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Governing equations

Generalized Pontryagin equation

m(H0)
∂Mk

∂H0
+

1

2
σ2(H0)

∂2Mk

∂H 2
0

= −Mk−1 with M0 = 1

Mk = E{tkf }
M1 = µf mean first-passage time
M2 = σ2

f + µ2
f mean square first-passage time
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Average first-passage time of the undamped Mathieu
oscillator

Pontryagin equation with k = 1: M1 = E
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Average first-passage time of the damped Mathieu
oscillator

Pontryagin equation with k = 1: M1 = E
{
tf
}
= µf

(
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2
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+
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0

4
Su +
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2
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0

= −1

Asymptotic expansion

µf
Su

4
= fct(H ?

0 ,∆H ?, 8ξ/Su)

Analytical expression is established.
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Variance of the first-passage time of the undamped
Mathieu oscillator

Pontryagin equation with k = 2: M2 = E
{
t2f

}
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Analytical expression is established.
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Variance of the first-passage time of the undamped
Mathieu oscillator
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A numerical approach for the distribution of the
first-passage time of more complex systems
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Governing equations

ẍ(t) + 2ξẋ(t) + x(t) + εz (x , ẋ) = w(t)

Equivalent linearization

ẍ(t) + βe(H )ẋ(t) + ω2
e (H )x(t) = w(t)

with H = x2

2
+ ẋ2

2ω2
e (H )
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Governing equations

Stochastic averaging

Ḣ = m(H , t) + σ(H , t)η(t)

Backward-Kolmogorov equation

∂P

∂t
= m(H0, t)

∂P

∂H0
+

1

2
σ2(H0, t)

∂2P

∂H 2
0
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Galerkin scheme

P(t ;H0) = Plin(t ;H0) + Pnlin(t ;H0)

Projection of the linear solution in the eigen basis of the confluent
hypergeometric functions M(−λi , 1,H )

Plin(t ;H0) =

∞∑
i=1

Ti(t)Φi(H0)

Time coefficients Ti(t) given by a set of differential equations

In practice limited to a finite number of terms N
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Governing equations

By extension

Pnlin(t ;H0) =

∞∑
i=1

ci(t)Φi(H0)

Time coefficients ci(t) given by a set of N coupled differential
equations.

ċ(t) = D(t) c(t) + e(t)
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Example of the Duffing oscillator under seismic excitation
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Particular case of the undamped oscillator

New basis of eigenfunctions

BesselJ(0,
√

4λiH ) = lim
ξ→0
M(−λi , 1,H )

I Computationally more simple

I Implemented in standard softwares

I Hypergeometric basis is anyway an approximation in the nonlinear
case
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Alternative formulation of the energy
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Some applications
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The tower crane problem

I θ̈ + C θ̇ = Mw =
1

2
ρairCMhB2||v rel ||2

⇓

I θ̈ +
(
C + M ? r

U
(1 + 2

u

U
)
)
θ̇ + M ?(1 + 2

u

U
)θ = M ? w

U

⇓

θ′′ + 2ξsθ
′ + (1 + ũ)θ = −w̃
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Algorithmic establishment of the first-passage map from
experimental data
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The pre-stressed steel strip
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Conclusion
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Limitation and perspectives
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Thank you!
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Backup slide

Ḣ = m(H ) + σ(H )ζ(t)

Generalized Pontryagin equation

m(H0)
∂Mk

∂H0
+

1

2
σ2(H0)

∂2Mk

∂H 2
0

= −Mk−1 with M0 = 1

Boundary conditions

Mk (H0) = 0, if H0 = Hc and |M k (H0 = 0)| <∞

Second condition is qualitative, can be transformed into quantitative
condition through

σ2(H ) → O(|H −Hl |αl ), αl ≥ 0, H → Hl

m(H ) → O(|H −Hl |βl ), βl ≥ 0, H → Hl

2m(H )(H−Hl )
αl−βl

σ2(H )
→ cl , H → 0

For entrance and repulsively natural boundary classes, the second
condition can be replaced by the quantitative condition

O(|m(H0)M
′
k (H0)|) ∼ O(|M

′
k−1(H0)|), H0 → Hl .
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