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Abstract
Because some systems spend most of their time in transient regimes, it is

important to focus on a relevant representation of their transient response. The
question “How much time ?” is addressed in this work through the first-passage
problem. The first-passage time is the time required for a system, leaving a
given initial configuration, to reach a certain state for the first time. When the
excitation is a stochastic process, the first-passage time is a random variable
and the determination of its statistics is an attractive approach for assessing the
reliability of a transient system exposed to uncertainty. Although the number of
engineering results seen from this angle is very limited today, the first-passage
problem has been widely studied in physics and mathematics and presents a high
potential for a wide range of engineering problems.

Since many physical problems can be described by a stochastic Mathieu equa-
tion, this work provides a frame for the first-passage time of this category of
oscillators as an analysis tool in engineering applications.

The first step is the determination of a closed-form expression for the average
first-passage time of the linear, undamped Mathieu oscillator under parametric
and external white noise excitations. Given by the solution of the Pontryagin
equation, the approximate expression is obtained using an asymptotic expansion.
The solution highlights the groups of parameters influencing the first-passage
time which is presented in a universal map. Three regimes –the incubation,
additive and multiplicative regimes– are identified in the map with their typical
features.

Next, the complexity of the model is progressively increased, considering
for example a damped oscillator or the variance of the first-passage time. The
features of the three regimes are re-identified and a new map is determined.

An attempt at fitting our simple model to the complex dynamics of a tower
crane oscillating in a turbulent wind flow has proven very satisfactory. This indi-
cates that the three elementary regimes (incubation, additive and multiplicative)
are also present in other problems than those circumscribed by the hypotheses
of the Mathieu oscillator.

The first-passage maps are calculated using an appropriate algorithm and it
is shown that there exists an equivalent linear Mathieu oscillator so that the the-
oretical model may be used to understand and predict the tower crane behavior.
The identification of this map with the analytical model developed before, as well
as the observation of the three regimes, serves as a demonstration of the applica-
bility of the first-passage time as an identification tool or a reliability assessment
tool in engineering applications.

Finally, a Galerkin scheme is developed to provide a robust and versatile
method of resolution of the Backward-Kolmogorov equation governing the first-
passage time complete distribution of nonlinear systems under evolutionary ex-
citation.
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2 CHAPTER I. INTRODUCTION

I.1 Motivation

The first motivation of this thesis was the study of tower cranes that are left free
to rotate in gusty winds. Depending on the wind conditions and the environment,
a tower crane can respond with large oscillations that can lead to dramatic
failures. The increasing number of recorded incidents over the past few years
[1, 2] might be understood as a need for progress on crane performances and
received little interest from the scientific community until now. Out-of-service
wind velocities criteria are proposed by [3, 4] while the stochastic response under
turbulent wind conditions was the object of experimental testing assessing the
risk of autorotation of the crane in a given environment [5, 6, 7, 3], as illustrated
in Figure I.1 (a). In current practice, the reliability of a given configuration
is typically assessed by measuring the rotation of a reduced scale model of the
crane in its urban environment in a wind tunnel under different wind conditions
and for a certain duration of time. This method requires repetition of the test
for every new configuration and does not contribute to the understanding of the
problem since no general safety rules are established. An analytical modeling
of the stochastically excited system is an evident step to a deeper apprehension
of the phenomenon and the development of guiding rules for the placement of a
tower crane on a working site.

As a heritage of deterministic dynamics, systems are usually studied with the
scope to determine the stability zones, the amplitude of the limit cycle oscilla-
tions [8] or steady state solutions [9, 10, 11, 12]. However, these objectives lose
interest in undamped or even very slightly damped systems like tower cranes,
since a steady-state configuration takes too long to develop. Moreover, it is pos-
sible to demonstrate [13] that any large value of the position or velocity, as large
as desired (!), is encountered with probability one in the case of an undamped
system. This mathematical fact therefore suggests to reconsider the practical
questions related to the possible large rotations of a crane from a different stand-
point since any large amplitude could be reached by waiting sufficiently long
enough (in case dissipation is negligible).

This was the motivation to study a more general problem known as the first-
passage problem that addresses the important question

How much time?
The first-passage time is the time required for an excited system, leaving a

known initial condition, to reach a certain state for the first time. In determin-
istic dynamics, this concept is central in the description of transient regimes,
for instance to estimate the time required for a deterministic system to reach its
steady-state, under a stationary excitation [14]. When the excitation is a stochas-
tic process, the first-passage time is a random variable and can be characterized
by its probability density function. While this concept has received little interest
from the engineering community until now, it has been widely studied in physics
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and mathematics. Determining first-passage time statistics is an attractive ap-
proach for assessing the reliability of transient systems exposed to uncertainty
and presents a high potential for a wide range of engineering applications, and
for developing, eventually, robust optimization and design frameworks.

The number of practical or experimental applications where the results are
seen from the angle of time is very limited. Some examples of the possible
application of first-passage times in engineering are the following ones. First,
dispersion of pollutant releases is the object of massive experimental and numer-
ical research [15, 16, 17, 18]. A first-passage approach in the problem of pollutant
dispersion would consist in determining the time it takes for a pollutant to reach
a given concentration at a given place. Second, a bridge deck flutter instability in
turbulent flow [19] is another problem in which first-passage times are of outmost
concern since a sufficiently long first-passage time would make a site operation
possible. In these applications, the question of first-passage time is central and
offers an alternative answer to the risk assessment with a good understanding of
the influence of problem parameters of a system/structure’s transient response.
More examples follow next.

Because a lot of systems (like the tower crane) can be described by a Mathieu
equation, and in order to offer a general analysis, this work focuses on the first-
passage time of a single-degree-of-freedom Mathieu oscillator.

I.2 The Mathieu oscillator

Using the appropriate non-dimensionalization, the governing equation of the
tower crane, as well as a large number of other applications [20], can be cast
under the format of the linear Mathieu equation

ẍ(t) + 2ξẋ(t) + [1 + u(t)]x(t) = w(t) (I.2.1)

where x(t) is the state variable as a function of time t, ξ is the damping coefficient,
w(t) is an external force and u(t) is a parametric excitation since it multiplies
the coordinate x. Equation (I.2.1) develops in various forms, from deterministic
to stochastic, depending on the non-deterministic nature of the parameters of
the problem and of the excitations.

The tower crane is a typical example of a structural element governed by the
Mathieu equation. As another example, the deflection of a horizontal cable sub-
jected to a motion of one anchorage is described by a similar Mathieu equation
[21]. Beside, interest has been shown for the energy of a pendulum submitted to
wave excitations in [22, 23, 24]. Such a system is also governed by the Mathieu
equation and finds a direct application in the extraction of energy from waves
and heave, as also discussed earlier by [25, 26]. In the same way, capsizing and
rolling motions of ships under stochastic wave excitation can also be assimilated
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to similar oscillators and are studied by Moshchuk and Troesch in [27, 28]. The
pendulum excited by its support and the cable vibrations are presented as numer-
ical examples, while the tower crane is the object of an experimental investigation
in Chapter IV.

The Mathieu oscillator has been first studied in its most simple case under
a deterministic harmonic and parametric excitation, viz. u(t) = λ cos (νt) and
w(t) = 0 [29, 1, 30], and, in some instances, including nonlinearities [31, 8]. In
those works, it is shown that, assuming no damping and depending on the fre-
quency content and magnitude of the excitation, the oscillator describes small or
large oscillations or eventually complete rotations (in the nonlinear case). These
three regimes are described in [1] and illustrated in Figure I.2. In the amplitude-
frequency plane, higher energy lobes are observed for a frequency of the para-
metric excitation close to the fundamental frequency ν0 of the pendulum or an
irreducible fraction of it, as illustrated in Figure I.1 (b). An experimental anal-
ysis of the instability is performed in [32]. Other authors developed analytical
solutions of the deterministic problem [33, 34] including the different stable re-
gions thanks to the harmonic balance method, the perturbation method and the
critical velocity criterion [35, 36, 37].

Notable works study the transition from deterministic to stochastic excita-
tions including the evolution of unstable regions [38]. Besides, Gitterman studies
the stability of the pendulum under deterministic and stochastic excitations of its
support [39, 29]. Narrow band and random phase excitations are investigated by
Alevras and Yurchenko in [40, 41] through a numerical path integration. Higher
energy lobes are observed, similarly to the deterministic case (see Figure I.1 (b))
and an increasing stochasticity of the excitation leads to larger lobes of lower
intensity. Mallick presents an analytical method providing an expression for the
asymptotic probability distribution function of the energy of a pendulum [42].
Other estimations of the system stability are proposed in [43, 44, 45, 46, 47]
based on its Liapunov exponents and on approximate solutions of the moment
equations.

I.3 Non-stationary dynamics

The first-passage approach is an analysis tool for transient responses of non-
stationary problems. The analysis of such systems can be done in different ways.
First, Monte Carlo simulations [48, 49, 50, 1, 51, 52] provide for instance real-
izations and statistics of the generalized coordinates in transient and, eventually,
stationary regimes. Figure I.3 presents three realizations of the energy H of an
oscillator departing from small initial energy H0 and reaching a larger energy
level H0 + ∆H. Such Monte Carlo simulations are known to be versatile and
accurate, although highly time consuming.

Secondly, the analysis of transient responses can be done by resolution of
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(a) (b)

Figure I.1: (a) Rotation of a tower crane in gusty wind conditions [5] (b) Energy
of the pendulum in the steady-state under harmonic parametric excitation [1].

Figure I.2: The three regimes of oscillations that a pendulum may exhibit under
horizontal and vertical excitations of its support. [1].
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Figure I.3: Three realizations of the energy H of a stochastic oscillator (Equation
(I.2.1) from H0 = 10−5 to H = 10−2 with ξ = 0 and white noise excitations of
intensities Su = 0.01 and Sw = 0.5× 10−5).

stochastic differential equations [53, 54, 55, 56]. As a non-exhaustive list, the
transition probability density function, the cumulative distribution of the first-
passage time, and its statistical moments are respectively the solutions of the
Fokker-Planck, Kolmogorov [57, 58, 59, 60, 61] and generalized Pontryagin equa-
tions [13, 62, 63]. These stochastic equations can be solved via use of numerical
[64, 65, 42] or semi-analytical methods [66, 67] such as the path integration
method [68, 69, 70], the Galerkin scheme [71, 72], the perturbation method [73],
the smooth particle hydrodynamics method [74], high dimensional finite ele-
ments/differences [75, 76, 77, 78, 79], the Poisson distribution based assumption
[80] or other approximate techniques. Comparisons of approached and numeri-
cal solutions for the first-passage times and the associated, so-called, reliability
function, are widely available [69, 71, 65, 81].

While many stochastic oscillators are studied by means of approached solu-
tions [82, 83, 84, 85], explicit solutions are available in some very limited cases
only [86, 13, 87, 49, 88]. Indeed, analytical methods are usually not able to de-
termine the complete distribution of the first-passage time and are limited to its
first few statistical moments. In particular, the mean first-passage time provides
a first apprehension of the phenomenon while the variance reflects the spread of
the first-passage times. It also provides a valuable information as to the sample
distribution of the mean first-passage time, as it depends on the parent distribu-
tion of this random variable. With this respect, confidence intervals of observed
mean first-passage times basically depend on the spread of this random variable.

As highlighted by this literature review, the first-passage problem has been
widely studied from a mathematical point of view, but received little attention for
engineering applications. Consequently, this work presents the first-passage time
as a new manner of considering transient engineering problems for conceptual
design purposes.
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I.4 Outline of this work

The first-passage problem is addressed step by step, starting from a simple model
and progressively increasing its complexity.

Chapter II focuses on the stochastic version of the undamped, externally and
parametrically excited oscillator and provides an approximate but closed-form
solution for the average first-passage time of the single-degree-of-freedom system
submitted to broadband parametric and forced excitations. The expression is
obtained as the first order solution of an asymptotic expansion. Although the
model is too simple to capture the full complexity of realistic problems such as
those related to colored excitations, nonlinearities or multi-degrees-of-freedom
structures, the closed-form solution lays the foundation for the analysis of more
complex systems. Three different regimes corresponding to different behaviours
of the system from a first-passage time point of view are identified.

In Chapter III, the different assumptions of the model of Chapter II are
released one by one and a new formulation of the first-passage time is determined
in each case. The influence of each simplification on the first-passage problem is
described in detail. In this context, one successively observes the second order
term of the asymptotic expansion, the damped oscillator, the variance of the
first-passage time, nonlinearities and non-stationary excitations. The study of
each assumption individually enables the development of a new solution and the
assessment of its influence on the first-passage time while limiting the induced
complexity.

As it is expected that the theoretical model of Chapters II and III can be fitted
or adjusted to many (more complex) engineering problems, Chapter IV presents
different applications of the first-passage time to physical systems. Oscillations
of a pendulum and cable vibrations are presented as numerical examples where
the first-passage time can be applied. A pre-stressed steel strip and a tower crane
oscillating in a turbulent wind flow serve as an experimental demonstration of
the first-passage approach.

Finally, Chapter V develops a numerical method for the first-passage time
distribution and the reliability function of nonlinear systems under external evo-
lutionary excitations. Two distinct definitions of the energy are employed and
their influence on the accuracy of the solution is detailed. A specific scheme is
developed for the undamped oscillator.

I.5 Personal contributions

The main contributions of this thesis are the following:

• The analytical determination of the average first-passage time in the refer-
ence case.
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The average first-passage time of a linear undamped oscillator under sta-
tionary white noise excitations is obtained by resolution of the Pontryagin
equation. An asymptotic expansion method is used and a closed-form ex-
pression for the first-order solution is developed. No analytical solution
was known until now combining both parametric and forced excitations.

• The universal map and the three regimes.

The solution highlights the groups of parameters influencing the first-
passage time which is presented in a universal map. The incubation,
additive and multiplicative regimes are evidenced in the map with their
typical features. This is a totally novel way of considering the first-passage
problem.

• Influence of damping on the three regimes.

A closed-form solution of the average first-passage time is developed for the
damped oscillator. Making use of the universal map, the three regimes are
re-identified and the influence of damping on their features is characterized.

• Spread of the distribution of the first-passage time.

A closed form solution of the coefficient of variation of the first-passage time
is determined. It provides a clear estimation of the spread of the distribu-
tion of the first-passage time. Once more, typical features are identified in
the different regimes.

• Algorithmic establishment of the universal map based on experimental data

An efficient and original algorithm is developed to reconstruct the first-
passage universal map based on measured time series.

• Experimental observation of the first-passage time.

The first-passage time of a tower crane under gusty winds is measured
and its universal map is calculated. The identification of this map with
the analytical model developed before serves as a demonstration of the
applicability of the first-passage time as an identification tool or a reliability
assessment tool in engineering applications.

• Development of a Galerkin resolution scheme for the distribution of the
first-passage time of nonlinear systems under external evolutionary excita-
tion.

A Galerkin scheme is developed to provide a robust and versatile method
of resolution of the Backward-Kolmogorov equation governing the first-
passage time probability density function. Consequently, one offers here
an accurate solution for the complete distribution of the first-passage time
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of nonlinear, damped oscillators submitted to an external evolutionary ex-
citation. The combination of nonlinearities and evolutionary excitation has
never been done before and is therefore a new contribution.

• Development of a specific scheme for the distribution of the first-passage
time of an undamped oscillator
While the Galerkin scheme of a damped oscillator has been widely studied,
no specific scheme is dedicated to the undamped oscillator until now. A
specific formulation is proposed with analytical development of a pertinent
basis of eigenfunctions. This new basis presents a particular interest due
to its lower computational complexity and its use might be extended to
slightly damped systems.

I.6 Theoretical background
This section provides a theoretical background on stochastic differential equa-
tions concerning the first-passage problem.

I.6.1 Definitions

Let D be a closed domain in the phase plane and an initial condition x0∈ D.
The first-passage time of a system through the boundary of the domain ∂D is
defined as

tf = inf {t > 0 | x(t) ∈ ∂D & x(0) = x0} (I.6.1)
Under stochastic excitations, the first-passage time is a random variable and

can be characterized by its probability density function (pdf) pf , or its cumulative
density function (cdf) Pf . The complement of the cdf P is called the reliability
function, or survival probability, and provides the probability that the system
does not leave the domain D over the time interval [0, t]

P (t;x0) = prob(tf > t) = 1− Pf (t;x0), (I.6.2)

An equivalent definition can be provided by the probability of the first-passage
time tf being greater than t. Consequently, the probability density function of
the first-passage time is given by

pf (t;x0) =
∂Pf (t;x0)

∂t
= −∂P (t;x0)

∂t
. (I.6.3)

The cumulative probability of the first-passage time Pf (t;x0) can be expressed
as a function of the transition probability function p(x, t | x0, t0 = 0)

Pf (t;x0) =

ˆ
D
p(x, t | x0, 0)dx. (I.6.4)
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I.6.2 Stochastic differential equations

Let us consider a system represented in the n-dimensional state-space x by
its Itô formulation [13, 89, 87, 62]

dx = a(x, t)dt+ b(x, t)dB, (I.6.5)

where x and a(x, t) are vectors of dimension n × 1, B is a m × 1 vector of m
Brownian motions characterized by the m × m power spectrum matrix S and
b(x, t) is a n×m matrix. Equivalently, (I.6.5) can be expressed with indices as

dxi = ai(x, t)dt+ bi,j(x, t)dBj, i = 1, ...n ; j = 1, ...m. (I.6.6)

Change of variables and Wong-Zakaï correction terms

The N -dimensional transformation F(x, t) of the n-dimensional variable x given
by (I.6.5) is governed by the stochastic equation [13, 89, 90, 53]

dF =

(
∂F

∂t
+
∂F

∂x
a(x, t) +

1

2
Tr

{
J(x, t)

∂

∂x

∂TF

∂x

})
dt+

∂F

∂x
b(x, t)dB, (I.6.7)

that can also be expressed with indices for k = 1, ...N as

dFk =

∂Fk
∂t

+
∑n

i=1 ai(x, t)
∂Fk
∂xi

+
1

2

n∑
i=1

n∑
j=1

Jij(x, t)
∂2Fk
∂xi∂xj︸ ︷︷ ︸

WZ correction

 dt

+
∑n

i=1

∑m
j=1 bij(x, t)

∂Fk
∂xi

dBj,

(I.6.8)

where

J(x, t) = b(x, t)SbT (x, t) (I.6.9)

is a n×n diffusion matrix. The first, second and fourth terms of Equation (I.6.8)
result from the usual transformation of Equation (I.6.5) with change of variable,
while the third term is a supplementary term, called the Wong-Zakaï correction,
due to the peculiar property of the Brownian motion that typically appears in
stochastic differential equations.

Fokker-Planck or Forward Kolmogorov equation

The transition pdf p = p(x, t | x0, 0) is given by the solution of the Fokker-Planck,
or Forward Kolmogorov equation [89, 62, 13]
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∂p

∂t
= L{p} , (I.6.10)

where L{p} is the Fokker-Planck or Forward-Kolmogorov operator defined as

L{p} =
1

2
Tr

{[
∂

∂x

∂T

∂x
(J(x, t)p)

]}
− ∂ (a(x, t)p)

∂x
, (I.6.11)

that can also be expressed with indices as

L{p} =
n∑
i=1

n∑
j=1

1

2

∂2 (Jij(x, t)p)

∂xi∂xj
−

n∑
i=1

∂ (ai(x, t)p)

∂xi
. (I.6.12)

In many practical problems, the initial state is fixed, so that the initial con-
dition is given by

p(x, 0 | x0, 0) = δ (x− x0) . (I.6.13)

The boundary condition imposes that the state x reached in any final time t
must be finite, i.e.

lim
x→∞

p(x, t | x0, 0) = 0. (I.6.14)

Backward Kolmogorov equation

The cumulative density function Pf = Pf (t;x0) is given by the solution of the
Backward Kolomgorov equation [89, 62, 13]

∂Pf
∂t

= L? {Pf} , (I.6.15)

where L? {P} is the Backward-Kolmogorov operator defined as

L? {Pf} =
1

2
Tr

{[
J(x0, t)

∂

∂x0

∂TPf
∂x0

]}
+ a(x0, t)

∂Pf
∂x0

, (I.6.16)

that can also be expressed with indices as

L? {Pf} =
n∑
i=1

n∑
j=1

Jij(x0, t)

2

∂2Pf
∂x0,i∂x0,j

+
n∑
i=1

ai(x0, t)
∂Pf
∂x0,i

. (I.6.17)

The initial condition is given by the fact that the first-passage time of a
system, departing from a point inside the domain, is strictly positive with prob-
ability one
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Pf (0;x0) = 0 ∀x0∈ D, (I.6.18)

and the boundary condition imposes that the first-passage time is equal to zero
if the initial condition is on the limit of the domain

Pf (t;x0) = 1 if x0∈ ∂D. (I.6.19)

The reliability function P (t;x0) given by (I.6.2) is governed by the same
equation as (I.6.15), but replacing Pf by P and changing the initial and boundary
conditions by

P (0;x0) = 1 ∀x0∈ D, (I.6.20)

and

P (t;x0) = 0 if x0∈ ∂D. (I.6.21)

It is observed that Equation (I.6.16) is a function of the initial condition
x0. This is a typical feature of the so-called “Backward”-Kolmogorov operator,
since it is defined as a function of the initial state. The target state, defined
by the limit of the domain ∂D is introduced into the problem via the boundary
condition (I.6.19).

Generalized Pontryagin equation

The statistical moments of the first-passage time, defined as [91, 89, 62, 86]

Mk = E
{
tkf
}

(I.6.22)

where E {} is the statistical expectation, and k is the concerned order, are given
by the solution of the generalized Pontryagin equation

∂Mk

∂t
+ L? {Mk} = −Mk−1 ∀k ≥ 1 with M0 = 1, (I.6.23)

where L? {} is the Backward Kolmogorov operator defined in (I.6.16) and (I.6.17).
When the system characteristics a(x, t) and b(x, t) are independent of time, the
system is autonomous, i.e. its evolution does not depend on the origin of time. In
this case, the first-passage time is autonomous too and Equation (I.6.23) becomes

L? {Mk} = −Mk−1 ∀k ≥ 1 with M0 = 1. (I.6.24)

For k = 1, the average first-passage time M1 = µf is given by the solution of

L? {µf} = −1, (I.6.25)
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which is called the Pontryagin equation [86, 91, 88]. The boundary conditions
are given by

Mk(x0) = 0, ∀x0 ∈ ∂D and |Mk(x0 = 0)| <∞. (I.6.26)

The first condition translates the fact that the first-passage time is deterministic
and equal to zero for trajectories starting on the boundary, ∂D. The second
condition expresses that the time (and its statistical moments) required to reach
the boundary starting from x0 = 0 is finite. This condition is rather qualitative
and its applicability is limited to simple analytical closed form expressions. An
equivalent quantitative condition is given in [86, 89] depending on the boundary
class of the problem, which is determined through the diffusion exponent αl,
drift exponent βl and character value cl. For one-dimensional processes, those
coefficients are given by the following limits:

J(x, t) → O(|x− xl|αl), αl ≥ 0, x→ xl

a(x, t) → O(|x− xl|βl), βl ≥ 0, x→ xl
2a(x,t)(x−xl)αl−βl

J(x,t)
→ cl, x→ 0

(I.6.27)

where xl is the left boundary for the initial state corresponding to the root of J
and O (|· |) denotes the order of |· |.The functions a(x) and J(x) correspond to
the vector and matrix of equations (I.6.5) and (I.6.9) that become scalars in the
one-dimensional case. For entrance and repulsively natural boundary classes, the
second condition (I.6.26) can be replaced by the quantitative condition

O(|a(x0, t)M
′

k(x0)|) ∼ O(|M ′

k−1(x0)|), x0 → xl. (I.6.28)

Similarly to the Backward-Kolmogorov equation (I.6.16), the generalized Pon-
tryagin equation (I.6.23) is a function of the initial condition x0 and the target
state is introduced via the boundary condition (I.6.26).

One-dimensional stochastic processes

In the case of a one-dimensional Brownian motion (n = m = 1), x, a(x, t), b(x, t)
and dB(t) are scalars. Equations (I.6.8), (I.6.9), (I.6.12) and (I.6.17) considerably
simplify and become

dF =

∂F
∂t

+ a(x, t)∂F
∂x

+
1

2
J(x, t)

∂2F

∂x2︸ ︷︷ ︸
WZ correction

 dt+ b(x, t)∂F
∂x

dB,
(I.6.29)

J(x, t) = b2(x, t)S, (I.6.30)
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L{p} =
∂

∂x

[
1

2

∂ (J(x, t)p)

∂x
− a(x, t)p

]
(I.6.31)

and

L? {Pf} =
J(x0, t)

2

∂2Pf
∂2x0

+ a(x0, t)
∂Pf
∂x0

. (I.6.32)

The coefficients a(x, t) and b(x, t) are commonly named the drift and diffusion
coefficients and sometimes also noted m(x, t) and σ(x, t).



Chapter II

Analytical determination of the
first-passage time in a reference
case

This chapter determines the average first-passage time of an undamped linear
oscillator under stationary parametric and external white noise excitations. An
approached closed-form expression is obtained via an asymptotic expansion of
the Pontryagin equation and the first order solution provides a frame for the
analysis of the first-passage problem.

II.1 Introduction

II.2 Pontryagin equation

II.3 Analysis and discussion

II.4 Conclusion

This Chapter is based on the following article:

Vanvinckenroye, H., & Denoël, V. (2017). Average first-passage time of a quasi-
Hamiltonian Mathieu oscillator with parametric and forcing excitations. Journal of
Sound and Vibration, 406, pp. 328–345.
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II.1 Introduction

This Chapter provides a first tool for understanding the first-passage time prob-
lem and therefore focuses on the average value of the first-passage time instead
of the complete distribution.

Since the problem at hand is particularly interesting when the damping and
the intensities of the excitations are small –otherwise the steady regime develops
fast enough– the considered oscillator actually happens to be a quasi-Hamiltonian
system for which the total internal energy H(t) evolves on a slow time scale [42].
The energy balance of the Mathieu equation (I.2.1), obtained by time integration
of the power fluxes, yields

ẋ2

2
+
x2

2
+

ˆ (
2ξẋ2 + ux ẋ

)
dt =

ˆ
w ẋ dt. (II.1.1)

This indeed shows that the total internal energy (referred to as the Hamiltonian,
by extension, in the sequel) defined by

H =
x2

2
+
ẋ2

2
, (II.1.2)

composed of potential and kinetic energies, is slowly varying, since Ḣ = ord(ε)
if {ξ, u, w} = ord(ε). This is also illustrated in Figure II.1 which shows, in the
phase-plane (x, ẋ), three fragments of one realization of the Mathieu oscillator
(I.2.1) subjected to parametric and external δ-correlated white noises1 u and
w of intensities Su = 10−2 and Sw = 10−4, while the damping ratio is set to
ξ = 0.01. It is seen that the trajectories are nearly tangent to the ellipses of
constant energy, which indicates that the Hamiltonian varies by only a small
quantity over one period of revolution of the unperturbed dynamical system.
These observations support the quasi-Hamiltonian nature of the system, which
is, in this case, a consequence of the smallness of ξ, Su and Sw.

The first-passage problem of quasi-Hamiltonian systems has been studied in
the literature in the undamped configuration (ξ = 0) and without external forcing
term (w = 0). The stochastic parametric excitation u(t) has first been considered
to be a δ-correlated process [92] and more recently an Ornstein-Uhlenbeck process
[43]. In the latter case, Potapov also proposes an estimation of the problem
stability based on its Liapunov exponents, an approach that is also followed in
[93] for quasi non-integrable Hamiltonian systems under Gaussian and Poisson
white noises through the averaged Itô equation.

Still considering the undamped configuration (ξ = 0) and without external
forcing (w = 0), the stochastic differential equation governing the Hamiltonian

1A δ-correlated white noise is defined by an autocorrelation function of the form Rx(∆t) =
E [x(t)x(t+ ∆t)] = Sxδ(∆t), where δ(· ) is the Dirac-function. Sx is called the intensity of the
white noise.
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Figure II.1: Fragments of the trajectory of a Mathieu oscillator in the phase
plane and contours of the Hamiltonian. Numerical values: ξ = 0.01, Su = 10−2

and Sw = 10−4.

reads

dH = k1Hdt+ k2HdB, (II.1.3)

with k1 = Su/2 and k2 =
√
Su/2 two parameters depending on the spectral

intensity of the parametric excitation u, and dB the increment of a δ−correlated
Brownian noise B(t) [49, 86]. This equation can be solved explicitly [49]:

H(t) = H0 exp

[
k1Bt +

(
k1 −

k2
2

2

)
t

]
. (II.1.4)

The first-passage time of the energy level Hc, starting from a lower initial en-
ergy H0, follows an inverse Gaussian distribution with parameters ln(Hc/H0)

k1−k2
2/2

and
ln(Hc/H0)2

k2
2

, so that its mean first-passage time µf can be expressed as [49]

µf (H0) =
4

Su
ln
Hc

H0

. (II.1.5)

It is rather rare that the stochastic differential equation of a (more complex
but realistic) problem can take a simple explicit solution as (II.1.4). The com-
plete probability density function of the first-passage time is therefore seldom
available. However, the mean first-passage time of a stochastic system through
the boundary of a given domain is ruled by the Pontryagin equation (I.6.25).

Many solutions of more or less complex problems in terms of mean first-
passage time can be found in the literature [86, 13, 88, 94, 64]. Among them the
first-passage time for a stochastic fractional derivative system with power-law
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restoring force [64] shows the typical range of difficulties that can be tackled
today. An important contribution in the field concerns the works of Khasminskii
[95] which consist in the formal development of an asymptotic analysis of the
Pontryagin equation. This is precisely the approach that is followed in this
work.

Based on this review of the literature, we have identified the first-passage time
of an undamped linear system subjected to both parametric and external white
noise excitations as a first step into the analysis of the first-passage problem.
Considered here as the reference configuration, this problem is solved in closed
but approximate form and the solutions are thoroughly discussed in Section II.3.
Different variants such as the damped oscillator or the mean square first-passage
time are studied in Chapter III.

II.2 Pontryagin equation

The system considered here is governed by

ẍ(t) + [1 + u(t)]x(t) = w(t) (II.2.1)

where u(t) and w(t) are Brownian δ-correlated white noises of small intensities
Su and Sw. Formally this problem is represented in the state-space x = (x, ẋ) =
(q, p) by its Itô formulation (I.6.5) for Markov times, i.e. for each t > t0, by

dx = a(x)dt+ b(x)dB, (II.2.2)

where x =

[
q
p

]
, a =

[
p
−q

]
, b =

[
0 0
−q 1

]
and where B =

[
Bu

Bw

]
is the

vector of Brownian motions characterized by the power spectrum matrix

S =

[
Su Suw
Suw Sw

]
= εν = ε

[
νu νuw
νuw νw

,

]
(II.2.3)

where ε� 1 and ν is an order-one matrix. It is interesting to notice that (II.2.2)
is a perturbation of a conservative system which evolves along closed trajectories
of constant total internal energy H. The period of revolution of a complete orbit
of the unperturbed system (ε = 0, so that u = w = 0),

T = 2

q2ˆ

q1

dq
q̇

= 2

√
2Hˆ

−
√

2H

1√
2H − q2

dq = 2π, (II.2.4)

is independent of the considered energy level H.
Let D be a closed domain in the phase plane and an initial condition x0 ∈ D.

Since vectors a and b are independent of time, the system is autonomous, i.e.
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its evolution does not depend on the origin of time. In this case, the average
first-passage time µf (x0) = E {tf} for the trajectories of the dynamical system
to reach the boundary ∂D is given by the Pontryagin equation (I.6.25)

L? {µf (x0)} = −1, for x0 ∈ D (II.2.5)

with the boundary conditions (I.6.26). For the sake of simplicity in the nota-
tions, the subscript ”0” is omitted in the following developments. This conven-
tion prevails for both the initial position and velocity, q0 and p0 which are the
components of x0 and, later, for the Hamiltonian H0. In (II.2.5), L? {·} is the
Backward-Kolmogorov operator associated with the governing equation, see e.g.
[13], given by (I.6.16) where the diffusion matrix is of order ε and is given by

J = εb(x, t)νbT (x, t) = ε

[
0 0
0 q2νu + νw − 2qνuw

]
(II.2.6)

The higher order derivative in L? {·} is therefore multiplied by a small co-
efficient, of order ε, which is responsible for a well-known boundary layer in
perturbation methods [96]. With this in mind and following Khasminskii’s ap-
proach [95], an asymptotic expansion method is developed in order to establish
closed-form expressions for the solution of the Pontryagin equation. This not
only avoids the numerical solution of (II.2.5) but also provides a much better un-
derstanding of the features of the problem, as explicit expressions for the mean
first-passage time are obtained, under the sole hypothesis that ε � 1, i.e. that
the dimensionless intensities of the external and parametric excitations are small.
Following this approach, the operator is decomposed into two operators, each one
acting at its own scale in ε, as

L? {·} = L1 {·}+ εL2 {·} , (II.2.7)

where, after replacement of the derivatives in x,

L1 = p
∂

∂q
− q ∂

∂p
; L2 =

1

2

(
q2νu + νw − 2qνuw

) ∂2

∂p2
. (II.2.8)

Following the matched asymptotic expansion solution applied in [88, 94] to
the capsizing of boats in random seas (with external forcing only, though), a
composite solution to (II.2.5) is provided as the sum of the outer and inner
solutions

µf (p, q) = Un(p, q) +Gn(p, q), (II.2.9)

where Un is the outer solution obtained with the regular ansatz

Un(p, q) =
1

ε
u0(p, q) + u1(p, q) + ...+ εn−1un(p, q) (II.2.10)
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and Gn stands for the inner solution in the boundary layer, in the neighborhood
of ∂D. The error of the approximate solution has the same order as the first
neglected term, i.e. εn. In order not to include the overlap between the inner
and outer solutions that anyway needs to be discarded in the composite solution
[96], the outer and inner problems are respectively solved with the following
right-hand sides, L? {Un} = −1 and L? {Gn} = 0. While the efforts presented in
this Chapter concentrate on the establishment of u0, the outer solution will be
developed up to the second term u1 in Section III.1. Collecting terms of likewise
powers of ε in (II.2.5) yields:

ord
(
ε−1
)

: L1u0 = 0 (II.2.11)
ord
(
ε0
)

: L1u1 + L2u0 = −1 (II.2.12)
ord
(
ε1
)

: L1u2 + L2u1 = 0 (II.2.13)

The leading order solution U0 is actually nothing but the result of the stochas-
tic averaging method [97], which roughly assumes that the Hamiltonian is con-
stant along one period of motion. The higher order terms provided by the asymp-
totic expansion extend the validity of the developments to moderate values of
the small parameter, i.e. ε . 1. However, for problems slightly more complex
than (II.2.1), the second and higher correction terms take awkward expressions
which cuts down the advantages of Khasminskii’s asymptotic expansion over the
more usual stochastic averaging approach. This is discussed in Section III.1.

Operator L1 represents the derivative along the direction of the conservative
system, i.e. along the orbits of constant Hamiltonian H. As a result, the leading
order Equation (II.2.11) means that u0 is constant along each orbit of constant
energy. It is consequently a function of the Hamiltonian H only. Averaging
(II.2.12) along a period T of the orbit, provides the information to determine
u0(H). Indeed, as the orbits are closed, averaging L1u1 along each of these
trajectories gives zero and Equation (II.2.12) becomes 〈L2u0〉 = −1, or

1

2

[〈
q2νu + νw − 2qνuw

〉 du0

dH
+
〈
p2
(
q2νu + νw − 2qνuw

)〉 d2u0

dH2

]
= −1, (II.2.14)

where the following relations have been used for the partial derivatives

∂u0

∂p
= p

du0

dH
;

∂2u0

∂p2
=

du0

dH
+ p2d

2u0

dH2
(II.2.15)

since u0 ≡ u0(H) is a function of the initial Hamiltonian only and the operator
〈·〉 represents the average over one period T = 2π of the unperturbed motion,

〈·〉 =
1

2π

2πˆ

0

·dt. (II.2.16)
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The averaging of Equation (II.2.14) is derived, term by term, by changing
the variables q and p into the energy-phase variables k and θ with

p = 2k cos θ ; q = 2k sin θ (II.2.17)

so that the Hamiltonian is now given by H = 2k2.
Finally, at order ε0, the averaged Pontryagin equation reads

1

ε

(
m(H)

du0

dH
+
σ2(H)

2

d2u0

dH2

)
= −1 (II.2.18)

where u0, the leading order solution in the outer domain, is a function of the
Hamiltonian H (≡ H0) in the initial configuration. The parameters m(H) and
σ(H) are commonly known as drift and diffusion coefficients and are here given
by {

m(H) = ε
(
H
2
νu + 1

2
νw
)

= H
2
Su + 1

2
Sw

σ(H) =
√
ε
(
H2

2
νu +Hνw

)
=
√

H2

2
Su +HSw

(II.2.19)

The drift and diffusion coefficients obtained by stochastic averaging also char-
acterize the evolution of the energy through the stochastic differential equation
[13]

dH = m(H)dt+ σ(H)dB(t), (II.2.20)

The governing equation and consequently its solution are independent of the
cross spectral density Suw. The general solution of (II.2.18) is of the form

u0(H) = −8νw + νuC1

2νuνw
ln(Hνu + 2νw) + C1

lnH

2νw
+ C2, (II.2.21)

where constants of integration C1 and C2 need to be determined to satisfy the
boundary conditions (I.6.26). Notice that the first boundary condition can also
be satisfied in the outer solution which implies that there is no inner (boundary
layer) solution at order ε−1. Although the second condition straightforwardly
yields C1 = 0, the first boundary condition requires a little more attention.
Indeed, the boundary condition is a priori written on the boundary of the domain
of D of any arbitrary shape in the state space (x, ẋ). However, because u0(H) is
a function of H only, there is no way to satisfy the boundary condition for any
x0 ∈ ∂D, otherwise than to have D being a disk in the phase space. Because of
this, we actually decide to restrict our study to the determination of the first-
passage time through a domain shaped like a circle, i.e. through the contours of
equation H = Hc. In other words, the considered problem can be expressed as
the first-passage time through a state of a specifically chosen energy Hc, while
starting from a smaller initial energy H0. If the domain D was not shaped
like a disk, an underestimation of the first-passage time might be obtained by
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replacing the domain by the inscribing circle as the rotation is fast compared to
the energy. Accounting for the boundary condition µf (Hc) = 0, we finally obtain
at first order

µf (H0) =
u0

ε
=

4

Su
ln

(
HcSu + 2Sw
H0Su + 2Sw

)
(II.2.22)

where the subscript “0” has been re-introduced to indicate this corresponds to
trajectories starting with an initial energy equal to H0. As the Itô formulation
(II.2.2) is only valid for positive times, this solution is only valid for a target
energy higher than the initial energy.

II.3 Analysis and discussion
The average fist passage time therefore takes a logarithmic form where the in-
tensity of the parametric excitation is multiplied by the energy and appears in
both the logarithm and the multiplying factor. Expression (II.2.22) presents two
limit cases:

• when there is no parametric excitation, i.e. Su = 0, the general solution
degenerates into

µf (H0) = 2
∆H

Sw
, (II.3.1)

which indicates that the first-passage time scales linearly with ∆H = Hc−
H0, the difference between the target energy barrier and the initial energy
in the system. With the terminology introduced below, this corresponds
to an incubation regime, no matter the intensity of the forcing term;

• when there is no forcing term, i.e. Sw = 0, the general solution degenerates
into

µf (H0) =
4

Su
ln
Hc

H0

=
4

Su
ln

(
1 +

∆H

H0

)
, (II.3.2)

corresponding to the solution developed in [49], see (II.1.5). In this case,
the first-passage time scales with the ratio Hc/H0 on a logarithmic scale.
Furthermore, a non-zero initial energy is required for the oscillator to exit
its initial configuration. Then, for any H0 > 0, the oscillator can reach
any energy barrier in a finite time, on average. With the terminology
introduced below, this corresponds to a multiplicative regime, no matter
the intensity of the parametric excitation.

These two limiting cases reflect that the parametric excitation w(t) and the
external forcing u(t) show themselves differently in the problem. Notice that the
linear and logarithmic scalings that are obtained here agree with the well-known
responses of undamped linear oscillators under deterministic excitations. On one
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hand, the envelope of the response under external forcing grows unbounded and
linearly in case of harmonic excitation tuned to the natural frequency of the
oscillator (w = sin t). On the other hand, in the unstable configuration of the
undamped Mathieu equation, the response envelope grows exponentially fast for
a harmonic parametric excitation tuned to twice the natural frequency of the
oscillator (u = sin 2t).

The interplay between the two competing sources of excitation, i.e. does the
first-passage time scale on a log or linear scale with Hc ?, depends on Su, Sw, H0

and Hc, as well as the relative smallness of some dimensionless groups made of
these four parameters. To investigate this question, we rewrite (II.2.22) as

µf (H0) =
4

Su
ln

(
1 +

∆HSu
H0Su + 2Sw

)
(II.3.3)

with ∆H = Hc −H0.
Incubation regime. This mathematical formulation naturally hints one

particular regime, when the argument of the natural logarithm is close to one,
i.e.

∆HSu
H0Su + 2Sw

� 1 → ∆H � H0 +
2Sw
Su

. (II.3.4)

It is always possible to choose, for given H0, Sw and Su, small enough values
of the target energy level satisfying condition (II.3.4). Indeed, the system needs
to pass first by these states of energy slightly larger than the initial one before
reaching, eventually, states of much higher energy. These states belong to an
incubation regime during which the general solution (II.3.3) may be linearized.
Recalling that ln(1 + ε) = ε + ord(ε2) for ε � 1, the mean first-passage time in
this incubation regime reads,

µ
(I)
f =

4

Su

[
∆HSu

H0Su + 2Sw
+ ord

(
∆HSu

H0Su + 2Sw

)2
]
' 4∆H

H0Su + 2Sw
(II.3.5)

which indicates that the mean first-passage time is proportional to the increase
in the Hamiltonian ∆H = Hc − H0. For very small values of ∆H, the first-
passage time decreases and might reach the order of the period of the oscillator.
In this case, the asymptotic method induces large errors on the result which is
not reliable anymore.

This approximation ceases to be valid when (II.3.4) is not fulfilled anymore,
i.e. for ∆H ' H0 + 2Sw

Su
, which corresponds to an energy barrier Hc = H0 + ∆H

that is at least twice as large as the initial energy level. Although this is a priori
prohibited because condition (II.3.4) is not satisfied, substituting H0 + 2Sw

Su
for

∆H in (II.3.5) would yield µf ' 4
Su
. Because (II.3.5) is monotonic, the duration

of the incubation regime, is therefore one order of magnitude smaller than 4
Su
.
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In order to give a simple definition, we could for instance and arbitrarily define
an incubation time by

tincub :=
1

2Su
, (II.3.6)

which corresponds to ε = 1
8
, a number that is assumed to be small compared to

1. From a practical point of view, this means that the first-passage time might
be estimated with (II.3.5) and that the resulting estimation is valid, provided
it is shorter than tincub. As a consequence of our arbitrary definition choice
for tincub, the error on the estimated first-passage time is, in the worst case,
1− ln(1 + 1

8
)/(1

8
) = 5.8%.

Now, Equation (II.3.3) can be rewritten

µf (H0) =
4

Su
ln

(
1 +

∆H?

H?
0 + 1

)
= 8tincub ln

(
1 +

∆H?

H?
0 + 1

)
(II.3.7)

where the dimensionless groups H?
0 and ∆H? are defined by

H?
0 =

H0Su
2Sw

; ∆H? =
∆H Su

2Sw
. (II.3.8)

Multiplicative regime. If ∆H? � H?
0 + 1, we recover condition (II.3.4),

the logarithm may be linearized, the first-passage time is proportional to ∆H?

and is much smaller than the incubation time. Otherwise, if ∆H? & H?
0 + 1,

the logarithm cannot be linearized, and the expected first-passage time is of the
order of the incubation time or more. Two other limiting cases are interesting.

Either H?
0 � 1 and the expected first-passage time required to go from

a relatively large initial energy level to an even larger energy level tends to
4/Su ln (1 + ∆H?/H?

0 ) = 4/Su ln (Hc/H0). It therefore depends on by how much
the initial energy is multiplied to obtain the target energy level. This regime
is therefore called the Multiplicative regime. In this condition, the first-passage
time is independent of the forcing excitation intensity Sw. In the overlap between
the multiplicative and the incubation regimes the linearized solution reads

µ
(M)
f =

4

Su

∆H

H0

. (II.3.9)

Additive regime. Alternatively, H?
0 � 1 and the (large) first-passage tends

to 4/Su ln (1 + ∆H?). In this latter case, no matter the smallness of the initial
energy H0 in the system, provided it is much smaller than 2Sw/Su, it does not in-
fluence the expected first-passage time. In this regime, the expected first-passage
time only depends on the increase in energy ∆H?. This regime is therefore called
the Additive regime. In the overlap between the additive and the incubation
regimes the linearized solution reads

µ
(A)
f =

2

Sw
∆H, (II.3.10)
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which recovers the limit case Su = 0.
Figure II.2 presents the ratio µfSu

4
=

µf
8tincub

as a function of H? and ∆H?and
identifies the three regimes (incubation, additive and multiplicative). For differ-
ent values of H? and ∆H?, Figure II.3 shows four realizations of H(t) as well
as the expected first-passage time Hc(µf ). Subplots a, b, c and d correspond
to the four corners of Figure II.2, i.e. H?

0 = 10−2 or 101 and ∆H? = 10−1 or
101. The parametric excitation is fixed at Su = 10−3, which corresponds to an
incubation time tincub = 500 and simply means that Hc(µf ) increases more or less
linearly for expected first-passage times shorter than 500. Whether or not the
expected first-passage time versus the target energy level curve µf (Hc) exhibits
a nonlinear profile depends on the target energy level. In case a, corresponding
to the additive regime, the curve µf (Hc) is nonlinear as the first-passage time is
longer than the incubation time and the expected first-passage time is governed
by the energy increase ∆H?. This is confirmed in the upper left corner of Figure
II.2 which presents horizontal asymptotes in the additive regime. Similarly, case
b representing the multiplicative regime presents a nonlinear µf (Hc) curve and,
in this regime, the first-passage time is governed by the ratio Hc/H0. This is
visible by the unit slope of the isocurves in Figure II.3. Finally, cases c an d
corresponding to the incubation regime with a first-passage time much smaller
than 500 present a linear increase of the expected first-passage time with the
target energy.

The bottom left corner and the upper right corner in Figure II.2 represent the
two limiting cases where the loading is either forcing or parametric, respectively.
The additive regime therefore appears as a novelty of the combination of these
two types of excitation.

Figure II.4 presents the first-passage time of a slightly perturbed system (ε
is of order 10−3) for different target energy barriers Hc and different excitations
(forced excitation in (a) and parametric excitation in (b)). The logarithmic
evolution when Sw = 0 and the linear evolution when Su = 0 are respectively
observable in bold in each Figure. The small circles represent Monte Carlo
simulations. As expected, the first order solution µf provides accurate results
for this small value of ε. The linearized solution (II.3.5) is represented in dotted
line and fits well the exact solution for values of µf that are much smaller than the
incubation time, i.e. on the upper Figure Su

4
µf � 1. In both graphs, increasing

the parametric or forced excitation decreases the first-passage time.
Monte Carlo data are obtained by simulation of Equation (II.2.1) departing

from a given energy H0 and until the energy reaches the higher expected target
energy Hc. Time is recorded for each first passage of one of the expected values
of Hc and this is repeated a large amount of times (2000 simulations in this case).
This operation provides simulations of the first-passage time for one value of H0

and various values of Hc and can be repeated independently for other values of
H0.
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Figure II.2: Dimensionless first-passage time µfSu
4

=
µf

8tincub
as a function of H?

0

and ∆H? and identification of the Incubation (I), Multiplicative (M) and Addi-
tive (A) regimes.

Figure II.3: Realizations of the Hamiltonian and average first-passage time with
Su = 10−3 and H0 = 10−5 for the four corners of Figure II.2.
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Figure II.4: Average first-passage times (a) for different values of Sw and Su =
10−2 and (b) for different values of Su and Sw = 10−2 .
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As a first variant, in Section III.1, the second order solution is developed in
order to improve the accuracy of the solution for larger values of ε, i.e. for larger
excitation intensities. As a second variant, Section III.2 will present the leading
order solution of the damped oscillator.

II.4 Conclusion
Based on an asymptotic approach, this Chapter derives and discusses an analyt-
ical solution of the average first-passage time of a quasi-Hamiltonian oscillator
simultaneously submitted to white noise parametric and forcing excitations of
small intensities. It is observed that the asymptotic solution of the Pontryagin
equation, at leading order, provides a good approximation of the solution when
excitations are small. The derivation highlighted the dependence of the expected
first-passage time on the Hamiltonian, globally, and not on the position and ve-
locity separately. Three different regimes have been highlighted, namely the
incubation regime (I), the multiplicative regime (M) and the additive regime
(A). These three regimes exhibit different features and the behavioral responses
of the system, mainly the linear or log scaling of the first-passage time with the
target energy level, was thoroughly discussed and analyzed with the help of the
two dimensionless groups H?

0 and ∆H?.
At each step, analytical solutions were validated with Monte Carlo simula-

tions in order to demonstrate the accuracy of the closed form solutions. The
analysis performed here on the linear undamped oscillator under white noise ex-
citations highlights a relevant framework for the first-passage time problem. The
framework composed of the reduced energy and the three regimes will be used
for the study of more complex systems in Chapter III.



Chapter III

Analytical determination of the
first-passage time in more general
conditions

This chapter successively releases the different assumptions of Chapter II. The in-
fluence of each simplification on the first-passage problem is described in details.
In this context, one observes successively the second order term of the asymp-
totic expansion, the damped oscillator and the variance of the first-passage time;
while all the other assumptions remain valid.

III.1 Second order solution of the average first-passage time

III.2 Damped oscillator

III.3 Variance of the first-passage time

III.4 Conclusion

This Chapter is based on the following articles:
Vanvinckenroye, H., & Denoël, V. (2017). Average first-passage time of a quasi-

Hamiltonian Mathieu oscillator with parametric and forcing excitations. Journal of
Sound and Vibration, 406, pp. 328–345.

Vanvinckenroye, H. and Denoël, V. (2018). Second-order moment of the first pas-
sage time of a quasi-Hamiltonian oscillator with stochastic parametric and forcing ex-
citations. Journal of Sound and Vibration, 427, pp. 178–187.

29
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Chapter II Chapter III
Chapter V

Reference case III.1 III.2 III.3

1st order 2nd order 1st order 1st order N/A
undamped undamped damped undamped damped
average average average variance complete
FPT FPT FPT of the FPT distribution
linear linear linear linear nonlinear

white noise white noise white noise white noise evolutionary
excitations excitations excitations excitations excitation

Table III.1: Release of the assumptions of the reference case defining the different
variants.

The previous Chapter fully focused on the first order solution for the average
first-passage time of the undamped oscillator (II.2.1). In this Chapter, the dif-
ferent assumptions are released and discussed one by one. The different variants
are presented in Table III.1 together with the organization of this Chapter. First,
the second order solution of the asymptotic expansion as well as the boundary
solution are developed and their importance in the domain is discussed. Then,
the damped oscillator is considered and the influence of damping on the average
first-passage time and the three identified regimes is studied. Finally, the vari-
ance of the first-passage time represents the spread of the distribution and is of
high interest for risk assessment. Each of those assumptions is released while all
others are kept unchanged in order to understand its influence on the problem.
Each condition release brings complexity into the solution so that a more com-
plex system (more than one condition simultaneously released) is too complex
to be studied analytically. The purpose of this Chapter is not the development
of an accurate solution for a complex system but a comprehension of each of the
conditions and its influence on the first-passage time problem. Beside, a numer-
ical approach is developed in Chapter V to provide an accurate estimation of
the complete first-passage time distribution of a nonlinear damped system under
evolutionary excitation, as well as its degenerate cases.

III.1 Second order and boundary layer solutions
of the average first-passage time

This section establishes the second order (in the sense of perturbations) and
boundary layer solutions of the average first-passage time as given in (II.2.9)
and according to the asymptotic expansion developed in Chapter II following
Khasminskii’s approach [95]. This solution improves the accuracy of the solution
and becomes significant for moderate values of ε. The importance of this term is



III.1. SECOND ORDER AND BOUNDARY LAYER SOLUTIONS 31

observed and the range of parameters where it becomes significant is described.

III.1.1 Pontryagin equation

First order developments have shown that averaging is more natural in the
energy-phase space. In fact, the governing Equation (II.2.1) has been solved in
the (q, p) space but the same solution could have been obtained using variables
k and θ from the very beginning, i.e. solving

dx̃ = ã(x̃, t)dt+ b̃(x̃, t)dB, (III.1.1)

where x̃ =

[
k
θ

]
, ã =

[
γ1

1 + γ2

]
and b̃ =

[
−k cos θ sin θ cos θ

2

sin2 θ − sin θ
2k

]
and where

the Wong-Zakaï correction terms are given, according to (I.6.7), by

γ = ε
(
νw − 4kνuw sin θ + 4k2νu sin2 θ

) [ sin2 θ
8k

cos θ sin θ
4k2

]
. (III.1.2)

The corresponding drift matrix J̃ = εb̃(x̃, t)νb̃T (x̃, t) is still of order ε. The
invariant operators L1 and L2 become

L1 {·} =
∂·
∂θ

; εL2 {·} = δ1
∂·
∂k

+ δ2
∂·
∂θ

+
1

2
J̃11

∂2·
∂k2

+
1

2
J̃22

∂2·
∂θ2

+ J̃12
∂2·
∂k∂θ

.

(III.1.3)
Again, from here, the subscript “0” is dropped. It will be reintroduced in
(III.1.13). This formulation clearly indicates that the operator L1 represents
the variation along the orbits of constant energy H or k, as announced and used
in the previous Chapter.

Similarly to what was done to determine u0, the second order term u1 is
obtained by solving (II.2.12), with u0 being pushed to the right-hand side since
it is now known,

L1 {u1} =
∂u1

∂θ
= −1− L2 {u0} . (III.1.4)

The solution of this equation takes the form

u1(k, θ) = u11(k, θ) + u12(k), (III.1.5)

where

u11(k, θ) =
k2Su sin 2θ

2 (k2Su + Sw)2

[
k2Su(cos 2θ − 2)− 3Sw (III.1.6)

+
8

3k

sin2 θ
2

sin 2θ
Suw

(
2k2 (2 cos θ + cos 2θ)− 6

Sw
Su

)]
.
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is the general solution of the differential equation in θ while u12(k) plays the
role of a constant of integration, independent of θ. The cross correlation Suw
influences the second order solution while it did not affect the first order one
and, depending on the initial conditions, can be the governing term of u11 as
the energy k appears in the denominator of Suw. More details and complete
derivation of expressions for u11 and u12 are given in Appendix B. The constant
of integration is determined at the next order, with Equation (II.2.13) averaged
over one period of the unperturbed oscillator

〈L1 {u2}〉+ 〈L2 {u11}〉+ 〈L2 {u12}〉 = 0 (III.1.7)

whose solution reads, after some developments (see Appendix B),

u12(k) =
4kνuw

3

(k2νu + 3νw)

(k2νu + νw)2 +
C1

νw
ln

(
k2

k2νu + νw

)
+ C2 (III.1.8)

and where constant C1 is shown to vanish. The constant C2 is determined by
matching with the boundary layer solution in order to respect the first boundary
condition.

Unlike for the general form (II.2.21) of u0, the boundary conditions (I.6.26)
cannot be satisfied with the general form of solution for u1. A boundary layer
solution therefore develops in the neighborhood of ∂D, which is here restricted
to a circle, in order to satisfy the second boundary condition. It is obtained
by following the standard steps for the derivation of an asymptotic boundary
solution [96, 98, 99, 100]. Therefore, the stretched coordinate ζ = H−Hc√

ε
is

introduced in order to focus on the small region in the neighborhood of H = Hc.
Then, the equation to be solved L? {Gn} = 0 is considered at the different orders
in
√
ε and a regular ansatz in the stretched coordinate system

Gn(ζ, θ) = g1(ζ, θ) +
√
εg2(ζ, θ) + · · · + ε

n−1
2 gn(ζ, θ) (III.1.9)

is substituted into the governing equation. The leading order equation reads

∂g1

∂θ
+ 4HcJ̃11(Hc, θ)

∂2g1

∂ζ2
= 0 (III.1.10)

so that the leading order solution g1(ζ, θ) satisfying the boundary condition
g1(0, θ) = −u1(Hc, θ) and the matching condition g1(ζ, θ)→ 0 when ζ → −∞ is

g1(ζ, θ) =
∞∑
n=1

ane
√

nc1
2
ζ sin

(
nα(θ)−

√
nc1

2
ζ

)
(III.1.11)

with
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(a) (b)

Figure III.1: (a) Comparison of the first order, second order and boundary layer
terms with θ = 3π/4 (b) Evolution of the boundary layer solution g1 with Su = 0,
Sw = 0.001, Hc = 0.1.

c1 =
2π´ T

0
4HcJ̃11(Hc, s)ds

, α(θ) = 2π

´ θ
0

4HcJ̃11(Hc, s)ds´ T
0

4HcJ̃11(Hc, s)ds
,

and where coefficients an are shown to be given by

an = − 1

π

2πˆ

0

u1(Hc, θ(α)) sin (nα) dα. (III.1.12)

Up to second order, the mean first-passage time is finally given by

µf (p0, q0) =
1

ε
u0 [H(p0, q0)] + u1 [k(p0, q0), θ(p0, q0)] + g1

[
H(p0, q0)−Hc√

ε
, θ(p0, q0)

]
,

(III.1.13)

with u0(H0), u1(k, θ) and g1(ζ, θ) given by relations (II.2.22), (III.1.6) and (III.1.11).
Notice the subscript “0” has been re-introduced in the last results in order to
stress out that the first-passage time depends on the initial energy level H0 and
the initial position q0 and velocity p0.

III.1.2 Analysis and discussion

Figure III.1 (a) presents the first and second order solution U0 and U1, together
with the boundary layer solution g1. The boundary condition µf (Hc) = 0 is
respected for the leading order solution U0 and when the second order and the
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(a) (b)

Figure III.2: (a) Comparison of the first and second order solution with simula-
tions for different values of ε with νu = νw = 1, H0 = 0.01, Hc = 1 and θ = 3π/4
(b) Comparison of the solution for independent and fully correlated white noises
with Su = 0.1, Sw = 0.01 and Hc = 0.1.

boundary layer are both taken into account. While the first order solution de-
pends on the Hamiltonian only, the two second order solutions depend on both
the Hamiltonian H0 and the phase θ0. Figure III.1 (b) presents the evolution
of the boundary layer in the (H0, θ0)-plane. The highest values are observed for
H = Hc, on the boundary and g1 exponentially vanishes for decreasing initial
energy levels.

Figure III.2 (a) presents the evolution of the first and second order solutions
with the excitation intensities. The comparison with Monte Carlo simulations
illustrates the accuracy of the asymptotic expansion as a function of the small-
ness of the parameter ε. As expected, the first order solution matches almost
perfectly for small intensities until values of ε of about 0.1 while the second order
solution is virtually perfect for values as large as ε ' 1. The precision of the
method decreases with increasing values of ε but still provides very good results.
Figure III.2 (b) compares the first order solution U0 with simulations for fully
correlated and independent white noises. As the excitation intensities are small
(ε = 0.1), the first order solution is a good approximation and the first-passage
time is therefore independent of the correlation between the forced and paramet-
ric excitations. This is confirmed by the superposition of the results of Monte
Carlo simulations (dots and crosses).

III.2 Damped oscillator

As all physical systems are damped (at least slightly), it is natural to study the
influence of the damping on the first-passage time. Moreover, the dynamics of
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the oscillator –and thus the first-passage time– are expected to be influenced by
the memory of the oscillator.

In order to limit the complexity of the following developments, only leading
order terms of the first-passage time are determined. Following the observations
of Section III.1, this means that the following results shall be used for small (and
not moderate) values of ε. Also, in order to lighten the presentation, only main
results are presented in the bulk of the text; details are presented in Appendix
C.

The system observed here is

ẍ(t) + 2ξẋ(t) + [1 + u(t)]x(t) = w(t), (III.2.1)

with ξ the small damping ratio, of order ε at most, so that rewriting ξ = ενξ,
the re-scaled damping νξ is of order one at most.

III.2.1 Pontryagin equation

The first-passage time is the solution of Equations (II.2.11) and (II.2.12) with the
new averaged Itô formulation of the system. This leads to the same formulation
for L1 and an additional term in L2, see (C.0.3). Performing the same develop-
ments as before in the undamped case (which are reproduced in Appendix C),
the drift and diffusion coefficients m(H) and σ(H) are now given by{

m(H) = H
2
Su + 1

2
Sw − 2Hξ

σ(H) =
√

H2

2
Su +HSw

(III.2.2)

and the expected first-passage time at first order finally reads

µf (H0) =
4

Su(1− a)

[
ln

(
1 +

∆H?

H?
0

)
+

(1 +H?
0 + ∆H?)a − (1 +H?

0 )a

a

−
H?

0 +∆H?ˆ

H?
0

(1 + t)a

t
dt

 . (III.2.3)

with a =
8νξ
νu

= 8ξ
Su
.

III.2.2 Analysis and discussion

Damping enters in the average first-passage time (III.2.3) only through the pa-
rameter a, i.e. through its ratio with the dimensionless intensity of the parametric
excitation. There are two interesting limiting cases:
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• when there is no parametric excitation, i.e. Su = 0, the general solution
degenerates into

µf = − 1

2ξ
ln

(
1 +

∆H?

H?
0

)
+

Ei(aH?
0 + a∆H?)− Ei(aH?

0 )

2ξ
(III.2.4)

with Ei(·) the exponential integral defined by Ei(x) =
´ x
−∞

et

t
dt. The limit

solution for ξ = 0 is given by µf (H0) = 2Hc−H0

Sw
which was already obtained

in the undamped configuration. It is interesting though to notice that the
linearity of the solution, i.e. the expected first-passage proportional to the
increase in the Hamiltonian, regularly vanishes as damping is introduced
into the problem.

• when there is no forcing term, i.e. Sw = 0, the solution degenerates into

µf =
4

Su(1− a)
ln

(
1 +

∆H?

H?
0

)
(III.2.5)

In this case, the damping does not modify the form of the first-passage
time, which still increases like the logarithm of the ratio Hc/H0. This
solution presents a positive first-passage time for a < 1, which means that
the energy of the system can increase, on average, if the damping ratio has
an intensity below a certain threshold, ξ < Su/8. For a ≥ 1, the dissipation
mechanism drives the dynamical system to lower energy levels, on average.
The evaluated expected first-passage time is negative. It has no meaning
anymore since the Itô formulation on which the developments are based
is no more valid. For a damping ratio equal to the critical threshold, the
dissipated energy balances the injected energy and the first-passage time is
not defined, as illustrated in Figure III.3 (a). Figure III.3 (b) presents time
series of the system for different values of ξ so that the first-passage time
is positive, not defined or invalid (negative, on average) for ξ = −Su, Su/8
or Su.

Let us notice that the case where Su = 0 and Sw = 0 is deterministic and
provides in the undamped case a harmonic motion of constant energy and in
the damped case an exponentially decreasing energy. The system is governed by
ẍ+ 2ξẋ+ x = 0, whose solution is

x(t) = e−ξt
(
x0 cosωdt+

ẋ0 + ξx0

ωd
sinωdt

)
(III.2.6)

with ωd =
√

1− ξ2. The initial position and velocity are given by x0 and ẋ0. For
small damping ratio, the Hamiltonian of the system evolves as H(t) = H0e

−2ξt

and agrees with µf = −1
2ξ

ln Hc
H0

, the limit solution of (III.2.3) for {Su, Sw} → 0.
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(a) (b)

Figure III.3: (a) First-passage time µf as a function of the damping coefficient
ξ for Sw = 0 (b) Realizations of the Hamiltonian for H0 = 10−5, Su = 10−2,
Sw = 10−3 and different values of ξ.

In this case the concept of expected first-passage time has no physical meaning
if the damping is positive.

Three regimes were identified for the undamped oscillator in Section II.3. The
asymptotic behaviors can be developed similarly for the damped system:

Incubation regime. By analogy with the undamped oscillator, the first-
passage time in the incubation regime, i.e. for ∆H? � H?

0 + 1 is evaluated as
the leading order term of the Mac-Laurin series expansion of (III.2.3) for small
∆H?, which yields

µ
(I)
f =

4

Su

∆H?

H?
0 + 1︸ ︷︷ ︸

µf (H0)|
a=0

H?
0 + 1− (H?

0 + 1)a

(1− a)H?
0︸ ︷︷ ︸

f(a,H?
0 )

. (III.2.7)

Equation (III.2.7) shows that the first-passage time is still proportional to
the dimensionless group ∆H?/(H?

0 + 1) with an additional factor (f(a,H?
0 ) > 1)

modeling the increase of the first-passage time with the damping ratio. Notice
that f(a,H?

0 ) is independent of the energy increase ∆H? and is asymptotic to
1 + [1− ln (H?

0 + 1)]H?−1
0 a + ord(a2) as a → 0. Based on the expression of the

average first-passage time when Sw = 0 given by (III.2.5), one defines an incu-
bation time for the damped oscillator tincub = 1

2Su(1−a)
=

tincub|a=0

1−a , corresponding
to the domain where the logarithm can be linearized.

Additive regime. For H?
0 � 1, the average first-passage time becomes
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µ
(A)
f =

4

Su(1− a)

[
ln ∆H? − (1 + ∆H?)1+aF (1− a,−1/∆H?)

a∆H?
(III.2.8)

+
(1 + ∆H?)a

a
+ EΓ + π cot(aπ) + PΓ(a)

]
where the hypergeometric function 2F1 is represented by F (c, z) =2 F1(1, 1, c, z),
EΓ is Euler’s constant and PΓ(x) represents the digamma function. Expression
(III.2.8) is of little interest due to its high complexity. However, an important
observation is the independence of the expression in the initial energy H?

0 , which
is a typical feature of the additive regime, as illustrated for the undamped system
in Section II.3.

Multiplicative regime. The multiplicative regime of the damped oscillator
is defined by a∆H?

H?
0
� 1 & H?

0 � 1, corresponding to the lower right triangle
in the logarithmic plane of Figure III.4 (a). Increasing values of a restrict the
multiplicative regime to larger values of H?

0 or smaller values of ∆H?, i.e. to a
smaller triangle. In this domain, the average first-passage time is given by

µ
(M)
f =

4

Su(1− a)

[
ln

(
1 +

∆H?

H?
0

)
− ∆H?

H?2−a
0

]
. (III.2.9)

When a is of an order smaller than one (a� 1), the first term dominates so
that the average first-passage time mainly depends on the ratio ∆H?

H?
0
, correspond-

ing to a unitary slope of the curves of same first-passage time in a logarithmic
scale (see Figure III.4 (a)). When the order of magnitude of a is higher than 1,
the second term dominates so that the average first-passage time mainly depends
on the ratio ∆H?

H?2−a
0

, corresponding to a slope of the curves of same first-passage
time equal to 2 − a in the graph of Figure III.4 (a). Consequently, the slope
becomes negative for a > 2, and the average first-passage time increases with in-
creasing values of H?

0 . For values of a of order 1, both terms have the same order
and must be taken into account for the average first-passage time. The multi-
plicative regime is not anymore characterized by a unitary slope of the curves of
first-passage time –the term multiplicative being related to the ratio ∆H?

H?
0
– but

rather by oblique asymptotes of equal slope corresponding to different powers of
∆H? and H?

0 .
The particular case a = 2 is interesting since the average first-passage time

is independent of the initial energy H?
0 in both the additive and multiplicative

regimes. The limit of expression (III.2.3) as a→ 2 provides

lim
a→2

µf =
4∆H?

Su
=

2∆H

Sw
. (III.2.10)
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(a) (b)

Figure III.4: (a) Representation of µfSu
4

as a function of H? and ∆H? for different
damping ratios (b) Average first-passage time µf for different damping coefficients
ξ = 0 to 0.005 with Hc = 0.05 and 0.1, Su = 0, Sw = 10−3.

First, Expression (III.2.10) shows that the solution for a→ 2 is unique in the
additive and multiplicative regimes, and independent ofH?

0 , which corresponds to
horizontal straight lines of average first-passage time in Figure III.4 (a). Secondly,
the average first-passage time for a = 2, Sw 6= 0 and Su 6= 0 is identical to the
average first-passage time of the undamped oscillator (ξ = 0) with Su = 0 given
in Section II.3 by Equation (II.3.1). This means that, from the first-passage
time point of view and in presence of a forcing excitation (Sw 6= 0), the energy
injected into the system by the parametric excitation u is perfectly balanced by
the dissipation due to damping if a = 2, i.e. ξ = Su

4
.

Finally, the particular case a = 1 corresponding to a mathematical singularity
of Expression (III.2.3) provides

lim
a→1

µf =
4

Su

ˆ H?
0 +∆H?

H?
0

ln (1 + t)

t
dt. (III.2.11)

However, no singularity is observed in the first-passage time and the problem
evolves regularly for values of a around 1.

Figure III.4 (a) shows the reduced expected first-passage time µfSu
4

, exactly as
in Figure (II.2) but for various damping ratios. It is seen that the damping ratio
has little influence on the first-passage time in the incubation regime, while it
increases the expected first-passage time in the additive regime where horizontal
asymptotes are observed due to the independence of the average first-passage
time in the initial energy H?

0 . In the multiplicative regime (right part of the
map), the damping ratio changes the slope of the curves of equal first-passage
times, that becomes negative for a > 2. In all regimes, increasing the damping
ratio increases the first-passage time.
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(III.2.3) Su = 0 Sw = 0 ξ = 0

Su = 0
− 1

2ξ
ln
(
Hc
H0

)
+Ei(4ξHc/Sw)−Ei(4ξH0/Sw)

2ξ

Deterministic 2Hc−H0

Sw

Sw = 0 sym.
4

Su−8ξ
ln Hc

H0

if ξ < Su/8
4
Su

ln Hc
H0

ξ = 0 sym. sym. 4
Su

ln
(
HcSu+2Sw
H0Su+2Sw

)
Table III.2: Summary of the analytical results and limit cases at first order.

Figure III.4 (b) presents the first-passage time as a function of the initial
energy H0 for different values of ξ and Hc. The small circles represent results
of Monte Carlo simulations while the full line is the analytical solution. As
expected, the first-passage time increases with damping.

Table III.2 presents a summary of the analytical results and their limits.

III.3 Variance of the first-passage time

Because the considered system is stochastic, the time required to reach the total
internal energy barrier H0 + ∆H, starting from energy H0 is a random variable.
Its mean value has already been investigated in Chapter II. The objective of this
Section is to determine the second order statistical moment E

{
t2f
}
, in order to

provide some information about the spread of this statistical distribution.

III.3.1 Pontryagin equation

The generalized Pontryagin equation (I.6.23), when specified for n = 2, provides
the following differential equation for the mean square first-passage time of an
autonomous system

L
{
E
{
t2f
}}

= −E {tf} , for x0 ∈ D. (III.3.1)

The boundary class is determined according to equations (I.6.27), see [86]. For
Sw 6= 0, one finds αl = 1, βl = 0 and cl = 1 corresponding to an entrance class and
for Sw = 0, αl = 2, βl = 1 and cl = 2 leading to a repulsively natural boundary
class, as announced before, so that the initial condition is given by (I.6.26) while
the boundary condition can be replaced by the quantitative condition (I.6.28).

The topology of the generalized Pontryagin equation (I.6.24) is the same for
all orders so that one can expect strong similarities between the average and
higher moments. Indeed, the homogeneous part of (I.6.24) is identical to that of
(III.3.1) while the non-homogeneous part injects the previous order solution with
its characteristics. This recurrence leads to very similar features for all statistical
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moments. This is why the mean square and variance of the first-passage time
are now studied in the light of the three previously identified regimes.

Accounting for the boundary conditions, it might be shown that the general
solution of (III.3.1) for n = 2, with E {tf} = µf (x0) given by (II.2.22), is

E
{
t2f
}

=
32

S2
u

[
P
(
H0Su + 2Sw

2Sw

)
− P

(
HcSu + 2Sw

2Sw

)
+ ln

(
HcSu + 2Sw

2Sw

)
ln

(
HcSu + 2Sw

HcSu

)
− ln

(
H0Su + 2Sw

2Sw

)
ln

(
HcSu + 2Sw

H0Su

)
+ ln

(
HcSu + 2Sw
H0Su + 2Sw

)]
. (III.3.2)

The function P stands for the real part of the polylogarithmic function and
is defined as

P(x) = Re [Polylog (2, x)] = Re
[
−
ˆ

ln (1− x)

x
dx
]

∀x > 1. (III.3.3)

This expression for the mean square first-passage time shows the relatively
complex interactions between the forcing and parametric excitations. It is valid
under the hypotheses that are required to separate the slow energy and the fast
phase variables. These are equivalent to assuming a quasi-Hamiltonian system,
or that the dimensionless intensities Su and Sw are small compared to 1.

As a first validation, Figure III.5 compares this analytical solution to the mean
square first-passage time E

{
t2f
}
obtained with Monte Carlo simulations (dots).

Each curve corresponds to a different initial energy H0 (H0 = 5, 10, · · · , 40). The
numerical simulations virtually fit and validate the analytical solution, especially
in the range of large mean square first-passage time, i.e. where the average
first-passage time is large too, which is a required assumption for the stochastic
averaging. For target energy levels Hc which are slightly larger than the initial
condition H0, the stochastic averaging is no longer accurate and a boundary
layer solution using Khasminskii’s approach needs to be developed, as in Section
(III.1) where the boundary solution is developed for the average first-passage
time.

As a second validation, we restrict to the case where there is no forcing
excitation, i.e. Sw = 0, so that the second order moment is given by

lim
Sw→0

E
{
t2f
}

=
32

S2
u

(
ln

(
1 +

∆H

H0

)
+

1

2
ln

(
1 +

∆H

H0

)2
)
. (III.3.4)

This expression corresponds to existing results in the literature [49].
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Figure III.5: Second order moment of the first-passage time as a function of the
target energy Hc for different values of H0 = 5, 10, · · · , 40, while Su = 0.1 and
Sw = 0.05; Monte Carlo simulations (dots) and analytical solution (full line).

III.3.2 Analysis and discussion

For further investigation, and similarly to the analysis of the first order moment
µf that led to the identification of the three regimes (incubation, multiplicative,
additive), the mean square first-passage time is rewritten in terms of the reduced
initial energy and energy increase H?

0 and ∆H? defined in (II.3.8). Equation
(III.3.2) becomes:

S2
u

32
E
{
t2f
}

= [P (1 +H?
0 )− P (1 +H?

0 + ∆H?)

+ ln (1 +H?
0 + ∆H?) ln

(
1 +H?

0 + ∆H?

H?
0 + ∆H?

)
− ln (1 +H?

0 ) ln

(
1 +H?

0 + ∆H?

H?
0

)
+ ln

(
1 +

∆H?

1 +H?
0

)]
. (III.3.5)

This expression is plotted in Figure III.6 (b). This formulation shows that the
second order moment of the first-passage time is expressed as the product of 32

S2
u

and an expression depending on H?
0 and ∆H? only. This evidences the different

influences of the parametric and forcing excitations Su and Sw in the energetic
behavior of the stochastic oscillator as those two intensities appear as a ratio
in the reduced coordinates while S2

u also appears as a multiplicative factor, as
expected from (II.2.22).

Three regimes were identified through the average first-passage time. The
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asymptotic behaviors of the mean square first-passage time in each regime can
be developed in a similar manner:

Incubation regime. For ∆H?

H?
0 +1
� 1, the mean square is given by

S2
u

32
E
{
t2f
}(I)

=
∆H?

H∗0 + 1

(
1− ln (1 +H?

0 )

H?
0

)
(III.3.6)

Additive regime. For H?
0 � 1 and ∆H? � 1, the second order moment

becomes

S2
u

32
E
{
t2f
}(A)

= −π
2

6
+

ln (∆H?)

2∆H?
(4 + ∆H? ln (∆H?)) + ln (1 + ∆H?) . (III.3.7)

As expected, the limit depends on ∆H? only, which corresponds to the horizontal
asymptotes in the left part of Figure III.6 (b). This behavior was also observed
in the average first-passage time. The qualification “additive” therefore remains.
However the additive regime is now restricted to the upper left corner, while
the entire left part was covered by the asymptotic solution for the average first-
passage time. This means that there is no overlap between the incubation and
additive regimes anymore.

Multiplicative regime. For H?
0 � 1, the asymptotic behavior of (III.3.5)

is
S2
u

32
E
{
t2f
}(M)

= ln

(
1 +

∆H?

H?
0

)
+

1

2
ln

(
1 +

∆H?

H?
0

)2

. (III.3.8)

This limit depends on the relative energy increase ∆H?

H?
0

and confirms the unitary
slopes observed in the right part of Figure III.6 (b).

The asymptotic behaviors in each regime are represented with dotted line in
Figure III.6. The upper left Figure (a) is a copy of Figure II.2 and is repeated
here to be seen in parallel with the other three Figures.

The spread in the distribution of the first-passage time is difficult to assess
with the raw moment. Instead, one would naturally evaluate the spread of the
distribution of the first-passage time with its variance σ2

f = E
{
t2f
}
− µ2

f , which
is represented in Figure III.6 (c) as a function of H?

0 and ∆H?. The variance
increases with ∆H?. The low dependency on the initial energy H?

0 in the left part
of the graph reveals a regular monotonic and slowly varying energy for low energy
levels. Indeed, for low energy levels, the energy does not increase significantly
for a given time (approximately the incubation time tincub) and once a significant
increase is observed, the increasing rate is higher. This can be observed on the
simulations presented in Figure II.1.

The spread can even be better evaluated with the coefficient of variation
defined as

cvf =
σf
µf
. (III.3.9)
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regime.
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It is represented in Figure III.6 (d).
Substitution of µf and σf into this equation provides a relatively cumbersome

expression of the coefficient of variation. However simple solutions are obtained
in the two following limit cases, when the loading is either of parametric type
(Sw = 0), either of forcing type (Su = 0).

First, when there is no parametric excitation, i.e. Su = 0, the second order
moment of the first-passage time is given by

lim
Su→0

E
{
t2f
}

=
4∆H

S2
w

(
H0 +

3

2
∆H

)
(III.3.10)

and the mean square is a quadratic function of the energy increase ∆H. In this
case, and based on the limit expression of the mean first-passage time for Su → 0
given in Chapter II, µf = 2∆H

Sw
, the coefficient of variation is given by

lim
Su→0

cvf =

√
1

2
+

H0

∆H
(III.3.11)

and depends on the proportional energy increase ∆H
H0

only. This limit behavior is
valid in the bottom left corner of Figure III.6 (d) and always provides a coefficient
of variation that is larger than

√
2

2
.

Second, when there is no forcing excitation, i.e. Sw = 0, the second order
moment is given by

lim
Sw→0

E
{
t2f
}

=
32

S2
u

(
ln

(
1 +

∆H

H0

)
+

1

2
ln

(
1 +

∆H

H0

)2
)
, (III.3.12)

which is well known from [49]. In this case, and considering µf = 4
Su

ln
(

1 + ∆H
H0

)
,

the coefficient of variation is given by

lim
Sw→0

cvf =

√
2

ln (1 + ∆H/H0)
. (III.3.13)

This limit behavior is valid in the upper right corner of Figure III.6 (d). In this
second limit case, the coefficient of variation also depends on the ratio ∆H/H0

only and is independent of the intensity of the parametric excitation.
The representation of the coefficient of variation cvf and its asymptotes in

Figure III.6 (d) leads to the following observations:

• The coefficient of variation decreases with the ratio ∆H?

H?
0

which means that
the variation of the first-passage time is low when going from a low initial
energy to a much larger target energy. On the opposite, a relatively small
energy increase presents a very large variation of the first-passage time.
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This is first explained by the gentle evolution of the energy for low energy
levels and secondly by the amplitude of the mean first-passage time that is
much larger for high values of ∆H?

H?
0

and therefore decreases the coefficient
of variation.

• The two limit cases Su = 0 and Sw = 0 corresponding to the bottom left
and upper right corners have a simple dependence in the ratio ∆H

H0
= ∆H?

H?
0

and nicely match in-between. Although the exact expression obtained from
(II.2.22) and (III.3.5) shows a dependency in both H?

0 and ∆H? separately,
one observes that the dependency in ∆H

H0
is almost valid everywhere as far

as cvf >
√

2
2
, which is the limit of validity of the limit solution for Su = 0.

• The additive regime, which is now restricted to the upper left corner,
presents a different behavior than the limit case Su = 0 in the bottom
left corner. Indeed, the coefficient of variation in the additive regime ob-
tained by combination of µ(A)

f and σ2(A)
f according to expressions (II.3.10),

(III.3.7) and (III.3.9) depends on ∆H? only and thus presents horizon-
tal asymptotes in the upper left corner. The limit between the additive
regime characterized by horizontal asymptotes and the limit case Su = 0
with unitary slopes can be considered to correspond to cvf =

√
2

2
.

• The characteristic value cvf = 1 corresponds in the bottom left corner to
the asymptote ∆H

H0
= 2 and in the upper right corner to the asymptote

∆H
H0

= e2 − 1 = 6.38.

• The transition of a system from a low energy level to a much higher en-
ergy level, corresponding to the upper left corner of the parameter space,
features the lowest coefficients of variation. From a practical standpoint,
this means that small samples are sufficient to provide good estimations
of the average first-passage time in the additive regime (upper left cor-
ner). In the rest of the parameter space, larger samples are required to
provide estimations of the average first-passage time with small confidence
intervals.

Figure III.7 presents two slices of Figure III.6 (d) for respectively H?
0 = 10−2

(a) and H?
0 = 102 (b) so that the coefficient of variation is represented as a

function of ∆H?. Dotted lines represent the asymptotic solutions (additive and
multiplicative) and limit solutions (Su = 0 and Sw = 0). In Figure III.7 (a),
the limit solution for Su = 0 fits the general expression for small values of ∆H?

while the asymptotic solution for the additive regime, obtained from (II.3.10),
(III.3.7) and (III.3.9), fits the general expression for values of ∆H? that are
much higher than one. In-between, for values of cvf that approach

√
2

2
, the

general expression should be used. In Figure III.7 (b), the multiplicative regime
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solution obtained from (II.3.9), (III.3.8) and (III.3.9) and the limit case solution
for Sw = 0 (III.3.13) both perfectly fit the general expression. Indeed, the
multiplicative regime fully covers the right part of the diagram and includes the
limit case Sw = 0. For high values of H?

0 , the coefficient of variation can be
directly approximated with expression (III.3.13).

III.4 Conclusion

As a first variant, the first order solution is improved by addition of the second
order solution. In spite of the complexity of the analytical solutions, it is pos-
sible to derive a boundary layer solution that develops for target energy levels
that are only slightly larger than the initial energy level. Unlike the first order
solution, the second order one depends on both the initial kinetic and potential
energies, i.e. position and velocity separately. It is also noted that the correla-
tion between the forced and parametric excitations does not influence the leading
order solution but appears in the second order solution. Although the smallness
of the excitations is required for the asymptotic expansion, comparison with
Monte Carlo simulations showed very good accuracy of the first order theoreti-
cal solutions for values of ε as large as 0.1. For the considered example, second
order solutions virtually match Monte Carlo simulation results for values of ε as
large as 0.5 (or more). As the first order solution of Chapter II is equivalent to
the stochastic averaging method, the second order solution developed here is a
beneficial contribution of the asymptotic expansion.

Secondly, the first-passage time is also developed for a damped oscillator. It
was shown that the three regimes remain, with little influence of the damping in
the incubation regime. Positive damping expectedly tends to increase the mean
first-passage times, in all regimes, and eventually induces such a large dissipation
that the first-passage time is not finite, on average.

Then, the variance of the first-passage time is derived. The form of the
generalized Pontryagin equation being very similar for all statistical moments,
the mean square first-passage time is studied with the same dimensionless groups
H?

0 and ∆H?, and in the same three regimes as the average first-passage time.
Strong similarities are observed in the incubation and multiplicative regimes,
while the additive regime is now restricted to large values of the dimensionless
energy increase ∆H?. As an estimator for the variability of the first-passage time,
the coefficient of variation has been derived. It has been shown that a strong
dependency in ∆H/H0, instead of H0 and ∆H independently, is observed with
decreasing influence, which means that small relative energy increases provide
a significantly scattered first-passage time while large relative energy increases
present a smaller variability and can be predicted with a higher confidence. For
the sake of the analysis, simple analytical solutions have also been developed in
the asymptotic and limit cases. They might be used for convenience in designing
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experiments and understanding observed phenomena.
At each step, analytical solutions were validated with Monte Carlo simula-

tions in order to demonstrate the accuracy of the closed form solutions. The
dependence of the first-passage time with the initial and target energy is fully
described by the general solution as well as in the three regimes.
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Chapter IV

Some applications of the
first-passage time

This chapter serves as a demonstration of the applicability of first-passage times
to engineering problems. The oscillations of a pendulum as well as cable vibra-
tions are presented as numerical examples. Then, the first-passage approach is
experimentally applied to a tower crane oscillating in a turbulent wind flow and
a pre-stressed steel strip.

IV.1 Introduction

IV.2 Application 1: The pendulum under horizontal and
vertical excitations of its support

IV.3 Application 2: Cable vibrations under acceleration of
one anchorage

IV.4 Algorithmic establishment of the first-passage time
map from experimental data

IV.5 Application 3: A tower crane under gusty winds

IV.6 Application 4: A pre-stressed steel strip

IV.7 Conclusion

Part of this Chapter is based on the following articles:

Vanvinckenroye, H., Andrianne, T. and Denoël, V. (2018). First passage time as
an analysis tool in experimental wind engineering. Journal of Wind Engineering and
Industrial Aerodynamics, 177, pp. 366–375.

Delhez, E. (2018) Experimental and numerical study of first passage time. Master
thesis. University of Liege. https://orbi.uliege.be/handle/2268/224212.
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IV.1 Introduction

While first-passage times have been thoroughly studied in many aspects of nu-
merical and theoretical modeling (Chapters II and III of this work among others),
it is surprising that experimental investigations are very limited. In order to un-
derstand and characterize different crane instabilities in gusty wind conditions,
Voisin performed experimental analyses and determined the susceptibility of a
tower crane to autorotation when it is left free to rotate in a given environment
[5, 6] (see Figure I.1 (a)). This approach allows to experimentally assess field
configurations against undesired crane autorotation which could potentially lead
to dramatic failures. Other experimental investigations can be found in the field
of applied physics [101, 102], and usually aim at comparing experimental obser-
vations and approached analytical solutions. These applications in other fields
of science suggest that it is a mistake to ignore the first-passage time represen-
tation of transient signals. Following this motivation, this chapter first presents
numerical applications of the first-passage time to the motion of a pendulum
and cable vibrations. The first-passage approach is then experimentally applied
to a tower crane under gusty winds. Its rotative motion can be associated to a
SDOF Mathieu oscillator. Wind tunnel data are processed within the framework
of first-passage time and the results are compared with the simple theoretical
model of Chapter III. A final example presents the experimental application of
the first-passage approach to a pre-stressed steel strip, a MDOF system designed
for academic purposes. This work is part of the master thesis of E. Delhez [103],
and has been performed in the context of the PhD thesis of H. Vanvinckenroye,
who had the opportunity to guide and follow E. Delhez within her research.
As shown next, results are concluding and suggest the use of first-passage time
maps as a complementary technique to usual analysis tools [104]. This is to our
knowledge a first attempt at bringing first-passage times of stochastic systems
into engineering.

IV.2 Application 1: The pendulum under hori-
zontal and vertical excitations of its support

The most simple physical system related to a Mathieu oscillator is the pendulum.
A mass M is suspended to a support by a rigid bar of zero mass and length L.
This SDOF system is frequently considered as an academic study case, such as
in [24, 41, 36, 29, 39] among many others. Vertical and horizontal motions of the
support are respectively equivalent to parametric and external forces. Indeed,
the governing equation of the system represented in Figure IV.1 is given by its
rotative equilibrium
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Figure IV.1: The forced and parametric pendulum. [1].

ML2θ̈ +ML (g + ÿ) sin θ = −MLẍ cos θ, (IV.2.1)

with θ the rotation of the pendulum. The gravitational acceleration is given by
g while ẍ and ÿ respectively represent the horizontal and vertical accelerations
of the support and are functions of time. The dot denotes the derivative with
time t.

For small amplitudes, the equation can be linearized and becomes

ML2θ̈ +ML (g + ÿ) θ = −MLẍ. (IV.2.2)

The free response, obtained by solution of (IV.2.1) with ẍ = ÿ = 0m/s2 is the
harmonic function θ(t) = θ0 cos (Ω?t), with Ω? the fundamental frequency of the
pendulum given by Ω? =

√
g/L. Assuming the nondimensional time τ = Ω?t,

and the corresponding derivative given by the prime symbol, the nondimensional
equation of motion can be rewritten as

θ′′ +

(
1 +

y′′

g/Ω?2

)
θ = − x′′

g/Ω?2
. (IV.2.3)

Equation (IV.2.3) is comparable to the Mathieu equation (I.2.1) with u =
ÿ
g

= y′′

g/Ω?2
and w = −ẍ

g
= −x′′

g/Ω?2
, which confirms that the vertical excitation of

the support acts as a parametric excitations and the horizontal excitation of the
support acts as an external force. Moreover, an important observation is that
the pendulum behavior is independent on the mass M , for given accelerations of
the support.

The energy H of the pendulum is given by the Hamiltonian of equation
(IV.2.1)
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H = ML2 θ̇
2

2
+MgL

θ2

2
= MgL

(
θ2

2
+
θ′′2

2

)
= MglH̃, (IV.2.4)

where H̃ is the nondimensional energy, as defined for the analytical model in
Equation (II.1.2). Assuming that the amplitude remains small, and that the
excitations u and w (and consequently the accelerations ẍ and ÿ) are white noises
of small intensity Su and Sw, the average first-passage time for the pendulum to
go from an initial energy H0 to a target energy Hc is given by (II.2.22)

E {tf} =
E {τf}

Ω?
=

4

SuΩ?
ln

(
H̃cSu + 2Sw

H̃0Su + 2Sw

)
. (IV.2.5)

Knowing that
Sαx(κ = ω/Ω?) = α2Ω?Sx(ω), (IV.2.6)

one finds Su = Ω?

g2 Sÿ and Sw = Ω?

g2 Sẍ and replacing the nondimensional variables
in (IV.2.5) by their dimensional expressions, the average time taken by a pendu-
lum departing from an initial energy H0 to reach a higher energy Hc for the first
time can be expressed as

E {tf} =
4gL

Sÿ
ln

(
HcSÿ + 2SẍMgL

H0Sÿ + 2SẍMgL

)
. (IV.2.7)

Similarly, the mean square first-passage time of the pendulum is given by the
nondimensional expression (III.3.2) and can be rewritten in a dimensional form
as

E
{
t2f
}

=
32g2L2

S2
ÿ

[
P
(
H0Sÿ + 2SẍMgL

2SẍMgL

)
− P

(
HcSÿ + 2SẍMgL

2SẍMgL

)
+ ln

(
HcSÿ + 2SẍMgL

2SẍMgL

)
ln

(
HcSÿ + 2SẍMgL

HcSÿ

)
− ln

(
H0Sÿ + 2SẍMgL

2SẍMgL

)
ln

(
HcSÿ + 2SẍMgL

H0Sÿ

)
+ ln

(
HcSÿ + 2SẍMgL

H0Sÿ + 2SẍMgL

)]
. (IV.2.8)

The dimensions of the different parameters of the problem are given in Table
IV.1. The smallness of the excitations intensities Su and Sw can also be discussed
as a function of the dimensional parameters

Su/w =
Ω?

g2
Sÿ/ẍ � 1 → {Sÿ, Sẍ} �

g2

Ω?
=
√
g3l. (IV.2.9)
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Parameters dimensions
g, ẍ, ÿ m/s2

Sẍ, Sÿ m2/s3

L m

H kgm
2

s2

Ω? rad/s
tf s

H̃, Su, Sw, τf −

Table IV.1: Dimensions of the different parameters of the pendulum problem.

Since the gravitational acceleration is a fixed constant g = 9.81m/s2, the
criteria is a function of the length of the pendulum only.

This example serves as a first application of the first-passage time to a physical
problem with its dimensions.

IV.3 Application 2: Cable vibrations under ac-
celeration of one anchorage

A taut cable is another structural element that is typically concerned by dynamic
loadings. Since they are usually met in open structures like cable-stayed bridges,
pylons, bracings, etc. evident dynamic excitations of cables are wind and rain,
but the motion of the anchorages of the cable is also an important source of
vibrations. In the case of a cable-stayed bridge, the motion of the deck under
dynamic loading –typically traffic or wind excitation of the deck itself– provokes
a dynamic loading of the cable. The component of the motion of the support
that is perpendicular to the chord direction presents the typical feature of an
external excitation while the parallel component induces parametric excitation.
Let us consider a light cable of length L and inclination θ submitted to a vertical
motion of its anchorage x, as illustrated in Figure IV.2. Considering a modal
decomposition with sinusoidal modes and limiting the analysis to the first mode,
the cable behaves as a SDOF system governed by [21, 105]

q̈ + 2ξΩ?q̇ + Ω?2

(
1 +

x(t)

X0

sin θ

)
q +

π2

4

Ω?2

X0L
q3 =

2

π
ẍ(t) cos θ (IV.3.1)

where q is the modal coordinate, ξ is the damping coefficient, Ω? is the fun-
damental frequency of the taut cable, X0 = NL

EA
is the elastic elongation of the

cable, with N the tension in the cable and EA its stiffness. In cable-stayed
bridges, this governing equation can usually be linearized so that the cubic term
in (IV.3.1) is neglected in the sequel. Defining the nondimensional time τ = Ω?t,
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Figure IV.2: A inclined cable with vertical motion of one extremity. [1].

modal amplitude α = q
X0

and motion of the support f = x
X0

, Equation (IV.3.1)
takes the nondimensional form

α′′ + 2ξα′ + (1 + f(τ) sin θ)α =
2

π
f ′′(τ) cos θ (IV.3.2)

that is directly comparable to the Mathieu oscillator of Equation (I.2.1) with
u(τ) = f(τ) sin θ and w(τ) = 2

π
f ′′(τ) cos θ.

The specific energy H –or energy by unit of mass– of the taut cable is given
by the Hamiltonian of equation (IV.3.1)

H =
q̇2

2
+ Ω?2 q

2

2
= X2

0 Ω?2

(
α2

2
+
α′2

2

)
= X2

0 Ω?2H̃ (IV.3.3)

where H̃ is the nondimensional energy as defined for the analytical model in
Equation (II.1.2).

From the nondimensional formulation, and using relation (IV.2.6), the power
spectral densities of the parametric and external excitations can be expressed as

Su(κ) =

(
sin θ

X0

)2

Ω?Sx(ω) and Sw(κ) =

(
2

π

cos θ

X0

)2
1

Ω?3
Sẍ(ω) (IV.3.4)

with κ = ω/Ω? the nondimensional circular frequency corresponding to the
nondimensional time τ .

The average first-passage time of the cable submitted to small white noise
excitations u and w can be predicted with the analytical model of Chapter III.
It is known from [106] that the power spectrum of a broadband parametric
excitation mainly influences the first-passage time through its value at the double
of the fundamental frequency of the system. Since the spectrum of the second
derivative of x can be expressed as Sẍ(ω) = ω4Sx(ω), we decide to consider a
white noise acceleration of the support with constant spectral density Sẍ(ω) = Sẍ
and its second integral for the position that can be expressed by

Sx(ω) =
Sẍ
ω4
, (IV.3.5)
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Figure IV.3: Power spectral densities of (a) the position and (b) the acceleration
of the support.

as illustrated in Figure IV.3. In these conditions, the first-passage time of the
cable can be computed by the analytical solution of Chapter III assuming an
equivalent white noise position of the anchorage of constant spectral intensity
Sx = Sẍ

(2Ω?)4 so that the equivalent excitations intensities are given by

Su =

(
sin θ

X0

)2
1

Ω?3
Sẍ and Sw =

(
2

π

cos θ

X0

)2
1

Ω?3
Sẍ. (IV.3.6)

The average first-passage time of the cable can be predicted by

E {tf} = 4
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[
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(IV.3.7)

with a = 8ξ
Su

= 8ξ
Sẍ

Ω?3X2
0

sin θ2 .
In a first step, and for comparison with analytical results (IV.3.7), Equation

(IV.3.1) is simulated under white noise acceleration of the support. Then, for
the sake of the illustration and in order to remain as close as possible to realistic
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Ω? 7.8rad/s
L 110.505m
EA 1734.6 106N
N 4902.7 103N
ξ 0.5%
θ π/4

Table IV.2: Numerical values of the parameters of a cable of the Ben-Ahin bridge
(Belgium) [21, 105].

conditions, a time correlated acceleration of the support is chosen as an Ornstein-
Uhlenbeck process with correlation time Tc. The Ornstein-Uhlenbeck process is a
process with exponentially decreasing correlation and the white noise acceleration
developed first corresponds to the limit case of the Ornstein-Uhlenbeck with
correlation time equal to zero.

The example treated here is a taut cable of the Ben-Ahin cable-stayed bridge
(Belgium). Numerical values of the cable parameters are obtained from [21, 105]
and are given in Table (IV.2). One considers a cable departing from an initial
energy H0 = 0.001m2/s2 –corresponding to an initial amplitude of oscillations
of 5.7mm– and reaching the target energy Hc = 0.041m2/s3 –corresponding
to a target amplitude of 3.7cm. The spectral density of the acceleration of the
deck is taken as Sẍ = 0.1m2/s3 and the correlation time of the acceleration is
successively taken equal to 0, T/10 and T with T = 1/Ω?.

Figure IV.4 (a) presents the complete distribution of the first-passage time
pf (tf ) obtained with 2000 Monte Carlo simulations and for various values of the
correlation time Tc. The first distribution for Tc = 0s corresponds to a white
noise acceleration of the support and its average value can be directly compared
to the analytical expression (IV.3.7) E {tf} = 4.29s. Respective averages of
the distributions are indicated with circles. A slight increase of the values of
the first-passage time with the correlation time can be observed. The evolution
of the average first-passage time obtained by MC simulations is represented in
Figure IV.4 (b) as a function of the ratio Tc/T . While the average monotonically
increases with Tc/T , the influence remains negligible as long as Tc/T . 1. A
sudden increase is observed for Tc/T > 1, i.e. when the correlation time of the
acceleration of the anchorage exceeds the fundamental period of the cable.

As a conclusion, the average first-passage time of the cable under acceleration
of the support can be obtained by the analytical expression (IV.3.7) as long as the
time-scale of the acceleration of the support remains smaller than the time-scale
of the cable. The analytical model offers a good estimation of the first-passage
time as a function of the cable parameters.
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Figure IV.4: Monte Carlo simulations of a cable under Ornstein-Uhlenbeck exci-
tation with various correlation times Tc. (a) Complete distribution (b) Evolution
of the average with the correlation time.
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IV.4 Algorithmic establishment of the first-passage
time map from experimental data

IV.4.1 Introduction

Figure II.2 shows a map of the first-passage time of the system energy, as a
function of the initial energy and of the energy increase. This is an appropriate
way to represent the different regimes in which a system could evolve: Incubation,
Multiplicative or Additive. In this section, an efficient algorithm is developed to
determine this map from measured realizations of the stochastic response.

Based on the time series of the displacement and velocity –possibly obtained
by differentiation of the position– of a system, the time series of the dimensional
energy H(t) and dimensionless energy H̃(t) is established and the first-passage
time map as a function of H̃0 and ∆H̃ can be constructed.

The algorithm is based on the construction of the envelope of the time series
similarly to the rainflow algorithm [107], which is used in fatigue assessment
to reduce a varying stress signal into a set of stress reversals and hereby count
the number of half-cycles that can lead to fatigue. That algorithm consists in
virtually rotating the time signal by 90° and considering a water drop flowing
from one point. The path followed by the drop provides information about the
minima and maxima, as well as an estimation of the number of significant cycles
in the signal.

The Matlab code of the developed algorithm is freely available under GNU
license on the ULiège repository [108].

IV.4.2 The algorithm

The extraction of first-passage times from a time series is composed of several
sequential steps. They are explained after some general nomenclature is intro-
duced.

The main envelope Ẽ(t; t0) is the monotonically increasing function corre-
sponding to the highest energy level ever reached at time t > t0. The main
envelope is associated with the initial time t0 = 0, where the initial energy is
H̃0 = H̃(0), so that Ẽ(t0; t0) = H̃0 and Ẽ(t; t0) ≥ Ẽ(t0; t0), ∀t > t0. The main
envelope is represented in blue in Figure IV.5. This curve provides the target
energy levels H̃c = Ẽ(tf ; t0) as a function of the corresponding first-passage times
tf . The inverse function is not a single-valued function, but if we restrict it to
the minimum time corresponding to each energy (i.e. discarding the plateau’s in
the main envelope), it provides the first-passage time as a function of the energy
increase ∆H̃,

tf

(
∆H̃; H̃0

)
= Ẽ−1

(
H̃0 + ∆H̃

)
. (IV.4.1)
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This time is to be understood as a time elapsed from t0 where the initial energy
is H̃0. This provides a coarse estimation of the first-passage time. A refined
estimator can be obtained by pretending that the recording has started a little
later, at another time t′ where the energy was also equal to H̃0. By restricting the
time series to the window t > t′, another estimation of tf

(
∆H̃; H̃0

)
is obtained

and statistics of the first-passage time, starting from initial energy level H̃0 can
be obtained, even from a single realization of the process. The method can be
generalized for other values of the initial energy, in such a way to provide a
map of the average first-passage time, for various combinations of H̃0 and ∆H̃.
Nevertheless, it would be computationally ineffective to determine this map in
this way.

For the needs of the following algorithm, we also define the partial envelope
Ẽ(t; t′) as the main envelope of the remaining part of the signal starting at time
t′. The green and red plots in Figure IV.5 show two examples of local envelopes.
As a corollary the partial envelope associated with time t0 corresponds to the
main envelope. Unless H̃(t′) is the largest energy level over all times before time
t′, the local envelope starts below the main envelope and eventually reaches it
after some time. The part of the partial envelope that is different from the main
envelope is called the local envelope.

It is important to notice that the local envelope might coincide with the time
series H̃(t), depending on the sign of the local derivative at time t′. If the energy
H̃(t′) is minimum or increases, then H̃(t) coincides with the local envelope for
t ≥ t′ and until the next local maximum (see beginning of red curve in Figure
IV.5). On the contrary if the energy presents a maximum or decreases at time
t′, then the local envelope presents a jump until the next point where the energy
is higher (see beginning of green curve in Figure IV.5).

In order to develop an efficient algorithm, the time series is first scanned
through in order to determine, for each time step, whether the energy H̃(t) is
increasing or decreasing. This can be efficiently done with vector operations.
For an increasing energy, the index of the next maximum is stored and for a
decreasing energy, the index of the next higher energy is stored.

Secondly and using this information, the main envelope is constructed, start-
ing from t = 0 until the end of the time series (see blue curve in Figure IV.5).
The main envelope is straightforwardly elaborated as a succession of local en-
velopes, depending on the ascending or descending character of the signal. The
main envelope is stored and will be used as support for the next steps.

Third, the energy axis is discretized in a finite number of intervals. These
intervals are chosen with uniform sizes on a logarithmic scale, as this is the
physical scaling suggested by the stochastic model. These intervals define bins
in the H̃ −∆H̃ plane.

Fourth, going point by point through the entire signal, each time step can be
considered as the first point t′ 6= t0 of a shorter time series with initial energy



62 CHAPTER IV. APPLICATIONS OF THE FIRST-PASSAGE TIME

Figure IV.5: Main and partial envelopes reconstruction.

H̃ ′0 = H̃(t′) . The partial envelope Ẽ(t; t′) provides estimators of the first-passage
times t1 for that initial energy and various target energies (or different energy
increases). A counting procedure allocates, in the appropriate bins, the first-
passage times associated with the target energies, starting from H̃ ′0. To construct
partial envelopes, the process is the same, except that the main envelope is now
known. If the point H̃(t0) is part of the main envelope, then the partial envelope
follows the main envelope from that point until the end of the signal. If H̃(t0)
is not a point of the main envelope, then the envelope is reconstructed as a
succession of local envelopes until the main envelope is reached. Once the main
envelope is reached, the partial envelope follows the main envelope until the end
of the signal.

Finally, since the same discretized energy level will have several occurrences
in the original time series, several values of the first-passage time will be observed
for each H̃0−∆H̃ combination (in each bin). Averaging of all these first-passage
times provides the average first-passage time map.

A pseudo-code of this algorithm, where main and partial envelopes are estab-
lished as a succession of local envelopes (nested function), is given in Appendix D
and Matlab routines are also provided under GNU license, freely available from
the ULiège repository [108].

IV.5 Application 3: A tower crane under gusty
winds

IV.5.1 A mathematical model of a tower crane

The dynamics of a crane spinning in a turbulent velocity field can be modeled
with a governing equation of the type:



IV.5. APPLICATION 3: THE TOWER CRANE 63

Iθ̈ + Cθ̇ = Mw(t) (IV.5.1)

where θ(t) is the angular position of the crane jib in a horizontal plane andMw(t)
is the aerodynamic load resulting from the wind flow [1]. Considering that the
rotation of the crane is associated with slower timescales than those of the wind
flow along a characteristic length of the crane (say its diameter), the quasi-steady
assumption [109] is considered. The aerodynamic torque is therefore expressed
by

Mw =
1

2
ρairCMHB

2||vrel||2 (IV.5.2)

as a function of the air density ρair, the moment coefficient CM , the circumscribed
dimensions of the lattice cross section H × B (height × span) and the relative
wind velocity vrel.

There is no angle-proportional term (no stiffness) in the rotative equilibrium
(IV.5.1), since the spinning crane is assumed to be ideally balanced. If the wind
was uniform and steady, without turbulence, the crane would find an equilibrium
position in the mean direction of the wind; in other words, the stiffness in the
problem comes from the aerodynamic loading Mw(t). In this paper, we are
concerned with small amplitude rotations of the crane, which also partly justifies
a linearized version of the inertial and internal forces in the governing equation,
therefore simply modeled by the rotative inertia I and viscosity C.

In the horizontal plane of the crane, the wind velocity is characterized by
its mean component U and its fluctuating components u and w respectively
parallel and perpendicular to the wind direction (see Figure IV.6 (c)), which are
stochastic processes characterized by their power spectral densities Su(ω) and
Sw(ω). For small incidences, the moment coefficient can be linearized too so
that CM(α) = ∂CM

∂α

∣∣
α=0

α with α the relative angle between the crane and the
instantaneous wind velocity vector. The relative velocity entering in (IV.5.2) is
given by:

vrel = (U + u,w)− (−rθ̇ sin θ, rθ̇ cos θ). (IV.5.3)

with r the abscissa of the aerodynamic focus along the jib, i.e. the point at which
the moment coefficient does not vary with the lift coefficient [109]. In this model
we subscribe to the common assumption that u and w are small compared to
U , although they might affect higher order statistics [109]; also we assume that
rotations are small around the equilibrium configuration, i.e. θ � 1 and that
the rotative velocity of the crane, of order Bθ̇ is also small compared to U .
The squared norm of the relative velocity and the apparent angle of attack are
therefore expressed as

||vrel||2 = U2 + 2Uu and α = θ − w − rθ̇
U

(IV.5.4)



64 CHAPTER IV. APPLICATIONS OF THE FIRST-PASSAGE TIME

which is identical to usual assumptions for wings [110] and bridge decks [111, 112].
Grouping together rigidity and damping terms, Equation (IV.5.1) is rewritten

Iθ̈ +
(
C +M? r

U
(1 + 2

u

U
)
)
θ̇ +M?(1 + 2

u

U
)θ = M?w

U
(IV.5.5)

where, as soon as U 6= 0, the reference torque M? is defined as

M? = −1

2
ρairHB

2U2∂CM
∂α

> 0. (IV.5.6)

As introduced earlier, this quantity also plays the role of a stiffness, aligning the
crane with the mean wind orientation θ = 0 when there is no turbulence.

A dimensionless version of the governing equation is obtained by introducing
the circular frequency of the oscillator Ω? =

√
M?/I as well as the structural

and aerodynamic damping coefficients, ξs = CΩ?

2M? and ξa = r
2U

Ω?. It reads

θ′′ + (2ξs + 2ξa(1 + ũ))θ′ + (1 + ũ)θ = −w̃, (IV.5.7)

where symbol ′ represents a derivative with respect to the non-dimensional time
τ = Ω?t, and where ũ = 2 u

U
and w̃ = w

U
represent the dimensionless components

of the wind fluctuations.
The Hamiltonian of the dimensional system (IV.5.5) is given by the conser-

vative part of the equation and is defined as

H = I
θ̇2

2
+M? θ

2

2
=
I

2

(
θ̇2 + Ω?2θ2

)
(IV.5.8)

while the dimensionless Hamiltonian is given by the conservative part of Equation
(IV.5.7):

H̃ =
θ′2

2
+
θ2

2
=

H

M?
. (IV.5.9)

It is therefore observed that M? also plays the role of a characteristic energy.
The dimensional tower crane Equation (IV.5.1) has been reduced to the

nondimensional Equation (IV.5.7) after some simplifications. This last expres-
sion is equivalent to Equation (II.2.1) so that the analytical developments for
the average first-passage time of the damped oscillator can be transposed to the
tower crane problem.

Particularization of expression (III.2.3) to the non-dimensional tower crane
governing equation (IV.5.7) provides the non-dimensional average first-passage
time:

E {τf} = 4
Sũ(1−a)

[
ln
(

1 + ∆H̃
H̃0

)
+

(
1+(H̃0+∆H̃) Sũ

2Sw̃

)
a−
(

1+H̃0
Sũ

2Sw̃

)a
a

−
´ H̃0+∆H̃

H̃0

(
1+t

Sũ
2Sw̃

)a
t

dt

] (IV.5.10)



IV.5. APPLICATION 3: THE TOWER CRANE 65

Applying the property (IV.2.6), the average first-passage time of the governing
equation (IV.5.5) is finally given by

E {tf} =
1

Su/U(1− a)

1

Ω?2

ln

(
1 +

∆H

H0

)
+

(
1 + H0+∆H

M?

2Su/U
Sw/U

)
a −

(
1 + H0

M?

2Su/U
Sw/U

)a
a

−
H0+∆Hˆ

H0

(
1 + t

M?

2Su/U
Sw/U

)a
t

dt

 (IV.5.11)

where a can also be expressed as a function of the problem parameters as a =
C

ISu/U

1
Ω?2

= 2ξs
Su/UΩ?

.
There are two discrepancies between this mathematical model and the simple

tower crane model. First, the theoretical solutions are derived for delta-correlated
noises u(t) and w(t). In the considered problem, the power spectral densities of
the turbulence components are assumed to be broad enough in the frequency
bands associated with the dynamics of the problem so that a replacement of the
actual power spectral density by an equivalent white noise intensity might be
operated. This is classical in buffeting analysis [113] and has also been discussed
in the scope of first-passage times [103]. Second, the problem at hand features
a parametric excitation in the velocity-dependent term, see (IV.5.7). In order
to get rid of that term, the pivot of the crane model was chosen close to the
aerodynamic center so that r � B.

IV.5.2 Experimental investigations

Experimental setup and identification of the mechanical properties of
the model

The tests have been performed at the Wind Tunnel Laboratory of the University
of Liège, in the low speed test section of dimensions 2.5m × 1.8m × 2m. An
homogeneous turbulent field is generated 12m upstream the tower model using
a passive grid generator [114] (see Figure IV.7 (a)). The corresponding air flow
has been characterized by 3-axis measurement of the wind velocity with a Cobra-
probe with an acquisition frequency of 500Hz. In a first step, long measurements
have been performed where the tower crane is left free to rotate in a turbulent
velocity field (see Figure IV.6 (a)). The rotation of the crane has been measured
with a laser SICK OD2-P300W200I0 of range 100 to 500mm with an acquisition
frequency of 1000Hz.

The setup consists in a rectangular jib of section H × e = 0.042m× 0.042m
and length B = 1m made of rigid machinable foam of density ρ = 690kg/m3

(see Figure IV.6 (c)). The pivot is placed at 0.4m of one extremity so that the
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(a) (b) (c)

Figure IV.6: (a) Experimental setup in the wind tunnel (b) Vertical view and
mechanical conception of the pivot (c) Plan view of the setup configuration.

(a) (b)

Figure IV.7: (a) Coarse grid used for the first-passage time measurements (b)
Turbulence components parallel (u) and perpendicular (w) to the main wind
direction with the coarse grid .

jib has a length L1 = 0.6m and the counter-jib a length L2 = 0.4m and the
inertia is given by I = ρHe

L3
1+L3

2

3
= 0.11kgm2. Friction between the mast and

the pivot is minimized by means of two ball bearings vertically aligned in the
pivot as illustrated in Figure IV.6 (b). The two ball bearings are adjusted in a
circular drilling in the foam. A threaded shaft ensures the verticality and the
rigidity of the fixation with the hollow vertical mast.

Finally, the mechanical properties of the physical model have been character-
ized through measurement of the free response of the crane when it is launched
in wind-off conditions. The acceleration has been measured with a wireless ac-
celerometer with acquisition frequency of 200Hz. The crane has been manually
launched in order to observe the free response decay. The corresponding theo-
retical governing equation is

Iθ̈ + Cθ̇ = 0. (IV.5.12)
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(a) (b)

Figure IV.8: Representation of the restoring force function (a) as a func-
tion of position and velocity and (b) as a function of velocity for θ =
0, ± π

50
, ± π

25
, ±π

2
and ± π.

Note that the aerodynamic damping associated with the rotation of the crane
is again neglected because of the position of the pivot (r = 0). This equation
governing the free response of the crane is a particular case of a very general
model θ̈ + G(θ, θ̇) = 0, where G(θ, θ̇) is the (possibly nonlinear) restoring force
function. In the assumed model, the restoring force function should be a plane
independent on the angular position θ. However, slight imperfections in the setup
have resulted in a slightly different result, as shown by the surface represented in
Figure IV.8. This restoring force function has been obtained by measuring the
free response of the crane with 3-D accelerometers, then integrating to obtain
angular velocity and angular positions. Finally the restoring force function is
obtained by plotting the acceleration against the position and velocity. Results
shown in Figure IV.8 (a) represent an average response over 6 launches. Holes
in the map are due to the interpolation algorithm. Figure IV.8 (b) represents
slices of the map for different values of θ.

As expected, an overall decreasing behavior is observed with θ̇. However, this
evolution is slightly nonlinear and dependent on θ. While the acceleration was
expected to be always negative due to damping, a small geometrical imperfection
influences the acceleration in the neighborhood of θ = 0 and for small values of
the rotational velocity. For a series of reasons such as small gaps in the ball
bearings, small play between the supporting tube and the cylindrical support of
the jib (see Figure IV.6 (a)), the slight deflection of the jib, and other imperfec-
tions, the jib does actually not revolve in a perfectly horizontal plane, creating
therefore zones with lower potential energy. These zones are relatively wide and
do not hinder the good adjustment of parameters of the linear model, as shown
in Section IV.5.3.
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Grid Turbulence

The turbulent field is characterized at a mean velocity U = 3.6m/s and led to
horizontal turbulence intensities Iu = 6.2% and Iw = 4.8% resp. parallel and
perpendicular to the main direction. The power spectral densities of u/U and
w/U are represented in Figure IV.7 (b) as a function of the pulsation ω.

The turbulence component u has a monotonically decreasing frequency con-
tent while the perpendicular component w presents a peak value for ω = 9.1rad/s.
Both contents are very similar for higher frequencies and for all frequencies we
have Sw/U(ω) ≤ Su/U(ω). The proportional turbulences u/U and w/U charac-
terized here are supposed not to change significantly with the mean velocity U .
The Mathieu oscillator is submitted to white noise excitations u and w so that in
the next coming results constant values Su/U and Sw/U are found to be equivalent
to the narrow-band spectra Su/U(ω) and Sw/U(ω).

IV.5.3 Results

The tower crane is left free to rotate under the turbulent flow for 6 hours. Its ro-
tational displacement is measured and the velocity is obtained by differentiation.
Figure IV.9 (a) shows the map of the average first-passage time reconstructed
with the algorithm presented in Section IV.4 (in straight line). Dotted lines
represent the average first-passage times obtained with the mathematical model
presented in Section III.2. These lines are similar to those of Figure III.4, in the
relatively high damped case (a > 3). This means that the damping ξ is large
compared to the parametric excitation input Su. It does not mean that damping
is large.

While the dimensional problem depends on the four parameters Ω?, Su/U(ω),
Sw/U(ω) and ξs , see Equation (IV.5.11), the first-passage time only depends on
three combinations of those 4 parameters: 1

Su/UΩ?2 ,
2Su/U
Sw/U

and a , which means
that an infinite number of different oscillators can present the same first-passage
time map. In other words, two oscillators that would have two different natural
circular frequencies Ω? and subjected to turbulence intensities that are inversely
proportional to Ω?2, exhibit the same first-passage time map. The faster oscil-
lator being excited with less energetic loadings than the slower oscillator, the
energy of both oscillators will actually increase similarly, on average, and they
will present the same first-passage time map.

However, the definition of H̃ = θ2

2
+ θ̇2

2Ω?2 requires the knowledge of Ω?, defined
as the fundamental pulsation of the time series θ(t). The characteristic frequency
Ω? = 1.95rad/s has been chosen and obtained as the maximum of the power
spectral density of the angular position. This leaves us with the adjustment of 3
parameters.

The parameters of the model are obtained by a minimization of the mean-
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square error between the experimental map and the corresponding theoretical
one, defined as

R =
1

n1n2

n1∑
i

n2∑
j

∆2
i,j

Ni,j

Ntot

(IV.5.13)

where the summation is repeated over all n1n2 bins and where ∆ = E {tf,exp} −
E {tf,th} is the difference between the experimental and theoretical n1 × n2 ma-
trices of first-passage times in the (H0,∆H) space. This error is weighted ac-
cording to the number of observations Ni,j of the first-passage time in each bin
(Ntot =

∑
i

∑
j Ni,j). Implementation of a simple search algorithm provided the

lowest residual. The corresponding values of the parameters are

Su/U = 3.2× 10−5s, Sw/U = 6.4× 10−7s and ξs = 0.11. (IV.5.14)

They correspond to the parameters of the equivalent Mathieu oscillator presented
in Section IV.5.1. It is not the objective of this work to provide a physical
meaning to those parameters. Indeed, they are just equivalent, in the sense of the
minimization (IV.5.13), since the physical problem tested in the wind tunnel is
not exactly governed by the same equation. Although the scope of this section is
to highlight a possible field of application of first-passage times by exploiting the
richness of the generic Mathieu oscillator, it is believed that the direct analysis,
i.e. the direct determination of equivalent parameters given all actual properties
of the physical problem, goes beyond the scope of this work. We just notice
that Su/U and Sw/U are short with respect to the timescale of the problem which
justifies the slower evolution of energy. They have the same order of magnitudes
as the turbulence intensities presented in Figure IV.7 (b). Also, we notice that
ξs = 0.11 is a relatively small parameter, which is also a necessary condition for
the stochastic averaging to apply. Being defined as a ratio between dissipative
moments in the mechanical system and a stationary aerodynamic moment, see
(IV.5.7), the damping coefficient ξs has not the classical meaning of a structural
nor aerodynamic damping. It is therefore not abnormally large.

Despite the slight dissimilarities between the physical and numerical models,
which are emphasized in the next section, the behavior in terms of first-passage
times is very well captured, over several orders of magnitude.

IV.5.4 Discussion

The dimensional incubation time defined as tincub = 1
8Ω?2Su/U (1−a)

is negative,
which means that no incubation regime is observed due to the important struc-
tural damping (ξ compared to u/U). The other two regimes are clearly ob-
servable: the independence in H̃0 in the additive regime is observed in the left
part of Figure IV.9 (a) while the asymptotically constant (and negative) slope
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(a) (b)

Figure IV.9: (a) Maps of the average first-passage time E {tf} and (b) of the stan-
dard deviation of the first-passage time. Comparison between the experimental
data (solid lines) and the theoretical model (dotted lines).

which is characteristic of the multiplicative regime is observed in the right part
of the diagram. The notable change between both behaviors is observed around
H̃0 = 10−5.

The tower crane model is a physical system presenting some differences with
the idealized mathematical model of the stochastic Mathieu oscillator of Section
III.2. First of all, all slight nonlinearities related to the angle of attack, the mo-
ment coefficient and the squared apparent velocity have been linearized in order
to express the aerodynamic load as a linear function of the turbulence compo-
nents u and w. Moreover, the quasi-steady model based on the sole consideration
of the moment coefficient might be limited to represent the aerodynamic load-
ing on the oscillating crane. Indeed, the aerodynamic moment results from the
pressures distributed along the moving jib, which have to be multiplied by their
respective lever arms and integrated. These pressures are random as a result
of the turbulence, and should in principle be expressed as a slice cut of a spa-
tial stochastic field including the space-coherence of the fluctuating wind. At last
but not least, the turbulence components u and w present a broadband spectrum
(see Figure IV.7 (b)) which is not exactly a δ-correlated noise as assumed in the
Mathieu oscillator model. All these reasons conspire to make the actual physical
model of the tower crane somehow different from an accurate aerodynamic model
of the crane, but also different from the simple Mathieu oscillator model. While
the tower crane is a physical problem presenting a significant complexity, to some
extent, it is here demonstrated that its first-passage behavior can be captured
and reproduced with a simple equivalent model.

This conclusion is very promising as to the utility of simple models to repre-
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sent first-passage statistic in the buffeting analysis of slightly damped structures.
Both the wind-tunnel results and the properties of the equivalent Mathieu oscilla-
tor can be exploited to infer some information on the reliability of the considered
system. On one hand, very long measurements in the wind tunnel, and the ap-
propriate post-processing in terms of first-passage times, as discussion in Section
IV.4, can offer a fair picture of how the first-passage time scales with the problem
parameters, in particular, in which regime a randomly excited structure evolves.
On the other hand, the adjustment of an equivalent model, as suggested in this
paper, can be used to smoothen the slight imperfections of too short measure-
ments or even to extrapolate to situations that could not be observed in the
wind-tunnel.

As an example of extrapolation of the information provided by the Mathieu
oscillator model, we discuss the standard deviation of the first-passage time. This
information is as much important as the average first-passage time, as soon as
reliability is concerned [115]. The counting algorithm presented in Section IV.4
can provide additional statistical information about first-passage time, including
higher statistical moments and the standard deviation. The solid lines in Figure
IV.9 (b) represent the first-passage time map of the measured energy. This
is now compared to the standard deviation of the first-passage time obtained
with the Mathieu oscillator model. Unfortunately, the closed form solutions of
the second statistical moment are available in the undamped case only [116].
However, comparison is possible by means of Monte Carlo simulations. Using
the set of parameters obtained by adjusting the mean first-passage time, given in
(IV.5.14), we have simulated 10,000 simulations (dt = 0.01, and duration as long
as required to observe the first-passages) of the system, in order to determine
the standard deviation of the first-passage time. This has resulted in the dotted
lines in the map IV.9 (b). Although a bit less accurate (partly because of looser
confidence intervals for higher statistics), there is a fair matching between the
measured standard deviation of first-passage times and those predicted by the
simple model.

As to other possible extrapolations of the model, it is manifestly also a flexible
tool to upscale the first-passage times measured in the wind tunnel to longer runs.
Once a regime (incubation, additive or multiplicative) in which oscillations are
taking place is reached, characterized and its boundaries are determined, the
analytical model indicates how the first-passage time scales with respect to higher
energy levels. As long as one is interested in first-passage times in this regime,
the model might provide fair extrapolations, with all usual limitations of usage
on extrapolation.

As a particular example, the model is able to predict for how long measure-
ments would need to be performed in order to reach some larger energy levels.
This has two important implications. On one hand, in a preliminary design stage
of a wind tunnel setup, the model is able to evaluate for how long the wind tunnel
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length l 0.501m
width b 25mm

thickness t 0.4mm
mass m 1.816kg

Young’s Modulus E 206GPa
density ρ 7767kg/m3

Table IV.3: Geometric and mechanical properties of the experimental setup.

campaign should be foreseen. On the other hand, the model might prove to be
a valuable decision tool for those investigators who are already dealing with sta-
bility evaluations [5] and who would like to know whether is it worth prolonging
their measurement before larger amplitude might be observed.

IV.6 Application 4: A pre-stressed steel strip

This last example is based on the experimental and numerical investigation per-
formed by E. Delhez [103] during her Master thesis. The research was performed
at the University of Liège in the context of this PhD thesis. The experimental
setup presented in Figure IV.10 is composed of a vertical metal strip of length l
pre-stressed by a massm. Mechanical and geometrical properties of the structure
are given in Table IV.3. Vertical and horizontal displacements are hindered at
the top extremity by a clamp while the lower extremity is free to move vertically
only thanks to a lateral guide. The horizontal force Fw applied in the lower part
of the strip presents the typical features of an external excitation while the force
Fu applied by acceleration of the mass m modifies the tension in the strip, and
hereby its rigidity, and can be associated to a parametric excitation. Both excita-
tions are applied through electrodynamic shakers equipped with accelerometers.
Additionally, the deformation of the strip is measured by a laser transducer.

In a first step, numerical and experimental analysis of the MDOF structure
lead to the identification of the modal characteristics of the strip. Mode shapes,
frequencies and corresponding damping coefficients are determined. Assuming
that the excitation intensities, and consequently the displacements, remain small
and that the system is excited in such a way that the structure responds in only
one mode, the MDOF system can be reduced to a SDOF system defined by the
corresponding modal amplitude q. For practical reasons, the mode observed in
this experimental study is the second bending mode, represented in Figure IV.11
and corresponding to the frequency f ? = 39.3Hz.

The modal amplitude q is governed by the following linear Mathieu equation

meq q̈(t) + ceq q̇(t) + (keq + Fu(t)kp,eq) q(t) = αFw(t) (IV.6.1)
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Figure IV.10: Illustrations of the pre-stressed steel strip [103].

Figure IV.11: Second bending mode of the strip [103].
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where meq, ceq and keq are the equivalent mass, damping and stiffness of the
SDOF system, obtained by projection of the mass, damping and stiffness of the
strip onto the second bending mode. An additional stiffness component kp,eqFu(t)
is due to the pre-stress variation under the force Fu(t) and the coefficient α stands
for the projection of the force Fw(t) on the mode and represents the value of the
mode shape at the point of application of the force. The dot denotes a derivative
with respect to time t. The values of the SDOF system parameters are the
following ones

meq = 0.05kg, ceq = 0.08N.s.m−1, keq = 3273N.m−1 and kp,eq = 39m−1.
(IV.6.2)

Defining the fundamental circular frequency of the mode Ω? = 2πf ? =
√

keq
meq

and the nondimensional time τ = Ω?t, Equation (IV.6.1) can be rewritten in the
nondimensional format

q′′(τ) + 2ξq′(τ) + (1 + u(τ)) q(τ) = w(τ) (IV.6.3)

with the primes denoting a derivative with the nondimensional time τ , the damp-
ing coefficient ξ = ceqΩ?

2keq
= 0.3% and the external and parametric forces given

by

u(τ = Ω?t) = Fu(t)
kp,eq
keq

and w(τ = Ω?t) =
αFw(t)

keq
. (IV.6.4)

A numerical analysis shows that a broadband excitation might be reduced
to a narrow-band excitation, provided that the bandwidth of the parametric ex-
citation includes the double of the fundamental frequency, and provided that
the bandwidth of the external excitation includes the fundamental frequency.
In this context, and in order to avoid excitation of other modes of the MDOF
structure, the steel strip is submitted to narrow-band white noise excitations of
intensities SFu = SFw = 5× 10−3N2s. The parametric force Fu covers the band-
width [0.77; 2.57]f0 while the external force covers the bandwidth [0.87; 1.13]f0,
as illustrated by the power spectra SFu and SFw in Figure IV.12. The excitation
intensities of the reduced forces u(τ) and w(τ) are given, using the property
(IV.2.6), by the expressions

Su = SFuΩ?

(
kp
keq

)2

= 1.8× 10−4 and Sw = SFwΩ?

(
α

keq

)2

= 2.5× 10−10.

(IV.6.5)
The energy of the SDOF system is defined as the Hamiltonian of Equation

(IV.6.3)
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Figure IV.12: Power spectral densities of the narrow-band parametric and forced
excitations applied to the strip.

H =
q2

2
+
q′2

2
=
q2

2
+

q̇2

2Ω?2 (IV.6.6)

and corresponds to the definition of the energy (II.1.2) used in the analytical
model.

Figure IV.13 presents the average first-passage time map obtained experi-
mentally, analytically and numerically as a function of the reduced initial energy
H?

0 = H0Su
2Sw

and energy increase ∆H? = ∆HSu
2Sw

. The experimental map is obtained
by excitation of the steel strip and measurement of the system response. The
first-passage map is reconstructed using the algorithm detailed in Section IV.4.
Possible nonlinearities, multimodal response as well as modal interactions are in-
cluded in the represented map (in straight line). Analytical results are obtained
by Expression (III.2.3) for a SDOF linear Mathieu oscillator under broadband ex-
citations. Finally, numerical results are obtained by Monte Carlo simulations of
the linear MDOF system with adjusted parameters and also includes the possible
response of the strip in several modes.

A good correspondence is observed between numerical and experimental re-
sults, as well as analytical results. It is important to highlight the fact that the
analytical solution represented here is not fitted to the experimental results, but
based on a mechanical model for the determination of the parameters Su, Sw,
a and Ω?. Therefore, the small discrepancies can be explained by the narrow-
band excitations, small nonlinearities into the system, the parameter adjustment
method or the multimodal response of the strip.

The experimental curves also represent the three regimes. The incubation
regime is observed since a linear spacing of the curves is visible in the lower
part of the diagram. A horizontal tendency is observed in the left part of the
diagram, corresponding to the additive regime. However, a slight tendency of
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Figure IV.13: Average first-passage time map of the steel strip E {τf} Su4 =
E {tf} SuΩ?

4
. Comparison of analytical, experimental and numerical results.

the lower curves to go down when H?
0 decreases suggests that the additive regime

might be restricted to higher values of ∆H? in this case. In the right part of
the diagram, the negative slope and parallel curves are observed, as a suggestion
of the multiplicative regime. However, the observed levels of energy H?

0 are too
small for the multiplicative regime to be completely developed.

The results of Figure IV.13 are very conclusive for several reasons. First,
the three regimes are reproduced with their typical features. Then, the behavior
of the MDOF steel strip can be approximated by and directly related to the
behavior of a SDOF Mathieu oscillator. The characteristics of the Mathieu
oscillator are predicted, which means that experimental measurements of the
first-passage time are not necessary for the prediction the first-passage time of
the strip under different conditions, or for other levels of energies, as long as
some conditions are respected.
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IV.7 Conclusion
The first-passage time is a tool that is applicable in many engineering problems,
as soon as random excitations, such as wind turbulence, are concerned. Nu-
merical examples are provided as a first step to direct applications of the first-
passage approach. The closed-form solution of the average first-passage time
under combined forced and parametric excitations highlighted the existence of
various regimes. Among them, the additive and the multiplicative regimes have
been observed in the stochastic dynamics of a tower crane in a turbulent flow.
This system has been shown to be rather accurately modeled by a simple Mathieu
oscillator, at least in terms of first-passage times since there exists an equivalent
system presenting the same energy evolution from a first-passage time point of
view. Indeed, average and second order first-passage time maps are very simi-
lar and the theoretical model may be used to understand and predict the tower
crane behavior. Finally, the example of the pre-stressed steel strip is presented,
where the corresponding Mathieu oscillator has been accurately identified and
the three regimes observed. These experimental investigations provide a first
link between an analytical but simplified result and a more complex reality and
encourage the use of the first-passage as an analysis tool for the comprehension
and the conceptual design in engineering applications.
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Chapter V

A numerical approach for the
first-passage time of a nonlinear
system under evolutionary
excitation:

The Galerkin scheme

This chapter develops a numerical method for the first-passage time distribution
and the reliability function of nonlinear systems under external evolutionary
excitation. Two distinct definitions of the energy are employed and their influence
on the accuracy of the solution is detailed. A specific scheme is developed for
the undamped oscillator. This research has been conducted during a visit of H.
Vanvinckenroye at Columbia University.

V.1 Introduction

V.2 Markovian modeling of the response energy

V.3 Amplitude-based energy envelope

V.4 Potential energy envelope

V.5 Conclusion

This Chapter is based on the following article:

Vanvinckenroye, H., Kougioumtzoglou I. A. & Denoël, V. (2018). Reliability func-
tion determination of nonlinear oscillators under evolutionary stochastic excitation via
a Galerkin projection technique. Nonlinear Dynamics. Under review.
http://hdl.handle.net/2268/223043.

79
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V.1 Introduction

The reliability function is defined as the probability of not reaching the design
state in a given time interval and is governed by the Backward-Kolmogorov
equation (I.6.16). The difficulty encountered in solving this equation analytically
[117] has raised the need for approximate solution approaches. Although Monte
Carlo simulation (MCS) schemes [118, 1, 119, 53] exhibit increased versatility,
in many cases, they can be computationally daunting. Thus, alternative more
computationally efficient approaches are required. Indicatively, these range from
the more analytically oriented ones [120, 66, 76, 74, 121], such as relying on a
Poisson distribution assumption [66], to the purely numerical schemes [122, 69,
120, 123, 71], such as discretized versions of the Chapman-Kolmogorov equation
[70, 117] or probability density evolution schemes [124].

A rather standard technique for determining the first-passage time distribu-
tion and the reliability function of a system response relates to a stochastic aver-
aging treatment of the governing equation of motion [125, 126, 127, 97, 128]. This
is typically coupled with statistical linearization [129, 130, 131] and a Galerkin
projection scheme for solving approximately the Backward-Kolmogorov partial
differential equation [132], for determining the time-dependent reliability func-
tion and, finally, the first-passage time probability distribution. Although the
aforementioned Galerkin scheme was extended recently to account for complex
nonlinear/hysteretic systems, also endowed with fractional derivative elements
[72, 133], the excitation has been mostly modeled as a standard Gaussian white
noise process. The few papers that consider non-stationary excitations refer to
linear systems [134]. In this regard, the Galerkin scheme developed in [71] is
generalized herein to account for stochastic excitations with arbitrary evolution-
ary power spectrum forms, even of the non-separable kind [73, 72]. Further, a
specific formulation is developed for the undamped oscillator (Section V.3.3).
Finally, two distinct definitions for the response energy envelope are employed
in the formulation (Sections V.3.2 and V.4). The accuracy of the technique is
demonstrated by comparisons both with available analytical results, and with
pertinent Monte Carlo simulations data. Because of the high complexity of the
developments, the Galerkin scheme is developed for oscillators submitted to an
external excitation only.

V.2 Markovian modeling of the response energy
envelope

In this section, two alternative response energy envelope definitions are presented,
whereas their benefits and limitations related to their use within a stochastic
averaging solution treatment are discussed.
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Consider a single-degree-of-freedom (SDOF) nonlinear oscillator governed by
the nondimensional equation of motion

ẍ+ 2ξẋ+ x+ εz(x, ẋ) = w (V.2.1)

where w(t) is a broadband non-stationary stochastic excitation process with a
non-separable, in general, evolutionary power spectrum Sw(ω, t)1. The linear
damping coefficient is given by β = 2ξ, while z(x, ẋ) denotes an arbitrary non-
linear function, and the parameter ε controls the nonlinearity magnitude. Also,
as in (II.2.1) and (III.2.1), the natural frequency of the corresponding linear
oscillator is equal to one due to the normalization.

Further, relying on the standard assumptions of stochastic averaging [97], and
considering a lightly damped oscillator, a linearized version of Equation (V.2.1)
is defined as

ẍ+ βe(H)ẋ+ ω2
e(H)x = w (V.2.2)

where the equivalent damping βe and stiffness ω2
e coefficients are given as func-

tions of the amplitude-based energy envelope H. Specifically, due to the assumed
pseudo-harmonic behavior of the oscillator response process, the displacement x
and velocity ẋ can be expressed as [13, 71]

{
x(t) = x(A(t), θ(t)) = A(t) cos (ωe(H(t))t+ θ(t))

ẋ(t) = ẋ(A(t), θ(t)) = −ωe(H(t))A(t) sin (ωe(H(t))t+ θ(t))
(V.2.3)

and thus, manipulating Equation (V.2.3) leads to the amplitude-based energy
envelope

H =
A2

2
=
x2

2
+

ẋ2

2ω2
e(H)

. (V.2.4)

In Equation (V.2.3), A and θ denote the response amplitude and phase, re-
spectively, assumed to be slowly varying functions of time. In this regard, the
equivalent linear elements βe and ω2

e are typically evaluated based on an average
over one cycle approach as [131, 125]

βe(H) = β + ε
B(H)√

2Hωe(H)
and ω2

e(H) = 1 + ε
C(H)√

2H
(V.2.5)

with

C(H) =
1

π

ˆ 2π

0

cos θ z(
√

2H cos θ,−
√

2H sin θ)dθ (V.2.6)

1Please remind that, in this entire work, the power spectrum of the process w(t) is defined
so that its variance is given by σ2

w(t) = 1
2π

´∞
−∞ Sw(ω, t)dω =

´∞
−∞ Sw(ω = 2πf, t)df
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and

B(H) =
−1

π

ˆ 2π

0

sin θ z(
√

2H cos θ,−
√

2H sin θ)dθ. (V.2.7)

It can be readily seen that the initial approximation step of defining the linearized
Equation (V.2.2) has a negative effect on the accuracy of the ensuing stochas-
tic averaging treatment by increasing the overall approximation degree of the
technique; see also [127, 135] for a discussion. In this regard, to bypass this limi-
tation, in particular for oscillators with nonlinear stiffness elements z(x, ẋ) = z(x)
submitted to a time-modulated white noise excitation Sw(ω, t) = S0F (t), an al-
ternative to Equation (V.2.4) potential energy envelope definition can be utilized
[127]. Specifically, defining the potential

u(x) =

ˆ y

0

(y + εz(y)) dy. (V.2.8)

and considering the transformation

{
u(x) = H cos2 θ

ẋ = −
√

2H sin θ
, (V.2.9)

yields the potential energy envelope definition

H = u(x) +
ẋ2

2
. (V.2.10)

Note that, in contrast to the commonly used definition of Equation (V.2.4),
the potential energy envelope of Equation (V.2.10) involves no approximations
for its definition. Thus, it is anticipated that an overall higher accuracy degree is
exhibited when coupled with a stochastic averaging technique [97]. On the other
hand, Equation (V.2.4) appears to be more versatile than Equation (V.2.10)
in handling a wider range of nonlinearity types [127]. It is worth noting that
for the linear case (ε = 0) Equation (V.2.10) degenerates into the amplitude-
based energy envelope definition of Equation (V.2.4). In passing, the reader is
referred to [136] as well, where the aforementioned limitation is addressed by an
alternative amplitude definition based on the Hilbert transform. In the following
sections, the technique developed in [71] is generalized to account for evolutionary
stochastic excitations, while the performances of the two definitions in Equations
(V.2.4) and (V.2.10) are assessed with respect to determining first-passage time
statistics.



V.3. AMPLITUDE-BASED ENERGY ENVELOPE 83

V.3 Stochastic averaging: Amplitude-based en-
ergy envelope definition

V.3.1 Backward-Kolmogorov equation

Adopting the amplitude-based energy envelope definition of Equation (V.2.4),
and employing a standard stochastic averaging procedure [13, 62, 116], leads to
decoupling of the energy H with the phase θ, and to a first order stochastic dif-
ferential equation governing the dynamics of H. This procedure always provides
the same solution as the first order asymptotic expansion used in Chapter II so
that the average Itô equation takes the form

Ḣ = m(H) + σ(H)η(t) (V.3.1)

where η(t) is a δ−correlated white noise process of intensity one, m(H) and σ(H)
are the drift and diffusion coefficients, respectively given bym(H) = Sw(ωe(H),t)

2ω2
e(H)

− βe(H)H

σ(H) =
√

Sw(ωe(H),t)H
ω2
e(H)

(V.3.2)

The reliability function P (t;H0) related to the energy process (V.3.1) is given
by the Backward-Kolmogorov equation (I.6.15). Using (I.6.32), this takes the
form [134, 13]

∂P

∂t
=

(
Sw(ωe(H0), t)

2ω2
e(H0)

− βe(H0)H0

)
∂P

∂H0

+
Sw(ωe(H0), t)H0

2ω2
e(H0)

∂2P

∂H2
0

(V.3.3)

with initial condition (I.6.20) and boundary condition (I.6.21). For the sake
of simplicity in the notations, the subscript ”0” is once more omitted in the
following developments.

Defining τ = βt ; s2(H, τ) = Sw(ωe(H),τ)
2βω2

e(H)
and κ(H) = βe(H)

β
, Equation (V.3.3)

becomes

∂P

∂τ
=
(
s2(H, τ)− κ(H)H

) ∂P
∂H

+ s2(H, τ)H
∂2P

∂H2
(V.3.4)

Note that the quantity s2(H, τ) for ε = 0 and Sw(ω, t) = S0 corresponds
to the stationary response variance of a linear oscillator under Gaussian white
noise excitation [131]. It is important to notice that the scaling used to derive
(V.3.3) is formally invalid in the undamped case, i.e. if β = 0. However, since
the linear damping coefficient β appears in (II.2.5) (through βe(H0)) as a regular
perturbation of the problem, the solution of (V.3.3) actually regularly converges
toward the solution of the undamped problem. This is shown in Section V.3.3.
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V.3.2 Galerkin projection scheme

Linear oscillator

For ε = 0, Equation (V.3.4) degenerates into

∂P

∂τ
=
(
s2
lin(τ)−H

) ∂P
∂H

+ s2
lin(τ)H

∂2P

∂H2
(V.3.5)

where s2
lin(τ) = s2(H, τ)|ε=0 = Sw(1,τ)

2β
. As the system is linear, the natural

frequency ωe is constant and equal to 1 so that the function s(H, τ) is a function
of time only.

Next, following a separation of variables solution approach as in [132] (see
also [134] for related work), the reliability function is expressed as an expansion
in terms of eigenfunctions Φi(H) with time-variant coefficients Ti(t) in the form

P (τ ;H) =
∞∑
i=1

Ti(τ)Φi(H) (V.3.6)

In the following, as suggested by the solution of Equation (V.3.5) for the special
case of white noise excitation [132], the eigenfunctions Φi(H) are chosen as the
confluent hypergeometric functions Φi(H) = M (−λi, 1, H). These are defined
as the solution of

H
d2Φ

dH2
+ (1−H)

dΦ

dH
+ λΦ = 0 (V.3.7)

and exhibit the orthogonality conditions

´ Hc
0

Φi(H)Φj(H)f(H)dH = 0 if i 6= j (V.3.8)

with the weighting function f(H) = e−H , while the corresponding eigenvalues λi
relate to the boundary condition and are given by solving

M (−λ, 1, Hc) = 0. (V.3.9)

Next, substituting (V.3.6) into Equation (V.3.5) and employing Equation
(V.3.8), yields a system of coupled differential equations for the time coefficients
Ti(τ) of the form

Ṫi(τ) = −s2(τ)λiTi(τ)− (1− s2(τ))
∑
j

Tj(τ)νij; (V.3.10)

with initial condition Ti(0) = F1,i/F2,i and defining

F1,i =
´ Hc

0
Φi(H)f(H)dH,

F2,i =
´ Hc

0
Φ2
i (H)f(H)dH and

νij =
´Hc
0 HΦi(H)

dΦj(H)

dH f(H)dH
F2,i

.

(V.3.11)
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Clearly, for practical purposes, the series expansion of Equation (V.3.6) is
truncated to a finite number of terms N and the coefficients Ti(τ) are obtained
by solving the set of N coupled differential Equations (V.3.10) for i = 1, ...N ,
which can be expressed in the concise form

Ṫ (τ) = −s2(τ)λT (τ)− (1− s2(τ))νT (τ) (V.3.12)

In Equation (V.3.12), the components of the vector T (τ) are the Ti(τ) func-
tions, λ is the diagonal matrix of the eigenvalues λi and the components of matrix
ν are the coefficients νij. Additional details regarding the numerical evaluation
of the eigenvalues and eigenfunctions, as well as the properties of the confluent
hypergeometric functions can be found in [132] where numerical values of λi(Hc),
F1,i, F2,i and νij are given for i, j = 1, ...10 and various values of Hc.

Nonlinear oscillator

For the general nonlinear case, i.e, ε 6= 0, Equation (V.3.4) can be separated into
a linear and a nonlinear operator as [71]

∂P

∂τ
= Llin {P}+ Lnlin {P} (V.3.13)

where the linear operator Llin {} is defined so that ∂P
∂τ

= Llin {P} when ε = 0 as
in Equation (V.3.5). Specifically,

{
Llin {} = (s2

lin(τ)−H) ∂
∂H

+ s2
lin(τ)H ∂2

∂H2

Lnlin {} = (s2(H, τ)− s2
lin(τ)− (κ(H)− 1)H) ∂

∂H
+ (s2(H, τ)− s2

lin(τ))H ∂2

∂H2

(V.3.14)
Further, without any loss of generality, the reliability function of the nonlinear

oscillator is sought as a perturbation of the linear problem, yielding

P (τ ;H) = Plin(τ ;H) + Pnlin(τ ;H) (V.3.15)

where

Pnlin(τ ;H) =
∞∑
i=1

ci(τ)Φi(H) (V.3.16)

i.e. a linear combination of the confluent hypergeometric functions in the same
basis as that used also for the linear case in Equation (V.3.6); see also [71].
Substituting Equations (V.3.15)-(V.3.16) into (V.3.13) and taking into account
that ∂Plin

∂τ
= Llin {Plin} provides the following residue:
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R(H, τ) =
∂Plin(τ ;H)

∂τ
+
∂Pnlin(τ ;H)

∂τ
− Llin {Plin(τ ;H) + Pnlin(τ ;H)} − Lnlin {Plin(τ ;H) + Pnlin(τ ;H)}

=
∂Pnlin(τ ;H)

∂τ
− Llin {Pnlin(τ ;H)} − Lnlin {Plin(τ ;H)} − Lnlin {Pnlin(τ ;H)}

=

∞∑
r=1

[ċr(τ)Φr(H)− cr(τ)Llin {Φr(H)} −cr(τ)Lnlin {Φr(H)} − Tr(τ)Lnlin {Φr(H)}] .

(V.3.17)

In practice, the summation operator in Equation (V.3.17) is truncated to a
finite number N of terms so that the N coefficients ci(τ) (i = 1, ...N) are obtained
by solving a set of N coupled differential equations, derived by projection of the
weighted residue onto each of the N basis functions Φi(H) [132]. The set of
equations is given by

ˆ Hc

0

R(H, τ)Φi(H)f(H)dH = 0 with i = 1, ..., N (V.3.18)

and, taking (V.3.8) into account, Equation (V.3.18) becomes

ċi(τ)
´ Hc

0
Φ2
i (H)f(H)dH =

∑N
r=1

[
cr(τ)

´ Hc
0
L{Φr(H)}Φi(H)f(H)dH

+Tr(τ)
´ Hc

0
Lnlin {Φr(H)}Φi(H)f(H)dH

]
,

(V.3.19)
Alternatively, Equation (V.3.19) is cast in the form

ċ(τ) = D(τ) c(τ) + e(τ) (V.3.20)
where the components of the vector c(τ) are the ci(τ) functions, the matrix D(τ)
is given by

D(τ) =


´Hc
0 L{Φ1(H)}Φ1(H)f(H)dH

F2,1
· · ·

´Hc
0 L{ΦN (H)}Φ1(H)f(H)dH

F2,1

... . . . ...´Hc
0 L{Φ1(H)}ΦN (H)f(H)dH

F2,N
· · ·

´Hc
0 L{ΦN (H)}ΦN (H)f(H)dH

F2,N

 (V.3.21)

and the vector e(τ) has the form

e(τ) =


∑N
r=1 Tr(τ)

´Hc
0 Lnlin{Φr(H)}Φ1(H)f(H)dH

F2,1

...∑N
r=1 Tr(τ)

´Hc
0 Lnlin{Φr(H)}ΦN (H)f(H)dH

F2,N

 (V.3.22)

Note that as the initial condition P (H, 0) = 1 is satisfied by the linear so-
lution Plin(H, 0) = 1, considering Equation (V.3.15) yields Pnlin(H, 0) = 0, or
equivalently, ci(0) = 0, i = 1, ..., N .
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V.3.3 Special case: Undamped oscillator

In the following, the system governed by

ẍ+ x+ εz(x, ẋ) = w(t) (V.3.23)

is considered, which is a special case of the general oscillator of Equation (V.2.1).
Note that for ε = 0, Equation (V.3.23) yields an undamped linear oscillator.
Although physically realistic systems always have some degree of damping, it
can be argued that studying the undamped case still has some mathematical
and practical merits. In fact, the limiting case of an undamped system leads to
simplifications in the developments and to a deeper understanding of the physical
phenomena [116, 49, 86]. Further, relatively straightforward extensions of results
referring to the undamped case may be possible to account for slightly damped
systems as well. For instance, the mathematical framework used for deriving the
mean first-passage time of undamped oscillators in Chapter II was extended in
Section III.2 for damped oscillators.

Formally, the Galerkin scheme developed in Sections V.3.2 and V.3.2 is only
valid in the damped case, i.e. if β 6= 0. This results from the rescaling that was
used to derive (V.3.3). In particular, the eigenvalues as well as the nondimen-
sional excitation s(τ) are going to infinity if β vanishes. However, it is observed
that the general solution given by (V.3.6) and (V.3.16) regularly converges, which
is explained by the fact that damping enters in (II.2.5) as a regular perturba-
tion of the undamped case. For completeness, the formulation of the Galerkin
scheme for β = 0 is specifically developed in this section. It is then shown to be
equivalent to the general solution developed in V.3.2 in the limit case β → 0.

Specifically, the first order stochastic differential equation (V.3.1) remains
unchanged, accounting for β = 0 in the definition of βe(H) (V.2.5) and the
corresponding Backward-Kolmogorov equation becomes

∂P

∂t
=
(
s2(H, t)− βe(H)H

) ∂P
∂H

+ s2(H, t)H
∂2P

∂H2
(V.3.24)

where the quantity s2(H, t) is now defined as s2(H, t) = Sw(ωe(H),t)
2ω2
e(H)

. Note that the
term βe(H) for the system of Equation (V.3.23) is non-zero, in general, due to the
dependence of the nonlinear function z(x, ẋ) on the response velocity ẋ. However,
for the case ε = 0, Equation (V.3.23) yields a linear undamped oscillator, and the
term βe(H) becomes zero. In a similar manner as in Section V.3.2, the reliability
function is expressed as in Equation (V.3.6), whereas the eigenfunctions Φi(H)
are now given by the Bessel functions of the first kind BesselJ(0,

√
4λiH), which

are the solution of

H
d2Φ

dH2
+

dΦ

dH
+ λΦ = 0. (V.3.25)

It can be demonstrated that the confluent hypergeometric function (defined
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as the solution of (V.3.7)) reduces to the Bessel function (defined as the solution
of (V.3.25)) for β → 0, i.e.

BesselJ(0,
√

4λiH) = lim
β→0

M (−λi, 1, H) (V.3.26)

Specifically, defining λ̃ = βλ and H̃ = H
β
, so that λ̃ and H̃ are finite as β vanishes,

and substituting into (V.3.7) yields

H̃
d2Φ

dH̃2
+

dΦ

dH̃
+ λ̃Φ = 0 (V.3.27)

which has the same form as Equation (V.3.25).
Further, the orthogonality conditions of Equation (V.3.8) hold true with the

corresponding weighting function being equal to f(H) = 1. Next, substituting
expression (V.3.6) into the Backward-Kolmogorov Equation (V.3.24) and pro-
jecting onto the basis of eigenfunctions, the time coefficients Ti(τ) are given by
the solution of the set of differential equations

Ṫj(t) = −s2(t)λjTj(t) (V.3.28)

with initial condition Tj(0) = F1,j/F2,j, and following (V.3.11) with f(H) = 1.
Similarly as in Section V.3.2, the solution of the nonlinear oscillator is ex-

pressed in the form of Equation (V.3.15), while Equations (V.3.13) degenerate
into{

Llin {} = s2
lin(t) ∂

∂H
+ s2

lin(t)H ∂2

∂H2

Lnlin {} = (s2(H, t)− s2
lin(t)− βe(H)H) ∂

∂H
+ (s2(H, t)− s2

lin(t))H ∂2

∂H2

(V.3.29)
with s2

lin(t) = Sw(1,t)
2

.
The basis of eigenfunctions developed in the undamped case is of high interest

since the Bessel functions are computationally easier to obtain than the hyper-
geometric confluent functions; they are for instance implemented in most stan-
dard programming softwares. The degree of complexity and the computational
burden encountered in the damped case when dealing with the hypergeometric
functions might be significantly decreased by use of the Bessel functions basis.
In particular, as soon as the damped system is nonlinear, the optimality of the
basis of hypergeometric confluent functions to approximate the nonlinear part of
the response can be hardly justified. In this respect, the basis of eigenfunctions
developed in the undamped case, i.e. the Bessel functions, could potentially pro-
vide accurate solutions for lightly damped oscillators as well. This opportunity
warrants further attention, and is identified as future work.
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V.3.4 The first-passage time distribution and its statistical
moments

The probability density function of the first-passage time can be determined by
substituting (V.3.6) and (V.3.16) into (I.6.3) yielding

pf (t;H) = −
∑
i

(
Ṫi(t) + ċi(t)

)
Φi(H) (V.3.30)

with the time-dependent coefficients Ṫi(t) and ċi(t) given by (V.3.10) and (V.3.20),
respectively. The first and second statistical moments of the first-passage time
are given by

E {tf} =
∑

iAiΦi(H) with Ai = −
´∞

0

(
Ṫi(t) + ċi(t)

)
t dt

E
{
t2f
}

=
∑

iBiΦi(H) with Bi = −
´∞

0

(
Ṫi(t) + ċi(t)

)
t2 dt

(V.3.31)

where E {} represents the statistical expectation. It is reminded here that the
variable H of the eigenfunctions represents the initial energy H0 where the index
”0” has been omitted for the sake of simplicity.

Considering a linear undamped oscillator under white noise excitation (Sw(ω, t) =
S0), since Ṫi(t) = −λiS0

2
Ti(t) and ċi(t) = 0, Equation (V.3.31) becomes

{
E {tf} =

∑
iAiΦi(H) with Ai = 2

λiS0

F1,i

F2,i

E
{
t2f
}

=
∑

iBiΦi(H) with Bi = 8
λ2
iS

2
0

F1,i

F2,i

(V.3.32)

Analytical results are derived for this particular case in Section II.3 and III.1
for the mean and mean square first-passage times E {tf} and E

{
t2f
}
based on a

stochastic averaging treatment and are given by

{
E {tf} = 2

S0
∆H

E
{
t2f
}

= 4
S2

0
∆H

(
H + 3

2
∆H

) (V.3.33)

where ∆H = Hc − H is the energy increase. Equality between (V.3.32) and
(V.3.33) is demonstrated by projection of the two sides of the equations on the
basis of eigenfunctions Φj(H), and showing that these projections are identical
for all Φj(H). This is demonstrated in Appendix E and provides a theoreti-
cal validation of the Galerkin scheme in the case of an undamped and linear
oscillator.
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V.3.5 Numerical examples

Linear undamped oscillator under stationary white noise excitation

A linear undamped oscillator under Gaussian white noise excitation is considered
next with parameters values ε = 0 and Sw(ω, t) = S0. Figures V.1 show the
reliability function and the first-passage time distribution for Hc = 2, S0 = 0.1,
N = 9 and a range of values for H0. In Figure V.2, the reliability functions
and respective first-passage distributions are plotted for H0 = 0 and for various
values of the truncation order N . The dashed lines correspond to the modified
Galerkin scheme as developed in Section V.3.3 for undamped oscillators, whereas
the solid lines correspond to the general Galerkin scheme of Section V.3.2 for
the limiting case β → 0. In fact, it is seen that even a direct implementation
of the technique of Section V.3.2 (solid lines) with a very low value of β (i.e.
, β ∼ 10−9) still yields results of satisfactory accuracy, which are practically
indistinguishable (especially for the N = 9 case) from results obtained by the
more rigorous (for the undamped case) treatment of Section V.3.3 (dashed lines).
This behavior can be construed as an indication of increased robustness of the
technique. The circles and crosses correspond to Monte Carlo simulations data
obtained by numerically integrating the governing equation of the original system
(V.2.1) and its averaged formulation (V.3.1), respectively. This is done via a
standard Runge-Kutta scheme (10000 realizations).

The significant discrepancy between Galerkin-based and MCS-based results
observed at very early time instants is attributed to the fact that an infinite
number of terms is required for the summation of Equation (V.3.6) to equal 1 at
τ = 0 [134]. As anticipated due to the differentiation of Equation (V.3.36), the
degree of the discrepancy increases when computing first-passage distributions
in Figure V.2 (right). Nevertheless, this is not deemed as a significant drawback
of the technique, as the primary interest is directed to situations where the
probability of first-passage time is higher than zero. Further, it is seen that
quite satisfactory accuracy is achieved for a relatively small number of expansion
terms. In fact, little improvement is obtained by increasing the terms from 5
to 9. The satisfactory degree of accuracy is also corroborated by the results in
Table V.1 where the mean and mean square first-passage times obtained by the
Galerkin scheme are compared with the analytical solution (V.3.33) as well as
with Monte Carlo simulations. The relative error is calculated with respect to
the Monte Carlo simulations.

Nonlinear Duffing oscillator under evolutionary stochastic excitation

As a second example, a Duffing oscillator of the form of Equation V.2.1 is consid-
ered whose restoring force is given by z(x, ẋ) = x3 . For this kind of nonlinearity,
Equations (V.2.5) yield [71]:



V.3. AMPLITUDE-BASED ENERGY ENVELOPE 91

Figure V.1: Galerkin scheme based reliability function of a linear undamped
oscillator under white noise excitation for N = 9 and a range of values for H0

from 0 to Hc = 2.

Figure V.2: (a) Reliability function and (b) probability density function of the
first-passage time. Linear undamped oscillator under white noise constant excita-
tion forH0 = 0 andN = 1, 5, 9; comparisons with MCS data (10000 realizations).

E {tf} E
{
t2f
}

Value Error Value Error
Galerkin scheme 40.93 0.58% 2443.1 0.91%

Analytical solution (V.3.33) 40.00 2.84% 2400 0.86%
Monte Carlo simulations 41.17 − 2421 −

Table V.1: Average and mean square first-passage times obtained by the Galerkin
scheme, the analytical solution and Monte Carlo simulations for a linear un-
damped oscillator under white noise excitation with H0 = 0 and N = 9.
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{
βe = β

ω2
e(H) = 1 + 3

2
εH

(V.3.34)

Now, the oscillator is subjected to a non-stationary stochastic seismic exci-
tation described by the non-separable evolutionary power spectrum [134]

Sw(ω, t) = S0
e−(c+α(ω))tt2

C
(V.3.35)

with α(ω) = (ω/5π)2 and c is a parameter controlling essentially the effective
time duration of the excitation. The constant C is evaluated so that the maxi-
mum in time value of the spectrum is equal to S0 for ω = ω0 = 1. This yields
C = 4e−2

(
c+ (1/5π)2)2

. The spectrum is plotted in Figure V.3 for c = 0.01
(left) and for various values of c (right). Figure V.4 presents the reliability func-
tion (left) and the first-passage time distribution (right) for c = 0.01, H0 = 0,
Hc = 0.18, β0 = 0.02, S0 = 0.01, and ε = 0.1 by using the Galerkin scheme
of Section V.3.2. Comparisons with Monte Carlo simulations data (10000 re-
alizations) by numerically integrating Equation (V.2.1), in conjunction with a
spectral representation scheme [137] for producing excitation samples compati-
ble with the spectrum of Equation (V.3.35), are included as well demonstrating
a satisfactory degree of accuracy. Similarly as in example V.3.5, the spurious re-
sults around t = 0 refer to approximately zero first-passage probability, and thus,
are of little practical interest. Figure V.3 (right) shows the influence of the pa-
rameter c on the time duration of the excitation by plotting the time-dependent
function Sw(ω, t)/S0 for ω = ω0 = 1 and various values of c. Specifically, for
c = 0.01, 0.03, 0.05, 0.07 and 0.09, the duration of the excitation is respectively
equal to Tw = 476.8, 196.8, 123.9, 90.5 and 71.2. Obviously, for a shorter time
duration, there is a smaller probability that the oscillator will ever cross the
barrier before the excitation vanishes. Thus, it is expected that for adequately
short excitation durations the corresponding time-dependent reliability function
will converge to a non-zero value P∞, depicting the probability of never crossing
the barrier over the specified time interval. Indeed, this is shown in Figure V.5
(left), where the reliability functions obtained via the Galerkin scheme for the
various c values are plotted. This proportion increases as the excitation event
shortens and is represented in Figure V.6. In this regard, the first-passage time
pdf is given via Equation (V.3.36) as

pf (t;H0) = −∂P (t;H0)

∂t
+ P∞δ(t−∞) (V.3.36)

where the term −∂P/∂t is plotted in Figure V.5 (right), and the values P∞ are
shown in Figure V.6. This results in an area under the distribution (see Figure
V.5 right) that is smaller than the unit over the range [0,∞[.
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Figure V.3: Non-stationary stochastic seismic excitation with a non-separable
evolutionary power spectrum. (a) Time and frequency evolution of S(ω, t)/S0

for c = 0.01 and (b) time evolution of S(1, t)/S0 and influence of the parameter
c on the excitation duration.

Figure V.4: (a) Reliability function and (b) first-passage time distribution of a
Duffing oscillator under evolutionary excitation for N = 5 and c = 0.01 via the
Galerkin scheme; comparisons with MCS data (10000 realizations).
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Figure V.5: (a) Reliability function and (b) first-passage time distribution of a
Duffing oscillator under evolutionary excitation for N = 5 and various values of
c.

Figure V.6: Converged value of reliability function as a function of the effective
time duration of the excitation Tw.
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V.4 Stochastic averaging: Potential energy enve-
lope definition

V.4.1 Backward-Kolmogorov equation and Galerkin scheme
for a Duffing nonlinear oscillator

The potential energy envelope definition of Equation (V.2.10) is considered in
this section for addressing the first-passage problem of nonlinear oscillators under
evolutionary stochastic excitation. As noted in Section (V.2), although Equation
(V.2.10) (in contrast to Equation (V.2.4)) involves no approximations for its
definition, apparent difficulties arise in treating analytically a general class of
nonlinearities; see also [127]. In this regard, the Duffing nonlinear oscillator,
with z(x, ẋ) = x3 and excited by a time-modulated white noise process with
an evolutionary power spectrum Sw(t) = S0F (t), is considered in the ensuing
analysis. Following [127, 71], a stochastic averaging technique yields the drift
and diffusion coefficients given by{

m(H) = Sw(t)
2
− βHΨ(H)

σ(H) =
√
Sw(t)HΨ(H)

(V.4.1)

governing the evolution in time of the response potential energy envelope. Re-
lated to the above stochastic equation is the Backward-Kolmogorov equation

∂P

∂t
=

(
Sw(t)

2
− βHΨ(H)

)
∂P

∂H
+
Sw(t)

2
HΨ(H)

∂2P

∂H2
(V.4.2)

with Ψ(H) standing for the nonlinearity and given by

Ψ(H) =
4r

3m2

∣∣∣∣∣(1 + r)− 2
E
[
r−1
2r

]
K
[
r−1
2r

]∣∣∣∣∣ ; r2 = m2 + 1 ; m = 4εH, (V.4.3)

where K[· ] and E[· ] are the complete elliptic integrals of the first and second
kind. Defining next τ = βt and s2(τ) = Sw(τ)

2β
, Equation (V.4.2) becomes

∂P

∂τ
=
(
s2(τ)−HΨ(H)

) ∂P
∂H

+ s2(τ)HΨ(H)
∂2P

∂H2
. (V.4.4)

Note that for the linear case (u(x) = x2

2
) this formulation is identical to

the one developed in Section V.3. This is anticipated as the energy definitions
(V.2.10) and (V.2.4) coincide in this case and Ψ = 1.

Next, the Galerkin projection solution scheme as developed in Section V.3.2 is
applied for solving numerically Equation (V.4.4). To this aim, Equation (V.3.14)
takes the form
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{
Llin {} = (s2(τ)−H) ∂

∂H
+ s2(τ)H ∂2

∂H2

Lnlin {} = (1−Ψ(H))H ∂
∂H

+ s2(τ) (Ψ(H)− 1)H ∂2

∂H2 .
(V.4.5)

V.4.2 Numerical examples

Duffing oscillator under stationary white noise excitation

A Duffing nonlinear oscillator under Gaussian white noise excitation, i.e., Sw(t) =
S0, with parameters values β = 0.02, S0 = 0.1 and ε = 1 is considered next. In
Figure V.7 (left) typical time-histories of both the amplitude-based energy and
the potential energy envelopes are plotted for comparison. Figure V.7 (right)
shows the time-dependent reliability functions obtained via the Galerkin scheme
for both energy envelope definitions and for various nonlinearity magnitude val-
ues, i.e., ε = 0, 1, 2 and 3, while H0 = 0 and Hc = 1. It is highlighted that
the nonlinearity influences the reliability function in two distinct ways. First,
an increase in nonlinearity leads to a stiffer oscillator (see governing Equation
(V.2.1)); thus, requiring more time for the system to reach the same amplitude
of the displacement x. Second, note that the two definitions of energy envelopes
behave in different ways with variations of the value of ε. In the first formula-
tion, the amplitude-based energy of Equation (V.2.4) decreases with increasing
ε, so that for the same values of x and ẋ, the energy decreases. These two com-
plementary effects, i.e., the oscillator stiffening and the energy decrease, lead
to increasing first-passage times, or higher values of the reliability functions.
This is observed in Figure V.7 (right - blue color). Also, the difference between
the Galerkin approximation (continuous lines) and the Monte Carlo simulations
(circles) increases with higher values of ε, or in other words, the accuracy of
the Galerkin scheme deteriorates with increasing nonlinearity magnitude. In the
second formulation, the potential energy of Equation (V.2.10) increases with ε,
so that for the same values of x and ẋ, the energy increases. The effects of
stiffening of the oscillator and of energy increase apparently balance each other,
yielding reliability functions that appear practically insensitive to the nonlinear-
ity degree. This can be readily seen in Figure V.7 (right - red color), where the
reliability functions, determined both by Monte Carlo simulations and by the
Galerkin scheme, practically coincide for all the chosen nonlinearity magnitude
ε values. Thus, it is suggested that the choice of the potential energy over the
amplitude-based energy is the preferable one related to a stochastic averaging
treatment of the first-passage time problem, as the accuracy degree seems to be
insensitive to the nonlinearity level. Note, however, the potential energy defi-
nition does not appear as versatile as the amplitude-based definition since it is
restricted to time-modulated white noise excitations, and nonlinearities in terms
of stiffness, and the available analytical solutions are practically limited to the
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Figure V.7: (a) Time evolution of the potential energy envelope and (b) reliability
function of the Duffing oscillator under white noise excitation for N = 5 and
ε = 0, 1, 2 and 3; comparisons with MCS data (10000 realizations).

case of the Duffing oscillator.

Duffing oscillator under evolutionary excitation

For completeness, an additional example is included referring to a Duffing os-
cillator excited by a time-modulated white noise process compatible with the
evolutionary spectrum Sw(1, t) of Equation (V.3.35) with the parameter values
given by c = 0.01, H0 = 0, Hc = 0.18, β = 0.02, and S0 = 0.01. Figure (V.8)
shows the reliability function and corresponding first-passage time distribution
obtained by the Galerkin scheme in conjunction with a potential energy envelope
definition. Comparisons with Monte Carlo simulation data demonstrate a sat-
isfactory degree of accuracy. The problem is solved, both numerically with the
Galerkin scheme and through Monte Carlo simulations, for various nonlinearity
magnitudes (ε = 0.1, 1, 2 and 3) and appears insensitive to ε, supporting further
the argument made in Section V.4.2 about insensitivity of the potential energy
treatment to the nonlinearity magnitude. Numerical results are illustrated for
ε = 0.1.

V.5 Conclusion
The approximate semi-analytical technique developed in [71] for determining the
response first-passage time distribution of a class of lightly damped nonlinear os-
cillators has been generalized herein to account for evolutionary stochastic excita-
tion. Specifically, relying on a Markovian approximation of the response energy,
and on a stochastic averaging treatment, has yielded a Backward-Kolmogorov
equation governing the evolution in time of the oscillator reliability. Then, the



98 CHAPTER V. NUMERICAL APPROACH: THE GALERKIN SCHEME

Figure V.8: (a) Reliability function and (b) first-passage time distribution of a
Duffing oscillator under evolutionary excitation for N = 5 following the potential
energy envelope definition.

Backward-Kolmogorov equation has been solved approximately by employing an
appropriate orthogonal basis in conjunction with a Galerkin projection scheme.
It has been shown that the technique can account for arbitrary evolutionary ex-
citation forms, even of the non-separable type. The special case of an undamped
oscillator, for which relevant analytical results exist in the literature, has also
been included and studied in detail. The basis of eigenfunctions developed in
this case is promising for future developments related to the analysis of lightly
damped and nonlinear oscillators. In addition to an amplitude-based energy en-
velope definition, a potential energy based envelope has been considered as well.
In comparison to the conventional amplitude-based energy formulation, the in-
termediate step of linearizing the nonlinear stiffness element is circumvented;
thus, reducing the overall approximation degree of the technique. An additional
significant advantage of the potential energy envelope formulation relates to the
fact that its degree of accuracy appears rather insensitive to the magnitude of
nonlinearity; however, it does not appear as versatile as the amplitude-based
definition in handling a wide range of nonlinearity types.
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VI.1 Contributions of this work

This thesis provides a frame for the use of the first-passage time as an analysis
tool for engineering applications. It responds to the need for suitable methods
to describe the transient response of systems that spend a lot of time in the
transient regime, for example.

A closed form expression for the average first-passage time of an undamped
oscillator under white noise excitations has been determined thanks to an asymp-
totic expansion of the Pontryagin equation. The obtained explicit solution
(II.2.22) leads to the definition of the reduced energy H? so that the first-passage
time can now be written as a function of the reduced initial energy and energy
increase H?

0 and ∆H?

µf
Su
4

= ln

(
1 +

∆H?

H?
0 + 1

)
(VI.1.1)

and represented in the universal map of Figure VI.1 (a). Three regimes are
identified: the incubation regime (I) in the lower part of the diagram, where
the curves of equal first-passage time are equally spaced, the additive regime
(A) in the left part of the diagram where the horizontal asymptotes indicate an
average first-passage time that is independent on the initial energy H?

0 , and the
multiplicative regime (M) in the right part of the diagram, where the unitary
slope indicates an average first-passage time depending on the ratio ∆H?/H?

0 .
The representation of the solution as a function of the reduced energy, as well
as the three regimes with their features are one important contribution of this
work. They are re-used as a frame for the determination of the first-passage time
of more complex problems.

Different types of complexities are successively added, such as the average
first-passage time of a damped oscillator leading to the map represented in Fig-
ure VI.2 by analogy with the undamped case. The three regimes are also identi-
fied with a linear behavior in the incubation regime, an independency in H?

0 in
the additive regime and oblique asymptotes of equal slope in the multiplicative
regime. The slope is not equal to the unit as in the undamped case, but decreases
with damping and can even become negative.

Another important contribution is the development of the mean square first-
passage time, variance and coefficient of variation for the undamped oscillator.
The coefficient of variation is of high interest for the confidence of the evaluation
of the first-passage time, combined with its average value. The map of coefficient
of variation is represented in Figure VI.1 (b), as a function of the reduced energy
once more. Limit cases in the lower left and upper right corners –respectively
corresponding to a forced-only and parametric-only oscillator– present a unitary
slope of the curves of equal coefficient of variation, so that the curves can be
approximated in these areas by diagonal straight lines.
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Figure VI.1: Undamped oscillator universal maps (a) Dimensionless first-passage
time µfSu

4
and identification of the three regimes (b) Coefficient of variation cvf

and limit cases.

Figure VI.2: Dimensionless first-passage time µfSu
4

and identification of the three
regimes for the damped oscillator (various values of a = 8ξ/Su).
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Next, the applicability of the first-passage time to real, and thus more com-
plex, engineering applications is demonstrated through some examples, and as-
sessed with a tower crane that is left free to rotate and placed into a turbulent
wind velocity field. The free rotative motion of the crane is measured for a long
period of time. Based on these time series, the first-passage map is reconstructed
thanks to an efficient ad-hoc algorithm. An equivalent Mathieu oscillator is iden-
tified so that the tower crane presents the same first-passage maps. Hereby, the
behavior of a complex system, with nonlinearities and time- and space-correlated
excitations, can be caught and predicted with a simple model, for which analyt-
ical results are available.

Finally, a numerical method is developed in order to determine with accuracy
the complete distribution of the first-passage time of more complex oscillators. A
previously known Galerkin scheme is extended to include both nonlinearities and
evolutionary excitations. This tool is seen as complementary to the analytical
but approximate approach of the previous developments. It offers the possibility
to compute numerical values for the entire distribution of the first-passage time
with a good precision and short computation time, without the need for heavy
Monte Carlo simulations. Two different definitions of the energy are implemented
and it is seen that they have a different sensitivity to the amplitude of the nonlin-
earity. Finally, a specific scheme with the corresponding basis of eigenfunctions
is determined for the undamped oscillator. The lower computational complexity
of this new basis presents a particular interest and its use might be extended to
slightly damped oscillators, such as those studied in the first part of this work.

The three aspects treated in this thesis –analytical developments, experi-
mental demonstration and numerical method– are complementary and provide a
consistent demonstration that the first-passage time might be –should be– used
as an efficient tool in the analysis of transient regimes of engineering applications.

VI.2 Limitations of the study and perspectives

The theoretical solutions developed in Chapters II and III present an important
level of complexity so that, first, one might expect not to be able to find an ana-
lytical solution for more complex systems, and second, the practical interest of a
very complex analytical solution is limited for the understanding of the problem.
However, the reduced energy, the map and the three regimes provide a frame
that can be extended to more complex systems. Indeed, the representation of
the results in the map, where the results might be obtained by experiments or
numerical simulations, can lead first to a quantitative observation of the map in
the three regimes, and then to the determination of an equivalent linear Mathieu
oscillator, as it has been done in Chapter IV. In this context, a linear oscilla-
tor submitted to colored excitations could be reduced to an equivalent oscillator
under white noise excitations. The influence of the spectrum of the colored exci-
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tations on the equivalent intensities Su and Sw would be a significant contribution
to the model. Depending on the time scale of the excitation and the period of the
oscillator, different behaviors might be observed. Similarly, a modulated white
noise excitation might influence the first-passage time in a different way depend-
ing on the time scale of the modulating function. From the same point of view, a
nonlinear oscillator might be reduced to an equivalent linear Mathieu oscillator.
Based on what is known from classical methods of statistical linearization, one
expects to find equivalent properties that depend on the level of energy. From
a first-passage standpoint, the influence of the nonlinearity might be different in
the different corners of the map for example, or for the different regimes. The
integration of those levels of complexity into the model would be a great step
for the application of the first-passage time of physical systems. An equivalent
Mathieu oscillator could not only be identified but also be predicted, depending
on the system characteristics.

A second important perspective is the extension of the approach for multi-
degree-of-freedom systems. The corresponding challenges are the multimodal
response of the system, possible coupling between the modes, and the broadband
character of the excitation that will influence different modes. A first perspective
is the extension of the model to a 2-degree-of-freedom system, to capture the
main behaviour and refinements of the model. Experimental observation of such
a system might be done through a double pendulum for example.

A final important perspective of the theoretical approach is the research for
approximate solutions of the Backward-Kolmogorov equation (I.6.15) governing
the complete distribution of the first-passage time. The topology of the gen-
eralized Pontryagin equation (I.6.23) shows recurrence in the definition of the
statistical moments. This was confirmed with the analytical solutions of the av-
erage and mean square first-passage time, that could be expressed as a function
of the reduced initial energy and energy increase, as well as the parameter a for
the damping. The three regimes were also observed, with slight modifications,
through the different observed cases. Since these typical features are observed
for the first two, and expectedly higher, statistical moments, similarities should
be observed in the complete distribution. This is an important avenue worth
exploring for the resolution of the Backward-Kolmogorv equation.

Finally, a promising perspective is the use of the first-passage time as an
identification or monitoring tool for systems properties. The construction of the
map based on experimental data only requires time measurement of the system
in place. There are two options. Based on the map, the system characteristics
like damping, period and excitation intensities, might be identified. Otherwise,
a drift in the first-passage map could be used to detect abnormalities or changes
in the structural behavior. The advantage is that the method is not based on
any model but data-driven only.

Only some examples of engineering applications could be studied in the frame-
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work of this thesis. Many more could benefit the use of the first-passage approach
for an alternative assessment. For example, it could contribute to questions such
as the time it takes for a pollutant to reach a given concentration at a given
place, the time required to reach a bridge deck flutter instability in turbulent
flows, or even how long does it take for vortex-induced vibrations to develop or
to oscillators to synchronize in stochastic conditions, etc. This work constitutes a
first analysis with physical and engineering understanding of first-passage times.
We hope this work will serve as a solid basis for these suggested investigation
tracks.
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Appendix B

Second order and boundary layer
solutions

The Itô formulation (II.2.2) corresponding to the energy-phase variables k and
θ reads

dx̃ = ã(x̃, t)dt+ b̃(x̃, t)dB, (B.0.1)

where x̃ =

[
k
θ

]
, ã =

[
γ1

1 + γ2

]
and b̃ =

[
−k cos θ sin θ cos θ

2

sin2 θ − sin θ
2k

]
and where

the Wong-Zakaï correction terms are given, according to (I.6.7), by

γ =
2∑
j=1

2∑
k=1

1

2
Jij

∂2x̃

∂xi∂xj
= ε

(
νw − 4kνuw sin θ + 4k2νu sin2 θ

) [ sin2 θ
8k

cos θ sin θ
4k2

]
.

(B.0.2)
From this transformation follows that

J̃ = εb̃(x̃, t)νb̃T (x̃, t) (B.0.3)

= ε

[
k2νu cos2 θ sin2 θ − kνuw cos2 θ sin θ + νw

cos2 θ
4

−kνu cos θ sin3 θ + νuw cos θ sin2 θ − νw cos θ sin θ
4k

−kνu cos θ sin3 θ + νuw cos θ sin2 θ − νw cos θ sin θ
4k

νu sin4 θ − νuw sin3 θ
k

+ νw
sin2 θ
4k2

]
.

The invariant operators L1 and L2 become

L1 {·} =
∂·
∂θ

; L2 {·} = γ1
∂·
∂k

+γ2
∂·
∂θ

+
1

2
J̃11

∂2·
∂k2

+
1

2
J̃22

∂2·
∂θ2

+J̃12
∂2·
∂k∂θ

. (B.0.4)

Equation (II.2.12) provides the following expression :
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L1 {u1} =
∂u1

∂θ
=− 1− L2 {u0} = 〈L2 {u0}〉 − L2 {u0}

=
[
k2νu cos 2θ + 2νuw cos θ

] ∂u0

∂H
(B.0.5)

+ k2
(
k2νu cos 4θ + 8kνuw cos2 θ sin θ − νw cos 2θ

) ∂2u0

∂H2

Integration of expression (B.0.5) with respect to θ provides a decomposition
of u1 into two components with the constant of integration u12(k):

u1(k, θ) = u11(k, θ) + u12(k), (B.0.6)

with

u11(k, θ) =
k2νu sin 2θ

2 (k2νu + νw)2

[
(cos 2θ − 2)k2νu − 3νw

+
8

3k

sin2 θ
2

sin 2θ
νuw

(
2k2 (2 cos θ + cos 2θ)− 6

νw
νu

)]

=
k2Su sin 2θ

2 (k2Su + Sw)2

[
(cos 2θ − 2)k2Su − 3Sw (B.0.7)

+
8

3k

sin2 θ
2

sin 2θ
Suw

(
2k2 (2 cos θ + cos 2θ)− 6

Sw
Su

)]
.

Provided u12 is dependent on the Hamiltonian only, the averaging of Equation
(II.2.13) over one period of the unperturbed motion gives:

〈L2 {u12}〉 =

(
H

2
νu +

1

2
νw

)
∂u12

∂H
+

(
H2

4
νu +

H

2
νw

)
∂2u12

∂H2

= −〈L2 {u11}〉 = −νuw (k6ν3
u − k4ν2

uνw + 27k2νuν
2
w − 3ν3

w)

12k (k2νu + νw)3 (B.0.8)

The resolution of Equation (B.0.8) provides:

u12(k) =
4kνuw

3

(k2νu + 3νw)

(k2νu + νw)2 +
C1

νw
ln

(
k2

k2νu + νw

)
+ C2. (B.0.9)

The first constant of integration C1 is equal to zero in order to respect the
solvability condition |U(0)| < ∞. The second constant C2 will be determined
together with the boundary layer solution in order to respect the boundary con-
dition U(Hc) = 0.
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The boundary layer solution is the solution of L? {Gn} = 0. The coordinate
stretching is classical in the boundary layers problems [100]. Therefore, the
boundary layer solution Gn is written as a function of the stretched coordinate
ζ = H−Hc√

ε

Gn(ζ, θ) = g1(ζ, θ) + √εg2(ζ, θ) + · · · + ε
n−1

2 gn(ζ, θ). (B.0.10)
Similarly, the operator L? is transformed via the asymptotic expansion of the

functions J̃ij and δi in the neighborhood of H = Hc:

J̃ij(H, θ) = J̃ij(Hc, θ) +
√
εζJ̃

(1)
ij (Hc, θ) + ... (B.0.11)

δi(H, θ) = δi(Hc, θ) +
√
εζδ

(1)
i (Hc, θ) + ... (B.0.12)

Taking into account ∂·
∂k

= 4k√
ε
∂·
∂ζ

and ∂2·
∂k2 = 4√

ε
∂·
∂ζ

+ 16k2

ε
∂2·
∂ζ2 , the Backward-

Kolmogorov operator becomes

L? {·} =
∂·
∂θ

+ 4HcJ̃11(Hc, θ)
∂2·
∂ζ2

+
√
ε

[
[2
√

2Hcδ1(Hc, θ) + 2J̃11(Hc, θ)
∂·
∂ζ

]
+...

=Λ0 {·}+
√
εΛ1 {·}+ εΛ2 {·}+ ... (B.0.13)

so that the governing equation becomes

LGn =
(
Λ0 +

√
εΛ1 + εΛ2 + ...

) {
g1 +

√
εg2 + · · ·

}
= Λ0 {g1}+

√
ε[Λ0 {g2}+ Λ1 {g2}] + · · · = 0 (B.0.14)

Balancing again the similar powers of ε provides the expression of the func-
tions gi(ζ, θ). In particular, the first order solution g1(ζ, θ) is the solution of the
following diffusion equation

Λ0 {g1} =
∂g1

∂θ
+ 4HcJ̃11(Hc, θ)

∂2g1

∂ζ2
= 0 (B.0.15)

with the boundary conditions g1(0, θ) = −u1(Hc, θ) and g1(ζ, θ) → 0 when ζ →
−∞. The solution of this equation is given by

g1(ζ, θ) = b0 +
∞∑
n=1

bne
√

nc1
2
ζ cos

(
nα(θ)−

√
nc1

2
ζ

)
+
∞∑
n=1

ane
√

nc1
2
ζ sin

(
nα(θ)−

√
nc1

2
ζ

)
(B.0.16)
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with

c1 = 2π/

T̂

0

4HcJ̃11(Hc, s)ds

α(θ) = c1

θˆ

0

4HcJ̃11(Hc, s)ds

b0 = − 1

2π

2πˆ

0

u1(Hc, θ(α))dα

bn = − 1

π

2πˆ

0

u1(Hc, θ(α)) cos (nα) dα

an = − 1

π

2πˆ

0

u1(Hc, θ(α)) sin (nα) dα (B.0.17)

Because of the second boundary condition, it follows that

b0 = − 1

2π

2πˆ

0

u1(Hc, θ(α))dα = 0. (B.0.18)

Finally, averaging (B.0.6) with respect to variable α and accounting that
b0 = 0, the constant of integration C2 is obtained:

− 1

2π

2πˆ

0

u12(kc)dα =
4kcνuw

3

(k2
cνu + 3νw)

(k2
cνu + νw)2 + C2

=
1

2π

2πˆ

0

u11(kc, θ(α))dα =
4kνuw

3

(k2νu + 3νw)

(k2νu + νw)2 . (B.0.19)

It finally follows from (B.0.19) that the second constant of equation is equal
to zero.

Adapted to relation (B.0.17) and provided the expected parity of the bound-
ary layer with respect to θ, only the even coefficients an are non-zero and can be
obtained via numerical integration.
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Damped oscillator

The mean first-passage time of the damped oscillator governed by Equation
(III.2.1) is obtained following the same methodology. The Itô formulation of
the differential equation now reads

dx = a(x, t)dt+ b(x, t)dB, (C.0.1)

where x =

[
q
p

]
, a =

[
p

−q − 2ενξp

]
, b =

[
0 0
−q −1

]
.

The Backward-Kolmogorov operator L? is now defined by

L? {·} = L1 {·}+ εL2 {·} , (C.0.2)

where

{
L1 {·} = p ∂·

∂q
− q ∂·

∂p

L2 {·} = 1
2

(q2νu + νw − 2qνuw) ∂2·
∂p2 − 2νξp

∂·
∂p

(C.0.3)

The first operator L1 {·} is independent of the damping and Equation (II.2.11)
still provides the information that the first order solution u0 is a function of the
Hamiltonian only.

Averaging Equation (II.2.12) assuming transformation (II.2.17) successively
provides:

〈L2 {u0}〉 = −1,[
H

2
νu +

1

2
νw − 2Hνξ

]
du0

dH
+

[
H2

4
νu +

H

2
νw

]
d2u0

dH2
= −1, (C.0.4)

1

ε

(
m(H)

du0

dH
+
σ2(H)

2

d2u0

dH2

)
= −1
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with m(H) = H
2
Su + 1

2
Sw − 2Hξ and σ(H) =

√
H2Su

2
+HSw. Similarly to the

undamped oscillator, the governing equation is independent of the correlation
between the parametric and forced excitations.

A first integration provides

du0

dH
= −ec(H)

Ĥ

0

2ε

σ2(y)
ec(y)dy + C1e

−c(H). (C.0.5)

with

c(H) =

ˆ
2m(H)

σ2(H)
dH = ln (H) +

(
1− 8νξ

νu

)
ln (Hνu + 2νw) (C.0.6)

The solvability condition implies C1 = 0 so that

du0

dH
=

2

νw

(1 +H?)a−1 − 1

H?(1− a)
, (C.0.7)

with a =
8νξ
νu

= 8ξ
Su

and H? = Hνu
2νw

= HSu
2Sw

. A second integration accounting for
u0(Hc) = 0 provides

u0(H0) =

Ĥ

0

du0

dH
dH + C2

=
4

νu(1− a)

[
ln

(
1 +

∆H?

H?
0

)
+

(1 +H?
0 + ∆H?)a − (1 +H?

0 )a

a
(C.0.8)

−
H?

0 +∆H?ˆ

H?
0

(1 + t)a

t
dt

 (C.0.9)

so that the first-order mean first-passage time U0 is finally given by

U0(H0) =
4

Su(1− a)

[
ln

(
1 +

∆H?

H?
0

)
+

(1 +H?
0 + ∆H?)a − (1 +H?

0 )a

a

(C.0.10)

−
H?

0 +∆H?ˆ

H?
0

(1 + t)a

t
dt

 . (C.0.11)
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Appendix D

Pseudo-code for the computation of
the average first-passage times map

Algorithm 1 Construction of the average first-passage times map
Require: H̃(t)
Ensure: FPT , the matrix of average first-passage times as a function of H̃0 and

∆H̃

Characterization of the time series

1: for t in time vector do
2: if H̃(t) is a minimum or increases in t then
3: type(t) = 1
4: nexttime(t) = time of the next maximum
5: else
6: type(t) = 2
7: nexttime(t) = time of the next higher value of H̃
8: end if
9: end for

Construction of the main envelope

10: t0 = 0; H̃0 = H̃(t0)
11: tlocal = t0
12: while tlocal < tend do
13: [H̃local(t);nexttime] = local(tlocal)
14: H̃c(t) = [H̃c(t) H̃local(t)]
15: tlocal = nexttime
16: end while
17: H̃main

c (t) = H̃c(t)
18: ∆H̃(t) = H̃c(t)− H̃0

19: FPT (H̃0,∆H̃(t)) = FPT (H̃0,∆H̃(t)) + t
20: Counter(H̃0,∆H̃(t)) = Counter(H̃0,∆H̃(t)) + 1
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Construction of the partial envelopes

21: for t0 = ∆t : tend do
22: tlocal = t0
23: H̃0 = H̃(t0)
24: while tlocal < tend do
25: if tlocal not in main envelope then
26: [H̃local(t);nexttime] = local(tlocal)
27: H̃c(t) = [H̃c(t) H̃local(t)]
28: tlocal = nexttime
29: else
30: H̃c(t) = [H̃c(t) H̃

main
c (tlocal : tend)]

31: tlocal = tend
32: end if
33: end while
34: ∆H̃(t) = H̃c(t)− H̃0

35: t = t− t0
36: FPT (H̃0,∆H̃(t)) = FPT (H̃0,∆H̃(t))+
37: Counter(H̃0,∆H̃(t)) = Counter(H̃0,∆H̃(t)) + 1
38: end for
39: FPT = FPT./Counter

Nested function - local(tlocal)

Require: tlocal
Ensure: H̃local(t), nexttime
40: if type(tlocal) = 1 then
41: H̃local(t) = H̃(tlocal : nexttime(tlocal))
42: else
43: H̃local(t) = H̃(nexttime(tlocal))
44: end if
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Appendix E

Comparison between Galerkin
scheme and analytical expressions
for the average and mean square
first-passage times

Considering a linear undamped oscillator under white noise excitation (Sw(ω, t) =
S0), since Ṫi(t) = −λiS0

2
Ti(t) and ċi(t) = 0, Equation (V.3.31) becomes{

E {tf} =
∑

iAiΦi(H) with Ai = 2
λiS0

F1,i

F2,i

E
{
t2f
}

=
∑

iBiΦi(H) with Bi = 8
λ2
iS

2
0

F1,i

F2,i

(E.0.1)

Analytical results are derived for this particular case in Sections II.3 and III.1
for the mean and mean square first-passage times E {tf} and E

{
t2f
}
based on a

stochastic averaging treatment and are given by{
E {tf} = 2

S0
∆H

E
{
t2f
}

= 4
S2

0
∆H

(
H + 3

2
∆H

) (E.0.2)

where ∆H = Hc −H is the energy increase. The equalities to be proved are

2

S0

∑
i

1

λi

F1,i

F2,i

Φi(H) =
2

S0

∆H (E.0.3)

for the average first-passage time, and

8

S2
0

∑
i

1

λ2
i

F1,i

F2,i

Φi(H) =
4

S2
0

∆H

(
H +

3

2
∆H

)
(E.0.4)

for the mean square first-passage time. The lemmas (E.0.3) and (E.0.4) are
demonstrated by projection of the two sides of the equations on the basis of
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eigenfunctions Φj(H). Equality is proved by showing that these projections are
identical for all Φj(H).

First, Equation (E.0.3) is proved. Then, the second demonstration for Equa-
tion (E.0.4) results in a similar way from the first one.

Invoking the orthogonality property (V.3.8) with f(H) = 1 , the projection
of Equation (E.0.3) on the eigenfunctions Φj(H) yields

2

S0

ˆ Hc

0

(∑
i

1

λi

F1,i

F2,i

Φi(H)

)
Φj(H)dH =

2F1,j

λjS0

=
2

S0

ˆ Hc

0

(Hc −H) Φj(H)dH

(E.0.5)
that can be rewritten, according to (V.3.11), as

ˆ Hc

0

Φj(H)dH =

ˆ Hc

0

λjΦj(H) (Hc −H) dH. (E.0.6)

Considering the definition of the Bessel function (V.3.25), one finds

´ Hc
0

Φj(H)dH = −
´ Hc

0

(
HΦ′′j (H) + Φ′j(H)

)
(Hc −H) dH

= −
´ Hc

0

(
HΦ′j(H)

)′
(Hc −H) dH.

(E.0.7)

Integration by parts of (E.0.7) leads to

ˆ Hc

0

Φj(H)dH =
[(
HΦ′j(H)

)
(Hc −H)

]Hc
0
−
ˆ Hc

0

HΦ′(H)dH. (E.0.8)

The first term in the right-hand side is trivially equal to zero while a second
integration by parts of the second term leads to

ˆ Hc

0

Φj(H)dH = − [HΦj(H)]Hc0 +

ˆ Hc

0

Φj(H)dH. (E.0.9)

Accounting for the boundary condition BesselJ(0,
√

4λiHc) = 0 (V.3.9), equality
is proved.

The demonstration is similarly done for the mean square first-passage time.
After projection on the eigenfunction Φj(H), Equation (E.0.4) yields

ˆ Hc

0

Φj(H)dH =
1

4

ˆ Hc

0

(Hc −H) (3Hc −H)λ2
jΦj(H)dH. (E.0.10)

Considering the definition of the Bessel function (V.3.25), one finds
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ˆ Hc

0

Φj(H)dH = −1

4

ˆ Hc

0

(Hc −H) (3Hc −H)λj
(
HΦ′′j (H) + Φ′j(H)

)
dH.

(E.0.11)
A first integration by parts leads to

´ Hc
0

Φj(H)dH = −1
2
λj [HΦ′(H) (Hc −H) (3Hc −H)]Hc0

−λj
2

´ Hc
0

(H − 2Hc)HΦ′j(H)dH.
(E.0.12)

The first term in the right-hand side is equal to zero, while the second one can
be developed using (V.3.25) and a second integration by parts and yields

ˆ Hc

0

Φj(H)dH = [HΦ′(H)(H −Hc)]
Hc
0 −

ˆ Hc

0

HΦ′j(H)dH, (E.0.13)

which proves equality.
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