The first-passage time as an analysis tool for the reliability of stochastic oscillators

Vanvinckenroye Hélène PhD Dissertation Defense

Motivation

Etudes des effets du vent sur les grues à tour Voisin, 2003.

Large oscillations

Motivation

Movie

The first-passage time

First – **passage time** t_f to go from H_0 to H_c

The first-passage time

First – **passage time** t_f to go from H_0 to H_c

The first-passage time

Mitigation of the torsional flutter phenomenon of a bridge deck section during a lifting phase, Andrianne T. and de Ville de Goyet V., 2016.

	Monte Carlo	Analytical	Numerical
	simulations	approach	approach
+	versatile	good understanding	versatile
		large validity	time efficient
-	time consuming	complex	
	hard to analyze	not always possible	hard to analyze
	needs to be repeated		needs to be repeated

1 Introduction

- 2 Analytical determination of the first-passage time
- **3** Numerical determination of the first-passage time
- **4** Applications
- **5** Conclusion, limitations and perspectives

Governing equations

 time

Governing equations

$$\ddot{x}(t) + 2\xi\dot{x} + (1 + u(t)) x(t)$$

Stochastic averaging white noise of intensity 1 $\dot{H} = m(H) + \sigma(H) \eta(t)$

drift
$$m(H) = \frac{H}{2}S_u + \frac{S_w}{2} - 2\xi H$$

and
diffusion $\sigma^2(H) = \frac{H^2}{2}S_u + HS_w$

 \rightarrow the energy H evolves slowly

$$H = \frac{\dot{x}^2}{2} + \frac{x^2}{2}$$

Governing equations

Generalized Pontryagin equation

$$m(H_0)\frac{\partial M_k}{\partial H_0} + \frac{1}{2}\sigma^2(H_0)\frac{\partial^2 M_k}{\partial H_0^2} = -M_{k-1} \quad \text{with} \quad M_0 = 1$$

$$\begin{split} M_k &= \mathcal{E}\{t_f^k\} \\ M_1 &= \mu_f \text{ mean first-passage time} \\ M_2 &= \sigma_f^2 + \mu_f^2 \text{ mean square first-passage time} \end{split}$$

$$\ddot{x}(t) + \dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

	Numerical		
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise excitations	white noise excitations	white noise excitations	evolutionary excitation
excitations	excitations	excitations	EACHAUIUII

$$\uparrow$$

Pontryagin equation with k = 1: $M_1 = \mathcal{E} \{t_f\} = \mu_f$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2}\right)\frac{\partial\mu_f}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2\mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f = \frac{4}{S_u} \ln \left(\frac{H_c S_u + 2S_w}{H_0 S_u + 2S_w} \right)$$

$$\mu_f \frac{S_u}{4} = \ln\left(1 + \frac{\Delta H^\star}{H_0^\star + 1}\right)$$

with $H_0^{\star} = \frac{H_0 S_u}{2S_w}$ and $\Delta H^{\star} = \frac{\Delta H S_u}{2S_w}$.

Pontryagin equation with k = 1: $M_1 = \mathcal{E} \{ t_f \} = \mu_f$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2}\right)\frac{\partial\mu_f}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2\mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f = \frac{4}{S_u} \ln \left(\frac{H_c S_u + 2S_w}{H_0 S_u + 2S_w} \right)$$

$$\Downarrow$$

$$\mu_f \frac{S_u}{4} = \ln\left(1 + \frac{\Delta H^\star}{H_0^\star + 1}\right)$$

with $H_0^{\star} = \frac{H_0 S_u}{2S_w}$ and $\Delta H^{\star} = \frac{\Delta H S_u}{2S_w}$.

17/63

 $\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$

 $\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$

19/63

 $\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$

20/63

Average first-passage time of the undamped Mathieu oscillator - limit cases

• $S_u = 0$ No parametric

$$\ddot{x}(t) + (1 + \psi(t)) x(t) = w(t)$$
$$\mu_f = \frac{4}{S_u} \Delta H^\star = \frac{2}{S_w} \Delta H$$

Average first-passage time of the undamped Mathieu oscillator - limit cases

• $S_u = 0$ No parametric

$$\ddot{x}(t) + (1 + \psi(t)) x(t) = w(t)$$
$$\mu_f = \frac{4}{S_u} \Delta H^\star = \frac{2}{S_w} \Delta H$$

•
$$S_w = 0$$
 No forced

$$\ddot{x}(t) + (1 + u(t)) x(t) = \psi(t)$$

 $\mu_f = \frac{4}{S_u} \ln(1 + \frac{\Delta H}{H_0})$

 $\mu_f \frac{S_u}{4}$

 $\mu_f \frac{S_u}{4}$

 ΔH^{\star}

 H_0^{\star}

$$\ddot{x}(t) + 2\xi \,\dot{x}(t) + (1 + u(t)) \,x(t) = w(t)$$

	Numerical		
average	average	variance	$\operatorname{complete}$
FPT	FPT	of the FPT	distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise	white noise	white noise	evolutionary
excitations	excitations	excitations	excitation

$$\begin{array}{c} \uparrow \\ \uparrow \\ \hline \\ \sigma_{f} \\ \mu_{f} \end{array}$$

Pontryagin equation with k = 1: $M_1 = \mathcal{E} \{t_f\} = \mu_f$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2} - 2\xi H\right)\frac{\partial\mu_f}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2\mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f \frac{S_u}{4} = \mathsf{fct}(H_0^\star, \Delta H^\star, 8\xi/S_u)$$

Analytical expression is established.

 H_0^{\star}

Incubation regime

 μ_f scales linearly with ΔH^{\star} for given H_0^{\star}

Additive regime

 μ_f is a function of ΔH^* only

Multiplicative regime

Parallel straight lines Slope decreases with $\frac{8\xi}{S}$

Effect of damping

 μ_f increases Slope changes in M Little effect elsewhere Different toplogy

Variance of the first-passage time of the undamped Mathieu oscillator

$$\ddot{x}(t) + \dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

	Numerical		
average	average	variance	$\operatorname{complete}$
FPT	FPT	of the FPT	distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise	white noise	white noise	evolutionary
excitations	excitations	excitations	excitation

Variance of the first-passage time of the undamped Mathieu oscillator

Pontryagin equation with k = 2: $M_2 = \mathcal{E}\left\{t_f^2\right\}$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2}\right)\frac{\partial M_2}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2 M_2}{\partial H_0^2} = -M_1 = -\mu_f$$

Asymptotic expansion

$$M_2 \frac{S_u^2}{32} = \mathsf{fct}(H_0^\star, \Delta H^\star)$$

Analytical expression is established.

Variance of the first-passage time of the undamped Mathieu oscillator

Variance of the first-passage time of the undamped Mathieu oscillator

- Quasi straight lines
- Additive regime
- Large $cv_f = spread pdf$
- Small $cv_f = \text{sharp pdf}$

Variance of the first-passage time of the undamped Mathieu oscillator

1 Introduction

2 Analytical determination of the first-passage time

3 Numerical determination of the first-passage time

- 4 Applications
- 6 Conclusion, limitations and perspectives

A numerical approach for the distribution of the first-passage time of more complex systems

$$\ddot{x}(t) + 2\xi \dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

Analytical			Numerical
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise	white noise	white noise	evolutionary
excitations	excitations	excitations	excitation

$$\ddot{x}(t) + 2\xi \dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

Equivalent linearization

$$\ddot{x}(t) + \beta_e(H)\dot{x}(t) + \omega_e^2(H)x(t) = w(t)$$

with
$$H = \frac{x^2}{2} + \frac{\dot{x}^2}{2\omega_e^2(H)}$$

Stochastic averaging

$$\dot{H} = m(H, t) + \sigma(H, t)\eta(t)$$

Backward-Kolmogorov equation

$$\frac{\partial P}{\partial t} = m(H_0, t) \frac{\partial P}{\partial H_0} + \frac{1}{2} \sigma^2(H_0, t) \frac{\partial^2 P}{\partial H_0^2}$$

Galerkin scheme

$$P(t; H_0) = P_{lin}(t; H_0) + P_{nlin}(t; H_0)$$

Projection of the linear solution in the eigen basis of the confluent hypergeometric functions $\mathcal{M}(-\lambda_i, 1, H)$

$$P_{lin}(t; H_0) = \sum_{i=1}^{\infty} T_i(t) \Phi_i(H_0)$$

Time coefficients $T_i(t)$ given by a set of differential equations

In practice limited to a finite number of terms N

By extension

$$P_{nlin}(t; H_0) = \sum_{i=1}^{\infty} c_i(t) \Phi_i(H_0)$$

Time coefficients $c_i(t)$ given by a set of N coupled differential equations.

 $\dot{\mathbf{c}}(t) = \mathbf{D}(t) \, \mathbf{c}(t) + \mathbf{e}(t)$

Example of the Duffing oscillator under seismic excitation

Example of the Duffing oscillator under seismic excitation

Particular case of the undamped oscillator

New basis of eigenfunctions

$$\mathsf{BesselJ}(0,\sqrt{4\lambda_iH}) = \lim_{\xi \to 0} \mathcal{M}(-\lambda_i, 1, H)$$

Computationally more simple

- Implemented in standard softwares
- Hypergeometric basis is anyway an approximation in the nonlinear case

Alternative formulation of the energy

$$\ddot{x}(t) + 2\xi \dot{x}(t) + x(t) + \varepsilon z(x, \varkappa) = w(t)$$

$$\ddot{x}(t) + \beta_e(H)\dot{x}(t) + \omega_e^2(H)x(t) = w(t)$$

$$H = \frac{x^2}{2} + \frac{\dot{x}^2}{2\omega_e^2(H)}$$

$$u(x) = \int_0^x (y + \varepsilon z(y)) dy$$
$$H = u(x) + \frac{\dot{x}^2}{2}$$

amplitude-based formulation

Potential energy envelope formulation

- No statistical linearization
- Restricted to time modulated excitations and nonlinearities in term of stiffness (Duffing)

Alternative formulation of the energy

1 Introduction

- 2 Analytical determination of the first-passage time
- Output: Numerical determination of the first-passage time

4 Applications

5 Conclusion, limitations and perspectives

Some applications

Mitigation of the torsional flutter phenomenon of bridge deck section during a lifting phase, Andrianne T. and de Ville de Goyet V., 2016.

The tower crane problem

Algorithmic establishment of the first-passage map from experimental data

Algorithmic establishment of the first-passage map from experimental data

Algorithmic establishment of the first-passage map from experimental data

The tower crane problem

The tower crane problem

The pre-stressed steel strip

1 Introduction

- 2 Analytical determination of the first-passage time
- Output: Numerical determination of the first-passage time
- 4 Applications
- **5** Conclusion, limitations and perspectives

Conclusion

How much time ?

Conclusion

Theoretical frame

analytical solution maps, reduced energy regimes

Numerical approach for damped, nonlinear systems under evolutionary excitation

New basis for the undamped case Two different energy definitions

Experimental investigation of the tower crane

Algorithmic establishment of the first-passage map Equivalent Mathieu oscillator

Engineering point of view on a mathematical problem

Limitation and perspectives

Theoretical developments limited by increasing complexity More complex problems can be

reduced to equivalent simple systems analyzed within developed frame

Perspectives: prediction of equivalent Mathieu oscillator MDOF systems, colored excitations analytical expressions for P

Future applications

Monitoring of structures, identification of structural properties, bridge flutter,...

Thank you!

Backup slide

$$\dot{H} = m(H) + \sigma(H)\zeta(t)$$

Generalized Pontryagin equation

$$m(H_0)\frac{\partial M_k}{\partial H_0} + \frac{1}{2}\sigma^2(H_0)\frac{\partial^2 M_k}{\partial H_0^2} = -M_{k-1} \quad \text{with} \quad M_0 = 1$$

Boundary conditions

 $M_k(H_0) = 0$, if $H_0 = H_c$ and $|M_k(H_0 = 0)| < \infty$

Second condition is qualitative, can be transformed into quantitative condition through

$$\begin{cases} \sigma^{2}(H) & \rightarrow \mathcal{O}(|H - H_{l}|^{\alpha_{l}}), \ \alpha_{l} \geq 0, \qquad H \rightarrow H_{l} \\ m(H) & \rightarrow \mathcal{O}(|H - H_{l}|^{\beta_{l}}), \ \beta_{l} \geq 0, \qquad H \rightarrow H_{l} \\ \frac{2m(H)(H - H_{l})^{\alpha_{l} - \beta_{l}}}{\sigma^{2}(H)} & \rightarrow c_{l}, \qquad H \rightarrow 0 \end{cases}$$

For entrance and repulsively natural boundary classes, the second condition can be replaced by the quantitative condition

$$\mathcal{O}(|m(H_0)M_k'(H_0)|) \sim \mathcal{O}(|M_{k-1}'(H_0)|), \quad H_0 \to H_l.$$