

The first-passage time as an analysis tool for the reliability of stochastic oscillators

Vanvinckenroye Hélène
PhD Dissertation Defense

Motivation

Etudes des effets du vent sur les grues à tour
Voisin, 2003.

Small oscillations

Large oscillations

Autorotations

Motivation

Movie

The first-passage time

$$\text{Energy } H = \frac{x^2}{2} + \frac{\dot{x}^2}{2}$$

How much time ?

First – passage time t_f to go from H_0 to H_c

The first-passage time

$$\text{Energy } H = \frac{x^2}{2} + \frac{\dot{x}^2}{2}$$

How much time ?

First – passage time t_f to go from H_0 to H_c

The first-passage time

Mitigation of the torsional flutter phenomenon of a bridge deck section during a lifting phase,
Andrianne T. and de Ville de Goyet V., 2016.

CFD simulation of micro-scale pollutant dispersion in the built environment, Blocken et al. (2013)

The Mathieu oscillator

$$\ddot{x}(t) + 2\xi\dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

Parametric Forced

The Mathieu oscillator

The Mathieu oscillator

The Mathieu oscillator

	Monte Carlo simulations
+	versatile
-	time consuming
	hard to analyze
	needs to be repeated

	Analytical approach	Numerical approach
+	good understanding	versatile
-	large validity	time efficient
	complex	
	not always possible	hard to analyze
		needs to be repeated

- 1 Introduction
- 2 Analytical determination of the first-passage time
- 3 Numerical determination of the first-passage time
- 4 Applications
- 5 Conclusion, limitations and perspectives

Governing equations

$$\ddot{x}(t) + 2\xi\dot{x} + (1 + u(t)) x(t) = w(t)$$

stationary white noise excitations
of intensities $S_u, S_w \ll 1$

slightly damped
 $\xi \ll 1$

(very) long transient regime

→ the energy H evolves slowly

$$H = \frac{\dot{x}^2}{2} + \frac{x^2}{2}$$

Governing equations

$$\ddot{x}(t) + 2\xi\dot{x} + (1 + u(t)) x(t)$$

Stochastic averaging

$$\dot{H} = m(H) + \sigma(H)\eta(t)$$

white noise of intensity 1

drift $m(H) = \frac{H}{2}S_u + \frac{S_w}{2} - 2\xi H$
and
diffusion $\sigma^2(H) = \frac{H^2}{2}S_u + HS_w$

→ the energy H evolves slowly

$$H = \frac{\dot{x}^2}{2} + \frac{x^2}{2}$$

Governing equations

Generalized Pontryagin equation

$$m(H_0) \frac{\partial M_k}{\partial H_0} + \frac{1}{2} \sigma^2(H_0) \frac{\partial^2 M_k}{\partial H_0^2} = -M_{k-1} \quad \text{with} \quad M_0 = 1$$

$$M_k = \mathcal{E}\{t_f^k\}$$

$M_1 = \mu_f$ mean first-passage time

$M_2 = \sigma_f^2 + \mu_f^2$ mean square first-passage time

Average first-passage time of the undamped Mathieu oscillator

$$\ddot{x}(t) + 2\xi\dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

Analytical			Numerical
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise excitations	white noise excitations	white noise excitations	evolutionary excitation

Average first-passage time of the undamped Mathieu oscillator

Pontryagin equation with $k = 1$: $M_1 = \mathcal{E}\{t_f\} = \mu_f$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2}\right)\frac{\partial\mu_f}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2\mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f = \frac{4}{S_u} \ln \left(\frac{H_c S_u + 2S_w}{H_0 S_u + 2S_w} \right)$$

↓

$$\mu_f \frac{S_u}{4} = \ln \left(1 + \frac{\Delta H^*}{H_0^* + 1} \right)$$

with $H_0^* = \frac{H_0 S_u}{2S_w}$ and $\Delta H^* = \frac{\Delta H S_u}{2S_w}$.

Average first-passage time of the undamped Mathieu oscillator

Pontryagin equation with $k = 1$: $M_1 = \mathcal{E}\{t_f\} = \mu_f$

$$\left(\frac{H_0}{2}S_u + \frac{S_w}{2}\right)\frac{\partial\mu_f}{\partial H_0} + \left(\frac{H_0^2}{4}S_u + \frac{H_0}{2}S_w\right)\frac{\partial^2\mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f = \frac{4}{S_u} \ln \left(\frac{H_c S_u + 2S_w}{H_0 S_u + 2S_w} \right)$$

⇓

$$\mu_f \frac{S_u}{4} = \ln \left(1 + \frac{\Delta H^\star}{H_0^\star + 1} \right)$$

with $H_0^\star = \frac{H_0 S_u}{2S_w}$ and $\Delta H^\star = \frac{\Delta H S_u}{2S_w}$.

Average first-passage time of the undamped Mathieu oscillator

$$\Delta H^* = \frac{\Delta H S_u}{2 S_w}$$

$$H_0^* = \frac{H_0 S_u}{2 S_w}$$

Average first-passage time of the undamped Mathieu oscillator - Regimes

$$\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$$

$$H_0^* = \frac{H_0 S_u}{2 S_w}$$

Incubation regime

$$\mu_f = \frac{4}{S_u} \frac{\Delta H^*}{H_0^* + 1}$$

Average first-passage time of the undamped Mathieu oscillator - Regimes

$$\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$$

$$H_0^* = \frac{H_0 S_u}{2 S_w}$$

$$\mu_f = \frac{4}{S_u} \ln(1 + \Delta H^*)$$

Average first-passage time of the undamped Mathieu oscillator - Regimes

$$\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$$

$$H_0^* = \frac{H_0 S_u}{2 S_w}$$

$$\mu_f = \frac{4}{S_u} \ln\left(1 + \frac{\Delta H}{H_0}\right)$$

Average first-passage time of the undamped Mathieu oscillator - limit cases

- $S_u = 0$ No parametric

$$\ddot{x}(t) + (1 + \cancel{u(t)}) x(t) = w(t)$$

$$\mu_f = \frac{4}{S_u} \Delta H^* = \frac{2}{S_w} \Delta H$$

Average first-passage time of the undamped Mathieu oscillator - limit cases

- $S_u = 0$ No parametric

$$\ddot{x}(t) + (1 + u(t)) x(t) = w(t)$$

$$\mu_f = \frac{4}{S_u} \Delta H^* = \frac{2}{S_w} \Delta H$$

- $S_w = 0$ No forced

$$\ddot{x}(t) + (1 + u(t)) x(t) = \cancel{w(t)}$$

$$\mu_f = \frac{4}{S_u} \ln\left(1 + \frac{\Delta H}{H_0}\right)$$

Average first-passage time of the undamped Mathieu oscillator

$$\Delta H^* = \frac{\Delta H S_u}{2 S_w}$$

$$H_0^* = \frac{H_0 S_u}{2 S_w}$$

Average first-passage time of the undamped Mathieu oscillator

Average first-passage time of the damped Mathieu oscillator

$$\ddot{x}(t) + 2\xi \dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

Analytical			Numerical
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise excitations	white noise excitations	white noise excitations	evolutionary excitation

Average first-passage time of the damped Mathieu oscillator

Pontryagin equation with $k = 1$: $M_1 = \mathcal{E}\{t_f\} = \mu_f$

$$\left(\frac{H_0}{2} S_u + \frac{S_w}{2} - 2\xi H \right) \frac{\partial \mu_f}{\partial H_0} + \left(\frac{H_0^2}{4} S_u + \frac{H_0}{2} S_w \right) \frac{\partial^2 \mu_f}{\partial H_0^2} = -1$$

Asymptotic expansion

$$\mu_f \frac{S_u}{4} = \text{fct}(H_0^*, \Delta H^*, 8\xi/S_u)$$

Analytical expression is established.

Average first-passage time of the damped Mathieu oscillator

Average first-passage time of the damped Mathieu oscillator - Regimes

Incubation regime

μ_f scales linearly
with ΔH^*
for given H_0^*

Average first-passage time of the damped Mathieu oscillator - Regimes

Additive regime

μ_f is a function
of ΔH^* only

Average first-passage time of the damped Mathieu oscillator - Regimes

Multiplicative regime

Parallel straight lines

Slope decreases with $\frac{8\xi}{S_u}$

Average first-passage time of the damped Mathieu oscillator

Effect of damping

μ_f increases

Slope changes in M

Little effect elsewhere

Different topology

Variance of the first-passage time of the undamped Mathieu oscillator

$$\ddot{x}(t) + 2\xi\dot{x}(t) + (1 + u(t)) x(t) = w(t)$$

Analytical			Numerical
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise excitations	white noise excitations	white noise excitations	evolutionary excitation

Variance of the first-passage time of the undamped Mathieu oscillator

Pontryagin equation with $k = 2$: $M_2 = \mathcal{E} \left\{ t_f^2 \right\}$

$$\left(\frac{H_0}{2} S_u + \frac{S_w}{2} \right) \frac{\partial M_2}{\partial H_0} + \left(\frac{H_0^2}{4} S_u + \frac{H_0}{2} S_w \right) \frac{\partial^2 M_2}{\partial H_0^2} = -M_1 = -\mu_f$$

Asymptotic expansion

$$M_2 \frac{S_u^2}{32} = \text{fct}(H_0^*, \Delta H^*)$$

Analytical expression is established.

Variance of the first-passage time of the undamped Mathieu oscillator

$$\sigma_f^2 = \mathcal{E} \{ t_f^2 \} - \mu_f^2$$

$$cv_f = \sigma_f / \mu_f$$

Variance of the first-passage time of the undamped Mathieu oscillator

- Quasi straight lines
- Additive regime
- Large cv_f = spread pdf
- Small cv_f = sharp pdf

Variance of the first-passage time of the undamped Mathieu oscillator

Many engineering applications

- 1 Introduction
- 2 Analytical determination of the first-passage time
- 3 Numerical determination of the first-passage time
- 4 Applications
- 5 Conclusion, limitations and perspectives

A numerical approach for the distribution of the first-passage time of more complex systems

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

$$S(w; t)$$

Analytical			Numerical
average FPT	average FPT	variance of the FPT	complete distribution
undamped	damped	undamped	damped
linear	linear	linear	nonlinear
white noise excitations	white noise excitations	white noise excitations	evolutionary excitation

Governing equations

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

Governing equations

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

Equivalent linearization

$$\ddot{x}(t) + \beta_e(H)\dot{x}(t) + \omega_e^2(H)x(t) = w(t)$$

with $H = \frac{x^2}{2} + \frac{\dot{x}^2}{2\omega_e^2(H)}$

Governing equations

Stochastic averaging

$$\dot{H} = m(H, t) + \sigma(H, t)\eta(t)$$

Backward-Kolmogorov equation

$$\frac{\partial P}{\partial t} = m(H_0, t) \frac{\partial P}{\partial H_0} + \frac{1}{2} \sigma^2(H_0, t) \frac{\partial^2 P}{\partial H_0^2}$$

Galerkin scheme

$$P(t; H_0) = P_{lin}(t; H_0) + P_{nlin}(t; H_0)$$

Projection of the linear solution in the eigen basis of the confluent hypergeometric functions $\mathcal{M}(-\lambda_i, 1, H)$

$$P_{lin}(t; H_0) = \sum_{i=1}^{\infty} T_i(t) \Phi_i(H_0)$$

Time coefficients $T_i(t)$ given by a set of differential equations

In practice limited to a finite number of terms N

Governing equations

By extension

$$P_{nlin}(t; H_0) = \sum_{i=1}^{\infty} c_i(t) \Phi_i(H_0)$$

Time coefficients $c_i(t)$ given by a set of N coupled differential equations.

$$\dot{\mathbf{c}}(t) = \mathbf{D}(t) \mathbf{c}(t) + \mathbf{e}(t)$$

Example of the Duffing oscillator under seismic excitation

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon x^3(t) = w(t)$$

Example of the Duffing oscillator under seismic excitation

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon x^3(t) = w(t)$$

Particular case of the undamped oscillator

New basis of eigenfunctions

$$\text{BesselJ}(0, \sqrt{4\lambda_i H}) = \lim_{\xi \rightarrow 0} \mathcal{M}(-\lambda_i, 1, H)$$

- ▶ Computationally more simple
- ▶ Implemented in standard softwares
- ▶ Hypergeometric basis is anyway an approximation in the nonlinear case

Alternative formulation of the energy

$$\ddot{x}(t) + 2\xi\dot{x}(t) + x(t) + \varepsilon z(x, \dot{x}) = w(t)$$

$$\ddot{x}(t) + \beta_e(H)\dot{x}(t) + \omega_e^2(H)x(t) = w(t)$$

$$H = \frac{x^2}{2} + \frac{\dot{x}^2}{2\omega_e^2(H)}$$

amplitude-based formulation

$$u(x) = \int_0^x (y + \varepsilon z(y)) dy$$

$$H = u(x) + \frac{\dot{x}^2}{2}$$

Potential energy envelope formulation

- No statistical linearization
- Restricted to time modulated excitations and nonlinearities in term of stiffness (Duffing)

Alternative formulation of the energy

1 Introduction

2 Analytical determination of the first-passage time

3 Numerical determination of the first-passage time

4 Applications

5 Conclusion, limitations and perspectives

Some applications

Mitigation of the torsional flutter phenomenon of bridge deck section during a lifting phase, Andrianne T. and de Ville de Goyet V., 2016.

Experimental control for initiating and maintaining rotation of parametric pendulum, Vaziri et al., 2014.

CFD simulation of micro-scale pollutant dispersion in the built environment, Blocken et al.(2013)

The tower crane problem

$$I\ddot{\theta} + C\dot{\theta} = M_w = \frac{1}{2}\rho_{air} C_M h B^2 \|\mathbf{v}_{rel}\|^2$$

⇓

$$I\ddot{\theta} + \left(C + M^* \frac{r}{U} \left(1 + 2 \frac{u}{U} \right) \right) \dot{\theta} + M^* \left(1 + 2 \frac{u}{U} \right) \theta = M^* \frac{w}{U}$$

⇓

$$\theta'' + 2\xi_s \theta' + (1 + \tilde{u})\theta = -\tilde{w}$$

Algorithmic establishment of the first-passage map from experimental data

Algorithmic establishment of the first-passage map from experimental data

Algorithmic establishment of the first-passage map from experimental data

The tower crane problem

The tower crane problem

The pre-stressed steel strip

- 1 Introduction
- 2 Analytical determination of the first-passage time
- 3 Numerical determination of the first-passage time
- 4 Applications
- 5 Conclusion, limitations and perspectives

Conclusion

How much time ?

Conclusion

Theoretical frame

analytical solution
maps, reduced energy
regimes

Numerical approach for damped, nonlinear systems under evolutionary excitation

New basis for the undamped case
Two different energy definitions

Experimental investigation of the tower crane

Algorithmic establishment of the first-passage map
Equivalent Mathieu oscillator

Engineering point of view on a mathematical problem

Limitation and perspectives

Theoretical developments limited by increasing complexity
More complex problems can be

reduced to equivalent simple systems
analyzed within developed frame

Perspectives: prediction of equivalent Mathieu oscillator

MDOF systems, colored excitations
analytical expressions for P

Future applications

Monitoring of structures, identification of structural properties,
bridge flutter,...

Thank you!

Backup slide

$$\dot{H} = m(H) + \sigma(H)\zeta(t)$$

Generalized Pontryagin equation

$$m(H_0) \frac{\partial M_k}{\partial H_0} + \frac{1}{2} \sigma^2(H_0) \frac{\partial^2 M_k}{\partial H_0^2} = -M_{k-1} \quad \text{with} \quad M_0 = 1$$

Boundary conditions

$$M_k(H_0) = 0, \text{ if } H_0 = H_c \quad \text{and} \quad |M_k(H_0 = 0)| < \infty$$

Second condition is qualitative, can be transformed into quantitative condition through

$$\begin{cases} \sigma^2(H) & \rightarrow \mathcal{O}(|H - H_l|^{\alpha_l}), \alpha_l \geq 0, \quad H \rightarrow H_l \\ m(H) & \rightarrow \mathcal{O}(|H - H_l|^{\beta_l}), \beta_l \geq 0, \quad H \rightarrow H_l \\ \frac{2m(H)(H - H_l)^{\alpha_l - \beta_l}}{\sigma^2(H)} & \rightarrow c_l, \quad H \rightarrow 0 \end{cases}$$

For entrance and repulsively natural boundary classes, the second condition can be replaced by the quantitative condition

$$\mathcal{O}(|m(H_0)M'_k(H_0)|) \sim \mathcal{O}(|M'_{k-1}(H_0)|), \quad H_0 \rightarrow H_l.$$