
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Conclusion

Theoretical frame

analytical solution
maps, reduced energy
regimes

Numerical approach for damped, nonllnear systems
under evolutionary excitation

New basis for the undamped case
Two different energy definitions

Experimental investigation of the tower crane

Algorithmic establishment of the first-passage map
Equivalent Mathieu oscillator

Engineering point of view on a mathematical problem
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Limitation and perspectives

Theoretical developments limited by increasing complexity
More complex problems can be

reduced to equivalent simple systems
analyzed within developed frame

Perspectives: prediction of equivalent Mathieu oscillator
MDOF systems, colored excitations

analytical expressions for P

Future applications

Monitoring of structures, identification of structural properties,
bridge flutter,...

61/63



Thank you!
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Backup slide

H =m(H)+o(H)((t)

Generalized Pontryagin equation

oM, 1 4 92 My,
—o2(H,
o, 27 ) 5h2

Boundary conditions

m(H()) =—Mp_1 with My=1

]\ﬁc([fo)zo7 if Hy = H, and ‘Mk(HOZO)‘ < 00
Second condition is qualitative, can be transformed into quantitative
condition through

o?(H) — O(|H — Hy|*), oy >0, H— H;

m(H) — O(|H — Hy|P), 6, >0, H — H
_ a;—pf3

—2’"<H)<U’§(If;) YR e, H—oO

For entrance and repulsively natural boundary classes, the second
condition can be replaced by the quantitative condition

O(Im(Ho) My (Ho)|) ~ O(IMy_;(Ho)|), ~ Ho — H.
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